
Christopher Olston and Benjamin Reed
Yahoo! Research

Inspector Gadget:
A Framework for Custom

Monitoring and Debugging of
Distributed Dataflows

Web Scale problems

● Lots of servers, users, and data
● Fun to have power at your fingertip
● Sucks when things go wrong

Map/Reduce

Map

Map

Map

Map

In
p

u
t

D
a

t a
se

t

Reduce

Reduce

Reduce

O
u

tp
u

t
D

at
a

se
t

Per record
Processing &
Partitioning

Per Partition
Processing

Pig on Map/Reduce

Map/Reduce Cluster

Parser

Optimizer/
Compiler

script

flow

MR job(s)

Example Pig
Workflow

group

count

join

filter

store

loadload

Pages = load 'webpages'
UserViews = load 'userclicks'
NerdPages =filter Pages by NerdFilter(content)
NerdPageViews = join NerdPages, UserViews by url
NerdUsers = group NerdPageViews by user
Counts = foreach NerdUsers generate user, COUNT(NerdPageViews)
store Counts into 'nerdviewcounts'

Motivated by
User Interviews

Interviewed 10 Yahoo dataflow programmers (mostly Pig users; some
users of other dataflow environments)
Asked them how they (wish they could) debug

Summary of User Interviews
of requests feature

7 crash culprit determination

5 row-level integrity alerts

4 table-level integrity alerts

4 data samples

3 data summaries

3 memory use monitoring

3 backward tracing (provenance)

2 forward tracing

2 golden data/logic testing

2 step-through debugging

2 latency alerts

1 latency profiling

1 overhead profiling

1 trial runs

Running Pig

Pig

Running Pig

Error!

Pig

Running Pig

Detective

Pig

Running Pig

Detective

Pig

Error!

Running Pig

Detective

Pig

Error!

Explanation

Our Approach

Goal: a programming framework for adding debugging features to Pig

Precept: avoid modifying Pig or tampering with data flowing through
Pig

Approach: perform Pig script rewriting – insert special (User Defined
Functions) UDFs that look like no-ops to Pig

group

count

join

filter

loadload

IG
coordinator

store

IG agent
IG agent

IG agent

IG agent

IG agent

IG agent

Pig w/ Inspector Gadget

group

count

join

filter

loadload

IG
coordinator

store

IG agent

Row Integrity

bad records

Example:
Forward Tracing

tra
cin

g

in
stru

c tio
n
s

report traced
records to user

group

count

join

filter

loadload

IG
coordinator

store

IG agent

IG agent

IG agent

IG agent

traced records

Example:
Crash Culprit Determination

group

count

join

filter

loadload

IG
coordinator

store

IG agent
IG agent

IG agent

IG agent

IG agent

IG agent

Crash Culprit Sending every 5th

IG
coordinator

Crash Culprit Sending every 5th

IG
coordinator

Crash Culprit sending every 5th

IG
coordinator

Crash Culprit Sending 5th
IG

coordinator

Crash Culprit Sending every 2nd

IG
coordinator

Crash Culprit Sending every 2nd

IG
coordinator

Crash Culprit Sending every tuple

IG
coordinator

Crash Culprit Sending every tuple

IG
coordinator

Agent & Coordinator APIs

Agent Class

init(args)

tags = observeRecord(record, tags)

receiveMessage(source, message)

finish()

Coordinator Class

init(args)

receiveMessage(source, message)

output = finish()

Agent Messaging

sendToCoordinator(message)

sendToAgent(agentId, message)

sendDownstream(message)

sendUpstream(message)

Coordinator Messaging

sendToAgent(agentId, message)

Applications Developed Using IG
of requests feature lines of code (Java)

7 crash culprit determination 141

5 row-level integrity alerts 89

4 table-level integrity alerts 99

4 data samples 97

3 data summaries 130

3 memory use monitoring N/A

3 backward tracing (provenance) 237

2 forward tracing 114

2 golden data/logic testing 200

2 step-through debugging N/A

2 latency alerts 168

1 latency profiling 136

1 overhead profiling 124

1 trial runs 93

In Paper

Semantics under parallel/distributed execution
Messaging & tagging implementation
Limitations
Performance experiments
Related work

Performance Experiments

15-machine Pig/Hadoop cluster (1G network)
Four dataflows over a small web crawl sample (10M URLs):

Dataflow Program Early
Projection
Optimization
?

Early
Aggregation
Optimization
?

Number of
Map-Reduce
Jobs

Distinct Inlinks N N 1

Frequent Anchortext Y N 1

Big Site Count Y Y 1

Linked By Large N Y 2

Dataflow Running Times

Related Work

XTrace, etc.
taint tracking
aspect-oriented programming

Summary / Status

● Users have a long wish-list for “debuggability”
● Make a general framework rather than tool for each

● Addressed most features with few lines of code

● Rather than implement them as separate features in the Pig core,
we built a layer on top

● IG (called Penny) is open source. Accepted into Apache Pig v0.9
release (http://pig.apache.org)

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Motivated by
User Interviews
	Summary of User Interviews
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Our Approach
	Pig w/ Inspector Gadget
	Slide 15
	Example:
Forward Tracing
	Example:
Crash Culprit Determination
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Agent & Coordinator APIs
	Applications Developed Using IG
	Rest of talk: IG DETAILS
	Performance Experiments
	Dataflow Running Times
	Related Work
	Summary / Status
	Slide 33

