
Christopher Olston and Benjamin Reed
Yahoo! Research

Inspector Gadget:
A Framework for Custom 

Monitoring and Debugging of 
Distributed Dataflows



Web Scale problems

● Lots of servers, users, and data
● Fun to have power at your fingertip
● Sucks when things go wrong
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Pig on Map/Reduce
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Example Pig
Workflow

group

count

join

filter

store

loadload

Pages = load 'webpages'
UserViews = load 'userclicks'
NerdPages  =filter Pages by NerdFilter(content)
NerdPageViews = join NerdPages, UserViews by url
NerdUsers  = group NerdPageViews by user
Counts = foreach NerdUsers generate user, COUNT(NerdPageViews)
store Counts into 'nerdviewcounts'
 



Motivated by 
User Interviews

Interviewed 10 Yahoo dataflow programmers (mostly Pig users; some 
users of other dataflow environments)
Asked them how they (wish they could) debug



Summary of User Interviews
# of requests feature

7 crash culprit determination

5 row-level integrity alerts

4 table-level integrity alerts

4 data samples

3 data summaries

3 memory use monitoring

3 backward tracing (provenance)

2 forward tracing

2 golden data/logic testing

2 step-through debugging

2 latency alerts

1 latency profiling

1 overhead profiling

1 trial runs



Running Pig
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Our Approach

Goal: a programming framework for adding debugging features to Pig

Precept: avoid modifying Pig or tampering with data flowing through 
Pig

Approach: perform Pig script rewriting –  insert special (User Defined 
Functions) UDFs that look like no-ops to Pig
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Example:
Forward Tracing

tra
cin

g
 

in
stru

c tio
n
s

report traced 
records to user

group

count

join

filter

loadload

IG 
coordinator

store

IG agent

IG agent

IG agent

IG agent

traced records



Example:
Crash Culprit Determination
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Crash Culprit Sending every 5th
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Agent & Coordinator APIs

Agent Class

init(args)

tags = observeRecord(record, tags)

receiveMessage(source, message)

finish()

Coordinator Class

init(args)

receiveMessage(source, message)

output = finish()

Agent Messaging

sendToCoordinator(message)

sendToAgent(agentId, message)

sendDownstream(message)

sendUpstream(message)

Coordinator Messaging

sendToAgent(agentId, message)



Applications Developed Using IG
# of requests feature lines of code (Java)

7 crash culprit determination 141

5 row-level integrity alerts 89

4 table-level integrity alerts 99

4 data samples 97

3 data summaries 130

3 memory use monitoring N/A

3 backward tracing (provenance) 237

2 forward tracing 114

2 golden data/logic testing 200

2 step-through debugging N/A

2 latency alerts 168

1 latency profiling 136

1 overhead profiling 124

1 trial runs 93



In Paper

Semantics under parallel/distributed execution
Messaging & tagging implementation
Limitations
Performance experiments
Related work



Performance Experiments

15-machine Pig/Hadoop cluster (1G network)
Four dataflows over a small web crawl sample (10M URLs):

Dataflow Program Early 
Projection 
Optimization
?

Early 
Aggregation 
Optimization
?

Number of 
Map-Reduce 
Jobs

Distinct Inlinks N N 1

Frequent Anchortext Y N 1

Big Site Count Y Y 1

Linked By Large N Y 2



Dataflow Running Times



Related Work

XTrace, etc.
taint tracking
aspect-oriented programming



Summary / Status

● Users have a long wish-list for “debuggability”
● Make a general framework rather than tool for each

● Addressed most features with few lines of code

● Rather than implement them as separate features in the Pig core, 
we built a layer on top

● IG (called Penny) is open source. Accepted into Apache Pig v0.9 
release (http://pig.apache.org)



The End
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