Inspector Gadget:
A Framework for Custom
Monitoring and Debugging of
Distributed Dataflows

Christopher Olston and Benjamin Reed
Yahoo! Research

v)

Web Scale problems

Feprre KR Il [
AT Y B
COrEEedFrOEen e vy el o
WA A AR AR AR A
T &
rFrearLrrRrRERn

* Lots of servers, users, and data
* Fun to have power at your fingertip
* Sucks when things go wrong

Input Dataset

Map/Reduce

Per record
Processing &
Partitioning
Per Partition
Processing
Map
Reduce
z
Map 1
Reduce S
5
Map =3
Reduce O
Map

Pig on Map/Reduce

i script
@ » Parser

l&

Optimizer/
Compiler

Map/Reduce Cluster

Example Pig
Workflow

Pages = load 'webpages'

UserViews = load 'userclicks'

NerdPages =filter Pages by NerdFilter(content)
NerdPageViews = join NerdPages, UserViews by url

NerdUsers = group NerdPageViews by user

Counts = foreach NerdUsers generate user, COUNT(NerdPageViews)
store Counts into 'nerdviewcounts'

Motivated by
User Interviews

Interviewed 10 Yahoo dataflow programmers (mostly Pig users; some
users of other dataflow environments)
Asked them how they (wish they could) debug

Summary of User Interviews
#ofrequests feature

H R P NN NN WWWP B O

crash culprit determination
row-level integrity alerts
table-level integrity alerts
data samples

data summaries

memory use monitoring
backward tracing (provenance)
forward tracing

golden data/logic testing
step-through debugging
latency alerts

latency profiling

overhead profiling

trial runs

Running Pig

Running Pig

Running Pig

=

Detective

\

Pig

Running Pig

Detective

Running Pig

Our Approach

Goal: a programming framework for adding debugging features to Pig

Precept: avoid modifying Pig or tampering with data flowing through
Pig

Approach: perform Pig script rewriting - insert special (User Defined
Functions) UDFs that look like no-ops to Pig

!

Pig w/ Inspector Gadget

-
-
-

\-

-
~.---—--l——’

~

Row Integrity

Example:
Forward Tracing

e

7’ I’\- -
--—-———————_——

-~ -
-

report traced
records to user

SuO0I3dNJISUl

buioen

Example:
Crash Culprit Determination

Crash Culprit Sending every 5th

Crash Culprit Sending every 5th

Crash Culprit sending every 5th

Crash Culprit Sending 5th

Crash Culprit Sending every 2nd

Crash Culprit Sending every 2nd

Crash Culprit Sending every tuple

Crash Culprit Sending every tuple

Agent & Coordinator APIs

init(args) sendToCoordinator(message)
tags = observeRecord(record, tags) sendToAgent(agentld, message)
receiveMessage(source, message) sendDownstream(message)
finish() sendUpstream(message)

init(args) sendToAgent(agentld, message)

receiveMessage(source, message)
output = finish()

Applications Developed Using IG
#ofrequests feature linesofcode (ava)

F P P N N NN W W WP B 0

crash culprit determination
row-level integrity alerts

table-level integrity alerts

data samples

data summaries
memory use monitoring
backward tracing (provenance)
forward tracing

golden data/logic testing
step-through debugging
latency alerts

latency profiling
overhead profiling

trial runs

141
89
99

In Paper

Semantics under parallel/distributed execution
Messaging & tagging implementation
Limitations

Performance experiments

Related work

Performance Experiments

15-machine Pig/Hadoop cluster (1G network)
Four dataflows over a small web crawl sample (10M URLS):

Dataflow Program Early ==18)Y Number of
Projection Aggregation | Map-Reduce

Optimization | Optimization | Jobs
? ?

Distinct Inlinks
Frequent Anchortext
Big Site Count
Linked By Large

Z <X < Z
< < Z2 2
N B = =

Running time (seconds)

Dataflow Running Times

450

Regular Pig
No-op
400 + DH
DS
_ FT
350 LA
LP
300 RI
TI

R

250

. "_?:" ST]

g
\. W
w M T

W

e

b
.L.‘.L

£
Y

150

XKL

e

100 |

<

X

CRRXARXK

50

Distinct Inlinks Frequent Anchor Text Big Site Count Linked by Large
Script

Related Work

XTrace, etc.
taint tracking
aspect-oriented programming

Summary / Status

Users have a long wish-list for “debuggability”
« Make a general framework rather than tool for each

« Addressed most features with few lines of code

Rather than implement them as separate features in the Pig core,
we built a layer on top

|G (called Penny) is open source. Accepted into Apache Pig v0.9
release (http://pig.apache.orq)

!

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Motivated by
User Interviews
	Summary of User Interviews
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Our Approach
	Pig w/ Inspector Gadget
	Slide 15
	Example:
Forward Tracing
	Example:
Crash Culprit Determination
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Agent & Coordinator APIs
	Applications Developed Using IG
	Rest of talk: IG DETAILS
	Performance Experiments
	Dataflow Running Times
	Related Work
	Summary / Status
	Slide 33

