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Web Scale problems
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* Lots of servers, users, and data
* Fun to have power at your fingertip
* Sucks when things go wrong
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Pig on Map/Reduce
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Example Pig
Workflow

Pages = load 'webpages'

UserViews = load 'userclicks'

NerdPages =filter Pages by NerdFilter(content)
NerdPageViews = join NerdPages, UserViews by url

NerdUsers = group NerdPageViews by user

Counts = foreach NerdUsers generate user, COUNT(NerdPageViews)
store Counts into 'nerdviewcounts'




Motivated by
User Interviews

Interviewed 10 Yahoo dataflow programmers (mostly Pig users; some
users of other dataflow environments)
Asked them how they (wish they could) debug




Summary of User Interviews
#ofrequests feature
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crash culprit determination
row-level integrity alerts
table-level integrity alerts
data samples

data summaries

memory use monitoring
backward tracing (provenance)
forward tracing

golden data/logic testing
step-through debugging
latency alerts

latency profiling

overhead profiling

trial runs




Running Pig
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Running Pig
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Running Pig




Our Approach

Goal: a programming framework for adding debugging features to Pig

Precept: avoid modifying Pig or tampering with data flowing through
Pig

Approach: perform Pig script rewriting - insert special (User Defined
Functions) UDFs that look like no-ops to Pig
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Pig w/ Inspector Gadget
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Row Integrity




Example:
Forward Tracing
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Example:
Crash Culprit Determination




Crash Culprit Sending every 5th




Crash Culprit Sending every 5th




Crash Culprit sending every 5th




Crash Culprit Sending 5th




Crash Culprit Sending every 2nd




Crash Culprit Sending every 2nd




Crash Culprit Sending every tuple




Crash Culprit Sending every tuple




Agent & Coordinator APIs

init(args) sendToCoordinator(message)
tags = observeRecord(record, tags) sendToAgent(agentld, message)
receiveMessage(source, message) sendDownstream(message)
finish() sendUpstream(message)

init(args) sendToAgent(agentld, message)

receiveMessage(source, message)
output = finish()




Applications Developed Using IG
#ofrequests feature linesofcode (ava)
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crash culprit determination
row-level integrity alerts

table-level integrity alerts

data samples

data summaries
memory use monitoring
backward tracing (provenance)
forward tracing

golden data/logic testing
step-through debugging
latency alerts

latency profiling
overhead profiling

trial runs
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In Paper

Semantics under parallel/distributed execution
Messaging & tagging implementation
Limitations

Performance experiments

Related work




Performance Experiments

15-machine Pig/Hadoop cluster (1G network)
Four dataflows over a small web crawl sample (10M URLS):
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Running time (seconds)

Dataflow Running Times
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Related Work

XTrace, etc.
taint tracking
aspect-oriented programming




Summary / Status

Users have a long wish-list for “debuggability”
« Make a general framework rather than tool for each

« Addressed most features with few lines of code

Rather than implement them as separate features in the Pig core,
we built a layer on top

|G (called Penny) is open source. Accepted into Apache Pig v0.9
release (http://pig.apache.orq)
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The End
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