Big Data Software: What’s Next?
(and what do we have to say about it?)

Michael Franklin
43rdV[ DB Conference

Munich
August 2017/

=8 THE UNIVERSITY OF

CHICAGO




The VLDB Keynote “Sandwich”

“Traditional Apps” MACHINE *
LEARNING <47

Accounting, Reconciliation,
and Reporting

hon

The Data Center under your Desk - How Disruptive is Modern
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While we are already used to see more than 1,000 cores within a
single machine, the next processing platforms for database engines
will be widely heterogeneous with built-in GPU-style processors as
well as specialized FP- GAs and chips with domain-specific instruction
sets tak- ing advantage of the “Dark Silicon” effect. Moreover, the
traditional volatile as well as the upcoming non-volatile RAM with
capacities in the 100s of TBytes per machine will provide great
opportunities for storage engines but also call for radical changes on




Big Data = Nearly every field of endeavor is
transitioning from “data poor” to “data rich”

Sociology: The Web



1. Empirical + experimental
2. Theoretical

3. Computational
4. Data-Intensive

PARADIGM

DATA-INTENSIVE SCIENT ¢ DISCOVERY



Open Source Ecosystem & Context
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Spark: Cluster Computing with Working Sets -

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract MapReduce/Dryad job, each job must reload the data 7

MapReduce and its variants have been highly successful from disk, incurring a significant ;_)erformance peaalty.
in implementing large-scale data-intensive applications ® Interactive analytics: Hadoop is often used to run

on commodity clusters. However, most of these systems ad-hoc exploratory queries on large datasets, through Bigtop
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EDL “Making Sense at Scale”

Algorithms
6 years (2011-2016) / \
~12 faculty; ~120 PhD & Postdocs
DB+Systems+ML Machines qumsss) people

NSF Expeditions, DARPA, DOE, DHS, 40+ Companies

Pubs in SIGMOD/VLDB/ICDE, OSDI/NSDI/SOSP/SOCC/
SIGCOMM, NIPS/ICML/ICDM, HCOMP...

Some Stats:
e 3 ACM Dissertation Awards (1 + 2 HMs)
« 2 CACM Research Highlights
* 4 Spinout companies: ~S400M in venture funding
3 Marriages (and numerous long term relationships)




Berkeley Data Analytics Stack
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DB Thinking Meets Systems Thinking?

MapReduce: A major step backwards

By David DeWitt on January 17, 2008
[Note: Although the system attributes this post to a single author, it was written by David

J. DeWitt and Michael Stonebraker]



DB Thinking Meets Systems Thinking?

“MapReduce may be a good idea for writing
certain types of general-purpose computations,

but to the database community, it is:

1. A giant step backward in the programming paradigm for
large-scale data intensive applications

2. A sub-optimal implementation, in that it uses brute force
instead of indexing

3. Not novel at all - it represents a specific implementation
of well known techniques developed nearly 25 years ago

4. Missing most of the features that are routinely included in
current DBMS

5. Incompatible with all of the tools DBMS users have come
to depend on”



AT THE TIME, MANY IN THE
DB CAMP AGREED
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DB Thinking Meets Systems Thinking?

1. A giant step backward

2. A sub-optimal implementation
3. Not novel at all

4. Missing most of the features

5. Incompatible with all of the tools



BUT “DATABASE THINKING” IS DRIVING
THE IMPROVEMENT PROCESS



APACME‘%l

Spa Spark’s Philosphy

e Specializing MapReduce leads to
stovepiped systems

* |nstead, generalize MapReduce:

1. Richer Programming Model
=>» Fewer Systems to Master

2. Memory Management
=>»Less data movement leads

to better performance for
complex analytics 15
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Abstraction: Dataflow Operators

map
filter
groupBy

sort

union

join
leftOuterloin

rightouterJ]oin

reduce
count

fold
reduceByKey
groupByKey
cogroup
Cross

Z1p

sample

take

first
partitionBy
mapwith
pipe

Save



Abstraction: Dataflow Operators
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Memory Mgmt in Hadoop MR

Training
Data

(HDFS)




Memory Mgmt in Spark

Training

Data
(HDFS)




Memory Management in Spark

&
3 Efficiently
move data
Faining - between
Data — | M 3 stages
(HDFS) \ -
0
> e —

10-100x speed up vs.Hadoop MapReduce
with no HDFS data migration needed 20




Memory Management in Spark

raining
Data *_
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10-100x speed up vs.Hadoop MapReduce
with no HDFS data migration needed 2




Memory Management in Spark

10-100x speed up vs.Hadoop MapReduce
with no HDFS data migration needed 2




Lineage (aka Logical Logging)
 RDDs: Immutable collections of objects that can

be stored in memory or disk across a cluster

— Built via parallel transformations (map, filter, ...)

— Automatically rebuilt on (partial) failure
messages = textFile(...).filter(_.contains(“error”))

.map( )
g g
HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func = _.contains(...) func = _.split(...)
o o

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory cluster
computing, NSDI 2012.



Llneage (aka Loglcal Loggmg)

be stored in memory or di
— Built via parallel transform

— Automatically r
messages = textFile

Al
appedRDD
func = _.split(...)

o

HadoopRDD FilteredRDD
path = hdfs://... func = _.contains(...)

o

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory cluster
computing, NSDI 2012. o



Spark Native SQL Support

Sb‘aﬁ(\zzzo Overview  Programming Guidesv  APlDocs»  Deploying»  More~

Spark SQL, DataFrames and Datasets Guide

+ Overview
o SQL
o Datasets and DataFrames
+ Getting Started
o Starting Point: SparkSession
o Creating DataFrames
o Untyped Dataset Operations (aka DataFrame Operations)
o Running SQL Queries Programmatically
o Global Temporary View
o Creating Datasets
Interoperating with RDDs
» Inferring the Schema Using Reflection
» Programmatically Specifying the Schema
o Aggregations
= Untyped User-Defined Aggregate Functions
« Type-Safe User-Defined Aggregate Functions
+ Data Sources
o Generic Load/Save Functions
= Manually Specifying Options
= Run SQL on files directly
= Save Modes
» Saving to Persistent Tables
» Bucketing, Sorting and Partitioning
o Parquet Files
» Loading Data Programmatically

»_Partitinn Diernuen:

o




DataFrames
(main abstraction in Spark 2.0)

employees

Jjoin(dept, employees("deptld") === dept("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept("name"))
.agg(count("name"))

Notes:

1) Some people prefer this to SQL ©
2) Dataframes can be typed (called "Datasets’™)



Catalyst Optimizer

e Typical DB optimizations across SQL and Dataframes
— Extensibility via Optimization Rules written in Scala
— Open Source optimizer evolution!

* Code generation for inner-loops, iterator removal

* Extensible Data Sources: CSV, Avro, Parquet, JDBC, ...

via TableScan (all cols), PrunedScan (project),
FilteredPrunedScan(push advisory selects and projects)
CatalystScan (push advisory full Catalyst expression trees)

e Extensible (User Defined) Types
e Cost-based (as of v2.2)

M. Armbrust, et al, Spark SQL: Relational Data Processing in Spark, SIGMOD 2015.



Catalyst Optimizer

e Typical DB optimizations across SQL and Dataframes

— Extensibility via Optimization Rules wri** cal:
— Open Source optimizer evolution!
* Code generation for inner-loops, ite emove
* Extensible Data Sources: CSV Avro ,

via TableScan (all cols), Prun
FilteredPrunedScan(push ad
CatalystScan (push advisory ||

* Extensible (User Definec
e Cost-based (as of v2.2)

M. Armbrust, et al, Spark SQL: Relational Data Processing in Spark, SIGMOD 2015.
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An interesting thing about SparkSQL
Performance

DataFrame SQL i | | | |

DataFrame R
DataFrame Python
DataFrame Scala
RDD Python :
RDD Scala =
i i i | |

0 2 4 o 38 10

Time to Aggregate 10 million int pairs (secs)

29



An interesting thing about SparkSQL

DataFrame SQL
DataFrame R
DataFrame Python
DataFrame Scala
RDD Python

RDD Scala

Performance

Time to Aggregate 10 million int pairs (secs)

10
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Spark Structured Streams (unified)

Batch Analytics

// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy($"action", window($"time", "1 hour")).count()
.write.format("jdbc")
.save("jdbc:mysql//...")

Streaming Analytics

// Read data continuously from an S3 location

val inputDF = spark'son("s3://1095")

// Do operations using the standard DataFrame API and write to MySQL

inputDF.groupBy($"action", window($"time", "1 hour")).count()
CwriteStream_Jormat("jdbc")

.start("jdbc:mysql//...")

31



Spark Structured Streams (unified)

Batch Analytics

// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")

// Do operations using the standard DataFram

inputDF.groupBy($"action", window($"time", "
.write.format("jdbc")
.save("jdbc:mysql//...")

Streaming Analytics

// Read data continuously from an S3 location

val inputDF = spark(feadStream,yson("s3://1ogs")

// Do operations using the standard DataFrame API and write to MySQL

inputDF.groupBy($"action", window($"time", "1 hour")).count()
CwriteStream Jormat("jdbc")

.start("jdbc:mysql//...")

32



Putting it all Together:
Multi-modal Analytics

SQL // Load historical data as an RDD using Spark SQL
val trainingData = sql(
"SELECT location, language FROM old_tweets")

Machine // Train a K-means model using ML1lib
: val model = new KMeans()
I—earnmg .setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)

: // Apply the model to new tweets in a stream
Sti”eamlng TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))

Current release has similar support for
Deep Learning models as well

33



SPARK MOMENTUM



Spark Meetups (February 2013)

Powered by Leaflet

| sroup with 538 members

SpQI’ K spark.meetup.com



Apache Spark Meetups (August 2017)
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Open Source Impact

November 21, 2014
Spark Just Passed Hadoop in Popularlty on the Web-
Here’s Why 7 Hevs s

R\

datanaml

In October Apache Spark (blue line) passed Apache
Hadoop (red line) in popularity according to Google
Trends

November 4, 2015

Skip the Ph.D and Learn Spark, Data Science Salary Survey
Says

Alex Woodie

’ l " Prospective data scientists can boost their salary .
s fK , more by learning Apache Spark and its tied-at- O’ REILLY
s "“ pO g / the-hip language Scala than obtaining a Ph.D., a

- '\ / F S \51 M il i., recent data science survey by O’Reilly suggests.

@ ™



A Data Management Inflection Point

Scale Out e Processing
Computing e Storage

e Pay-as-you-go Processing
e Pay-as-you-go Storage

Elastic Resources

Flexible Data e Schema on Read vs. on Write
Formats e Direct access to stored data

Multimodal

Advanced
Analytics

e Search, Query, Analytics
e Machine Learning, Al

Open Source e Rapid Adoption
Ecosystem e Rapid Innovation




WHERE “DATABASE THINKING”
CAN GET IN THE WAY



Traditional Database Thinking
(analytics subset)

+ Declarative Queries and Data Independence
* Rich Query Operators, Plans and Optimization
e Separation of Physical and Logical Layers

+ Data existing independently of applications

* Not as natural to most people as you’d think
+ Importance of managing the storage hierarchy
- Monolithic Systems and Control
- Schema First & High Friction
- The DB Lament: “We’ve seen it all before”



How Database Systems Treat Data




Database Systems: One way in/out

SELECT
FROM
WHERE

4 )

SQL Compiler

Y2
AN

Relational Dataflow

ow/CoI Store

Adapted from Mike Carey UCI

AN




Database Systems: One way in/out

SELECT
FROM
WHERE

SQL Compiler

Relational Dataflow
y Y
(1 Row/Col Store

A

Adapted from Mike Carey, UCI



Mix and Match Data Access

DEIEE :
frames u MLlib Streams

— Spark/RDD
- HDFS MongoDB

Adapted from Mike Carey, UCI




Mix and Match Data Access

o
- o
SQL S R Graph MLlib Streams

HEINES

- HDFS MongoDB

Adapted from Mike Carey, UCI



Q: WHICH LANGUAGES DO YOU USE SPARK IN?

% of respondents who use each language (more than one language could be selected)

1%
65 0 8% 62%

36% 44% l/o 29%

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016

SCALA SQL PYTHON R JAVA

From: Spark User Survey 2016, 1615 respondents from 900 organizations
http://go.databricks.com/2016-spark-survey
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COMPONENTS USED IN PROTOTYPING
AND PRODUCTION 67% 67%

More than one component could be selected.
SPARK SQL DATAFRAMES

43%  43%

310/0 MLLiB SPARK STREAMING

DATASETS
14%

GRAPHX

47



% OF RESPONDENTS WHO CONSIDERED THE FEATURE

VERY IMPORTANT
69%

More than one feature could be selected.

51%

REAL-TIME
STREAMING

76%

EASE OF
PROGRAMMING

PERFORMANCE

8 2 %

ADVANCED
ANALYTICS

48



Spark Ecosystem Attributes

e Spark focus was initially on
* Performance + Scalability with Fault Tolerance
* Rapid evolution of functionality kept it
growing

e especially across multiple modalities: DB, Graph,
Stream, ML, etc.

Database thinking is moving Spark and
much of the Hadoop ecosystem up the
disruptive technology value curve



Some Other Lessons

Leverage (create) a popular ecosystem

Build community - agree on standards: de
facto or otherwise

Solve the most common use cases and avoid
complexity from others

Ease of use + scale up/out trumps raw speed
(although winning benchmarks is good for
buzz)

Hellerstein and Brewer’s 262 CS&O0S merger
at Berkeley set the intellectual stage



What’s Next?

As we heard yesterday, rapidly changing hardware
means that there is still a lot of research to be done
in performance, scalability and fault tolerance!

But a new set of concerns is moving to the fore...
1) Data Science/Analytics Full Lifecycle Concerns

2) Ease of Development and Deployment
3) “Safe” Data Science and Human Factors

And how will DB Thinking help?*??



Data Science — NSF CISE December 2016

. \ \ CISE AC Data Science Report
- National Science Foundation P

” WHERE DISCOVERIES BEGIN

. REALIZING THE POTENTIAL OF DATA SCIENCE
If NSF can help foster the evolution and

Final Report from the National Science Foundation Computer and

d eve I o) p ment Of b ot h Data SC | ence Information Science and Engineering Advisory Committee Data Science
. . Working Group
and Data Scientists over the next decade,
we Can begl N tO m eet t h e pOte ntl d I Of Francine Berman and Rob Rutenbar, co-Chairs
. . . Henrik Christensen, Susan Davidson, Deborah Estrin, Michael Franklin, Brent
D ata SC lence to d rive new d ISCOove ry an d Hailpern, Margaret Martonosi, Padma Raghavan, Victoria Stodden, Alex Szalay
innovaﬁon"_ December 2016

This should include not only a focus on
fundamental Data Science, but also on
translational efforts to move ideas from
research to practice across the broadest

. . . The function of Federal advisgry clommitteles is advisory only. Anyl opinions, ﬁ'ndings, conclusions, or
landscape of commercial applications. s s e oot et S g1t




Data Science & Analtyics: A Lifecycle View

{Ethics, Policy, Regulatory, Stewardship, Platform, Domain} Environment

Create,
capture
gather from:
* Lab

* Fieldwork
* Surveys

* Devices

» Simulations
e etc

Organize
Filter
Annotate
Clean

* Analyze

Mine

Model

Derive ++data
Visualize
Decide

Act

Drive:

* Devices

* |nstruments

* Computers

* Share

* Data

* Code

* Workflows
* Disseminate
* Aggregate
* Collect

* Create portals,

databases, etc
* Couple with
literature

Use/ Preserve
Reuse Destroy

* Store to:

* Preserve
* Replicate
* Ignore
Subset,
compress
Index
Curate

Destroy

from the National Science Foundation CISE AC
Data Science Report, October 2016



Data “Wrangling”

Claim: Up to 80% of time spent on cleaning,
integrating and preparing data for analysis

Problems include:

e Data acquisition and characterization

e Correcting values and imputing missing data

* (Re) Formatting

* Dynamic and evolving data sources

Data Integration from heterogeneous sources

Semantic and Performance issues arise
Machine Learning and Human Processing solutions



Data Cleaning: SampleClean

Key Systems Issues — how to deal with latency and cost of the crowd?

5 Result Estimation

ean >

Samples (SampleClean)
Data

Cleaning : o AlDiry
. \ —&—BiasCorrected
e :
Dirty |[-------- >
Samples "

\ —o— SampleClean
£
inkD B Creation
>

Dirty Data

-~

Error Bound %%
L ] -

Aggregation
Queries

<000 K000 i '";:.. L';." T .: 00 ) .'.'L: o0
Number of Cleaned Samples

I
Result Estimation
(BiasCorrected)

J. Wang, S. Krishnan, et al., A Sample-and-Clean Framework for Fast and Accurate Query
Processing on Dirty Data, SIGMOD 2014




Ease of Development/Deployment

Data Analytics is a complex process

Rare to simply run a single algorithm on an
existing data set

Emerging systems support more complex
workflows:

 Spark MLPipelines

* Google TensorFlow

 KeystoneML and Clipper Model Serving (BDAS)



Declarative APl =» Optimizations
(c.f., Database Query Optimization)

_______

AUtOmated ML ' Linear l
operator PRt |
selection

Auto-caching for iterative workloads

Column Distributed Column Local
Sampler PCA Sampler GMM
Tra"“ng Grayscal er SIFT Reduce FI sher Normalize
Data Extractor [ji§ Dimensions Vector

Tralmng

L-BFGS
Labe S

Linear
Map

-» Predictions



KeystoneML

e Current version: v0.3

ry
w»
[

 Scale-out performance on 10s of TBs of
training features on 100s of machines.

Time (minutes)

8 16 32 64 128

apps: Image Classification, Speech, Text. e ot 5t i
Cluster Size (# of nodes)

Stage MLoading Train Data _ Featurization M Model Solve
9€ W Loading Test Data M Model Eval

e First versions of node-level and whole-
pipeline optimizations.

* KeystoneML system design — ICDE 2017

e Other Results:

—Principled, scalable hyperparameter
tuning. (TUPAQ - SoCC 2015)

—Advanced cluster sizing/job placement
algorithms. (Ernest - NSDI 2016)

Machines

Machines,
Input Size

Use few iterations for
training




Deployment: Model Serving

“Veon | Recognition  Recommendation  APPLICATIONS
REST API
Note the
Model Selection Policy MODEL SELECTION LAYER lr—') similarity
. O with the
Caching MODEL ABSTRACTION g traditional
Adaptive Batching LAYER - RDS/RSS
Split
frec Jrec 1RPC ACHIE
Model Container Model Container Model Container
LEARNING
SPQF’QZ “FTensor ‘ learn FRAMEWORKS

Clipper: A prediction serving system that spans multiple ML frameworks
— Simplifies model serving
— Bounds latency and increases prediction throughput

— Enables real-time learning and personalization across machine learning
frameworks

https://github.com/ucbrise/clipper

D. Crankshaw et al., “Clipper: A Low-Latency Online Prediction Serving System”, NSD/ Conf., March 2017



Curation and Reproducibility

Data outlives any particular application:

“[database systems] let you use one set of data in
multiple ways, including ways that are unforeseen at the
time the database is built and the 1st applications are
written.” (Curt Monash, analyst/blogger)

Background Estimation
Z. Zhang et al. HPDC 17: Al Mappng N/
— Efficient fine-grained lineage for s
- - atll & REg
machine learning and advanced i
analytiCS pipelines Background Subtraction Object Detection
Identity Mapping Geometry Mapping

— Supports code debugging, result analysis, data anomaly removal
and computation replay

— Provides interactive answers to queries over lineage



Bias, Privacy and Ethical Issues

I PI [J7
A O VIDEO NEWS POLITICS ENTERTAINMENT LIFE INNOVATION \ \\ ‘ '
S
\ NEW YORK TINES BERTALL ,f. 115

Why big-data analysis of police - WEAPONS OF
activity is inherently biased s MATH DESTRUCTION /

One predictive policing algorithm targeted black neighborhoods at roughly twice the rate
of white neighborhoods P%’Q

- Telo —
—_—
jobs dating more v o

theuardlan ><°
* L
A UK world sport football opinion culture business lifestyle fashion environment tech travel all sections HEW BIC BATA INCRIASES INEQ@ALNTY
home ) tech WELATENS DEMBERAGY g

Bigdata Little privacy in the age of big data 7 [: A‘[ HY 0'NEIL

development
(series)
With massive amounts of our person lata now being1

tinely collected and

A NEW YORK TINES RNOTARLE DDOXK

“With Big Data comes Big Resposnibility”



Humans in the loop

Data Consumers Data Generators
@LP/M\ oo @/D?\ Gitizen
Decisions VELOX /3. Science

Data Scientists Data Processors

SPQ"’QZ sacmgc-:lén

£ .
Co\mW BERKELEY

Computation

People Icons created by Clara Joy from Noun 62

Project



Retainer Pool Slots

S, S, S, S, g
The AMPCrowd ]
3

System 3

y 5% Ry & g

% Z C ek

o \<
amplab.github.io/ampcrowd
Pool Manager —
Leveraging systems and database techniques A
for hvbrid h i thel i Scheduler S
or rid human-in-the-loop analytics
vorid hurarvin-the-loop analy d
(e.g. Straggler Mitigation, Active Learning)
Task batch
Labeli
ia:kI: & Task Selector -
Labels & @
predictions
|

User

D. Haas, et al., Clamshell: Scaling Up Crowds for Low Latency Data Labeling, PVLDB 9(4)
Haas & Franklin, Cioppino: Multi-tenant Crowdsourcing, HCOMP 2017 63

pMOJID



Closer Integration With Domains

Jim Gray and Alex Szalay showed Science
the mutual benefits between
databases and science that can |
gained by close collaboration researcnE bt

The widespread creation of new J= ¥
Data Science Institutes provides
institutional support for such efforts

DB program committees much be encouraged to
recognize this type of work

(this was the topic of yesterday’s panel)
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New Challenges Summary

Performance, Scalability, and Fault Tolerance remain
important, but we face new challenges, including:

Data Science Lifecycle
* Data Acquisition, Integration, Cleaning (i.e., wrangling)
e Data Integration remains a “wicked problem”
* Model Building
 Communicating results, Curation, “Translational Data Science”

Ease of Development and Deployment

* Can leverage database ideas (e.g., declarative query optimization)
* New components for “model serving” and “model management”

“Safe” Data Science
* end-to-end Bias Mitigation
e Security, Ethics and Data Privacy
* Explaining and influencing decisions
* Human-in-the-loop
(and don’t ignore Deep Learning...)



Conclusions

The Database field is seeing tremendous
change from above and below

Big Data software is a classic Disruptive
Technology

Database Thinking is key to moving up the
value chain

But we’ll also have to shed some of our
traditional inclinations in order to make
progress



Acknowledgements

Thanks to all the amazing AMPLab students, staff,
faculty and sponsors
and to the pioneers who developed
our increasingly central field
as well as to those who continue to push the boundaries
(apologies to anyone left out of the pictures!)



Thanks and for More Info

Mike Franklin
mjfranklin@uchicago.edu
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