A DB2 That Manages Itself?
Guy M. Lohman
(lohman@almaden.ibm.com)
Almaden Research Center

The Idea

Wouldn't it be great if your Database (and entire system!) were as easy to maintain and as self-controlled as your refrigerator?

Agenda
- Introduction & Motivation
- DB2 Autonomic Computing Project
- Existing DB2 Autonomic Features
 - Index Advisor
 - Configuration Advisor
 - Health Advisor
- New in "Stinger"
 - Design Advisor
 - Automated Statistics Collection
- Ad. Tech. & Research Projects
- Progressive Optimization
- Conclusions
DB2 Autonomic Computing

Goal – Make DB2 Autonomic

The Project:
- Multi-Platform (Linux, Unix, Windows, mainframe)
- Multi-Division (Research, Development)
- Multi-Site (Toronto, Almaden, Silicon Valley, Watson)
- Part of IBM's company-wide "Autonomic Computing" initiative

Leaders:
- Toronto Lab: Sam Lightstone, Randy Horman, Mark Wilding
- SVL: Jim Tang (z/OS), Bryan Smith (tools)
- Research: Guy Lohman (ARC), Joe Hellerstein (Watson)

History:
- Index Advisor prototyped in 1998
- Project formed in early 2000
 - Previously called Self-Managing And Resource Tuning (SMART)
 - IBM-wide Autonomic Computing initiative
 - Evolutionary: Multi-Release Rollout

Ref: SMART: Making DB2 (More) Autonomic, VLDB 2002

An Autonomic DB2: What's our Focus?

- Up and Running
 - pre-purchase capacity planning tools
 - automate install and initial configuration
- Design
 - advise on logical and physical design
- Maintenance
 - automatic tuning for queries, resources
 - physical maintenance (statistics collection, reorganization, ...)
- Problem Determination and Resolution
 - detecting existing, and predicting future
 - user notification
 - self-correcting features
- Availability and Disaster Recovery
 - availability
 - backup and log management

Approach

- LOTS of ideas & prototypes underway!
- Leverage existing infrastructure in DB2
- Optimizer's detailed model of run-time environment
- Monitoring tools
- Workload captured for DB2 Index Advisor
- DB2 Control Center GUIs, Data Management Tools

- Exploit IBM's strength in software research

- Get something out there, & improve it over time!
 - Where the need is greatest
 - Where we have ideas/skills
 - Earn the DBA's trust
 - Create tools that speed/simplify/improve DBA's job
 - "Free the DBA!" – DBA retains ultimate decision power
 - Longer-term goal is complete automation
Agenda

- Introduction & Motivation
- DB2 Autonomic Computing Project
- Existing DB2 Autonomic Features
- Index Advisor
- Configuration Advisor
- Health Advisor
- New in "Stinger"
- Design Advisor
- Automated Statistics Collection
- Ad. Tech. & Research Projects
- Progressive Optimization
- Conclusions

Index Selection: The Problem

- Huge number of possible indexes
- Dependent upon workload (queries) anticipated
- For each query, user has to trade off:
 - Benefits:
 - Apply predicates efficiently (save reading entire table)
 - Provide a row ordering needed by query for certain operations
 - Index-only access (avoid fetching data pages)
 - Enforce uniqueness (e.g., primary keys)
 - Costs:
 - Storage space
 - Updating
 - More plans for the optimizer to evaluate
- Time-consuming trial & error process to choose the best set of indexes
 - Create index (system sorts entire table on key of the index)
 - Collect statistics on it (system scans entire table AND all indexes)
 - Re-optimize all queries in all apps that might benefit
 - See if
 - Index was used
 - Performance improves
 - Repeat!

Solution(1): DB2 Index Advisor (V6, 1999)

Exploits Optimizer to:
- Suggest good candidates, per query
- Evaluate combinations, for entire workload

Indexes Designed by DB2 for Your Environment & Workload
Index Advisor (DB2 V6) – The Math

- Variant of well-known "Knapsack" Problem
- Greedy "bang-for-buck" solution is optimal when integrality of objects (indexes) is relaxed

For each query Q:
- Baseline: Explain each query w/ existing indexes, to get cost E(Q)
- Unconstrained: Explain each query in RECOMMEND INDEXES mode, to get cost U(Q)
- Improvement ("benefit") B(Q) = E(Q) - U(Q)

For each index I used by one or more queries:
- If query Q used index I, assign "benefit" B(Q) to index I:
 B(I) = B(I) + B(Q)
- Assign "cost" C(I) = size of index in bytes
- Order indexes by decreasing B(I) / C(I) ("bang for buck")
- Cut off where cumulative C(I) exceeds disk budget

Iterative improvement: exchange handfuls of "winners" with "losers"

Configuration Parameters

- The Problem:
 - Almost 150 configuration parameters in DB2 UDB
 - Users didn’t know: How to choose the right values
 - Possible interactions between them
 - Had to stop and restart DB2 to have them go into effect
 Bad for availability, too!

- Solution(1):
 - Make many configuration parameters dynamic!
 - No need to stop and restart DB2 to change them
 - Not easy to implement, e.g. shrinking buffer pool
 - Prerequisite to automatically tuning them

Solution(2): Configuration Advisor (V8.1, 2002)

- What is it?
 - Sets ~36 configuration parameters key to performance, including:
 - Memory heaps (buffer pool, sort heap, statement cache)
 - Connections (max and average, remote/local)
 - Based upon answers to 7 high-level questions
 - Equations from performance experts relate parameters

Enhanced in 8.1:
- Available in V7 as "Performance Configuration Wizard"
- More sophisticated model in V8.1
- Easier to invoke via:
 - CREATE DATABASE command extension
 - AUTOCONFIGURE command
- Better decisions for OLTP and DSS workloads
- Surprising benchmark results
 (well-known, industry-standard OLTP workload)
Configuration Advisor: The Questions

- Percentage of Real Memory to dedicate to DBMS
- OLTP vs. Complex query vs. Mixed
- Length of Transaction (typical # of SQL queries per transaction)
- Relative priority of Recovery vs. Query speed
- Number of Local and Remote Connections
- Whether the database is populated or not
- Isolation Level

DB2 Configuration Advisor vs. Human Experts

Health Monitoring

- The Problem:
 - How do you know if DB2 is running okay, performing well?
 - What do you do if you do manage to figure out it's "unhealthy"?
 - Too difficult to determine what to monitor and when to monitor it
 - Need to set up monitors, notification & resolution mechanisms
- The Solution: Health Center
 - DB2 monitors its own health right out of the box
 - Notifies user upon encountering unhealthy conditions
 - Advises on severity of condition, and suggests resolutions
 - Initiates corrective action if required, requested
 - Easy installation: just provide an e-mail or pager address
 - User can modify thresholds for notification
Solution: Health Center (V8.1)

Health Monitor and Health Center
- Alerts sent by Health Monitor to Contacts on Contacts List
- Details in Notification Log can be viewed via Health Center, Web Health Center, CLP, or API

Health Center: "Drilling Down"
- If you need to do some digging/investigation before choosing an appropriate action, Health Center launches tools in context
 - Use Memory Visualizer to consider "competitors" of a constrained resource
 - Other investigative actions include:
 - Storage Management
 - Indoubt Transaction Manager
 - Event Monitor

NOTE: for many corrective actions, DB/DBM config settings can be dynamically updated!!
Agenda

- Introduction & Motivation
- DB2 Autonomic Computing Project
- Existing DB2 Autonomic Features
- Index Advisor
- Configuration Advisor
- Health Advisor
- New in "Stinger"
- Design Advisor
- Automated Statistics Collection
- Ad. Tech. & Research Projects
- Progressive Optimization
- Conclusions

Design Advisor ("Stinger")

- An extension of existing Index Advisor (V6)
- Headquarters for all physical database design
- Recommends any combination of:
 - Indexes
 - Materialized Views (Materialized Query Tables (MQTs))
 - Called Automatic Summary Tables (ASTs) before V8.1
 - Partitioning of tables (in partitioned environment)
 - Multi-Dimensional Clustering (MDC) storage method (New in V8.1)
- Takes interactions of these into consideration
- Status:
 - Coming soon ("Stinger")!
 - Beta testing on customer databases now!

References:
- "DB2 Design Advisor: Integrated Automatic Physical Database Design", VLDB 2004
- "Recommending Materialized Views and Indexes with IBM's DB2 Design Advisor", IEEE Int'l. Conf. on Autonomic Computing "Stinger" (V8.1)

Multi-Dimensional Clustering (MDC) – V8.1

Cells are the portion of the table containing data having a unique set of dimension values; the cell is formed by taking a slice from each dimension. Blocks are the storage units that compose each cell.
Design Advisor Architecture (MQTs only)

- db2advis utility
- Get Workload
- Get Candidate MQTs
- Determine Stats (optionally sample)
- Choose Solution
- Evaluate Solution
- Workload
- Optimizer
- Candidate MQTs
- RECOMMEND mode
- "EVALUATE" mode
- Costs of Queries

Design Advisor: Partition Advisor

- Scope:
 - DB2 "partitioned environment" (was called EEE prior to V8.1)
 - "Shared-nothing" parallelism
 - Data stored horizontally partitioned
 - On a partition group, spread across specified partitions
 - Based upon hashing of partitioning column(s)
 - May be replicated across all partitions of partition group
 - Need to co-locate similar values for joins, aggregation in queries
 - Partitioning required for a given table may be different
 - Between queries
 - Even within a query (joined on different columns)

- Problem: What is optimal partitioning for each table, given:
 - Workload of queries
 - Schema, including set of partition groups & tablespaces
 - Statistics on database

Performance Improvement on Customer Database (Partitioning only)

- 50 queries and 500 possible configurations
- Rank_best algorithm converges the fastest, 22% speedup
Automating Statistics Collection:

• Problem:
 ➢ Optimizer requires that statistics on database be
 – Up to date (after updates)
 – Complete (multi-column)
 ➢ User must invoke RUNSTATS

• Solution: Automate RUNSTATS
 ➢ Invocation scheduled and prioritized
 ➢ Run silently as a background daemon
 – Throttled based upon workload
 ➢ LEO the LEarning Optimizer determines which statistics needed
 – Based upon learning from past queries
 – Groups of columns
 – Enables correlation detection
 – Communicated to RUNSTATS via statistical “profiles”
 ➢ Shipping in DB2 “Stinger”
 ➢ Ref: “Automated Statistics Collection in DB2 Stinger”, VLDB 2004

Automating Statistics Collection: LEO the LEarning Optimizer Determines Statistics Profiles

I can’t believe I did that!

Ref: “LEO – DB2’s LEarning Optimizer”, Intl. Conf. on Very Large Data Bases 2001 (Rome, Sept. 2001)

LEO Motivation

• Cost depends heavily on number of rows processed (cardinality)
• Optimizer’s model limited by simplifying assumptions
 – Especially due to statistical correlation between columns
 – EXAMPLE: WHERE Make = ‘Honda’ AND Model = ‘Accord’
 – Impossible to know a priori which columns are correlated!
• Why not use actual results from executed queries to
 – Validate statistics and assumptions
 – Advise when/how to run expensive statistics collection
 – Gather statistics that reflect the workload
 – Repair the model for optimizing “similar” future queries
• Could achieve automatically
 – Better quality plans
 – Reduced customer tuning & administration time
 – Reduced IBM support time
• Part of Automated RUNSTATS in “Stinger”
Query Optimization -- Today

EXPLAIN gives Optimizer’s Estimates

New: Capture Actual Number of Rows!
1. Monitor
2. Analyze
3. Feedback
4. Exploit

Figure Out Where the Differences Are

Augment Statistics with Adjustments

Exploit: Learning in Query Optimization!
Agenda

- Introduction & Motivation
- DB2 Autonomic Computing Project
- Existing DB2 Autonomic Features
 - Index Advisor
 - Configuration Advisor
 - Health Advisor
 - New in "Stinger"
 - Design Advisor
 - Automated Statistics Collection
- Ad. Tech. & Research Projects
- Progressive Optimization
- Conclusions

Progressive Optimization (POP)

- CHECKpoints for cardinality estimates at TEMP tables
 - Pre-computed validity range for this plan
- When check fails,
 - Treat partial results as MQTs
 - Replace estimated cardinality with actual for the MQTs
 - Re-optimize the currently running query

#Refn#: “Robust Query Processing Through Progressive Optimization.” ACM SIGMOD 2004

Conclusions & Future Directions

- Autonomic features of DB2:
 - Key to lowering Total Cost of Ownership
 - A major DB2 differentiator
 - Now in DB2 are the "tip of the iceberg!"
- Many more on the way in technology stream from
 - Development
 - Research
 - Universities
- Rollout prioritized by Customers ("Free the DBAs!")
- Beginning to integrate IBM components autonomically
- Ultimate goal is complete automation!
For more info...

Autonomic computing systems are self-managing and always available, analogous to the human autonomic nervous system depicted abstractly on the cover. Papers in this issue describe a variety of research projects in which the concepts of autonomic computing are being developed.

http://www.ibm.com/autonomic

Finis