
LH*RS: A Highly Available Distributed Data Storage

Witold Litwin Rim Moussa Thomas J.E. Schwarz, S.J.

 CERIA Lab., Université Paris Dauphine Santa Clara University
 FRANCE USA

Witold.Litwin@dauphine.fr Rim.Moussa@dauphine.fr TSchwarz@scu.edu

Abstract
The ideal storage system is always available and
incrementally expandable. Existing storage
systems fall far from this ideal. Affordable
computers and high-speed networks allow us to
investigate storage architectures closer to the
ideal. Our demo, present a prototype
implementation of LH*RS: a highly available
scalable and distributed data structure.

1. Introduction
Scalable and Distributed Data Structures [SDDS] are

intended for computers over fast networks, usually local
networks, i.e. for the multicomputers. This new hardware
architecture is promising and gaining in popularity. In
spite of the advantages given by distributing data,
vulnerability to failures remains a problem that grows
with the number of machines supporting the SDDS.

Many approaches to build highly available, i.e., fault
tolerating, distributed data storage systems have been
proposed. They generally use either (i) data mirroring or
(ii) parity calculus [WK02]. The latter approach uses
erasure-correcting codes. The simplest codes, e.g. in
RAID systems [PGK88], use XOR calculus for the
tolerance of a single site failure. Multiple failures need
more complex codes. These can be the binary codes
[H94] for double or triple failure, or character codes, more
generally. Examples of character codes are array codes
such as the EVENODD code [BB94], the X-code [XB99]
or Reed Solomon codes. The latter appear at present to be
the best to deal with multiple failures [R89] [BK95][P97]
[LS00] [ML02] [S02] [MS04] [LMS04] [M04].

Below, Section 2 recalls the LH*RS file structure.
Section 3 overviews our bucket architecture. Section 4

presents the demonstration outline. Finally, performance
results are given in section 5.

2. LH*RS Scheme
LH*RS scheme is described with details in [LS00] and

[LMS04]. An LH*RS file is subdivided into groups. Each
group is composed of m Data Buckets and k Parity
Buckets. Buckets are basically in distributed RAM, each
at a different server node. The data buckets store the data
records of the group. These are encoded into the parity
records for high availability as follows in the parity
buckets. Every data record has a rank r in its data bucket.
It receives this rank upon insertion.

Figure 1: LH*RS file Structure

A record group consists of all records with the same
rank in a bucket group. We construct parity records from
data records having the same rank within data buckets
forming a bucket group (Fig. 1(a)). The record grouping
has an impact on the data structure of a parity record. Fig.
1(b-c) shows the structure of a data record and a parity
record. The key field of the parity record is its rank; the
key list keeps track of the data records in the record group.
The parity field contains the actual parity symbols for the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

4 • • • ♣ ♣

3 • • • • ♣ ♣

1 • • • • ♣ ♣

0 • • • • ♣ ♣

R an k

2 • • • • ♣ ♣

4 • • • ♣ ♣

3 • • • • ♣ ♣

1 • • • • ♣ ♣

0 • • • • ♣ ♣

R an

2 • • • • ♣ ♣

: Data R ec o rd ♣ : P ar ity R ec ord

4 • • • ♣ ♣

3 • • • • ♣ ♣

1 • • • • ♣ ♣

0 • • • • ♣ ♣

R an k

2 • • • • ♣ ♣

4 • • • ♣ ♣

3 • • • • ♣ ♣

1 • • • • ♣ ♣

0 • • • • ♣ ♣

R an

2 • • • • ♣ ♣

4 • • • ♣ ♣

3 • • • • ♣ ♣

1 • • • • ♣ ♣

0 • • • • ♣ ♣

R an

2 • • • • ♣ ♣

: Data R ec o rd ♣ : P ar ity R ec ord

(a) An LH*RS file’ group (m = 4, k = 2)

K ey K ey L ist P arity F ield

K ey D ata F ie ld

(b) D ata record structu re

(c) P arity reco rd struc tu re

K ey K ey L ist P arity F ield

K ey D ata F ie ld

(b) D ata record structu re

(c) P arity reco rd struc tu re

K ey D ata F ie ld

(b) D ata record structu re

(c) P arity reco rd struc tu re

1289

record group that we calculate using our version of Reed
Solomon codes.

Thanks to the coding scheme, we can calculate the
contents of all records in a record group if we have access
to m out of the n = m+k records. This provides us with k
availability. The actually parity calculation proceeds as
follows: When a record is updated (and here an insert
counts as a modification of a zero record) we calculate its
∆-record, which is the XOR of the old and the new data
field. We send this ∆-record to all parity buckets, who
update their parity field by XORing the ∆-record
multiplied symbol-wise by a given fixed element,
contained in a parity matrix P. The multiplication is done
in a Galois field. According to our experiments we
achieve the overall best performance with the Galois field
with 216 elements. Since we use the logarithmic method
to multiply, we actually store directly the logarithms of P
in a matrix Q. Thanks to an optimization of P, the first
row and the first column of P contain only 1’s
coefficients. In this case, we obviously can do away with
the multiplication. In any case, our experiments show that
the processing overhead of Reed-Solomon is small. Table
1 below shows our demo matrices P and Q.

(P) 0001

0001
0001
0001

0001
eb9b
2284
9e44

0001
2284
9e74
d7f1

(Q) 0000
0000
0000
0000

0000
5ab5
e267
784d

0000
e267
0dce
2b66

Table 1: Our demo matrices P and Q for m = 4 and
k = 3.

In order to reconstruct lost records in a record group,
we gather the columns of P corresponding to available
records in a matrix H, invert H with the Gaussian
algorithm, multiply each available record with a
coefficient of H and XOR the results together to obtain a
missing record. Since the inversion is done once for all
records to be reconstructed, it does not constitute a
significant overhead.

The file starts with one data bucket and K ≥ 1 parity
buckets. The K value, called Intended Availability Level,
is a file parameter. It scales up through data buckets splits,
as the data buckets get overloaded. Each bucket group has
then the availability level k that is K or K – 1, [LMS04].
Each data bucket contains a maximum number of b
records. The value of b is the bucket capacity. When the
number of records within a data bucket exceeds b, the
bucket alerts the coordinator, a special entity coordinating
splits. The latter designates a data bucket to split.

3. System Architecture
The goal of the prototype is to tune and

experimentally determine LH*RS performance. Our
current LH*RS implementation is described in depth in
[M04]. It completes and improves that in [L00][ML02].

Figure 2: Bucket Architecture.

Figure 2 shows the multithreaded architecture of a

bucket. Initially, a bucket is either connected to the data
buckets multicast group or to the parity buckets multicast
group. It starts with the multicast listening thread and the
multicast working thread. When it receives a multicast
group inviting the bucket to be a new or a spare bucket, it
instantiates the other threads, responds positively to the
coordinator, and waits for the confirmation. A selected
bucket, upon receiving the confirmation, disconnects from
its multicast group. Non-selected buckets cancel the
instantiation process, and can commit to other invitations.
Here are the functions of each thread.

3 The Multicast Listening Thread is a temporary

thread that listens to a fixed data or parity
multicast port, and queues multicast messages.

3 The Multicast Working Thread is also a
temporary thread that processes queued
multicast messages.

3 The UDP Listening Thread listens to a fixed
UDP port, calculated from the bucket number.

3 The Working Threads, usually four, process
queued UDP messages.

3 The TCP Listening Thread accepts and handles
multiple TCP/IP connections.

3 The Acknowledgement Manager Thread:
Each UDP message to be acknowledged is

Network

Coordinator/ Bucket / Client

Multicast Port Send UDP Port

Message
Queue

Message processing

TCP/IP Port

Process Buffer

UDP Port

Message
Queue

Message processing

… …

M
es

sa
ge

TCP Connection
Message

M
es

sa
ge

M
essage

Window
Free Zones

Sending Credit

Messages in wait for ack

…
Not acquitted messages

Multicast

Listening

Thread

Multicast

Working

Thread

Ack.

Management

Thread

UDP Listening

Thread TCP Listening

Thread

Work. Thread

1 Work. Thread

n

Network

Coordinator/ Bucket / Client

Multicast Port Send UDP Port

Message
Queue

Message processing

TCP/IP Port

Process Buffer

UDP Port

Message
Queue

Message processing

… …

M
es

sa
ge

TCP Connection
Message

M
es

sa
ge

M
essage

Window
Free Zones

Sending Credit

Messages in wait for ack

…
Not acquitted messages

Multicast

Listening

Thread

Multicast

Working

Thread

Ack.

Management

Thread

UDP Listening

Thread TCP Listening

Thread

Work. Thread

1 Work. Thread

n

1290

added to the messages in wait for the ack. list,
from which it is removed when the
acknowledgement is received. This thread scans
the list periodically, checks the send time of each
message, and resends the message if necessary,
provided that the maximum number of resends is
not exceeded. In the latter case, it removes the
message. Two cases may then happen. Either the
sender commits an addressing error or the
receiver failed. In both cases, the thread informs
the coordinator.

4. Demonstration Outline
We coded our prototype in C. It includes a data and

parity storage manager, and a query manager. The
demonstration shows the use of LH*RS as a highly
available distributed data storage system. The focus is to
show how an LH*RS file scales up and how it recovers
from a multiple bucket unavailability. We show the
following operations.

(a) Creation of a K-available LH*RS file. We show
how a data bucket is split, and how updates
propagate to parity buckets. New data buckets are
chosen from data buckets connected to the data
buckets multicast group.

(b) Increase of the high availability of a group, by
adding parity buckets. We show the interactions
between the new parity bucket and its data
buckets group. Each newly created parity bucket
is chosen among the parity buckets connected to
parity buckets multicast group.

(c) Recovery of k buckets in the group, into which we
introduce failures.

(d) Key search directed to an unavailable bucket.
We show that when search time-out elapses, the
client alarms the coordinator. The latter checks if
it is an addressing error or if the bucket is
unavailable. In the latter case, the coordinator
starts the recovery process.

(e) Bucket recovery operation . First, the coordinator
designates a parity bucket as a recovery manager.
The latter recovers records by slices of a given
size s. It requests s successive records from each
of the m data/parity buckets, and recovers the s
record groups. Then, it requests the next s records
from each bucket. While waiting, it sends the
recovered slice to the spare(s). We show
interaction between the coordinator, the spare data
buckets, the recovery manager and the available
buckets in the group.

(f) Finally, we issue search queries or display the
contents of the recovered buckets, to show the
recovery operation.

We also show other functions of the prototype: key
search queries in normal mode, update queries, their
propagation to parity buckets, record recovery using UDP,
bucket recovery through UDP, we display data and parity
bucket content, various statistics, etc.

Along the demonstration, we show the actual

performance factors. These are basically various
execution times proving the rapidity of various
manipulations. We now resume those we have measured
as the basis, on the original configuration [M03] [LMS04]
[M04].

5. Performance Results
The hardware test bed consisted of six machines;

each one has 512 MB of RAM, with a 1.8GHz Pentium
processor under Windows 2K. All the machines were
connected to a regular Ethernet configuration with a max
bandwidth of 1 Gbps.

For the experimental set up, the record size was (and
is) set to 100 bytes and the group size is set to 4 buckets.
Performance results degrade for higher values of record
size and group size. The best obtained performance results
use Reed Solomon codes over the Galois Field GF(216).
We use this field in our demonstration.

The time to create an LH*RS file of 25000 records was
7.896 sec for k = 0, 9.990 sec for k = 1 and 10.963 sec for
k = 2. The related average times per record inserted were,
0.32 ms, 0.41 ms, and 0.44 ms for k = 0, 1, 2 respectively.

The average individual and bulk search times were
0.2419 ms and 0.0563 ms respectively.

Table 2 presents creation times for a parity bucket
(PB) of 31 250 records.

 Total

Time
Processing

Time
Communication

Time
1PB-XOR 2.062 1.484 0.322
1PB-RS 2.103 1.531 0.322

Table 2: Parity bucket creation times in seconds.

 To measure the recovery performance, we simulated

the creation of an LH*RS group with 4 data buckets and 1,
2, or 3 parity buckets. The group contained 125 000 =
4 * 31 250 data records. The recovery of a single data
bucket (DB) uses the first parity bucket and consequently
the XOR decoding only. The first line of Table 3 presents
this case. Alternatively, the recovery can use another
parity bucket, applying the RS decoding (with XORing
and Galois field multiplications). The second line of the
table shows the measurements for this case. Our numbers
prove the efficiency of the LH*RS bucket recovery
mechanism. It takes only 1.555 seconds to recover
9.375 MB of data in three buckets.

1291

 Total
Time

Processing
Time

Communication
Time

1DB-XOR 0.720 0.265 0.414
1DB-RS 0.855 0.380 0.400
2 DBs 1.162 0.600 0.434
3 DBs 1.555 0.911 0.464

Table 3: Data bucket recovery times in seconds.

6. Conclusion
Our demonstration shows the prototype

implementation of LH*RS: a highly available distributed
data structure. We show how it actually functions. The
efficient distributed storage system that our prototype
constitutes can benefit modern data intensive applications:
databases, grids, P2P files… Further work, in progress,
concerns various aspects of current implementation,
evaluation of other encoding and decoding techniques,
and the applications of the prototype.

References
[B00] F. Bennour, Un Gestionnaire de Structures

Distribuées et Scalables pour les
multiordinateurs Windows: Fragmentation par
Hachage, PhD thesis in French, Paris Dauphine
University, 2000.

[BB94] M. Blaum, J. Brady, J. Bruck & J. Menon,
EVENODD: An Optimal Scheme for Tolerating
Double Disk Failures in RAID Architectures,
IEEE 1994.

[BK95] J. Blomer, M. Kalfane, R. Karp, M. Karpinski,
M. Luby & D.Zuckerman, An XOR-Based
Erasure-Resilient Coding Scheme, ICSI Tech.
Rep. TR-95-048, 1995.

[H94] L. Hellerstein, G.A. Gibson, R.M. Karp, R.H.
Katz & D.A. Patterson, Coding Techniques for
handling Failures in Large Disk Arrays,
Algorithmica, 1994, 12, pp.182-208.

[L00] M. Ljungström, Implementing LH*RS: a
Scalable Distributed Highly-Available Data
Structure, Master Thesis, Feb. 2000, CS Dept.,
U. Linkoping, Suede.

[LS00] W. Litwin & J.E. Schwarz, LH*RS, A High-
Availability Scalable Distributed Data
Structure using Reed Solomon Codes, p.237-
248, Proceedings of the ACM SIGMOD 2000.

[LMS04] W. Litwin, R. Moussa & J.E. Schwarz, LH*RS –
A Highly-Available Scalable Distributed Data
Structure, CERIA Res. Rep. May 2004.

[ML02] R. Moussa & W. Litwin, Experimental
Performance Management of LH*RS Parity
Management, Distributed Data and Structures,

4, (WDAS02) Carleton Scientific, Waterloo,
Ontario, CA. 2003, pp. 87-98.

[M03] R. Moussa, Experimental Performance
Analysis of the new LH*RS Scenarios and
Architecture Design, CERIA Res. Rep., June
2003,http://ceria.dauphine.fr/Rim/comparison0
603.pdf.

[M04] R. Moussa, Contribution à l’étude des
Structures de Données Distribuées et Scalables
à Haute disponibilité, PhD thesis in French,
Paris Dauphine University, 2004.

[MS04] R. Moussa & J.E. Schwarz, Design and
Implementation of LH*RS: a Highly Available
Distributed Data Storage System, Workshop on
Distributed Data and Structures (WDAS04).

[P97] J. S. Plank, A Tutorial on Reed-Solomon
Coding for fault-Tolerance in RAID-like
Systems, Software – Practise & Experience,
27(9), Sept. 1997, pp 995- 1012.

[PGK88] D. A. Patterson, G. Gibson & R. H. Katz, A
Case for Redundant Arrays of Inexpensive
Disks, Proc. of ACM SIGMOD Conf, pp.109-
106, June 1988.

[R89] M. O. Rabin, Efficient Dispersal of Information
for Security, Load Balancing and Fault
Tolerance, Journal of ACM, Vol. 26, N° 2,
April 1989, pp. 335-348.

[S02] T. J.E. Schwarz S.J., Reed Solomon Codes for
Erasure Correction in SDDS, Distributed Data
and Structures, 4, (WDAS02) Carleton
Scientific, Waterloo, Ontario, CA. 2003.

[SDDS] http://ceria.dauphine.fr/SDDS-bibliographie.html
[XB99] L. Xu & J. Bruck, Highly Available Distributed

Storage Systems, Proceedings of workshop on
Distributed High Performance Computing,
Lecture notes in Control and Information
Sciences, Springer Verlag, 1999.

[WK02] H. Weatherspoon & J. D. Kubiatowicz,
Erasure Coding vs. Replication: A quantitative
Comparison, Proceedings of the 1st
International Workshop on Peer-to-Peer
Systems, March 2002, p.328-338.

Acnowledgements
This work was partly supported by the European
Commission project ICONS (project no. IST-2001-
32429), Microsoft Research, as well as by a scholarship
from the Tunisian government.

1292

