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Abstract 
The ideal storage system is always available and 
incrementally expandable. Existing storage 
systems fall far from this ideal. Affordable 
computers and high-speed networks allow us to 
investigate storage architectures closer to the 
ideal. Our demo, present a prototype 
implementation of LH*RS: a highly available 
scalable and distributed data structure. 

1. Introduction 
Scalable and Distributed Data Structures [SDDS] are 

intended for computers over fast networks, usually local 
networks, i.e. for the multicomputers. This new hardware 
architecture is promising and gaining in popularity. In 
spite of the advantages given by distributing data, 
vulnerability to failures remains a problem that grows 
with the number of machines supporting the SDDS.  

Many approaches to build highly available, i.e., fault 
tolerating, distributed data storage systems have been 
proposed. They generally use either (i) data mirroring or 
(ii) parity calculus [WK02]. The latter approach uses 
erasure-correcting codes. The simplest codes, e.g. in 
RAID systems [PGK88], use XOR calculus for the 
tolerance of a single site failure. Multiple failures need 
more complex codes. These can be the binary codes 
[H94] for double or triple failure, or character codes, more 
generally. Examples of character codes are array codes 
such as the EVENODD code [BB94], the X-code [XB99] 
or Reed Solomon codes. The latter appear at present to be 
the best to deal with multiple failures  [R89] [BK95][P97] 
[LS00] [ML02] [S02] [MS04] [LMS04] [M04]. 

Below, Section 2 recalls the LH*RS file structure. 
Section 3 overviews our bucket architecture. Section 4 

presents the demonstration outline. Finally, performance 
results are given in section 5.      

2. LH*RS Scheme 
LH*RS scheme is described with details in [LS00] and 

[LMS04].  An LH*RS file is subdivided into groups. Each 
group is composed of m Data Buckets and k Parity 
Buckets. Buckets are basically in distributed RAM, each 
at a different server node. The data buckets store the data 
records of the group. These are encoded into the parity 
records for high availability as follows in the parity 
buckets. Every data record has a rank r in its data bucket. 
It receives this rank upon insertion.  

 

 

Figure 1: LH*RS file Structure 

A record group consists of all records with the same 
rank in a bucket group. We construct parity records from 
data records having the same rank within data buckets 
forming a bucket group (Fig. 1(a)).  The record grouping 
has an impact on the data structure of a parity record. Fig. 
1(b-c) shows the structure of a data record and a parity 
record. The key field of the parity record is its rank; the 
key list keeps track of the data records in the record group. 
The parity field contains the actual parity symbols for the 
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record group that we calculate using our version of Reed 
Solomon codes. 

Thanks to the coding scheme, we can calculate the 
contents of all records in a record group if we have access 
to m out of the n = m+k records.  This provides us with k 
availability.  The actually parity calculation proceeds as 
follows: When a record is updated (and here an insert 
counts as a modification of a zero record) we calculate its 
∆-record, which is the XOR of the old and the new data 
field.  We send this ∆-record to all parity buckets, who 
update their parity field by XORing the ∆-record 
multiplied symbol-wise by a given fixed element, 
contained in a parity matrix P.  The multiplication is done 
in a Galois field.  According to our experiments we 
achieve the overall best performance with the Galois field 
with 216 elements.  Since we use the logarithmic method 
to multiply, we actually store directly the logarithms of P 
in a matrix Q.  Thanks to an optimization of P, the first 
row and the first column of P contain only 1’s 
coefficients.  In this case, we obviously can do away with 
the multiplication.  In any case, our experiments show that 
the processing overhead of Reed-Solomon is small. Table 
1 below shows our demo matrices P and Q. 

 
(P) 0001 

0001 
0001 
0001 

0001 
eb9b 
2284 
9e44 

0001 
2284 
9e74 
d7f1 

  

(Q) 0000 
0000 
0000 
0000 

0000 
5ab5 
e267 
784d 

0000 
e267 
0dce 
2b66 

Table 1: Our demo matrices P and Q for m = 4 and  
k = 3.  

In order to reconstruct lost records in a record group, 
we gather the columns of P corresponding to available 
records in a matrix H, invert H with the Gaussian 
algorithm, multiply each available record with a 
coefficient of H and XOR the results together to obtain a 
missing record.  Since the inversion is done once for all 
records to be reconstructed, it does not constitute a 
significant overhead. 

The file starts with one data bucket and K ≥ 1 parity 
buckets. The K value, called Intended Availability Level, 
is a file parameter. It scales up through data buckets splits, 
as the data buckets get overloaded. Each bucket group has 
then the availability level k that is K or K – 1, [LMS04]. 
Each data bucket contains a maximum number of b 
records. The value of b is the bucket capacity. When the 
number of records within a data bucket exceeds b, the 
bucket alerts the coordinator, a special entity coordinating 
splits. The latter designates a data bucket to split.  

3. System Architecture 
The goal of the prototype is to tune and 

experimentally determine LH*RS performance. Our 
current LH*RS implementation is described in depth in 
[M04]. It completes and improves that in [L00][ML02].  

 

 

Figure 2: Bucket Architecture. 
 
Figure 2 shows the multithreaded architecture of a 

bucket. Initially, a bucket is either connected to the data 
buckets multicast group or to the parity buckets multicast 
group. It starts with the multicast listening thread and the 
multicast working thread. When it receives a multicast 
group inviting the bucket to be a new or a spare bucket, it 
instantiates the other threads, responds positively to the 
coordinator, and waits for the confirmation. A selected 
bucket, upon receiving the confirmation, disconnects from 
its multicast group. Non-selected buckets cancel the 
instantiation process, and can commit to other invitations.  
Here are the functions of each thread. 

 
3 The Multicast Listening Thread is a temporary 

thread that listens to a fixed data or parity 
multicast port, and queues multicast messages. 

3 The Multicast Working Thread is also a 
temporary thread that processes queued 
multicast messages. 

3 The UDP Listening Thread listens to a fixed 
UDP port,  calculated from the bucket number. 

3 The Working Threads, usually four, process 
queued UDP messages. 

3 The TCP Listening Thread accepts and handles 
multiple TCP/IP connections. 

3 The Acknowledgement Manager Thread: 
Each UDP message to be acknowledged is 
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added to the messages in wait for the ack. list, 
from which it is removed when the 
acknowledgement is received. This thread scans 
the list periodically, checks the send time of each 
message, and resends the message if necessary, 
provided that the maximum number of resends is 
not exceeded. In the latter case, it removes the 
message. Two cases may then happen. Either the 
sender commits an addressing error or the 
receiver failed.  In both cases, the thread informs 
the coordinator. 

4.   Demonstration Outline 
We coded our prototype in C. It includes a data and 

parity storage manager, and a query manager. The 
demonstration shows the use of LH*RS as a highly 
available distributed data storage system. The focus is to 
show how an LH*RS file scales up and how it recovers 
from a multiple bucket unavailability.  We show the 
following operations. 

(a) Creation of a K-available  LH*RS file.  We show 
how a data bucket is split, and how updates 
propagate to parity buckets. New data buckets are 
chosen from data buckets connected to the data 
buckets multicast group.  

(b) Increase of the high availability of a group, by 
adding parity buckets. We show the interactions 
between the new parity bucket and its data 
buckets group. Each newly created parity bucket 
is chosen among the parity buckets connected to 
parity buckets multicast group.   

(c) Recovery of k buckets in the group, into which we 
introduce failures.  

(d) Key search directed to an unavailable bucket.    
We show that when search time-out elapses, the 
client alarms the coordinator. The latter checks if 
it is an addressing error or if the bucket is 
unavailable. In the latter case, the coordinator 
starts the recovery process. 

(e) Bucket recovery operation . First, the coordinator 
designates a parity bucket as a recovery manager. 
The latter recovers records by slices of a given 
size s.  It requests s successive records from each 
of the m data/parity buckets, and recovers the s 
record groups. Then, it requests the next s records 
from each bucket. While waiting, it sends the 
recovered slice to the spare(s). We show 
interaction between the coordinator, the spare data 
buckets, the recovery manager and the available 
buckets in the group. 

(f) Finally, we issue search queries or display the 
contents of the recovered buckets, to show the 
recovery operation. 

 

We also show other functions of the prototype: key 
search queries in normal mode, update queries, their 
propagation to parity buckets, record recovery using UDP, 
bucket recovery through UDP, we display data and parity 
bucket content, various statistics, etc.  

 
Along the demonstration, we show the actual 

performance factors. These are basically various  
execution times proving the rapidity of various 
manipulations. We now resume those we have measured 
as the basis, on the original configuration [M03] [LMS04] 
[M04].  

5. Performance Results 
The hardware test bed consisted of six machines; 

each one has 512 MB of RAM, with a 1.8GHz Pentium 
processor under Windows 2K. All the machines were 
connected to a regular Ethernet configuration with a max 
bandwidth of 1 Gbps. 

For the experimental set up, the record size was (and 
is) set to 100 bytes and the group size is set to 4 buckets. 
Performance results degrade for higher values of record 
size and group size. The best obtained performance results 
use Reed Solomon codes over the Galois Field GF(216). 
We use this field in our demonstration. 

The time to create an LH*RS file of 25000 records was 
7.896 sec for k = 0, 9.990 sec for k = 1 and 10.963 sec for 
k = 2. The related average times per record inserted were, 
0.32 ms, 0.41 ms, and 0.44 ms for k = 0, 1, 2 respectively. 

The average individual and bulk search times were 
0.2419 ms and 0.0563 ms respectively.  

Table 2 presents creation times for a parity bucket 
(PB) of 31 250 records.  

 
 Total 

Time 
Processing 

Time 
Communication 

Time 
1PB-XOR 2.062 1.484 0.322 
1PB-RS 2.103 1.531 0.322 

Table 2: Parity bucket creation times in seconds. 

 
 To measure the recovery performance, we simulated 

the creation of an LH*RS group with 4 data buckets and 1, 
2, or 3 parity buckets.  The group contained 125 000 = 
4 * 31 250 data records. The recovery of a single data 
bucket (DB) uses the first parity bucket and consequently 
the XOR decoding only. The first line of Table 3 presents 
this case. Alternatively, the recovery can use another 
parity bucket, applying the RS decoding (with XORing 
and Galois field multiplications).  The second line of the 
table shows the measurements for this case. Our numbers 
prove the efficiency of the LH*RS bucket recovery 
mechanism. It takes only 1.555 seconds to recover 
9.375 MB of data in three buckets. 
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 Total 
Time 

Processing 
Time 

Communication 
Time 

1DB-XOR 0.720 0.265 0.414 
1DB-RS 0.855 0.380 0.400 
2 DBs 1.162 0.600 0.434 
3 DBs 1.555 0.911 0.464 

Table 3: Data bucket recovery times in seconds. 

6. Conclusion 
Our demonstration shows the prototype 

implementation of LH*RS: a highly available distributed 
data structure. We show how it actually functions. The 
efficient distributed storage system that our prototype 
constitutes can benefit modern data intensive applications: 
databases, grids, P2P files… Further work, in progress, 
concerns various aspects of current implementation, 
evaluation of other encoding and decoding techniques, 
and the applications of the prototype. 
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