Efficient Constraint Processing for Highly Personalized
Location Based Services

Zhengdao Xu

Hans-Arno Jacobsen

Department of Computer Science and
Department of Electrical and Computer Engineering,
University of Toronto,
zhengdaoQcs | jacobsen@eecg{.toronto.edu}

1 Overview

Recently, with the advances in wireless communica-
tions and location positioning technology, the poten-
tial for tracking, correlating, and filtering information
about moving entities (i.e., generally speaking mov-
ing objects, such as automobiles, people, packages
etc.) has greatly increased. Potential applications
range from location-aware, selective information dis-
semination, personalized route planning, goods track-
ing, surveillance of group formation to buddy tracking.

The implementation of efficient tracking, correla-
tion, and filtering schemes supporting millions of mo-
bile objects, poses significant challenges. The knowl-
edge of spatial, temporal, and causal relationship be-
tween moving objects would allow the support of
highly personalized and effective location-based ser-
vice (LBS) for tracking, correlating, and processing
object positions, profiles, and trends. For example,
shoppers walking on the street may want the advertise-
ments to be displayed on their PDAs only when they
are near a specific store (location-aware m-commerce);
a driver only wants traffic information effecting his im-
mediate future surroundings (proximity-based alerts);
in a buddy tracking application, two (or more) friends
may wish to be notified if they are within a certain
distance of each other or within a certain distance of a
point of demarcation (location-constraint correlation).

All these applications can be broadly classified
as location-aware information dissemination tasks,
which, as has been shown, can be well supported
by the publish/subscribe paradigm [2]. In a pub-
lish/subscribe systems, clients exchange information

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

by publishing events and subscribing to events of in-
terest. The central component of this architecture is
the event broker, which maintains all the subscriptions
and matches incoming events against all subscriptions.
Upon a subscription match, a subscriber is notified.

The above location-aware applications are sup-
ported by two communication styles, orthogonal to
the coordination mechanism used. These are pull-
oriented and push-oriented styles. Pull-oriented LBS
works in the request/response manner, which requires
the clients to poll the available service from the server
who respond by returning the result. In contrast, in
the push-oriented style, service initiation (after an ini-
tial registration or sign-up phase) is carried out by the
server (the service provider.)

The push-oriented style is better suited for LBS,
since it puts less strain on the mobile devices and
network resources (the network is subjected to less
polling.) For example, in the buddy tracking appli-
cation, two (or more) users may wish to be notified
when they are within a certain distance of one an-
other. In this case, each of them needs to subscribe to
this event, expressed by a location constraint, stating
that they wish to be notified if the distance between
them is within a certain range. Once the constraint
is in the system, the location information of the mov-
ing objects is checked against all location constraints
stored in the system. We assume that location po-
sition information is available, such as provided by
GPS, network-enhanced GPS, ground-based sensors,
or other location positioning technology [12]. When
the constraint is satisfied, the notification is sent to
the corresponding user.

Due to the scalability of publish/subscribe in terms
of number of supported clients and event processing
speed [4], we believe that this is an extremely promis-
ing paradigm for enabling push-oriented LBS. How-
ever, we argue that to support location-awareness in
such system additional needs must be addressed. Es-
pecially, the tracking of moving entities and the effi-
cient correlation of their locations and interests. Typi-

1285

cally in such systems, a vast number of the constraints
are expected to be evaluated in a timely manner. The
scalability and the efficiency of these algorithms be-
comes an issue.

L-ToPSS (Location-based Toronto Pub-
lish/Subscribe System) is our research prototype
that provides LBS in a push-oriented style. In this
demonstration, we will focus on demonstrating an
algorithm that efficiently evaluates two types of
location constraints:

1. mn-body constraint: constraints of the form
|p1,p2...pn| < d that designates whether n moving
points py, ps...p, are in a circle with the given diame-
ter d. p; (1 < i < n) is the identifier of the object i;
p; is further translated into the coordinate of object i
in the location matching engine at time ¢. Value d is
called alerting distance. Buddy tracking is an exam-
ple of the n-body constraint problem, with n equals to
two.

2. n-body (static) constraint: constraints of the
form |A,p1,p2...pn| < da, (where A is the coordinate
of some static point) that designates whether n mov-
ing points py,ps...p, are within a given range from
the static point A. Here d4 is the alerting distance.
The location-aware mobile commerce mentioned ear-
lier represents an example of the n-body (static) con-
straint problem with the advertising publisher (the
store) as a static body.

More formally, the problem we are solving can be
stated as follows: Given a set of constraints C =
{c1,ca...cm }, which designates the desired location con-
straint relationships among a set of n possibly moving
points Py = {p1,pa...on} in the space at time t, find all
constraints c; in C that are satisfied.

In the next section we briefly introduce related
work. In Section 3, we sketch our algorithm. Sec-
tion 4 presents the L-ToPSS research prototype. In
Section 5, we describe the software demonstration.

2 Related work

Many spatial indexing schemes, like Time-Oblivious
indexing in [1], dynamic external memory data struc-
tures [7] and R-tree based indexing [9], have been pro-
posed, which can be used to index mobile objects in
space. However, they do not solve the above men-
tioned location constraint matching problem. In the
buddy tracking system [10] that is studied by Arnon
Amir et al. a centralized 2D quadtree-based algorithm
is introduced. However it only solves the 2-body prob-
lem. And a quadtree data structure is not straight
forward to extend to multi-dimensions, which may be
useful for the constraint evaluation for the past and
future (e.g, add time as one dimension). They also
assume the same alerting distance for every pair of
the objects, which is a limitation since different loca-
tion constraints will have different alerting distances.

Other related work includes spatial database of mov-
ing object and query of location dependent data [3, 5].

3 Sketch of the algorithm

Our algorithm for location constraint evaluation uses
the Kd-tree indexing, which is usually used to solve the
orthogonal range search problem with static objects.
Our contribution is that we improved it to efficiently
process the location constraints among mobile objects.

To index moving objects in space, the whole space is
partitioned into small equally sized partitions. Those
partitions are well managed in a Kd-tree data struc-
ture. And the whole space can be expressed by the
union of the partitions represented by all the nodes
in the same level of the tree. After the whole space
is partitioned, each object (mobile or static) is associ-
ated with a certain leaf node of the tree according to
its current position. The distance between the parti-
tions serves as a rough measure of the bounds of the
distance between objects, which is lying inside those
partitions. This can be further exploited to evaluate
the constraints.

As an example of partitioning the space, Figure 1(a)
shows how this works in the 2D space, where a
4kmx4km square is partitioned into 8 partition and
a corresponding tree is also constructed (see Fig-
ure 1(b)).

L1 L1

51 sz lsa 54 o /\
B H
A Lz L5
A.
c
il ¢ 1 /\ /\
La| —12 | 13— |15
5| o L7 L& L4 L7 L6
e 1
- -
E F =]
55 S 57 sg* 51 5257 G5B 53 54

S5 SE
-
(b}

Figure 1: space partition: (a) 2D partition, (b) Kd-
tree of the partition

We assume that our system is periodically informed
of the position of the mobile objects by GPS or ground
based sensors, for example. To keep track of the mov-
ing objects, a quick partition update management for
those moving objects is very essential. In our system,
when the new position of the mobile object is received,
a backtracking partition update is performed, which
backtracks from the leaf node of the tree up until the
node representing the partition accommodates the cur-
rent mobile object is found, and then the object is in-
serted from that node down to the appropriate leaf
node.

When the constraint is evaluated, the partitions
where objects in question are located is determined
first; and based on the partitions they are in, we fur-

1286

ther make decisions for evaluation to reduce the need
of distance computation. The technique we use to eval-
uate the n-body constraint is to use the partitions that
are represented at the appropriate level of the tree,
such that the distance between two objects is smaller
than the alerting distance, if and only if, they are in
the same or adjacent partitions. If all n points are
in the same or adjacent partitions, the smallest circle
that encloses those n points can be computed in O(n)
time [11]. For evaluating the n-body static constraint,
we use the breadth-first search on the Kd-tree to de-
cide the internal, bounding and external leaf partitions
to the region with static object A as the center and d 4
as the radius, depending on whether the partition is
inside, intersecting with or outside the boundary of
the region. Then the distance between the moving
object and static object A can be tracked according
to the partition the moving object is in. The explicit
distance computation is only needed for the moving
object inside the bounding partition.

4 System architecture

L-ToPSS is our research prototype. The system ar-
chitecture is shown in Figure 2. We assume that the
matching of the publications against the subscriptions
has been done by the filter engine and the identifica-
tion numbers of the entities are sent to the location
matching engine. The main component of our con-
cern is the location matching engine, which stores the
location constraints, as well as the link to the subscrip-
tion and publication it is associated with. Our system

7rilplion

Filtering Engine

publication

Location Matching
Engine

Locating

Staging Location Updat

(MIN, latitude, longitude,
altitude)

Local
Repository

Figure 2: L-ToPSS System Architecture

model is very similar to that used in [2]. Each mobile
publisher or subscriber is identified with a unique Mo-
bile Identification Number (MIN). The subscription
from some mobile user contains the M I N of the mobile
device on which the user wants to receive notifications.
Similarly, the publication from some mobile publisher
also contains a MIN. For a static publisher or sub-
scriber, its location (latitude, longitude, altitude) is
retrieved directly from the local database based on
its identifier. The constraint is expressed in the form
(MINy,MIN,,..MIN,,d) for the n-body constraint
or (idstatiCa M[Nl, MINQ, MINn, didsmiic) for the
n-body (static) constraint; and they can be submit-
ted into the system along with either the publications

or the subscriptions.

The system receives the updates of mobile users’
location and processes them in the location staging
component. When the new update comes into the
system, the corresponding location information and
its timestamp are updated. The location informa-
tion is represented as a (M IN;, current_latitude, cur-
rent_longitude, current_altitude) tuple. This tuple is
forwarded to the location matching engine. All the
constraints are managed in the location matching en-
gine and they are evaluated periodically. During the
evaluation, the system will first check the timestamps
of all the mobile objects in the constraint to make
sure that they are not obsolete. If the timestamps of
all the objects are still valid, it matches them against
the corresponding location constraint. We distinguish
two types of constraints (n-body and n-body static)
and the evaluation is based on the algorithm intro-
duced the Section 3. Once the constraint is found sat-
isfied, the subscribers associated with the constraint
are notified with the publication they have subscribed.
Through the demonstration, we show that by reduc-
ing the chance of distance computation, our algorithm
speeds up the constraint evaluation thus allows the sys-
tem to accommodate more constraints and serve more
location-aware requests from the clients.

We are also aware of the system limitation men-
tioned in [2]; to avoid updating subscriptions with
each location change of the subscriber, our location
matching engine is processed independently from the
matching between publications and subscriptions. The
constraint is put into or retrieved from the system ex-
plicitly by the subscriber or the publisher when they
subscribes or publishes.

In the next section, we present the demonstration
of evaluation of constraints in the location matching
Engine.

5 Software demonstration

In this demonstration, we will show the efficiency of
our algorithm by evaluating a set of constraints for a
given set of mobile objects in space. The constraints
are submitted into or removed from the system in
batch by the constraint generator. This can also be
done for individual constraint through the demo panel.

The software setup for our demonstration is shown
in the Figure 3. We use two IBM tools facilitat-
ing LBS evaluation: City Simulator [6], and Location
Transponder [8]. The City Simulator generates dy-
namic spatial data simulating the motion of up to 1
million people and produces the trace-files that contain
timestamped data records representing coordinate po-
sitions of the mobile objects. The Location Transpon-
der takes the trace-files from the City Simulator as
input and transmits the data to the location updates
information to our system. We also develop a web ap-
plication for insertion and retrieval of the constraints.

1287

The evaluation is executed periodically, and once some
constraint is satisfied, appropriate notification is sent
out using different protocols.

Web Applicatiol

City Simulator

Constrair
Generato

Notification Englne

7N

SMTP TCP UDP SMS WAP

Figure 3: Demonstration Setup

To simulate the activity of a real-life system, our
location matching engine stores millions of location
constraints (both n-body and n-body static) that are
to be evaluated against incoming location data of the
mobile objects. To demonstrate the efficiency, we vary
the number of objects in the constraints. Through the
continuous evaluation, those satisfied constraints are
alerted graphically to the users on the demo panel.

The performance of our algorithm is also compared
with naive approach where the constraints are eval-
uated sequentially without the help of Kd-tree index-
ing. We will visualize the matching time for constraint
evaluation, the number of explicit computations of the
smallest enclosing disk and the number of partition up-
date of the objects on the Kd-tree. Those statistics are
shown on our demo panel when two methods are run-
ning as different processes on our pc. We will show
through those statistics that even with little overhead
for the partition update, our approach using Kd-tree
indexing still outperform the naive approach.

We also show that by leveraging the size of the par-
tition, the algorithm can reaches its best performance
(least time needed for constraint evaluation and par-
tition updating without sacrifices the accuracy).

References

[1] Pankaj K. Agarwal, Lars Arge, and Jeff Erickson.
Indexing moving points. In Symposium on Prin-
ciples of Database Systems, pages 175-186, 2000.

[2] Ioana Burcea and Hans-Arno Jacobsen. L-topss
- push-oriented location-based services. In 4th
VLDB Workshop on Technologies for E-Services
(TES’03), 2003.

3

—_

Susanne Hambrush Dmitri V. Kalashnikov,
Sunil Prabhakar and Walid Aref. Efficient evalu-
ation of continuous range queries on moving ob-
jects. In DEXA 2002, Proc. of the 13th Interna-

1288

[4]

[7]

[10]

[11]

[12]

tional Conference and Workshop on Database and
Expert Systems Applications, Aix en Provence,
France, September2-6 2002.

Francoise Fabret, H. Arno Jacobsen, Francois
Llirbat, Jodo Pereira, Kenneth A. Ross, and Den-
nis Shasha. Filtering algorithms and implementa-
tion for very fast publish/subscribe systems. SIG-
MOD Record (ACM Special Interest Group on
Management of Data), 30(2):115-126, 2001.

Dimitris Papadis Yufei Tao Jun Zheng, Manli Zhu
and Dik Lun Lee. Location-based spatial queries.
In SIGMOD Conference, 2003.

James Kaufman Jussi Myllymaki and
Jared Jackson. City simulator. ibm al-
phaworks emerging technologies toolkit,

http://www.alphaworks.ibm.com/tech/citysimulator,
November 2001.

George Kollios, Dimitrios Gunopulos, and Vas-
silis J. Tsotras. On indexing mobile objects.
In Proceedings of the FEighteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of
Database Systems, May 31 - June 2, 1999,
Philadelphia, Pennsylvania, pages 261-272. ACM

Press, 1999.

Jussi Myllymaki and James Kauf-
man. Location transponder. ibm al-
phaworks emerging technologies toolkit,

http://www.alphaworks.ibm.com/tech/transponder,
April 2002.

Simonas Saltenis, Christian S. Jensen, Scott T.
Leutenegger, and Mario A. Lopez. Indexing the
positions of continuously moving objects. In SIG-
MOD Conference, pages 331-342, 2000.

Arnon Amir. Alon Efrat. Jussi Myllymaki.
Lingeshwaran Palaniappan. Kevin Wampler.
Buddy tracking - efficient proximity detection
among mobile friends. In Infocom 2004.

Emo Welzl. Smallest enclosing disks (balls and
ellipsoids). In H. Maurer, editor, New Results
and New Trends in Computer Science, LNCS.
Springer, 1991.

Y. Zhao.
sitioning for 3g systems.
Magazine, July 2002.

Standardization of mobile phone po-
IEEE Communication

