
The Bloomba Personal Content Database

Raymie Stata

Stata Labs, Inc., UC Santa Cruz
raymie@{statalabs.com, cs.ucsc.edu}

Patrick Hunt

Stata Labs, Inc.
phunt@statalabs.com

Thiruvalluvan M. G.

iSoftTech, Ltd.
thiru@isofttech.com

Abstract
We believe continued growth in the

volume of personal content, together with a
shift to a multi-device personal computing
environment, will inevitably lead to the
development of Personal Content Databases
(PCDBs). These databases will make it easier
for users to find, use, and replicate large,
heterogeneous repositories of personal content.

In this paper, we describe the PCDB used
to power Bloomba, a commercial personal
information manager in broad use. We
highlight areas where the special requirements
of personal content and personal platforms
have influenced the design and
implementation of our PCDB. We also
discuss what we have and have not been able
to leverage from the database community and
suggest a few lines of research that would be
useful to builders of PCDBs.

1. Introduction
End users are facing two secular trends we believe will
drive the development of a new type of “very large
database:”

• Proliferation of data. Facing an explosion of
email, office documents, IM transcripts, photos,
and music, people need to manage an increasing
number of digital items (in our view, what matters
is the number, not the size, of items).
Traditionally, hierarchical folders have been the
primary means of managing these items. However,
folders don’t scale, and for increasing numbers of

users, this problem is reaching crisis proportions.

• Proliferation of devices. Given multiple desktops
(home and office), PDAs, smart phones, the
Internet, and even in-dash car computers, the
increasing volume of personal content is
necessarily being distributed over multiple devices.
Currently, movement of personal data among these
devices is painful, if possible at all. Over time, this
needs to become seamless if users are going to be
able to fully utilize their digital content.

Today, users face a hodge podge of software and
services for storing this data. Email, for example, is
sometimes stored in specialized, local files (e.g.,
Outlook’s .pst files), sometimes on servers, and
sometimes replicated on both. Some office documents
are stored in the local file system, but a surprisingly
large number of them are stored as attachment in one’s
email repository. Photos are often stored in the file
system, possibly indexed by specialized software
running beside the file system, and also possibly
replicated to a Web server. Contact information, like
email, might be stored in a specialized, local file (again,
a .pst file) and also synchronized out to a PDA and a
phone. These various storage schemes do not
interoperate, are all folder based, and are difficult to
manage.

We believe this hodge podge of storage systems will
be replaced by a single Personal Content Database, or
PCDB. The PCDB will encompass all of the user’s
personal data: email, documents, photos, and even Web
pages visited by the user. It will use associative
retrieval, rather than folders, as the primary means of
organizing. The PCDB will transparently move content
among a user’s multiple devices, and the PCDBs of
multiple users will share content with each other based
on policies set by the user. PCDBs will initially be
small by VLDB standards – say, tens to small hundreds
of gigabytes – but current trends suggest that they will
grow to terabytes.

With Bloomba [1], we are trying to bring this vision
to life. Bloomba is a search-based, desktop email
client, with support for RSS, contact, and calendar

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1214

Table 1. Properties of Web vs. Personal Search

management, built on a proprietary Personal Content
Database. Bloomba is a commercial product, in wide
use, primarily in business contexts. It replaces, rather
than runs next to, other applications such as Eudora or
Outlook. Its advantage is its fast, scalable search, and
the productivity that results. As one CEO put it, “I
estimate that Bloomba saves me about an hour per day,
as a result of faster searching, quicker filing, better
spam filtering and the automated organization of the
smart groups.” A review in Business Week put it more
simply: “Bloomba is email that blows the others away.”

Bloomba and its PCDB do not yet fulfill our full
vision for PCDBs. Most significantly, it doesn’t yet
support replication. However, the positive response
Bloomba has received so far suggests that PCDBs, even
in limited forms, bring great value to users and will
have an important role to play in the future of personal
content management. In the meantime, we chose to
focus first on email for a reason. Email is the largest,
fastest-growing, and most dynamic collection of
documents managed by most users. Also, it is
becoming the primary gateway for bringing content into
a personal environment, especially in a business setting.
In tackling email, we’ve learned a lot about building
PCDBs.

This paper provides an architectural overview of
Bloomba’s PCDB, with an eye to placing it in the
context of the tradition of database work reported at
VLDB and elsewhere. In the next section we describe
some of the requirements and environmental constraints
that shaped the PCDB. Section 3 describes the design
of the PCDB. Section 4 provides a bit more design
detail on a particularly interesting part of the PCDB,
query execution. Section 5 discuses the concepts and
technologies from the database community that we
have and have not used; it also suggests areas of future
research that would be of particular relevance to
PCDBs. Finally, Section 6 offers some concluding
remarks.

2. Requirements
Today, people are talking about personal search as if it
were a simple extension of Web search. On the one
hand, the success of Web search has elevated “search,”

as a User Interface metaphor, to a point where it is
almost as widely understood as the venerable “folder”
metaphor. This is a significant breakthrough. Even
two years ago, the average business user had difficulty
grasping Bloomba’s search-based UI design. Thanks to
the success of Web search, users today can quickly
understand Bloomba and other applications that
incorporate search as a major UI metaphor.

On the other hand, when we consider search as an
application rather than a UI metaphor, Web and
personal search are quite different. Further, personal
search is hard, but for different reasons than Web.
Table 1 summarizes some of these differences. When
considering only the corpus, personal search seems
much easier. The Web is vast and global; the desktop is
local and finite. From a pure scale perspective, the
Web is the harder problem. But personal search
presents significant challenges in other ways.

Activity. First, it is easier to discover information than
recover it. The simple query “Aaron Burr,” for
instance, will yield thousands of documents about him
on the Web. For the most part, information on the
Internet wants to be found; it is intentionally – even
aggressively – optimized for search engines results.

But recovery of personal information requires higher
precision. There is typically only one right answer, one
message or document (or version of the document!) the
user is looking for. Making matters worse, people
typically adopt a steep discount function on our time.
This means they won’t invest the time to organize up
front – nor should they, with the tsunami of digital
information they face – so they invest it on the back
end, with the expectation of a quick recovery process.
Further, they know they once had the information. So
the process of looking for things can quickly feel
redundant, frustrating and interminably time-
consuming.

Computing Environment. Web search engines are
built from thousands to tens of thousands of dedicated
machines. These machines are assigned specific tasks –
some crawl, some index, some respond to queries. All
the resources of a machine are dedicated to its one task.

 Web Search Personal
Search

Corpus Global & Infinite Local & Finite
Activity Discovery Recovery
Computing
Environment

Dedicated,
Controlled

Borrowed,
Hostile

Interface Single task Multi task
Dynamics Batch Interactive

1215

Figure 1. Architectural layering of Bloomba

On personal machines, resources such as computing
cycles, RAM, and I/O transactions are expected to be
dedicated primarily to the user’s foreground activity.
When this expectation is violated, users quickly get
impatient. Thus, resources for indexing and disk-
structure maintenance must be borrowed from this
primary use.

In addition, Web search engines typically house their
machines in dedicated host facilities with backup
servers, restoration services, and redundant power
supplies. Operating systems, memory configurations
and hardware configurations are all finely tuned to be
application-specific. The desktop is another world
entirely. It’s hostile. File scanners of various types can
lock files for long periods of time, preventing even
reads from occurring. Virus detectors and “garbage
collectors” feel free to delete files they deem dangerous
or redundant. And of course, there are users, who feel
free to remove files and even entire directories they
(mistakenly) deem to be unnecessary.

Interface. The interface to Web search engines
supports a single task: executing queries. PCDBs are
embedded in applications that support multiple tasks.
In email, for example, finding messages is one of many
tasks; users also want to view messages (and, at times,
avoid reading messages), create them, and even relate
them to their on-going projects. Search can support
many of these tasks, but only if the UI is redesigned
around the search paradigm (rather than being relegated
to a “fast find” dialog box).

Dynamics. For the purposes of an individual query,
content on the Web is static. Naturally, it changes over
time, but the lifetime of a Web query is far shorter than
the update cycle of the index.

Personal content, on the other hand, is dynamic, in
two directions. First, new information is constantly
being added. Emails come in and go out at a dizzying
pace. New documents are created and sent and received
as attachments. And all sort of content is being

downloaded off the Web. Second, the information
itself is dynamic over time. Emails change state as they
are read, sent, and filed. Plus, capturing different
versions of documents is essential to the flow of
business. Business contracts, negotiations and
agreements all have multiple versions; retrieving the
correct version can have broad and deep financial
implications.

In a PCDB, the lifetime of queries far exceeds these
changes. As a simple example, when you look at the
Inbox in a search-based email client, you are looking at
the output of a query: as new messages enter the
system, this output needs to be updated accordingly.

3. The Bloomba PCDB
As mentioned in the Introduction, Bloomba is a
desktop, search-based, email, RSS, contact, and
calendar manager, built on a proprietary Personal
Content Database. In this section, we summarize the
high-level design of Bloomba and its PCDB. We start
by describing the layering of the Bloomba application,
to provide the overall context in which the PCDB was
designed. Next, we provide a brief functional
description of the PCDB, summarizing its data model
and the operations it supports. Finally, we describe the
architecture of the PCDB itself, listing its components
and explaining their functions.

3.1 Application Architecture
Even though Bloomba is a desktop system, it is
structured like a modern N-tier server-based
application. As illustrated in Figure 1, Bloomba is
rigorously layered into four layers. Starting from the
bottom, these layers have the following responsibilities:

• Data Interaction. The data interaction layer is
responsible for data access and storage in our
system. A central component of this layer is our
PCDB, but it also includes other functionality, such

Presentation

Bloomba Application Logic

Generic Application Logic

Data Interaction

1216

as the protocol-specific part of message download,
and the foreign-repository parsing part of import.

Rigorously separating data interaction from
application logic has served us well. For example,
the data access part of import – which we call a
DatastoreReader – is responsible for reading
foreign data stores and mapping its content in a
universal model. Separate DatastoreReaders for
Eudora, Mozilla, Outlook, and Outlook Express all
map the foreign data to this universal model.
Common application logic is used to map this
universal model into Bloomba’s model. This
separation has made it easier to add new importers
and also to tweak the details of how we map any
data store into Bloomba.

• Generic Application Logic. The Generic
Application Logic is responsible for that part of the
application logic that would be common to any
search-based PIM application. It includes
document download and insertion, query
execution, and the message-rules engine.

• Bloomba Application Logic. The Bloomba
Application Logic is responsible for that part of the
application logic that is specific to Bloomba,
including folders, saved-searches, and smart
groups. (As this implies, we do not see folders as
being inherent to search-based email – a point
illustrated by the design of Gmail [5].) In places,
the generic application logic uses callback
functions to call into the Bloomba Application
Logic. For example, between downloading a
message an inserting it into the PCDB, the Generic
Application Logic calls back into the Bloomba
Application Logic to ensure that the message is
placed into the Inbox, which exists only at the level
of the Bloomba Application Logic.

• Presentation. The Presentation Layer is
responsible for direct interaction with the user. It’s
a thin layer which relies on the Bloomba
Application Logic to implement the smarts of the
program. This would allow us, for example, to
build an alternative UI to Bloomba tailored to, say,
smaller screens, such as those found on smart
phones and PDAs. Also, the API between the
Presentation Layer and the Bloomba Application
Logic was designed to be friendly to high-latency
environments, opening up the possibility of
running the core part of Bloomba on one machine
and its presentation another machine separated by a
LAN or even a WAN.

3.2 PCDB Functionality
The PCDB is the central element of Bloomba’s data-
interaction layer. It is responsible for storing,
searching, and returning documents.

The PCDB supports a simple, document-oriented
data model more typical of an Information Retrieval
system than a SQL database. In particular, the PCDB
stores and retrieves objects we call documents.
Documents themselves are immutable (although not
immortal). However, documents are also associated
with a mutable set of tags. Thus, when Bloomba
receives an email message, it stores it in the PCDB as a
single document. Bloomba then uses a tag to mark the
message as “unread” and also uses a tag to indicate that
the message is being stored in the Inbox. As the user
manipulates the message, e.g., by reading it and/or
moving it to another folder, the Bloomba Application
Logic manipulates this tag set, not the actual message.

The PCDB’s document abstraction is slightly richer
than a plain sequence of characters. In particular,
documents are recognized to have (immutable) fields,
e.g., “From” and “Subject” are considered fields of an
email message. Further, the PCDB also has a primitive
notion of documents having a tree structure, i.e., a
notion of compound documents containing other
documents. We are considering moving to a more
normalized model in which sub-documents are referred
to by reference rather than by inclusion, allowing,
among other things, space-savings when the same
document appears as an attachment in multiple
messages.

Documents in the PCDB have two different
identifiers. Document identifiers are permanent, unique
keys for individual documents. Object identifiers are
non-unique identifiers that are shared by multiple
documents that are meant to be versions of one another.
For example, when a contact record in Bloomba is
updated, a new document is created containing the
updated version of the record. This new contact record
has a unique document id, but it shares an object id with
the previous versions of the record. To date, the
Application Logic rarely uses object identifiers, a bit to
our surprise. One idea we’re considering is to eliminate
object identifiers in favor of a “related-to” relationship
which can track document precedence more generally
than a straight versioning relationship.

In addition to storing documents themselves, the
PCDB also stores summary records for the documents
it is storing. Through a document’s summary record,
the application has fast access to useful summary
information, such as the subject of an email, and also
access to the tags associated with the document.
Initially, the summary record was used solely for the
purpose of quickly displaying a summary-list of large

1217

Figure 2. Component Diagram for the PCDB

result sets. However, the summary record turns out to
be the only way to retrieve the full tag-set associated
with a document. Thus, the summary record has been
useful for implementing many pieces of application
logic and is even used by the query engine.

Against this data model, the PCDB exports a simple
set of operations: creation of documents, retrieval of
documents and summary records, modification of tag
sets, and retrieval of indexes. In our design, the PCDB
is not responsible for query execution but rather for
delivering indexes against which the query engine runs.
The query engine itself is considered part of the
Generic Application Logic.

PCDB operations run within a light-weight
transaction system designed largely around ensuring
atomicity of updates. Threads in the Application Logic
start transactions by calling “beginTransaction” and
finish by calling “commit.” Writes (e.g., document
creation, tag updates) must occur inside a transaction,
reads need not. Transactions do not cross thread
boundaries. There’s no way to abort a transaction other
than by crashing the program. Transactions enforce the
following weak variation of the ACID properties:

• Atomicity and durability. Transactions are, of
course, atomic in the traditional sense (all or
nothing), and their effects are persistent after a
successful commit.

• Consistency. The PCDB ensures consistency
across its own data (i.e., among the documents, the
summary records, the tag collections, and various
indexes). In addition, at commit time, the PCDB
calls a callback function that allows the application
logic to maintain application-level consistency
constraints. As already suggested, this callback
cannot abort the current transaction; instead, it
ensures consistency by modifying the data about to

be committed to ensure it satisfies certain (simple)
application invariants.

• Isolation. We provide a weak form of isolation.
The writes to transactional data made by one thread
are not seen by other threads until commit time.
However, transactions are not serialized. For
instance, if a thread T reads transactional data and
another thread subsequently commits changes to
that same data before T commits, then T can see
the new updates in subsequent reads.

3.3 PCDB Architecture
Figure 2 contains a component diagram for our PCDB.
The PCDB is decomposed into a Repository object that
coordinates the activities of five Resource Managers:
the Document Manager, Tag Manager, Summary
Manager, Index Manager, and Address Manager.

• Repository. The Repository serves two roles.
First, it’s a “Façade” object a la the Gang-of-Four
[3]: a simplified interface to the complicated
interactions among the Resource Managers. Thus,
for example, a single “newDoc” method in the
Repository calls methods on all of the Resource
Managers. Second, the Repository is a Transaction
Monitor in the classic sense [6], coordinating the
transactions across the five Resource Managers.

• Document Manager. The Document Manager is
responsible for persistent storage of documents.
The Document Manager stores document data in a
textual format similar to mbox files; this provides
an extra-level of assurance to more technical users
that they can be recovered. The Document
Manager has a “dup detection” feature which
prevents multiple copies of the (exact) same
document from being inserted more than once.

*
0

Repository

Document
Manager

Tag
Manager

Summary
Manager

Index
Manager

Address
Manager

resourceManagers
commit()

for each rM, rM.prepare(vid);
take write share of R/W lock;
 write commit record for vid;
 for each rM, rM.commit();
release write share;
vid++;

prepare()
commit()

prepare()
commit()

prepare()
commit()

prepare()
commit()

prepare()
commit()

1218

• Tag Manager. The Tag Manager is responsible
for persistent storage of tag data. It is also
responsible for delivering an inverted form of that
data to the query engine. (In fact, the data is
actually stored in inverted form, i.e., as a map from
tag ids to lists of doc ids.)

• Summary Manager. The Summary Manager is
responsible for persistent storage of summary
records. Because summary records contain
mutable tag data as well as immutable document
data, the Summary Manager must support record
updates.

• Index Manager. The Index Manager is
responsible for managing the full-text index of the
document data. It is the manager most responsible
for the signature feature of the Bloomba product:
fast, scalable search. We choose to build our own
index manager for reasons of cost, functionality,
and performance (see Section 5).

• Address Manager. The Address Manager
supports a PCDB operation not mentioned in the
previous subsection: a guesser for address
autocomplete. It does this by managing an index
of email addresses. Address autocomplete is used
during message composition: as the user types a
name or address into the “to” or “cc” fields of the
message, Bloomba suggests completions based on
what has been typed so far. Rather than list
completions alphabetically, which does not scale
and is also error prone, Bloomba ranks possible
completions according to factors such as recency
and frequency of use and displays the top-five
ranking addresses in rank order. Bloomba
performs this ranking over all addresses in all
messages rather than just those addresses in the
user’s address book. The index managed by the
Address Manager ensures that this ranking occurs
quickly even for a corpus of tens of thousands of
addresses.

The Document and Tag managers together manage data
we consider precious data, data provided by the user
that we cannot replace. The other managers store non-
precious data, data which can be reconstructed from the
Document and Tag managers. In the implementations
of the Document and Tag managers, we have striven to
emphasize transparency, in an effort to improve
reliability, over performance. However, the Tag
manager is in the critical path of some performance-
sensitive operations, which sometimes stresses our
commitment to simplicity.

A desktop-friendly footprint and behavior was an
important requirement influencing the design of all
these components. This requirement has not influenced
our design – the components described above should be

familiar to any database implementer – but rather has
influenced the design one level deeper. This point is
illustrated by the transaction-coordination performed by
the Repository. The Repository utilizes the venerable
two-phase commit protocol well known to the database
community (see pseudocode in Figure 2). Nothing new
in the abstract, but we’ve engineered the details to
fulfill our desktop requirements, for example:

• Hiding latency and deferred work. Of course,
we have pushed almost all disk activity into the
“prepare” methods to minimize contention on the
reader/writer lock. We go further by deferring
disk-intensive work onto (persistent) work queues
and perform it in the background. For example,
when documents are created, they are parsed, but
their tokens are not immediately inserted into the
index. Instead, a background thread is created to
periodically insert the tokens of multiple
documents into the index as a batch.

Even this much is familiar to the database
community, but we go further still. The deferred
work performed by the background thread is
performed only when the machine is idle (because,
as mentioned in Section 2, we are “borrowing
resources”). Thus, we’ve engineered the Resource
Managers so that (a) background work can be
deferred for long periods without adversely
impacting PCDB performance and (b) background
tasks can be aborted before completion, which we
do when we detect that the user has started using
the computer again.

• Customizing semantics. As mentioned earlier,
our transaction semantics allow at most one
document-insertion transaction to run at a time.
This limitation allows us to easily stream those
documents directly to disk without requiring
substantial disk activity in the case of an abort.
This reduces buffering requirements and disk
activity, leading to a more desktop-friendly
footprint.

• Accommodating hostility. Desktop file systems
are hostile environments: between virus scanners,
backup programs, garbage collectors, and rouge
user behavior, files can be locked, modified and
even deleted in unexpected ways. All of our
Resource Managers have evolved to be highly
robust to these possibilities. For all file operations
other than reading and writing from already-
opened files, we assume that failure is common
rather than a rare exception. We’ve designed the
Resource Managers to be robust under this
assumption. An example of this design-principle
in action is the commit record: we’ve both
provided several layers of redundancy for the

1219

commit record itself and have actually designed
our restart sequence to work in the absence of a
commit record.

• Interactivity. Users of desktop applications
expect programs to be “responsive,” which means,
among other things, that the user can perform UI
actions even when the system is busy with the
synchronous parts of updating the database the user
can see evidence of progress (e.g., a “spinning
disk”) for even relatively short (1/2 s) operations,
can cancel long-running (>2 s) operations, and
receive reasonable error messages when an
operation fails (e.g., due to lack of disk space).
These requirements have forced us to design a two-
way communication channel that connects all
layers of our system – Presentation, Application
Logic, and Data Interaction. For example, as the
data interaction layer is downloading a large
message, it sends byte-level progress information
back up to the presentation; or, when the user
issues a cancellation, a signal must find its way
down into the Resource Managers. Achieving
interactivity has not only driven many of our
detailed design decisions, it has also prevented us
from using many off-the-shelf libraries (e.g.,
parsers) that are designed around a batch versus
interactive model.

4. Query Runner
To provide a deeper look into how the requirements of
the desktop environment have influenced our design,
we present a deeper examination of one part of our
system, Query Runners.

Query Runners are responsible for returning query
results to the user interface. In addition to the usual
constraints implied by our desktop environment (e.g.,
small footprint, few cycles, etc.), the design of our user-
interface implied further requirements for our Query
Runners:

• Continuous. Traditionally, queries are discrete:
you start them, a result set is computed and
returned, and the query terminates. In Bloomba,
queries are used to populate aspects of the user-
interface that need to be updated based on changes
to the database. For example, when you select the
“Inbox” for display in the message list, the
message list is populated by a Query Runner
executing the query “folder:Inbox”. As the user
moves messages out of the Inbox and/or new
messages arrive in the background, the contents of
this message list – and thus the results of this query
– need to be updated automatically.

• Counting. Bloomba allows users to save an
arbitrary number of searches. These “saved
searches” are given names and are listed in a
convenient location on the left-hand side of the UI
(where folders are traditionally displayed).
Bloomba displays a count of the messages that
match each of these saved searches. These counts
are tallied and provided to the UI via a special kind
of Query Runner called a Query Count Runner.

• Scalable concurrency. The Bloomba user-
interface runs a large number of these Query
Runners in parallel: the main message list is
populated by one; a large number are started for
displaying message counts; and a few less-obvious
ones are run for other purposes (e.g., providing fast
access to one’s calendar data from within the mail
UI). Thus, Query Runners have to be light-weight
and run in parallel.

In IR terminology, we have more of a filter engine
than a query engine. That is, we’re running a stream of
new and changing documents against a relatively large
set of fixed queries. As we discover that a new or
changed document does or does not match one of these
fixed queries, we need to update the result-set or count
of that query. In the case of a changed document (or,
more specifically, a document whose tag-set has
changed), this implies knowing whether the old version
of the document was or was not part of the old result
set. We call this the delta problem.

One way to solve the delta problem is to memoize,
that is, save in RAM the current result set for each
query. However, the size of our result-sets can number
in the thousands; multiplied by many outstanding
queries, this approach does not scale. An alternative
solution is to provide an “old version” and “new
version” of the document to our query executive, which
can then run the query twice and decide if a change is
an “add,” “remove,” or “update.” While this “pair
approach” is more complicated than memoization, it
scales better. Also, because documents themselves
don’t change but rather only their tag-sets change, the
pair approach is easier to implement than it might first
appear.

 Given this background, let’s look at the design of
the Query Runner in a bit more detail. Figure 3
contains an object-diagram of the objects that cooperate
to run a query. In this diagram, changes are made by
the mutator thread on the right and are communicated
to the query-runner thread on the left. The
communication channel between these two threads is
the “IndexWatcher” object. An IndexWatcher is really
a producer-consumer queue of IndexPair objects (the
mutator producing, the query-runner consuming).

1220

Figure 3. Object diagram for query execution

When the mutator thread commits a transaction, it
places into this queue an IndexPair for the transaction.
This IndexPair is a pair of Index objects, and “old state”
Index and a “new state” Index. An Index object is a
traditional inverted file: Given a term, the Index object
returns a posting list of documents containing that term.
These Index object contain posting lists for both the
immutable documents and the mutable tag sets. The
old and new Index objects share posting lists for the
immutable terms, but have different lists for the
mutable tags. The Indexes contained by an IndexPair
contain postings for the same universe of documents.
This universe is guaranteed to include all new and
changed documents (it may include more).

The Query Runner sits in a loop asking the
IndexWatcher to return the next pair in the queue.
When the queue is empty, this loop blocks waiting for
an update. When a new pair is returned, the query is
compiled against both the old and new Indexes. From
these two results sets, a delta is computed, and results
are pushed up to the User Interface via the Callback
object (in the lower-left of Figure 3). (As mentioned
earlier, the PCDB implements just the IndexWatcher,
IndexPair, and Index objects. Query compilation and
execution are considered part of the application logic.)

5. The PCDB and the database community
We have been asked to comment on what we have used
from the database community, what we have not used,
and what we’d like to use (i.e., what database research
might be of use to us).

When people from the database community learn of
Bloomba they often ask, “Did you build it on a SQL
database.” The answer is no. When we started, we
considered relational databases, XML databases, and

also existing full-text indexers. In the end, we decided
to build the PCDB from scratch.

As an Independent Software Vendor selling a
product priced under $100, our ability to re-use existing
software is severely limited by cost considerations. In
particular, any commercial database would be cost-
prohibitive. Still, there are a number of open-source
SQL or XML databases and full-text indexing systems
we could have embedded into Bloomba. When we
looked at systems such as these, we found they were
not suitable for personal content and/or for a desktop
environment. For example:

• Early on we realized that the utility of personal
data is strongly related to its freshness (i.e., people
are much more likely to look for new email
messages than old ones) (c.f., [2]). This
observation is built into almost all of our Resource
Managers: for example, the document and
summary managers automatically “age”
documents, and posting lists return new documents
before old ones. The open-source systems we
looked at did not have this same chronological
bias.

• As mentioned in previous sections, for long-
running operations, desktop programs need to
provide feedback on progress; otherwise, users
believe the system has hung. Our PCDB was built
to provide such information, the open-source
systems were not.

• Our PCDB uses a number of techniques to
minimize its impact on other activities the user
might be performing on the machine (such as
editing its document). This includes minimizing
the use of RAM by spilling to temporary files, and
aborting intensive maintenance operations when

Query Runner Thread

QOp

Query-
Runner

reportXXX

CallBack Repository

DocStore

addTag, newDoc, …

IndexWatcher

nextIndexPair
update(changes)

Mutator thread

1221

we detect user activities. Again, the open-source
systems were not written with such sensitivities in
mind.

• As mentioned earlier, desktops, and Windows
desktops in particular, are quite hostile
environments. We were concerned that these
open-source systems would not be reliable in the
face of virus scanners, garbage collectors, and so
forth.

While we built the PCDB from scratch, we have used
a many concepts and technologies developed in the
database and information retrieval communities. Our
bibles have been [6], [4], and [9]. Our challenge has
been more to implement existing technologies
consistent with the limits and expectations of desktop
applications rather than to start from a blank slate.

Looking forward, one part of the database literature
we are eager to dig into is the data mining literature.
We believe there are many algorithms and techniques in
that literature to be effectively leveraged on personal
content. As one example of this, consider contact
information. In addition to the user’s own collection of
contact cards, Bloomba has access to email addresses
and associated “Display Names” in the headers of
emails, plus a plethora of contact information in
message bodies themselves. Further, databases of
contacts are starting to emerge on the Web [7]. While a
lot of data is available, it contains lots of duplicates,
contradictions, and holes. Data fusion and cleaning
techniques from the world of data mining might turn
this raw data into more useful information.

There are a number of areas where we wished we
had more support from the database community:

• Data models. We do not believe that the relational
model is the best model for personal content. First,
while personal content is definitely typed – emails,
events, and contacts are all distinct types – these
data in a PCDB doesn’t want to be segregated by
type. If personal content wants to be grouped at
all, it’s into heterogeneous, dynamic groups like
“Personal” or “FallRelease.” Also, personal
content tends to be denormalized, e.g., a contact
card contains multiple phone numbers. For these
and other reasons, we don’t believe the relational
model is a good match to personal content.

To those who disagree and believe that the
relational model is appropriate for personal
content, a proof point would be nice. For those
who agree, this begs the evergreen issue of the
database community: If not relational, then what?
We leave this question as an exercise to the reader.

• Incrementality. Personal Content Databases
receive a steady stream of incoming data that the

user often expects to be indexed as soon as it
arrives. One area where it felt like we were
inventing more than we wanted to is in the area of
incremental indexing. In this context, “indexing”
is not just the full-text indexing but other indexes
in our system, e.g., the Address Manager
mentioned above, or the index on our lexicon
(which we haven’t discussed in this paper). Many
promising indexing techniques we found in the
literature assumed a batch context (or didn’t
address index-construction at all). Also, the
desktop context introduces the requirements to
defer intensive work until the machine is idle, and
also to minimize the amount of RAM used;
incremental indexing techniques in we did find
failed to consider these additional requirements.

• Availability. It’s obvious that a Personal Content
Database needs to be highly reliable in that it does
not lose data. The database literature is full of
techniques for increasing reliability, techniques
we’ve been able to leverage. However, a Personal
Content Database also needs to be highly
available. When a user gets on the phone with an
important customer, for example, it is disastrous if
personal content crucial to the call suddenly
becomes unavailable.

The standard database approach to availability is
replication, typically across multiple machines,
which is not applicable in a desktop context. The
database literature also makes another, less obvious
assumption regarding availability: it’s either all or
nothing. Our progress on the problem of perceived
availability accelerated greatly when we realized
that partial availability has high utility for users.
For example, in the “important customer on the
phone” scenario, let’s say the index has become
corrupted (e.g., because the user inadvertently
deleted a file), requiring a 30-60 minute “rebuild.”
In this context, if you can let the user access the
Inbox (i.e., receive messages into it, read message
in it, and reply to message in it), then there’s a
good chance the user can have the phone call even
if fast searching is not available.

Thus, architectures and algorithms that support
partial availability without the user of stand-by
machines would be of great value.

• Specialized indexes. As we seek to add even more
intelligence into Bloomba, we see our selves
building more specialized indexes such as the
Address Manager. This feels a bit unsatisfying.
First, there’s a layering problem: the functionality
supported by these indexes is fairly specific to
Bloomba and thus best fits in the Bloomba
Application Logic, yet they also need to be at the

1222

Data Interaction layer to participate in the
transaction mechanism. Second, we’re concerned
that, if too many of these specialized indexes are
added, commit latency could suffer – which has
significant impact on the user’s perception of
system performance. Thus, another potential area
of research is an extensible, scalable, high-
performance system for specialized, applogic
indexes.

• Replication. We believe that disconnected
replication is a crucially important feature for
personal content databases. However, in the
database literature, replication is most often
considered in the context of entire-database
replication or strict-subset replication.

We believe personal content databases need
document-level replication as well. To illustrate,
imagine a husband and wife with a large, family
photo collection. The husband and wife each want
their own databases, but they want those databases
to share the family photos. In fact, they may want
to share those photos (or a subset) with the
extended family. As one person updates the
metadata on the photos, the others probably want to
see those updates. What’s needed here is not
sharing of entire databases, therefore, but flexible
sharing of documents within those repositories.

6. Summary
We believe continued growth in the volume of personal
content, together with a shift to multi-device personal
computing environment, will inevitably lead to the
development of Personal Content Databases (PCDBs).
These databases will make it easier to find, use, and
replicate a large, heterogeneous repository of personal
content.

The database literature already contains many useful
concepts and technologies for building PCDBs.
However, the requirements of PCDBs imply
engineering details that differ from today’s typical
database systems. These requirements include the need
to ensure that the majority of the machine’s resources
are dedicated to the user’s foreground task, the need for
interactivity with the user, and the need for robustness
within a hostile environment. PCDBs also introduce
opportunities for new areas of database research,
including research into new data models, incremental
indexing, partial availability, specialized indexes, and
extended models of replication.

Acknowledgements
Bloomba and its PCDB owe their existence to the entire
teams at Stata Labs and Integrated SoftTech Solutions.

References
[1] Bloomba: http://www.statalabs.com

[2] Dumais, Cutrell, Cadiz, Jancke, Sarin, Robbins.
Stuff I've Seen: A system for personal information
retrieval and re-use. Proceedings of SIGIR 2003.
Association for Computing Machinery, 2003.

[3] Gamma, Helm, Johnson, Vlissides. Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[4] Garcia-Molina, Ullman, Widom. Database System
Implementation. Prentice Hall, 1999.

[5] Gmail: http://gmail.google.com

[6] Gray, Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[7] Plaxo: http://www.plaxo/com

[9] Witten, Moffat, Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images,
2nd Ed. Morgan Kaufmann, 1999.

1223

