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Abstract

We consider the problem of horizontally partition-
ing a dynamic relation across a large number of
disks/nodes by the use of range partitioning. Such
partitioning is often desirable in large-scale paral-
lel databases, as well as in peer-to-peer (P2P) sys-
tems. As tuples are inserted and deleted, the parti-
tions may need to be adjusted, and data moved, in
order to achieve storage balance across the patrtici-
pant disks/nodes. We propose efficient, asymptot-
ically optimal algorithms that ensure storage bal-
ance at all times, even against an adversarial in-
sertion and deletion of tuples. We combine the
above algorithms with distributed routing struc-
tures to architect a P2P system that supports ef-
ficient range queries, while simultaneously guar-
anteeing storage balance.

Introduction

the execution of most queries. Skew can be classified into
(a) data skew where data may be unequally distributed
across the partitions, and (Bxecution skewwhere data
accesses may not be uniform across the partitions [11]. As
the relation evolves overtime, or as workloads change, both
data and execution skew pose a serious problem.

Today’s database systems put the onus on administrators
to monitor performance and re-partition data whenever the
skew becomes “too large”, an approach fraught with dif-
ficulties. In contrast, we considenline load-balancing
solutions, which dynamically move data across nodes and
avoid skewat all times Online load-balancing promises
three major advantages over periodic manual re-partitions:
(a) a consistently efficient 24/7 operation by eliminating
performance degradation between, and system hiccups dur-
ing, manual re-partitions; (b) a simplified control panel by
eliminating partition configuration from the administrator’s
list of chores; and (c) a smaller cost especially in systems
with a high degree of parallelism, where even a few in-
serts/deletes may cause a large skew.

Skew can be characterized by tingbalance ratios de-

has been studied for a number of years in the context ofined as the ratio of the loads of the largest and smallest
parallel databases. Many shared-nothing parallel databaggytitions in the system. In order to ensure thas small,
systems use range partitioning to decluster a relation acroggytg may have to be moved from one disk/node to another
the available disks for performance gains [8, 10, 28]. Forgs the relation grows or shrinks. Thus a key requirement
example, transactions in OLTP systems often access tuplggy a |oad balancing algorithm is to minimize the number
associatively, i.e., all tuples with a specific attribute value,of typles moved in order to achieve a desited

or a small range of values. Range partitioning ensures that . ,

a transaction requires data only from a single disk (most opUmmary of Resultsin this paper, we focus on algorithms
the time), thus enabling inter-query parallelism and nearfor eliminating data skew to achieve storage balance, al-

linear speed-up [11].

A well-known concern in range partitioning skew

though our algorithms can be generalized to handle execu-
tion skew as well. Our load-balancing algorithms guaran-

where only a few partitions (disks/nodes) are involved int€€ thato is always bounded by amall constant. The

boundc is, in fact, a tunable parameter that can be set to
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storage balance at all times, against all data distributions,
while ensuring that the overhead is asymptotically optimal,
and often much less than that of periodic repartitioning.



Application to P2P System<Our online load balancing al- sibly move data across nodes. The load-balancing algo-
gorithms are motivated by a new application domain forrithms we consider aréocal in that the algorithm exe-
range partitioning: peer-to-peer (P2P) systems. P2P sysutes only on the node at which the insert or delete occurs.
tems store a relation over a large and dynamic set of nodeEpr now, we ignore concurrency control issues (see Sec-
and support queries over this relation. Many current systion 3.4), and consider only the equivalent serial schedule
tems, known as Distributed Hash Tables (DHTSs) [22, 23of inserts and deletes, interleaved with the executions of the
27], usehash partitioningto ensure storage balance, andload-balancing algorithm.

support point queries over the relation. _ Imbalance Ratio A load-balancing algorithm guarantees

_ There has been considerable recent interest in develogy, impalance ratie if, after the completion of every insert
ing P2P systems that can support efficient range queries [y gelete operation and its corresponding load-balancing
4, 25]. For example, a P2P multi-player game might qUeNstep, max; L(N;) < omin; L(N;) + co, for some fixed

for all objects located in an area in a virtual 2-D space. Inconstani:,. As is conventional, we have definedas the

a P2P web cache, a node may request (pre-fetch) all paggsy mptotigatio between the largest and smallest loads.
with a specific URL prefix. It is well-known [5] that hash

partitioning (and hence a DHT) is inefficient for answering» >  costs of Load Balancing
suchad hocrange queries, motivating a search for new net-
works that allow range partitioning while still maintaining Data MovementAll load-balancing algorithms will need
the storage balance offered by normal DHTSs. to move data from one node to another in order to achieve
The P2P domain throws up its own challenges for rangebalance. We use a simple linear cost model, where mov-
partitioning and load balancing. Nodes in a P2P sysing one tuple from any node to any other node costs one
tem may arrive and depart at will; we therefore requireunit. Such a model reasonably captures both the network-
load balance over such a dynamic set of nodes. In addicommunication cost of transferring data, as well as the cost
tion, P2P systems are decentralized, necessitating the def modifying local data structures at the nodes.
sign of distributed data structures for maintaining partitionPartition Change Data movement is accompanied by a
information. We show how to enhance our online load-change in the partition boundaries. The central site needs to
balancing algorithm with overlay-network structures to ar-be informed to enable it to correct its partition information
chitect a new P2P system whose performance is asymptolR,, R, . . ., R,,]. Notice that the movement of a tuple may
ically identical to that of DHTSs, but with the advantage of cause a change in at mastepartition boundary, resulting
enabling efficient range queries. in at most one update message to the central site. We can
Organization We define the online load-balancing prob- thus absorb this cost into the data movement cost itself.

lem for parallel databases in Section 2. We present ouroad Information Finally, the load-balancing algorithm
load-balancing algorithm and analyze it in Section 3. Wethat executes locally at a node may require non-local infor-
adapt our algorithm to a P2P setting in Section 4. We expermation about the load at other nodes. For now, we assume
imentally evaluate our algorithms in Section 5. We discusshat the central site keeps track of the load at each node,

related work in Section 6. thus requiring each node to inform the site after a success-
ful insert, delete or data movement. A node that needs load
2 Problem Setup and Basic Operations information can simply contact the central site at any time

) _ ) _ to obtain it. We can thus absorb this cost into the cost of
We will now define a simple abstraction of a parallel yple insert, delete and movement as well.

context, and define two basic operations used by loada|gorithm simply as the number of tuples moved by the al-
balancing algorithms. We defer a discussion of P2P sysyorithm per insert or delete. Our interest is in t@or-

tems to Section 4. tizedcost per insert or delete, fadversarial(worst-case)
sequences of insertions and deletions. The amortized cost

2.1 Setup of an insert or delete is said to béf, for anysequence of

We consider a relation divided intorange partitions on the itlsjgte,;]r:)ss?;cts and deletes, the total number of tuples moved

basis of a key attribute, with partition boundariedigt <

Ry <... < R,. NodeN; manages the rand&; 1, ki),  problem Statement Develop a load balancing algorithm
forall 0 <i < n. WhenR;_, = R;, N; is said to manage hich guarantees a constant imbalance ratiwith low
the emptypartition [RZ; 1, R;). Nodes managing adjacent amortized cost per tuple insert and delete.

ranges are said to beeighbors We let L(N;) denote the

load at V;, defined to be the number of tuples stored\gy We will show that it is possible to achieve a constant
We assume a central site has access to the range-partitiorhile ensuring that the amortized cost per insert and delete
information[Ro, Ry, . . ., R,] and directs each query, insert is also a constant. Such an algorithm is asymptotically opti-
and delete to the appropriate node(s). mal since, for any load-balancing algorithm, there exist se-

Each insert or delete of a tuple is followed by an ex-quences of operations that requir@(t) tuple movements
ecution of the load-balancing algorithm which may pos-to ensure load balance.
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Figure 1: (a) MRADJUSTInvolving A andB and (b) Re-

ORDERinvolving A andC'. The height of a bar represents

the load of the corresponding node.

2.3 ‘“Universal” Load-Balancing Operations
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Figure 2: The cost of load balancing using &RDERIs 70
while using successive BRADJUSToperations cost&50.

It turns out that the RORDEROperation is not only nec-
essary, but also sufficient for efficient load balancing.
fact, we show below that the operationg™NADJUST and
REORDER areuniversalin that they can together be used
to efficiently implement any load-balancing algorithm.

In

What operations can be used to perform load balancing?

An intuitive operation is as follows: when a node becomesTheorem 2. Given a load-balancing algorithm, it is pos-
responsible for too much data, it can move a portion of itssible to construct a new algorithm that uses only the
datato its neighbor and thus attempt to balance out the loagNsrA DJusTand REORDEROperations such that, for any

We call such an operationB®tADbJusTwhich is illustrated
in Figure 1(a) and defined below.

NBRADJUST A pair of neighboring nodesV; and N;;
may alter the boundarz; between their ranges by trans-
ferring data from one node to the othér.

sequence afinserts and deletes,
(a) BothA andﬁl achieve identical load distribution.
(b) The cost ofd is at most the cost od.

3 Algorithms for Load Balancing

A load-balancing algorithm can be devised based on jus€onsider the following approach for load balancing: a node
this operation, e.g. [12, 18]. However, such an algorithm isattempts to shed its load whenever its load increases by a
provably expensive as we show in the following theorem.factor §, and attempts to gain load when it drops by the

Theorem 1. Any load-balancing algorithm, deterministic
or randomized, that uses orf{BRADJUSTand guarantees
a constant imbalance ratio, has amortized co$(n) per
insert and delete.

The above theorem shows that any algorithm that uses

only NBRADJUSTwould incur a cost per insert that is at

same factor. Formally, we consider an infinite, increasing
geometric sequence of thresholls= |cd¢|, for alli > 1
and some constant When a node’s load crosses a thresh-
old T}, the node initiates a load-balancing procedure. We
call such an approach tfigreshold Algorithm

3.1 The Doubling Algorithm
We start with the special cage= 2, and the thresholds

leastlinear in the number of nodes. In contrast, our goal T; = 2!, We begin by considering tuple insertions. Ev-

is to achieve aonstantcost per insert. The key to effi-
cient load balancing lies in a second operatioapRDER
illustrated in Figure 1(b) and defined below.

REORDER A node N; with an empty rangeR;, R;)
changes its position and splits the rande;, R;,1) man-
aged by a nod&v;: N; now manages range?;, X ) while
N, takes oveff X, R; 1) for some value o, R; < X <
R;.1. The nodes are re-labeled appropriately.

EXAMPLE 2.1. Consider the scenario shown in Fig-
ure 2, where nodel has100 tuples, the next three nodes
(B, C, D) have60 tuples each, while the last twd@( F')

ery time a node’s loatncreases to a valug + 1, the node
initiates ADJUSTL OAD specified in Procedure 1.

The load-balancing procedureDAUsSTLOAD is quite
simple. When nodéV;’s load increases beyond a thresh-
old, it first (lines 3-6) attempts to performBRADIUST
with its lightly-loaded neighbor, say;.;, by averaging
out its load withN;;,. If both neighbors have high load
(more than half that ofV;), V; attempts to perform B
ORDER with the globally least-loaded nod¥; (lines 8-
12). If Ni's load is small enough (less than a quarter of
N;), Ny, sheds all its data t&V;+,, and takes over half the
load of V;. If IV; is unable to perform either BRADJIUST
or REORDER N; concludes that the system load is indeed

have20 tuples each. The least expensive scheme to improvgalanced and performs no data movement.

load balance while preserving key ordering is to transfer all

20 tuples fromFE to F', and then us&®EORDERt0 split the

Note that whenV; initiates either a BSRADJUSTOr RE-
ORDER, there is a corresponding recursive invocation of

load of A betweend and E. The cost of such a scheme ADJUSTLOAD at nodeN;;; or Ny, respectively. Fre-

is 70 tuple movements; in contrast,M8RADJUST-based
balancing require250 tuple movements. =

lin the extreme case wherV; takes over the entire range,
[Ri—1, Rit+1), Nit1 is assigned the empty rang@; 1, Ri+1).
2Proofs omitted in this paper are available in a technical report [13].

guently, these recursive invocations do not necessitate any
further data movement; even if data movementis necessary,

3For technical reasons, we defib& N) = T1 + L(N), and usd.’ as
the node load. Note that the same guarantees loold when using either
L or L'; for notational convenience, we Ié&t denote this new definition
of load.



we can show that such data movement would utilize only3.3 Analysis
NBRADJUST. Similarly, there is also a recursive invocation
of ADJUSTLOAD at nodeN; itself (line 6); this invocation

is necessary only in one special case — whea#sT. OAD

is being executed aVvy, after a RRORDER— and is also
guaranteed to utilize only BRADJUST.

We now present an analysis of the Threshold algorithm
(and the Fibbing algorithm), both in terms of the guaran-
teed imbalance ratio, and in terms of the cost of insert and
delete. Our analysis relies on seven properties of the thresh-
old sequence that is satisfied both by Fibonacci numbers,
and by threshold sequences of the fdfin= |cé¢|, al-
lowing the same analysis to apply to both the Threshold
algorithm and the Fibbing algorithm. We summarize these
properties in the following lemma.

Procedure 1ADJusTLoAD(NodeN;) {On Tuple Inser}
1: LetL(Nl) =x € (Tm,Tm+1].

2: Let V; be the lighter loaded aV;_; andN; 4.

3: if L(Nj) < Th—1 then {Do NBRADJUST}

4:  Move tuples from; to N; to equalize load. Lemma 1. If T; = |ed?], for a suitably largec and§ >
5. ADJUSTLOAD(IV)) ¢, the following properties hold for att > 1. The same
673: elsﬁéDJUSTLOAD(Ni) properties hold if7; is theit* Fibonacci numberT; =
8:  Find the least-loaded nodg;. (0], with ¢ = ¢//5 and§ = ¢).
: %) < Trm—2 then {Do REORDER} b [(T. +T 121 < T

10: Transfer all data frondVy, to N = Nj1. (O) [(Tr + Trs1 +1)/2] < Tra
11 Transfer data frondV; to Ny, s.t. L(N;) = [z/2] and (€) Tr +Try1 < Tri2

L(Nk) = |=/2]. d) [(T: +1)/2] <T,
12: ADJUSTLOAD(N) € L(Try2+1)/2] > T,
13: {Rename nodes appropriately aftet GRDER} () Trox +1> 65T, > T,y — C, whereC = 1if T is
14:  endif thei'” Fibonacci number, and’ = 6* otherwise, for
15: end if all integersk > 0.

@ Ty +T:+1)/2] >Th

nDefinition 3.1. For any nodeN, definel(N) = r if and
only if L(N) € (T_1,T,], i.e., N's load is in thert" geo-
metric interval.

Deletions are handled in a symmetric fashion. Whe
a node’s load drops to a threshdlgy = 27, it first at-
tempts NBRADJUSTWiIth a neighbor, if the neighbor’s load
is larger tharlj;; = 27!, Otherwise, it attempts to &R
ORDERitself and split the highest-loaded nodg in the  Theorem 3. The following invariants hold after any se-
system, ifN},’s load is more thaff; ;5. quence of inserts and deletes for the Threshold (and Fib-

We will show later that the Doubling Algorithm ensures bing) algorithm:
thato = 8, while the amortized cost of tuple insert and (a) NBRBALANCE: For any pair of neighborsV; and
and delete is constant. However, it is possible to reduce Nit1, I(N;) < I(Nyy1) + 1.

further by generalizing this Doubling Algorithm. (b) GLOBALBALANCE: For any pair of nodesv; andV;,
I(N;) < I(Nj) + 2.
3.2 The General Threshold Algorithm Before proving the above theorem, we first establish

some lemmas on the properties of the®ADJUST and

The Doubling Algorithm sef = 2 and triggered load bal- .
g A9 99 REORDER as well as the execution ofBNUSTL OAD.

ancing when a node’s load changed by a falttr obtain
o = 8. A natural question, then, is to ask whether the al-Lemma 2. If I(N;) = r + 2 and I(N;;1) = r, then
gorithm generalizes to other values®fand whether itis  NBRADJUSTbetweenV; and N;,; ensures thaf (N;) =
possible to obtain a betterby using a smallef value. I(Nii1) >r+ 1.

The Doubling algorithm generalizes to allovto be
any real number greater than or equal to the golden rati
¢ = (v/5+ 1)/2 ~ 1.62. For any real numbef > ¢, we
may define a generdhreshold Algorithrmas follows: We
define a threshold sequencelsf= |cd|, for an appropri-
ately chosen constant> 0. Each node is required to exe-
cute Procedure BJUSTLOAD, every time its load crosses Proof. Consider a tuple insert at nodé,. By definition,
athreshold. This Threshold Algorithm guarantees §° no NBRBALANCE violation arises unles&(NNV;) crosses a
with a constant cost per tuple insert and delete. threshold. Sayl(XN;) crosses threshold,. There may

The Fibbing Algorithm: An extreme of the general then be a violation of BRBALANCE betweenN; and ei-
Threshold Algorithm arises wheh = ¢, for which we  ther or both of its neighbors. (There may also bela&-
may define a variant called tlk&bbing Algorithm Thisal-  ALBALANCE violation involving V;.) In this case)V; exe-
gorithm defines the set of thresholfsto be the Fibonacci cutes a MRADJUSTby Procedure AJUSTL OAD.
numbers (withl; = 1 and7, = 2). As we prove in Sec- W.l.o.g., sayN; performs NSRADJUST with N;;;.
tion 3.3, the Fibbing Algorithm guarantees an imbalancerirst, observe that there are noLGBALBALANCE vio-
ratio of ¢> ~ 4.24. lations after this MRADJUST, by Lemma 1(b). After

gemma 3. Consider a state of the system where HgHR-

ALANCE and GLOBAL BALANCE invariants hold. If a
tuple insert now causes a violation MBRBALANCE, the
consequent execution &pJusTLOAD will ensure both
NBRBALANCE and GLOBAL BALANCE.



this NBRADJUST, ADJUSTLOAD is recursively invoked
on N;1, which may causév;,; to perform NSRADJUST
with N;, o, and triggetV;  » into executing AAJUSTL OAD.
This process continues until we reach a nadg, that
does not perform a BRADJUST, or we reachV,,.

We show that this sequence oBRADJUST operations
ensures that all BRBALANCE conditions are satisfied.
(Finally, there are recursive calls tobAUSTLOAD in line

6, which do not perform any data movement since there ar

no violations of NBSRBALANCE or GLOBAL BALANCE.)

Let L;(N) represent the load at nod€ after thejt"
NBRADJUST operation, andl;(N) = I(N) after the
4" NBRADJUST operation. [, is the load before any
NBRADJUSTOperations take place.) Th& NBRADJUST
operation occurs between nod¥s; ;_; andN;;;. Thus,
the load of NV, ;_; remains unchanged after t}i& opera-
tion.

We will show by induction that, aftef > 0 NBRAD-
JusToperations,

1. Ij(Ni+k) <zforal0<k< 7.
2. The only NSRBALANCE violation may be between

Ni+j andNi+]’+1.

Base Case:We show the above properties fpr= 1.
Initially, the only NBRBALANCE violations may be at
(N;_1, N;) and/or(N;, Ni11). Recall thatly (N;) =z + 1
and, since there is aBRBALANCE violation, Iy (N; 1) =
z — 1. From the GOBAL BALANCE invariant, we deduce
Io(Nifl) <xz+1.

After the first NSRADJUST operation, we know by
Lemma?2thaf; (N;) = I, (N;11) > z. Also, Ly (N;—1) =
Lo(N;—1), thus showing that neither paitV;_, N;) nor
(Ni, N;y+1) constitute a MRBALANCE violation. Since
only the loads ofV; and N;,; were affected by this opera-
tion, the only possible BRBALANCE violation is between
N;11 andN, .. Itis also clear thal; (NV;) = I1 (N;41) <
z (by Lemma 1(d)).

Induction Step: Assume, by induction, that after
NBRADJUSTOperations]; (N;+;) < z, and the only pos-
sible NBRBALANCE violation is at (N;1;, Nitjy1). |If
there is no such violation, we are done andJASTLOAD
terminates. If there is a violation, aBRADJUST takes
place betweeV;; andN;4 1.

GLOBALBALANCE assures us thafy(N;1j+1) =
I;i(Niyj+1) > —2. Since there is a BRBALANCE viola-
tion, we may deduc&; (N;1j+1) = x—2andL;(Ni;;) =
z. Invoking Lemma 2, we deduce thd}y i (N;y;) =
L1 (Nigjp1) >z — L.

Since I;(Nit+;j—1) < z by the induction assumption,
there is no violation betweeN;, ;_; andN;;;. There is
obviously no violation betweeV;, ; and NV;; 41, since

both loads are in the same interval. The only possible vi

olation might be betweeiV;; ;; and N;; 12, which is

permitted under the induction assumption. It is also cleard

that bothl; 1 (V;4;) andl; 11 (N;4;41) are at most, thus
completing the induction step.

shows that there are noBRBALANCE violations when
ADJUSTLOAD terminates. O

Lemma 4. Consider a state of the system where H9HR-
BALANCE and GLOBALBALANCE invariants hold. If a
tuple insert now causes a violation GLOBAL BALANCE,
the consequent executionfibJusTL OAD will ensure both
GLOBALBALANCE andNBRBALANCE.

Broof of Theorem 3We prove that the invariants hold by
induction on the lengthof the insert/delete sequence. The
invariants clearly hold wheh= 0 since all nodes contain
one sentinel value.

Assume that the invariants hold fbe r. Let the(r +
1)*t operation be an insert. If this insert does not violate
any invariants, we are done. If not, eitheBRBALANCE
or GLOBALBALANCE is violated. We have shown that all
such violations are fixed by ByusSTLOAD in Lemmas 3
and 4 respectively.

If the (r + 1)%¢ operation is a delete, it is straightforward
to show that all violations are again fixed, by a proof similar
to that of Lemmas 3 and 4. We have thus proved that the
invariants hold after any sequence of inserts and deletes.

O

Corollary 3.1. Forthe Threshold algorithm, the imbalance
ratio o is 6% after any sequence of inserts and deletesg

Corollary 3.2. For the Fibbing algorithm, the imbalance
ratio o is ¢> after any sequence of inserts and deleteg

Theorem 4. For the Threshold (and Fibbing) algorithm,
the amortized cost of both inserts and deletes is constant.

Proof. We bound the amortized costs of insert and delete
by using the potential method. Lét denote the cur-
rent average load. Consider the potential funcdon=
c(>i, L(N;)?)/L, wherec is a constant to be specified
later. We will show the following: (a) the cost ofBRAD-
JusTis bounded by the drop in potential accompanying it,
(b) the cost of RORDERIs bounded by the drop in po-
tential accompanying it, and (c) the gain in potential af-
ter a tuple insert or delete, before any rebalancing actions,
is bounded by a constant. The above three statements to-
gether imply that the amortized costs of tuple insert and
delete are constant.

NBRADJUST. Recall that a MRADJUSTOperation occurs
between two nodes whose load differs by at least a factor
d. Let the loads of the two nodes involved b@andy. The
drop in potentialA® from NBRADJUST is c(z? + y? —
(xr+9)?/2)/L = c(x —y)?/2L. By Lemma 1(f)z —y >
(§—1)y, andy is at least./6°. ThereforeA® > ¢/ (z—y)

for some constant’. Since the number of tuples moved
is at most(z — y)/2, the drop in potential pays for the
ata movement by choosing the constatatbe sufficiently

large & 6% /(5 — 1)).

The above inductive proof, combined with the fact thatREORDER Let a REORDEROperation involve a node with
the procedure terminates when the last node is reachethad z, and a pair of neighbor nodes with loaglsand z,



with y < z. We then havéd’y < = (for the REORDER  executing MJUSTLOAD, it suffices forV; to attempt the
operation to be triggered), and < x (by NBRBALANCE REORDEROperation withany of these nodes.

between the neighbors). o Such aweakening suggests an interesting randomization
The drop in potential from RORDERIs given by: which avoids trying to find the least-loaded node altogether.
_ s o o N oy = Node N; simply samples a set gf nodes at random. If
A% = c(“”? Ty - 2(”5/22 Y tz)?))/% one of them violates GOBAL BALANCE, N; performs the
= co(x”/2-2yz)/L > c(x”/2 —22°/5")/L REORDERoOperation using this node; otherwisé; simply
> dz(1—4/6% does nothing.

If there are no data deletes, this randomized algorithm
guarantees that the maximum load is at most a constant fac-
tor times theaverage loadwvith high probability, so long as
the number of nodes samplpés O(logn). In the presence
of tuple deletes, we offer a different guarantee: If a ndge
Tuple Insert: The gain in potentialA®, from an insert at ~ SPecifies @eak threshold that N; does not want its load
nodelN; and before any rebalancing, is at me@t (N;) + 0 exceed, the load 6f; does notexceed with high prob-
1)2—L(N;)?)/ L, whereL refers to the average load before @bility, unless the average load in the systens within a

the latest insert. Therefor&y® < c(2L(N;) + 1)/L <  constant factor o’. Itis also possible to provide guaran-
c(20% + 3), sinceL(N;) < 6L + 1 andL > 1. Therefore, ~t€€s on the imbalance ratio in the presence of deletes, but

Note thatl —4/4? is greater than zero far > V4 ~ 1.587.
The data movement cost ofERRDERIS |z/2| + y < .
Therefore, for a suitable choice of constalit- 253 /(6% —
4)), the drop in potential pays for data movement.

Concurrency Control and Parallelism Until now, we
have assumed that tuple inserts (and deletes) happen in se-
| quence, and that a load-balancing step completes before
o3 L(N))(1/n) . ~ the next insert. Ogr algorithms generalize naturally to (a)
Ad = W Using the factd.(N;) < 63L+1, deal with parallel inserts that may happen before a load-
L > 1,andn > 2, we can see thah® < ¢(56% + 3). balanc@ng step completes,_and (b) allows multiple load-
Therefore, the amortized cost of a delete is constanf] ~ Palancing steps to execute in parallel.
While we do not discuss either of the above issues in

We observe that the bounds on these amortized costs adetail here, we make the following observations and claims.
quite large. Wherm = ¢, the cost of an insertr 412,  First, the load-balancing step can be broken into multiple,
and the cost of a delete 868. We believe this to be a smaller, atomic actions that require only simple block-level
consequence of weak analysis stemming from our choicéocking. Second, tuple inserts and deletes may be given
of potential function. We show experimentally in Section 5 higher priority, and allowed to execute even before the full
that these constants are actually very closé.tdVe also  load-balancing step for a previous insert/delete completes.
present variations of our algorithm next that are amenablé hird, multiple load-balancing steps can execute in parallel

Tuple Delete: When atuple is deleted, there may be a gain
in potential due to a slight reduction ih. SincelL drops
in valuel/n from a delete, the maximum gain in potentia

to tighter analysis. and require very simple serialization mechanisms to ensure
correctness. Finally, we note that it is possible to formalize
3.4 Discussion a model of concurrency in which we can characterize the

. . . . . imbalance ratio under parallel insertions and deletions.
Improving o further Itis possible to improve to arbitrar-

ily small values larger tham, by generalizing the Thresh-
old algorithm, and maintaining balance over larger sets o4 A P2P Network for Range Queries

consecutive nodes, rather than just pairs of neighbors. We ) . )
do not detail this generalization in this work. There has been recent interest in developing P2P networks

that can support ad-hoc queries over key ranges [3, 4, 25].
A solution is to use range partitioning of data across the
peer nodes. If the data and query distributions are uniform,

nodes will have equal loads. However, if the data and/or

stronger bounds on the insertion and deletion costs. Thg,oc tion is skewed, the network will develop hot-spots
idea is to usdnysteresisand require a node to lose at least with high query traffic for a few nodes. Load balancing

half its data before it triggers load balancing for tuple dele'thus becomes a critical requirement in such a system. The

tions. fWe (c:iac? ishpw that tcg's variant guarantees Insertiogop enyironment imposes three significant challenges for
cost of4 and deletion cost az9. developing a load-balanced, range-partitioned system:

A Randomized Variant So far, all our algorithms attempt _ScaleThe size of the system may be extremely large, upto

10 find th_e'lgast-loaded node (ar th.e most-loaded node) "Bens or hundreds of thousands of nodes. Our load-balancing
order to initiate the RORDEROperation. In fact, the theo-

r.em_s we have stated .h0|d even fora s_IlghtIy weaker condi- 4Karger and Ruhl [17] offer a randomized algorithm that provides such
tion: If there are .mult|ple nodes that V|0|at? the@BAL-  guarantees, but requisachnode to perform such random sampling and
BALANCE condition with respect to a partlcular nodé rebalancing, whether or not any inserts or deletes are directed to that node.

The Doubling Algorithm with Hysteresis It is possible
to define a variant of the Doubling Algorithm which pro-
vides a weaker imbalance ratie & 32) but has provably




algorithm deals well with scale, since its data-movementalf the load of the largest node, thus requirth¢L) data
cost isconstantand independent of the number of nodes. movements, wherd. is the average load per node after

Dynamism The lifetime of nodes is short (a few hours) and Node arival (since all node loads are within a constant
arbitrary (whims of the node owner). Our load-balancingf@ctor of each other). In addition, the average load per
algorithms need to efficiently handle dynamic arrival andn0de decreases, leading to an increase in potenté{ bf.
departure of nodes while ensuring good load balance acrodd!Us: the amortized cost of node insertion is s8illL).

the existing nodes in the system. We discuss this adaptatighCt€ that this cost is asymptotically optimal, since it is im-
in Section 4.1. possible to achieve a constant imbalance ratio without the

new node receiving at lea®(L) tuples.
In the data-is-lost case, the data-movement cost of a
Hode departure i8, since a node departure only raises the
verage load, resulting in a drop in potential. All sub-

Decentralization P2P systems do not have a central site

We need distributed routing and data structures to enabl

bg;ht_rout:r:g (()jf_q;;enest/_|ns?rtsllde(lje:)esl, as WeIIMas_ tto _f|n equent MRADJUST operations pay for themselves, as
additional load information tor joad balancing. Maintain- 4;sq,ssed earlier. In the data-is-replicated case, the data-

ing such data struc’gures a]so imposes additional costs %R ovement cost of a node departure is equal to the cost of
the system, as we discuss in Section 4.2. “re-insertion” of the “lost” data; since the amortized cost of
each insert is constant, and we re-insert anly.) tuples,

the amortized cost of node departuréigl). This is again
Node Arrival Upon arrival, a new nod#&’ finds the most- asymptotically optimal.

loaded nodeV;, in the network. It then splits the range of ~ Note that in the replicated case, both arrival and depar-
N, to take over half the load d¥;,, using the MRADJUST  ture of nodes requires re-creation of lost replicas, or migra-
operation. After this split, there may beBNBALANCE vi- tion of existing ones. Similarly, tuple inserts and deletes
olations between two pairs of neighbo(sv;,_;, N,) and  also have to be duplicated at the replica nodes. We pre-
(N, Np.1). In response, AJUSTLOAD is executed, first sume that such replication is performed in the background.
at nodeN,, and then at nod&'. It is easy to show (as in Observe that such replica maintenance inflates the costs of
Lemma 3) that the resulting sequence afADJusTop-  all operations only by a constant factor, if the number of
erations repair all ERBALANCE violations. replicasr is a constant.

Node Departure While in the network, each node man-
ages data for a particular range. When the node departs, tde2 Dealing with Decentralization
data it stored becomes unavailable to the rest of the peerg.

P2P networks reconcile this data loss in two ways: (a) Do o far, we have assumed the existence of a central site that
. (a) maintains the global partitioning information to direct

gueries appropriately, and (b) maintains global load infor-
its loss and re-insert the data into the network. (b) Main-mation for_ the Ioa(_d—balancmg e_llgorlthm to exploit. Our
tain replicas of each range across multiple nodes. A comnext step is to devise decentralized data structures to per-
mon scheme for replication is to ensure that the partitioHcorm both the above' fgnctmns. We f'fSt describe a knovx_/n
of nodeN; is replicated at the precedimgiodes (with. data structure for efficient range queries, before discussing
precedingV, ), for a system-specified constan, 23]. how to maintain load information.

First, consider the simpler data-is-lost case (a). HereCost Modelln the centralized setting of Section 2, we con-
when a nodeN; departs, the range boundaries betweersidered only data-movement cost, and ignored the cost of
N;—; and N;y; must be modified. There could be maintaining partition and load information. In the P2P set-
a NBRBALANCE violation between the new neighbors ting, the lack of a central site means that we can no longer

4.1 Handling Dynamism in the Network

nothing and let the “owners” of the data deal with its avail-
ability. The owners will frequently poll the data to detect

(Ni—1,N;11) which can be fixed by;_; executing - ignore this latter cost. Therefore, each operation (query,
JusTLoAD. As shown in Lemma 3, this is sufficient to tuple insert, tuple delete, node insert, node delete) is now
restore the system invariants. associated with two different costs: (a) the data-movement

Now consider the data-is-replicated case (b). Heregost, whichis measured just as earlier, and (b) communica-
when a nodeV; departs the network, its preceding nodetion cost, defined to be the numberrogssagethat need
N;_; assumes management &'s partition. The node to be exchanged between nodes (to maintain and probe
N;_, already hasV;’s data replicated locally. We can con- the data structure) in order to perform the operation (and
sider the new state as being logically equivalent to a nodés corresponding load-balancing actions). Note that each
departure in the data-is-lost case (b), followed by a submessage is between a pair of nodes, i.e., communication is
seqguent insertion of the “lost” tuples 4Yy;_,. The load- point-to-point and broadcast is not free. (We will ignore
balancing algorithm is initiated whenever such insertionthe cost of returning query answers to the querying node.)

makes a node’s load cross a threshold. A Data Structure for Range QueriesOur first task is the

The Costs of Node Arrival and Departure The data- following: Any node receiving a query/insert/delete should
movement cost of a node arrival and departure is straightbe able to efficiently forward the operation to the appro-
forward to analyze. When a new node arrives, it receivepriate node(s). One solution is to replicate the partition



information across all nodes. This enables any node to di- | Operation Messages (w.h.p] Data Movement
rectly forward a query to the relevant nodes. However, ev- Tuple Insert O(logn) o(1)

. . ’ ’ Tuple Delete O(logn) o(1)
ery node join/leave, or partition change, needs to be broad- Node Arrival O(log n) o(L).
cast to all nodes, which is very inefficient. On the other Node Departure O(logn) 0orO(L)
extreme, nodes could be organized in a linked list, ordered Lookup Query O(logn) 0
by the partitions they manage. Updating the data structure ~ LRangeQuery | Ologn + fn) 0

on partition changes or node arrival/departure is ef“ficientTable 1:Cost of operations supported by the P2P network.

but queries may have to traverse the entire linked list torhe parametef denotes the selectivity of the range query.

reach the releyant node. . _The data-movement cost of Node Departure depends on the
A compromise between these two costs may be achievegl yqe| used for data loss.

using a data structure known as the skip graph [6, 16]. Skip

graphs are essentially circular linked lists, but each nod& Experimental Evaluation

also maintains roughliog n skip pointersto enable faster

list traversal. Skip pointers are randomized, and routing beln this section, we present results from our simulation of
tween any two nodes requires oiilylog n) messages with ~ the Threshold algorithm on networks ranging in size from
high probability. Consequently, a query can be forwarded? = 2* to 2'*. We compare the performance of our al-
from any node to the first node in the query’s range, say@orithm against periodic reorganization. We also evaluate
N1, usingO(logn) messages. If the query range is largeour adaptations of the algorithm on a P2P network. Our
and spang nodes, the query is simply forwarded along on simulations show the following results:

the linked list to they successors oNy, using a total of A The Threshold Algorithm achieves the desired imbal-
O(logn + q) messages. When a node arrives or departs, ance ratio for a range of values on various workloads.
only O(logn) messages are required to update the dataB The amortized cost of load balancing is very small, de-

structure. Partition changes due t@RADJUSTdo not re- creases with increasing and is much lower than the
quire any messages at all. Thus, queries, node joins/leaves cost of periodic reorganization.
and load balancing actions are all efficient. C The P2P variant achieves the desired imbalance ratio

at a small cost, and scales gracefully with increasing
dynamism in the network.

II_D The Randomized variant provides good imbalance ra-
tios even with a small number of samples.

Maintaining Load Information Our algorithm requires

that each node be able to find (a) the load of its neighbors
and (b) the most and least-loaded node in the system. Dea
ing with problem (a) is easy: a node already has links to
its two neighbors in the skip graph, thus requiring just one
message each to find their loads. 5.1 Simulation Model

To deal with problem (b), we simply build a second, Sep-|, the parallel database setting, the simulation is designed
arate skip grapbn the node loadsin other words, nodes 1 g¢,dy load balancing as the relation evolves over time.
are arranged in a sequence sorted by their current load (with,o system is studied under three phases: (a) Growing, (b)

ties broken arbitrarily), and a skip graph is constructed OMSteady, and (c) Shrinking. At the start, allnodes in the

this sequence. As node loads change, the sequence M&Ystem are empty (“cold start’). In the Growing phase,

have to be upd_ated, but_ it will turn out tha@ such updatesyata is loaded, one tuple at a time, using a sequence of
are not expensive. As discussed earlier, this data structurg _ {6 insert operations. In the Steady phase, inserts and
enables discovery of the most and least-loaded node witg|etes alternate for a total 6f operations. In the follow-

just O(log n) messages, while also enabling efficient up-ing Shrinking phase, data is removed from the system, one
dates to the data structure. o tuple at a time, using a sequencel®flelete operations.

As mentioned in Section 3.4, it is not necessary for a The workload, i.e., the sequence of insertions and dele-
node to always find the most or least-loaded node, so '0”90ns, is set to be one of the following:
as it locates any node that violateS GBALBALANCE. o 7 5an models a static data distribution. Each tuple
This property allows us to terminate searches on the skip inserted in the Growing and Steady phases has an at-
graph even before locating the most or least-loaded node. tribute A drawn from a Zipfian distribution (with pa-
The early termination mitigates “hot spots” created when rameterl.0) with values in the rangg, 10000]. (Since
multiple nodes simultaneously seek the most-loaded node. our range partitioning operates on E’l relational key, we

The P2P Structure and its Costs: A SummaryWe sum- create a unique attribut8 for each tuple, and use the
marize all the operations supported by the P2P system and sequencéA, B) as the ordering key for range partition-
their costs in Table 4.2. The bounds on the message costs ing.) Tuple deletion during the Steady and Shrinking
of operations follow directly from our discussion of skip phases removes one of the existing tuples uniformly at
graphs above. We note that the data-movement costs are random.

amortized, while the message costs hold with high proba-B HoTSPOT models a skewed workload in which all in-
bility. We observe that the above costs are asymptotically serts and deletes are directed to a single pre-selected
identical to the costs in DHTSs, except for range queries (“hot”) node.

where our structure is more efficient. C SHEARSTRESsmodels a dynamic workload in which



]
3
8

ane

]
3
8

NI

Growing Phase Steady Phase i Shrinking Phase Growing Phase Steady Phase i Shrinking Phase

Growing Phase Steady Phase Shrinking Phase
Ay i
:

= j‘i\%]ﬁ\i

o PR

v

Y, g A
sty

Load Imbalance
Load Imbalance
Load Imbalance

L L L ) ) 20 L L I )
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Insert/Delete Operations (x 1000) Insert/Delete Operations (x 1000) Insert/Delete Operations (x 1000)

Figure 3: Imbalance ratio for (a)IZFIAN, (b) HOTSPOT, and (C) HHEARSTRESSWhenn = 256.

900 3500 6000

e 3y s

800 =2 - =2 2 -
_ 3oa _ 3000 - 3=4 . 5000 | 5=4 -
g 700 | 5] 8
g S 2500 1
% 600 = % 4000 [ -
= Growing Phase Steady Phase = =
g 500 - % 2000 - 7 §
3 3 L S 3000 |- ! e
L 400 - 2 1500 |- Growing Phase teady-Rh: .+ 8hrinking Phase 2 Growing Phase ! Phase-~{"  Shrinking Phase
g g - g T
< 300 £ . g 2000 L
§ 200 g 1000 g
© % sl © 1000

100 - i i '

o lefE . . ) o Lt . . . ) o Lefl i I i I )

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Insert/Delete Operations (x 1000) Insert/Delete Operations (x 1000) Insert/Delete Operations (x 1000)

Figure 4: Data movement costs on the (&AN, (b) HOTSPOT, and (¢c) $IEARSTRESSsworkload whem = 256.

an “adversary” inspects the load of nodes after each infange partitioning “adapts” to the data distribution, ensur-
sert or delete of a tuple. The adversary then constructeg that inserts and deletes are randomly sprinkled across
the following insert (or delete) such that it is routed to nodes; for the latter successive inserts and deletes occur-
the current most-loaded (resp. least-loaded) node.  ring at the same node cancel out. However, the adversary
We study the effects of network dynamism on load-in SHEARSTRESSpicks its inserts and deletes carefully to

balancing for a P2P network under a similar evolutioncause imbalance, leading to continuous variatio.in

model. The network starts with an initial = 16 nodes,

into which D tuples are inserted one by one. In the Grow-5.3 Data Movement Cost

ing phase, nodes arrive one by one and join the networkye eyt study the data movement cost incurred by the
gntll = 102(;1' In th(_el fﬁllowmg Sl?r'ﬂk.'nl? phase, nodes ry,eqhold Algorithm for ensuring balance in the runs dis-
epart at random untll the network shrinksie= 16. We ¢ sseq apove. Figure 4 plots the cumulative number of tu-

use data replication to ensure that tuples are not oSt Ofja moyed by the algorithm (Y-axis) against the number of
node departures. No tuples are inserted or deleted dur”\ﬂsert and delete operations (X-axis) during a run

the Growing and Shrinking phases: our goal is to isolate We observe that costs for differefitare roughly the

the costs of node arrival/departure on load balancing. same (within20% of each other) for the HTSPOT and
SHEARSTRESS workloads. Intuitively, this is because
keeping the system tightly balanced causes a larger num-
We start with an evaluation of imbalance ratios ensured byer of rebalancing operations, but each operation has lower
the Threshold Algorithm for various workloads. For the cost due to the tight balance. We also observe that there
experiments, we measure the imbalance ratio at any ins no data movement in the Steady phase f&®FZAN, in-
stant as the ratio of the largest and smallest loads at thalicating that the system has “adapted” to the data distribu-
instant (with all loads being at least 1). Figure 3 showstion. For the other two phases, the curves are linear con-
the imbalance ratio (Y-axis) against the number of inserfirming that the amortized cost per operation is constant,
and delete operations (X-axis) during a run on (B)FZAN, and independent of the amount of data in the system. The
(b) HoTSPOT, and (c) $IEARSTRESSworkloads with256 constants involved are also very small, with the cost per in-
nodes. The curves are drawn fdr= ¢ (Fibbing Algo-  sert/delete, even in the worst phase, being rou@igy1.5
rithm), § = 2 (Doubling Algorithm) and) = 4. and2 for the three workloads.

We observe that Threshold Algorithm ensures that im- To put the above performance in perspective, we com-
balance ratio is always less thaf for all §. Each spike pared the data movement costs of the Fibbing Algorithm
in the curve corresponds to arDAUSTLOAD step. Asd  against those incurred by a periodic reorganization strat-
increases, the jitter introduced by the spikes gets larger anegy that ensures the same imbalance ratie 4.2 bound
larger; this is because the algorithm allows the imbalancas follows: the central site continuously observesand
ratio to worsen by aonstant factorroughlyd, before load whenevew > 4.2, a reorganization is triggered to create a
balancing occurs. The curves are smooth in the Steadgerfectly balanced set of nodes. The reorganization identi-
phase for ZrFIAN and HOTSPOT. For the former, the fies a balanced placement of tuples across nodes, and then

5.2 Imbalance Ratio
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moves each tuplat most oncdy sending it directly to its  steps are needed, leading to a higher cost. We also observe
final destination node. (Thus, it is more efficient than us-that the cost per operation is quite small as the curves taper
ing only NBRADJUST operations.) Figure 5(a) plots the off towards a value close th

cumulative data movement costs on a logarithmic scale (Y- We had shown in Section 3.3 that the cost per insert or
axis) against the number of operations (X-axis) in a rundelete is aconstant The figures here show a dependence
on 256 nodes. We observe that the periodic reorganizatiorof cost per operation on. How can this apparent con-
performs nearlyi0 timesworsefor ZIPFIAN and upto50 tradiction be explained? The experiments presented here
times worse for others. The reasons are two-fold: (a) itsevaluate the cost for fixedworkload for various: values.
non-online nature allows the skew to grow requiring an ex-On the other hand, the analysis established bounds on the
pensive clean-up, and (b) its perfect balancing causes mokgorst-casecosts against all workloads.

data movement than essential to obtain the desired bounds.

5.4 The Effects of Scaling 5.5 Performance in a P2P Setting

We next study the effects of scaling in the number of nodegigure 6 shows the performance of the Threshold Algo-

n on the performance of the Threshold Algorithm. Fig- ”th”? adapted to a P2P system. Figures 6(a) and 6.(b) plot
ures 5(b) and 5(c) plot load imbalance and data movemerwe imbalance ratlo_and data-movement cost against tl_qe
cost for the Fibbing Algorithm against a run on therZ nymber of node arrivals and departures. We observe in
FIAN workload. The network size is varied from16 to Figure 6(?") that the system remains vyell-balanced through
16384. We observe in Figure 5(b) that the Fibbing Algo- the Growing phase, because the arriving node always splits

rithm continues to ensure the= ¢* bound. However, as the most-loaded node. The imbalance ratio is roughly two,
: ' gnce the most-loaded node splits its load in half on a node

the same number of tuples are shared across more node¥ " .
the load variance across nodes increases, leading to an i Ifival. _On_ the other han_d, nodes depart at ra_ndom _durlng
crease in the imbalance ratio. e Shr|r_1k|ng phase, which leads to changes in the imbal-
Figure 5(c) plots the data movement cost per operatiOI"fm(l::e ratu.'):.. HoweE\S/ ir’ the guaran;eeﬁr%i)fare ensur?éj.
(Y-axis) against the size of the netwonk(X-axis). Both rom Figure 6(b), we see that thecrementaldata-
gnovement cost per arrival/departure (i.e., the slope of the

axes are plotted on a logarithmic scale. The bottom curv d ith nod vals in th ; h
plots the data movement cost per insert observed during tHe/V€) decreases with node arrivals in the Growing phase,

Growing Phase; the top curve plots the costs per delete o _n_d i_ncreases W?th nod(_a departures if‘ the Shri_nking phase.
served during the Shrinking Phase. We observe that costg1!S IS not surprising, since the cost is proportional to the
of both insert and delete operations increases with incre<';1§‘-ver.""gelloadh'n the Eyste;n W(;“Ch' in turn, is inversely pro-
ing n. Asn increases, the load per node is smaller, makPortional to the number of nodes.

ing it easier to make the system unbalanced with a smalleNbrAdjust vs. Reorder In a P2P system, theBRADJUST

number of inserts and deletes. Thus more load balancingperation may turn out to be more efficient thad®kDER
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for two reasons: (a) RORDERrequires the reordered node Disk-based data structures for fast bulk insert/delete of tu-
to drop its old links and set up new ones. (b) ARAD- ples, e.g. [12, 18]; (c) Efficient data migration for load-
JusTmay not require immediate transfer of data to balancébalancing while allowing concurrent relation updates and
load, when data is replicated at neighbors; only replicagueries, e.g.[29]; and (d) Balancing query load across disks
need to be updated, which can be done more lazily. by moving a partition from one disk to another, e.g. [24].

In the light of the above observations, we observed the \Work in category (a) is focused on performing
number of invocations of the two operations to see whichworkload-driven tuning of physical design, but usually
is used more often. Figure 6(c) shows the number of invodoes not consider a dynamic evolution of the design with
cations of BRADJUsTand REORDERfor different values  relation updates. Work in category (b) is complementary
of 4, as nodes are inserted and deleted. Not surprisinglfto ours, in that they showowto efficiently updatdocal
the number of invocations of both operations decreases afisk structures when tuples move from one partition to an-
d increases. We see that the number &RRADJUSTIN-  other, while our focus is in understandimgdnat tuples to
vocations is at least times that of RORDER which is  move. Research in category (c) is also complementary to
reassuring given thatEEORDERS are more expensive. our work, as it helps deal with issues of concurrency con-

Figure 7(a) shows the number of invocations of the twotrol when performing online repartitioning. Finally, work
operations by the Fibbing Algorithm, onfxedset 0f256  in category (d) attempts to modify trelocation of parti-
nodes, as tuples are inserted and deleted from the threwns to disks, rather than change the partitions themselves.
workloads. We observe that there are twice as many invowe believe such solutions could be used in combination
cations of BRADJUST, as compared to RORDER which  with ours to achieve balance for dynamic query loads, but

is again useful in the P2P context. are not sufficient in themselves to guarantee storage bal-
ance for range-partitioned data.
5.6 The Effects of Randomization Litwin et al. [20, 19] consider the design of scalable dis-

; - : . tributed data structures (SDDS) which share many features
As discussed earlier, the ERRDER operation requires Mvith the design philosophy of P2P systems, including the

global statistics and involves the least/most-loaded node i o o
the load-balancing step. In Section 3.4, we defined a ran@bsence of centralization, and the ability to gracefully add

domized variant where FORDERwould samplep nodes Or rémove SErvers. Most work on SDDS has focused on
at random and pick the least/most-loaded node from th ash partitioning, e"h?fat the tuple Ievel_[20] orata block
sample Figures 7(b) and 7(c) plot the effects of such eygl [19]. Our work is complemgnt_ary in that it can be
randomization on the Fibbing Algorithm for runs of the utilized to enable true range partitioning for SDDS.
SHEARSTRESsworkload as the sample sizeis varied.  Range Queries in P2P Network®kecently, P2P networks
We observe in Figure 7(b) that the imbalance ratio degradesupporting range queries have been proposed, that offer
beyond the original value af®*. However, even the use of either storage balance or efficient queries, but not both.
p = 2 samples provides good load balance; increaging Ratnasamy et. al. [25] assure storage balance but at the
improvese further. Correspondingly, the use of sampling price of data-dependent query cost and data fragmentation.
reduces data movement compared to the deterministic cas€upta et. al. [3] provide approximate answers, and do not

for all three phases, as shown in Figure 7(c). offer any guarantees for an arbitrary range query. Oth-
ers [4, 6, 16] offer exact and efficient queries, but do not
6 Related Work offer load balance across nodes.

Aberer et al. [1, 2] develop a P2P network called P-Grid
Parallel Databases partition relations across multiple that can support efficient range queries. All nodes in this
disks, using either range or hash partitioning [8, 10, 28].system have a fixed capacity, and contertiésiristically
Research in physical design of parallel databases can lyeplicated to fill all the nodes’ capacity. However, there
classified into four categories: (a) Workload-driven tun-is no formal characterization of either the imbalance ratio
ing of storage for static relations, e.g. [15, 21, 26]; (b)guaranteed, or the data-movement cost incurred.



In a concurrent work, Karger and Ruhl [17] provide [3]
an alternative solution to the storage balance problem.
The scheme is a randomized algorithm that offers a high-[4]
probability bound on the imbalance ratio, and is analyzed
under a dynamic, but non-adversarial, setting. However,
the best achievable bound on imbalance ratio using this al—[6]
gorithm appears to be more tha2g, which is much higher 7]
than the load imbalance bounds we guarantee. Bharambe
et al. [7] also use a load-balancing scheme similar to [17] [g)
as a heuristic to balance range patrtitions.

Routing in P2P Networks Most DHT interconnection (9]
networks [23, 27] require randomly chosen (uniformly [10]
spaced) partition boundaries to guarantee efficient routing.
A load-balanced, range-partitioned network will not have
such equi-spaced boundaries, rendering such networks ufi-]
usable. Aberer [1] presents an elegant variant of Pastry
which does guarante@(log n) routing even with arbitrary [12]
partition boundaries. However, node in-degrees could be-
come skewed, resulting in a skewed message traffic dis-
tribution. Moreover, a change of partition boundaries be{13]
tween neighbors necessitates a change in the network link
structure. Our P2P network utilizes skip graphs and over-
comes the above limitations. Bharambe et al. [7] sugge&‘”
an alternative scheme involving the construction of small-[15]
world networks. However, their heuristic requires nodes to
perform extensive sampling of the other nodes in the sys-
tem, and provides no guarantees on routing performancéLé]
Our solution of using skip graphs is simpler and provides

stronger guarantees on performance. (17]

7 Conclusions and Future Work 18]
Horizontal range-partitioning is commonly employed in
shared-nothing parallel databases. Load balancing is net<]
essary in such scenarios to eliminate skew. We pre-
sented asymptotically optimal online load-balancing algo 20]
rithms that guarantee a constant imbalance ratio. The data-
movement cost per tuple insert or delete is constant, and
was shown to be close tbin experiments. We showed [21]
how to adapt our algorithms to dynamic P2P environments,
and architected a new P2P system that can support efficiek?!
range queries. 23]
Although our algorithms were presented in the context[
of balancing storage load, they generalize to balancing ex-
ecution load too; all that is required is an ability to partition [24]
load evenly across two machines. Understanding the costs
of load balancing for execution load is a subject of futurel25]
work. We are currently exploring extensions of our algo-
rithm to deal with node and network heterogeneity, as welf?®!
as the partitioning of multi-dimensional data [14]. [27]
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