Cache-Conscious Radix-Decluster Projections

Stefan Manegold Peter Boncz Niels Nes Martin Kersten
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

{Stefan.Manegold,Peter.Boncz,Niels.Nes,Martin.Kersten }@cwi.nl

Abstract making efficient use of a smaller but faster memory (RAM).
The recent research intache-conscious query processing
As CPUs become more powerful with Moore's law and focuses on transforming these techniques to work one level
memory latencies stay constant, the impact of the memoryhigher up the memory hierarchy (optimize memory access
access performance bottleneck continues to grow on rela-by making efficient use of the CPU caches) and/or to de-
tional operators like join, which can exhibit random ac- vise new techniques. We build on recent work into making
cess on a memory region larger than the hardware caches.the join operator cache-conscious, among others by intro-
While cache-conscious variants for various relational algo- ducing aPartitioned Hash-Joir18] that can be paired with
rithms have been described, previous work has mostly ig-a fine-grained partitioning operator callBddix-Clustef6]
nored (the cost of) projection columns. However, real-life to partition huge relations into a large number of small clus-
joins almost always come with projections, such that proper ters that each fit a CPU cache with just a few tens of KBs.
projection column manipulation should be an integral part A limitation of these previous efforts is that so far they
of any generic join algorithm. In this paper, we analyze only considered joins on thin relations consisting solely
cache-conscious hash-join algorithms including projections of the join keys and producing only a table of matching
on two storage schemes: N-ary Storage Model (NSM) andoid pairs (i.e., a join-index [20]). However, any real-life
Decomposition Storage Model (DSM). It turns out, that the RDBMS join query goes accompanied by some projection
strategy of first executing the join and only afterwards deal- of non-join columns into the result. The cost of handling
ing with the projection columns (i.e., post-projection) on such projection columns depends on their number, type(s)
DSM, in combination with a new finely tunable algorithm and the relation cardinalities (both inputs and result). The
calledRadix-Declusteroutperforms all previously reported actual costimpact can vary from zero (in the not-so-realistic
projection strategies. To make this result generally applica- case where there are no projections at all), to totally dom-
ble, we also outline how DSM Radix-Decluster can be inte- inating (e.g., imagine a join with thousands of projection
grated in a NSM-based RDBMS using projection indices. columns to propagate feature vectors in a multimedia ap-
plication). In our performance evaluation, we find that
gueries may spend more than 90% of their time in projec-
tion. Therefore, efficient handling of projections should be

1 Introduction part of any cache-conscious join technique.

Random memory access outside the CPU cache(s) hai 1 Problem Statement
become very expensive over the past decade and will re-"
main so in the future. As such, the bottleneck for low-level
database data access is shifting from 1/0O to memory ac-
cess [2, 9, 3]. While the performance penalty for inefficient

This paper describes optimization of CPU- and memory-
resources of generic equi-joincludingprojections:

usage can be dramatic, the database field need not despair. SELECT largeral, .., larger.aY

Several decades of progress in database technology has al- smallerbl . smaller.bz

ready produced a host of techniques for processing data FROM larger, smaller

volumes stored on large but slow memories (i.e., disks) by WHERE larger.key = smaller.key

Permission to copy without fee all or part of this material is granted pro- The focal point of our analysis is the performance impact

vided that the copies are not made or distributed for direct commercial of the amount of projection columna.aY respectively

advantage, the VLDB copyright notice and the title of the publication and ; : : i ; _
its date appear, and notice is given that copying is by permission of the bl_..bZ ’ g_lven varlou_s_relatlon and join result sizes. Han
Very Large Data Base Endowment. To copy otherwise, or to republish, dling projections efficiently only becomes hard whesth

requires a fee and/or special permission from the Endowment. thesmaller andlarger table have many tuples, such that
Proceedings of the 30th VLDB Conference, their individual columns do not fit the cache. CRadix-
Toronto, Canada, 2004 Declusteralgorithm addresses this situation.

684

PRE-PROJECTION: POST-PROJECTION: [ESNH

T(b1,...b

result

phash_join(B1) T(al,..,aY
X

radix_cluster(P1,B1) radix_cluster(P2,B1) phash_join(B2)

T(al,..,aY key) T((key,bl,..,bY)

radix_cluster(P3,B2) radix_cluster(P4,B2

[EE smaller

Figure 1. Pre- vs. Post-Projection

The commonly applied projection strategy in a RDBMS
is pre-projection (see Figure 1), where the projection

columns are fetched in the table scans preceding the join
and where the projection column values travel as "extra lug-

gage’ together with the join keys through the join pipeline.
In contrast, Radix-Decluster is @ost-projectionmethod,

i.e., one where first the join result is computed, creating a

(partial) join-index, and only afterwards the full query result

is produced by computing the projection columns. Though
we focus the experiments on one particular join algorithm

(Partitioned Hash-Join), the Radix-Decluster algorithm is
independent of the join method chosen.

1.1.1 RAM vs. Disk Optimization

Since we have already mentioned the analogy between op
timizing CPU cache-access and optimizing disk access, itis

instructive to point out the main similarities and differences.
As for similarities, both disk and RAM have to contend with

a high random access latency, that relative to CPU spee

is increasing exponentially over time. Also just like disk,
RAM is a block device (block=cache line), and sequential

data access has now become much faster than random a%ontains values from the sa

cess, even when random access makes uak data in the
block (we call this “optimal” random access). This effect

is caused by a new feature in memory subsystems calle

data prefetching the CPU or in some cases the memory

chipset automatically detect sequential access patterns an
schedule data loads in advance for these [10, 8]. This is

complemented by advances in DRAM technology, which

keeps banks of recently accessed locations open, such th
adjacent locations can be more quickly available. On our
experimentation platform, sequential access — as obtainecg

by STREAM [15] —is almost 10 times faster than “optimal”

random access: 3.2GB/s vs. 360MB/s (a 178ns latency for

getting a cache-line of 64 bytes makes for 360MB/s).
An important difference between disk and RAM is that

the disk can be controlled using an OS interface, allow-

ing traditional DBMS systems full control over their buffer
cache. In contrast, RAM is cached implicitly in hardware,

(most often) using an LRU mechanism with limited associa-

tivity. Thus, the only way that query processing algorithms
can now influence RAM caching is indirectly by controlling

data placement and access pattern. A second difference is
the small granularity of the CPU caches. There is a “15
year gap” between CPU cache and RAM sizes: problem
sizes of 2004 must now be crammed in caches having the
RAM sizes of 1989. This means that e.g., partitioning to fit
something large into the CPU cache must crezaymore
small partitions than classical partitioning to fit something
on disk into RAM ever had to. Having to manage (tens of)
thousands of partitions rather than a handful can expose bot-
tlenecks that remained unnoticed in the disk case, as we will
see in our discussion of the Radix-Cluster algorithm.

1.1.2 Experimentation Platform

The work reported here partly builds upon the research into
cache-conscious query processing in the MonetDB project.

‘MonetDB! is a main-memory database system targeted at

guery-intensive applications [5] that uses a vertically frag-
mented storage scheme called the Decomposition Storage
Model (DSM) [7]. In DSM, each tuple gets a unique
system-generatedd that is typically densely ascending
(0,1,2,...), and for each column a DSM table is created that
holds oid,value] pairs. Comparable to what Rowlds are
in Oracle, the MonetDB system has support fimplicit
columns — also dubbedid columns (“virtual-oids”) — to
represent such densely ascendiitig columns on the log-
ical level without taking any physical storage. Thus in
MonetDB, each relational column is stored in a separate
[void,value] table. Most DSM systems [19, 17] do away
with the extra storage for theid s, such that the DSM data
layout boils down to a single array for each column. DSM
is cache-friendly when (OLAP) queries need only a subset

f all table columns (i.e., in case of Iggrojectivity). In the

ommonly used NSM storage scheme (i.e., a layout with
each tuple contiguously stored), this means that parts of the
cache line will not be used. In DSM, each cache line only
me column, and only relevant
columns are loaded, achieving optimal cache line usage.

A second characteristic of MonetDB is its column-wise

dquery processing model, which allowed for an implementa-

tion of its query processing algebra without need for an in-

rpreter to evaluate expressions (each operation performs
a simple, hard-coded, operation on large arrays of values,

roducing a new column as result). This goes in conjunc-

on with the absence of low-level record/attribute lookup
nd data movement functionality, as columns are accessi-
le by position as arrays of a homogeneous type. The ex-
periments performed confirm these factors give MonetDB a
significant advantage in terms of raw CPU efficiency that is
strongly linked to this query execution model.

The third main characteristic of MonetDB is cache-
conscious query processing. MonetDB has been the
birth ground for a number of novel cache-conscious algo-
rithms [6]. Radix-Decluster the contribution of this paper
—is a crucial addition to this collection.

1Available athttp://www.sourceforge.net/projects/monetdb

685

1.1.3 Related Work post-projection with Radix-Decluster should be integrated
in standard RDBMS technology, before we present our con-

Though our experimentation platform is MonetDB, which clusions and discuss directions for future work in Section 6.

is a DSM system, we compare our approach with its more
common counterpart NSM, and in particular with pre- . .
projection in NSM (which is used in almost all commer- 2 Cache-Conscious Join

cial database systems). However, there has recently also

been some research into NSM post-projection, in particular \We give a short re-cap on cache-conscious join, us-
the Slam- and Jive-Join algorithms [11]. While these al- ing Partitioned Hash-Joinin conjunction with Radix-
gorithms work under the assumption that the join-index is Cluster[6]. In [14], we give cost model descriptions for
already computed and available (hence pre-projection is nothese algorithms, and show how these correctly predict their
an option), and they are designed mainly for an I/0 setting, performance (see resp. Figures 9a and 9b).

we also include them in our NSM comparison with Radix-

Decluster to evaluate their usefulness from the perspectivey 1 partitioned Hash-Join

of cache-conscious query processing.

An interesting alternative storage scheme is PAX][1],
which basically does DSM within an NSM disk page. Thus,
PAX cache-line usage can be as efficient as DSM under low
projectivity, but PAX still wastes 1/0 bandwidth on such
gueries, which easily can cause a performance bottleneck
Though we will make our case that Radix-Decluster on
DSM can be scaled to a disk-based RDBMS that runs on
a high bandwidth 1/0 subsystem (e.g., using a well-sized
RAID array of SCSI disks controlled through PCI-X), our
experimentation is limited to main-memory execution, by
lack of such an (expensive) setup. As in main-memory the
difference between PAX and DSM is small, we limit our-
selves here to the two extremes NSM and DSM.

In the Hash-Join algorithm considered in this paper, the
outer relation is scanned sequentially, while a hash-table is
used to probe the inner relation. The very nature of the hash-
ing algorithm implies that the access pattern to the inner re-
fation (plus hash-table) is random. TherefdrPastitioned
Hash-Joirfirst scans both relations, and partitions them ac-
cording to a hashing criterion, making each inner partition
smaller than the cache size, such that the subsequent Hash-
Joins on the corresponding partitions all have good cache
behavior [18]. The “cursors” in the output partitions where
the partitioning operator inserts tuples as it scans its input,
all need to be in a cache-line in order to achieve good per-
) i . . formance during partitioning. As the number of available
Finally, we build here on previous work on detailed ;e jines s limited (especially in systems that have a slow

perftorlrgagge ”."Odfl"”g of hiedrarchigal trfnemolry &cctess-I-LB cache, with usually only 64 entries) and the number of
cost [12, 13] using hardware-independent formulas tha aCursors grows with the size of the relation (a bigger relation

parametrized by all relevant architectural characteristics.Ieads to more partitions of a given size), the simple single-

These parameters can be derived automatically at run-time, ;< 4 itioning is limited in its scalability: above a certain

. . oy 2
v|\\//||th t?gga_lltbr:ator tfu““tyl , which is ?Isg :J_“egfa:ﬁd N yelation size, the partitioning operation itself becomes a per-
'onetbb. The costiormulas are easy-lo-aefine as they CoN+,mance problem due to cache thrashing, as not all cursors
sist of a combination of a number of basic patterns (with can be kept in cache anymore

known formulas) that can be combined automatically with
composition functions. In all, these cost models allow us to
quickly analyze the behavior of the various algorithms, and
to draw conclusions on their optimal parameter settings.

2.2 Radix-Cluster

The Radix-Clusteralgorithm, which uses incremen-
; tal multi-pass partitioning, has been shown to solve the
1.2 Outline S : .
operand patrtitioning problem. It provides efficient par-

. . . titionings needed for large joins in two or even more
In Section 2, we give a short re-cap on cache-conscious,

" : . : - “passes [6]. Brieflyjadix _cluster (B,P) uses the loweB
Partitioned Hash-Join and Radix-Cluster, which are basicp iy Bitsof the integer hash-value of the join attribute to
building blocks in this research. In Section 3, we show how

Radix-Cl b d i fcluster a relation inttd = 2B partitions. By performing®
adix-Cluster can be used to optimize memory access Olseqential passes, each of which Bgebits, starting from
post-projections to one of the join relations. In order to op-

L o o . the left (5§ Bp = B), Radix-Cluster limits the number of
timize cache usage for projections both join relations, it ted — 2B (MPH. — H). Fi

we then introduce our neRadix-Declustealgorithm. In partitions created per passtt = 2* ([]; Hp = H). Fig-
Section 4, we perform exhaustive experiments with pre- U’ 2 sketches a Partitioned Hash-Join of two relations L

and post-projection strategies both for the DSM and NSM and R. First, both relations are clustered into 8 partitions

storage schemes, and compare non cache-optimized stra{-3 bits) using 2_ passes. The first_ pass uses the 2 left-most
tegies with our R,adix algorithms, as well as with Jive- of the lower 3 bits to create 4 partitions. In the second pass,

Join. In Section 5 we make our case why and how DSM each of these partitions is sub-divided into 2 partitions using
) the remaining bit. Once both relations are clustered, a hash-

2Calibrator is available frorhttp://monetdb.cwi.nl/Calibrator join is performed on all matching partitions. For ease of

686

, partitioned In MonetDB, a join only is “hard” if theindividual
2-pass radix-cluster hash-join _ columns - rather than the entire “smaller” relation - exceed
2-pass radix-cluster the CPU cache. In the other, so-called “easy” cases, we
can use e.g., simple non-partitioned Hash-Join, by build-
ing a hash-table on the “smaller” relation to generate the
join-index. The join-index will then contain theid s
of the “larger” relation in ascending order, such that the
Positional-Joins for projecting the input columns into the re-
sult exhibit a sequential RAM access pattern. As discussed
in Section 1.1.1, sequential RAM access is well-supported
by modern hardware. In contrast, the Positional-Joins for
the projections from the “smaller” relation will have a ran-
dom access pattern. Luckily, these columns fit the CPU
cache in the “easy” cases, so the cache-lines where the in-
put columns are stored will stay cached in the CPU after the
first access, such that subsequent (adjacent) data fetches can
be serviced from the cache.

Figure 2. Partitioned Hash-join In this paper, we attack the problem of executing “hard”
joins in a cache-conscious manner. With CPU caches lim-
presentation, we did not apply a hash-function in Figure 2. ited to a couple of MBs, and assuming an average column-
In practice, though, a hash function should even be used orwidth of 4 bytes, this currently translates into joins between
integer values to ensure that all bits of the join attribute play (intermediate) relations thabthhave 500K or more tuples,

ro

IO 70

black tuples hit (lowest 3-bits of values in parenthesis)

arole in the loweB bits used for clustering. which is a common and thus relevant problem.
3 DSM Post-Projection 3.1 Partial Radix-Cluster
The DSM post-projection strategy has two phases: We use Partitioned Hash-join, as described in Section 2,

1. Make a ioin-index Fi v the DSM to join two relations that both exceed the CPU cache in a
- Make a join-index First we access only the 8- cache-conscious manner. Due to the nature of Partitioned
bles storing the key columns, and join these together o jqin neither theid s of the “larger” nor those of the

to find matching pairs of tuples: a join-index [20]. “smaller” relation appear in ascending order in the resulting

2. Do column projectionsOne-by-one, we construct the join-index. A (standard) improvement is therefore to sort
columns of the result relation, each in a separate DSM the join-index, in the order of thed s of the “larger” rela-
table, by using the join-index to fetch values from one tion. In MonetDB, we re-use the Radix-Cluster algorithm as
input column (also stored in a DSM table). a fastRadix-Sortby exploiting the property thaid s stem

L . o o from dense domainf..N) (whereN is the size of some

The join-index consists opid,oid] ~ combinations of re|ation). For all types butid , Radix-Cluster transforms
pointers into both “smaller” and “larger” input relations. each value with a hash function, both to obtain integer bits
Thesenid s are not necessarily implemented as pointers, but;nq to combat skew. Faid s, hashing is not applied as
may also be integer record numbers, byte offsets or Rowldsyjg s are integers already and not skewed. This also means
(combinations of disk-block numbers and byte offsets). The that 5 Radix-Cluster on atiignificantbits (i.e., the lower-
projection operations are Pointer-Based JoirRasitional- mostlog,(N) bits) is equivalent to Radix-Sort. Radix-Sort
Joins with negligible CPU cost. In MonetDB, columns are ¢can be compared with traditional run-generating sort algo-
stored infvoid,value] tables, which are implement as ar- jihms, asitalso partitions the data on a sequential pass, and
rays3. Thus, amid is a simple integer (starting at 0 for the {nen (iteratively) further processes each partition.
first entry), and Positional-Join equals array lookup. Fully sorting the join-index, however, is overkill as a

One should note that the DSM post-projection join strat- partial ordering can achieve the same effect. If the join-
egy materializesthe join result. This is inevitable for the ;,dex consists of clusters that each contgins of only a
so-called “hard” join cases, where we must join two re- certain (disjoint) range, a Positional-Join into a projection
lations that do not fit the small-but-fast memory (i.e., the ¢olumn sequentially processes each cluster one by one, and
CPU cache). This is similar to scalable 1/0-based join algo- yijle processing each individual cluster, accesses only a
rithms such as Sort-Merge-Join or Hybrid Hash-Join, that |injted region in the projection column. If this region is

must be applied when the inner relation exceeds the RAM gma)| enough (such that it fits the cache), the algorithm will

buffer size and pipelining is not possible. approach optimal cache (re-)usage. To make partial cluster-
3Columns of variable-sized types like string use an extra — separate —iNg Possible, we added th_e possibility to_ indicate to Radix-
memory buffer, where the array simply contains integer offsets into. Cluster to stop early and ignore a certain number of lower

687

prior computation prior computation

of join index oT8 o[of join index result table
void (zero—storage) column (dashed) 1 D 1 H ; ol3 - o
arrow—head indicates sortedness g é g (E; 1] 3] used for fetchin 32 32
4D “4 H ‘ 21 0] column values from o > 12
: . 5/D| \5/H Ll |
(Partial Radix—Cluster) 84 Othgegoﬁgﬁ?et%')’le '3 '3
radix_cluster(P=1,B=1,I=2) . A 417 4 4
> > positional joins 57 5 5
3|3 33| mark: 0] 3| |with clustered acgess
3|5 oxx |3[5 Y 1N R (JOIN_LARGER)
4|4 0|2 2|0
0|2 4la 3[4 mark
70 xx |70 4|7
1 Z2 S 3 (CLUST_BORDERs) ~ RADIX DECLUSTER
(JOININDEX) (JOIN_LARGER) 5 = - —
'0(2
& 11]2
source table 2 | ol2
0 radix_count(B52,1=1)
ofal\fole X 1 30| g -1 "] :
1Al 1 E z 0|4 10|e| 'o|i
4 clustor sive 2N 2| z (JOININDEX) 105 Lalel ali
spanned’ cluster size in y radix_cluster(P=1,B=1,1=2) 12[0 12]g] 2]k
source column is chosen such 14 Ch a6 z — P ! ! Lol
Py — 132 13 f]
that it fits the cache, s/p| | slH z (Partial Radix-Cluster) Sk M Th JI
as the positional joins ‘3 e ‘? n y cl3 ‘5 ‘5 :
access them randomly y 0|3 00x ‘4 0 9 L
15 5/1] ((CLUST_RESULT) (CLUST_VALUES)
2|2 03
- — . : . 3la oix \5|35
Figure 3. Projection Joins Using Partial 4|0 15 positional-join
Radix-Cluster 5|1 >10x \3l2 - with cIusteEd ccess
(JOIN_SMALLER) 11x -
radix_cluster(P=1,B=2,I=1) {}
(Partial Radix—Cluster)

Radix-Bits. Stopping early leaves the relation unsorted on SoUrCe tablo

the lowermost bits (i.e., partially ordered). The benefit of ‘ —

- . ” . . . 0(0 10jle|0fi

this “partial-cluster” strategy is that it has the potential to 111 Palg il

optimize memory performance of the column projections gﬂ § f g lk

using Positional-Joins just as well as a full Radix-Sort, but 275 ‘4 2 ‘4 7

at a clustering cost that is much less. 1514 5/h|15]1
(CLUST_SMALLER) (COLUMNS)

Figure 3 shows that we first Partially Radix-Cluster
JOININDEX in one passK = 1), using one Radix-Bitf = 1)
and stopping early at the firdt£ 1), lowermost, Radix-Bit.
On the resultingoid,oid] table, we create foid,oid]
view JOIN _LARGERusing themark() operator [5]). The right
column of JOIN_LARGERcontains the clusteresd column,
and the left column consist of a new densely ascending
oid sequence that represents the join result. Subsequent Even when using Partial Radix-Cluster to optimize pro-
Positional-Joins between thiSIN_LARGERview and the in- jections into the “larger” relation, cache problems still occur
put columns have a nice sequential access pattern, eliminatfor the projections from the “smaller” relation. It is clear
ing the cache problem. We compute the optimal number ofthat the join-index (and thus the join result) cannot simul-

Figure 4. Optimized DSM Post-Projection Us-
ing Radix-Decluster

3.2 Radix-Decluster

Radix-BitsB and Ignore-Bitd as follows: taneously be clustered iothoid orders. Figure 4 shows
B =1+ log,(|coLumN|) — log,(C / COLUMN)) that after performing the projections into the “larger” rela-
| =log,(|J0ININDEX) — B tion, we re-cluster the viewOIN_SMALLER(that similar to

where|R| denotes the number of tuples in a taBleR de- JOIN_LARGERconsists of fresh densely ascenduiys left,

notes the byte-width of these tuplgs,is the size of the paired with the right column of the clustered join-index).
cache in bytes (see [12, 13]). For example, if we have aThis yields a temporaryoid,oid] table. We then cre-
CPU cache of 64KB and we have values that are 4 bytesate two[void,oid] viewsCLUSTRESULTandCLUST.SMALLER
wide, then a cluster of 16,384 tuples would just fit. If the from this table using thenark() operator. The left column
source table from where the projections come has 10M tu-of these views is a fresh “void” column of new ascending
ples, we would create!®= 1024 clusters to arrive at a mean oid s. The right column o€LUSTSMALLERholds theoid s of
cluster size of 10,000 (which would be the largest cluster the join-index that point into the “smaller” table in a nice
size< 16,384). Such clusters can be created with a partial clustered order, while the corresponding values of the right
Radix-Cluster on the highest significant 10 bits (i.e., bits 24- column of CLUST.RESULThold the correct position of those
15, aslog,(10M) = 24), allowing Radix-Sort to ignore the join-tuples in the final result. The next step in the process is
lowermost 14 bits. to useCLUSTSMALLERto perform the projections with cache-

688

CLUST_BORDERS
cluster end positions

cluster start positions

current element
under consideration

CLUST_RESUL result column

MEMORY ACCESS PATTERN: Erﬂ %
- single multi-cursor sequential _‘
scan over CLUST_RESULT and CLUST_VALUES w

- cacheable random access in result column
(clustered in insertion window)

|-

- repeated sequential scan over cluster
start/end array (which generally is small enough to be cacheable)

insertion window
CLUST_VALUES

3 10|e 0 0le 10le
1104 110f 11 1] f 1] f
1210 12[g 12 12]g 12]g
3l2] i3lf '3 3| 3|
a1 14[h 4 "ah "a[h
sl5] isle '5 5e 5e

put f at 2; delete empty cluster;
advance window; reset

io]e tole tole :o
110f 1] f 1] f 11lh
12lg 12[g 12[g 32
13| f 13| f 13| f '3
141h 14[h 4[h L4
5le 15e 5|e 35

put e at 5; delete empty cluster

advance window; ready

ofe 0 ofe T, ofe
110f 1 10f 1104 10f
29 12 1219 1210 129
13/ f 13 13| f 3l2] ialf
T4[h 14 T4[h T411 T4[h
'5le 5 5le 5/5] isle

next cluster (2 is outside window)

put h at 1; advance window; reset

Figure 5. The Memory Access Pattern Of Radix-Decluster

efficient Positional-Joins. This, however, produces projec-

tion columns (denote@LUSTVALUEY which are not yet in
the correct order. ThRadix-Declustealgorithm — depicted
in detail in Figure 5 — performs the task of putting them in
the correct final result order in a cache-friendly manner.

Radix-Decluster exploits the following two properties of
the right column ofCLUSTRESULT which was created by
Radix-Clustering a leftoid column on the order of its right

CPU cosO(N). However, these insertions would constitute
a random access pattern larger than the CPU cache.

We obtain the best of both approaches, by restricting the
random access to ansertion-window W(cf., Figure 5).
Each iteration of the algorithm processes each cluster once,
advancing a cursor in it while thed s still fit in the win-
dow, inserting the values at thil position. Property (1)
tells that after processing each cluster oradepositions in

column: (1) as Radix-Cluster neither adds nor deletes any the insertion window will have been filled (it is a deruik
values, this column would again form a dense sequencesequence). Then, the window is shiftd| positions and

(0,1,..N—1) when sorted(2) within each cluster, theid s

the process repeats until all cursors have reached the end of

are still sorted. This happens because Radix-Cluster scantheir cluster. The window sizjgV| is preferably much larger
its input sequentially, and appends values to their respectivethan the number of clusters, such that per iteration in each

output cluster, thus locally respecting the input order.

Property (2) implies that this right column can be sorted
by merging all sorted clusters. However, the CPU cost of a
merge ofN tuples partitioned oved = 2B sorted clusters is
at leastO(log(H)N). Alternatively, using Property (1) we
could just insert the values froBLUST.VALUESIn the result
array using theid s fromCLUSTRESULTas array index, with

cluster multiple tuples fall into the window. These multiple
tuples are accessed sequentially in bothSTRESULTand
CLUSTVALUES This memory access pattern is crucial, as the
sequential access fully uses the cache lines that store both
columns. The only restriction is th&/| must fit the mem-

ory cache (i.e.||W|| < C), as itis filled in random order.

Pseudo-code of the algorithm is in Figure 6. The

689

<Type>(]
radix_decluster<Type>(

int cardinality, nclusters,
Type values[cardinality],
oid IDs[cardinality],

struct { int start, end } cluster[nclusters])

<Type> result_column[] = malloc(cardinality*sizeof(<Type>));
int windowLimit, windowSize = CACHESIZE | 2*sizeof(<Type>);

for(windowLimit=windowSize; nclusters>0; windowLimit+=windowSize) {
for(int i=0; i < nclusters; i++) {
while (IDs[cluster[i].start] < windowLimit) {

result_column([IDs][clusteri].start]] = values[cluster(i].start];
if (++clusterfi].start >= cluster[i].end) {
cluster[i] = cluster[--nclusters]; // delete empty cluster

if (i >= nclusters) break;

} /I while more cluster elements in window
} /I while more clusters to merge
} /I while more insertion windows to fill result
return result_column;

Figure 6. The Radix-Decluster Algorithm

radix _count previously mentioned in Figure 4, analyzes a
(partially) Radix-Clustered column and returns the actual

sizes of the clusters. These sizes are used in the Radix-

Decluster to initialize theluster ~ border structure.
The Radix-Decluster projection strategy is more expen-

sive than the partial-cluster strategy discussed earlier. Bothbe

strategies feature one initial Radix-Cluster, and for each
projection column a Positional-Join, but the former adds
an extra Radix-Decluster operation for each projection col-
umn. Hence, it will only be used for getting projection

columns from the table with cheaper projections. Which

input relation in the join has the cheapest projection phase

depends on the number of projection columns in both re-

lations, the data types in these projection columns, and the

number of tuples in both input relations.

4 Performance Evaluation

In this section, we present experiments done on a
2.2GHz Pentium 4 machine, with a 64-entry TLB with miss
latency of 50 cycles, a 16KB L1 cache with 32-byte cache
lines and a miss latency of 28 cycles, a 512KB L2 cache
with 128-byte lines and a miss latency of 350 cycles (i.e,
the latency of the 2GB PC800 RDRAM main memory is
178ns)* Our experimentation platform is MonetDB, also
in the NSM experiments, where NSM is “simulated” by in-

troducing new atomic types that hold 1, 4, 16, 64, and 256

integer column values, and which are copied and projected

from using a NSM projection routine that iterates over such
a “record” and copies selected values out of it.

In our experiments, we executed our example project-
join SQL query using various DSM and NSM query pro-

cessing strategies described in the following. We use re-

lations of equal sizeN ranging from 15K to 16M tuples,

consisting ofw € {1,4,16,64} all-integer (4-byte) columns.

We vary the join hit rated € {3,1,0.3}, and projectrt €
{1,4,16,64|1t < w} columns from both relations into the
result. Finally, we also present experiments where one of
the join relations is a selection on a base-table that selected
afractionse {1,0.1,0.01}, such that we getparseprojec-
tions. In all experiments, all processing happens in main-
memory (no /O or page faults).

4.1 DSM Post-Projection Experiments

We first analyze the performance behavior of Radix-
Decluster in isolation. Figure 7a shows the relationship be-
tween size of the insertion window (cf., Section 3.2 and Fig-
ure 5) and performance. We used hardware performance
counters [8] to obtain detailed information on the amount
of L1, L2 and TLB misses. This data enabled us to formu-
late and validate the performance model described in [14].
In this formula, #v = |X'|/|W/| denotes the total number of
insertion windows used. Our models can predict and accu-
rately explain what is happening, as is seen by the fact that
the dots (values obtained by experiments) and lines (the cost
model) in Figures 7a, 7b and 9d nicely coincide.

If we look in detail at Figure 7, we see Radix-Decluster
come faster as the insertion window becomes larger,
which is explained by the fact that a larger insertion win-
dow leads to higher average number of tupkegrocessed

per cluster in each iteration, improving sequential memory
bandwidth usage iBLUSTRESULTandCLUSTVALUES How-
ever, the insertion window sustains a random access pattern,
such that whe|W|| becomes bigger than the cache size
(our L2 has 512KB), performance drops sharply, due to an
increase in L2 misses. A less important threshold is when
||W|| becomes bigger than the number of pages that fit the
TLB, after which TLB misses will start to occur during the
inserts. Both these thresholds are drawn in Figure 7a. An-
other cause for TLB misses is the number of input clusters:
if it is bigger than the number of TLB entries (and it is,

in the depicted case of 8 Radix-Bits = 256 clusters), each
Radix-Decluster iteration will cause two TLB misses when
starting to process a new cluster, bottCltUSTRESULTand
CLUST.VALUES However, this happens only every onewn
tuples, such that its impact diminishes quickly with increas-
ing window size. Our analysis showed that choosing 32

is sufficient to achieve good memory bandwidth usage, and
this is the value we use in Figure 9d to confirm the accuracy
of our model on multiple cardinalities and Radix-Bits.

We then turn our attention to the interplay between
Radix-Cluster, Positional-Join and Radix-Decluster in our
Radix-Decluster DSM post-projection strategy, as depicted
in Figure 7b. In Section 3.1, we already gave a formula
for computing a good number of bits for Radix-Clustering
the join-index, such that the subsequent Positional-Joins
run well. Figure 9¢ confirms the accuracy of our predic-

4The early work on cache-conscious query processing [18] reported ative€ model for Positional-Joins between relations of multi-

30 cycle latency, thus we observe a 12-fold increase in 9 years.

ple cardinalities (hit-rate 1), clustered with varying granu-

690

le+8 T T 3e+3 2e+5 I ‘d I T
F L1 TLB L2 (||W|| matches L unsorted * S
| *\\ cache sizes) | N | le+sp | s?rteg o T
+ L onD t| p.-clustered e T
le+7F *x +\+L R OETERHH T S declustered v x
- * e I~ inalities: o L]
- - L | cardinalities: % v A
L *. < A P o 8000000 - R <
le+6f o X 4 les3rtia s L agw®"] letdf| 500000 | w7 _vT T A
r Xk [et gmEEm =] Bt o /;fﬁ]
L K od =5 it A K
i teae A goo] =3 T
le+5F —— Limisses |4 o, | . w | Egt KT X - 1
t -%- L2 misses ° ¢ ae® DO @ — E;/ﬁ‘ o P .
| * TLB misses s | " o] 1 1e43p TN e T e
i . — el T
levar = millseconds | J § [mmmm® ¥ - It'g;a}l(cluster |] Pt *v
r z = - positional join L E A
r R 2 _radix decluster] | S A
le+3F 4 .0 le+2}) o §
L e s o s [- : -
| D\S\%%j/ﬁ DDDE.DDv ®%¢vecne, e e
1le+2 L1 1 1 1 le+2f 1 1 | ®%egeee 1 2e+1 " 1 1 1 1 1 1 1 1
1k 32k M 32M 0 5 10 15 20 25 1 2 4 8 16 32 64 128 256
insertion window size (J|W||) [in bytes] number of radix-bits (B) number of projection-attributes (1)
Modeled (lines) vs. Measured (points) Performance "larger” table: Unsorted vs Sorted vs Radix-Cluster
a) Number of Events and Elapsed Time b) Components and Total Cost "smaller” table: Unsorted vs Radix-Decluster
(input clustered on 8 bits) (using best insertion window size) (see text for details)
Figure 7. Radix-Decluster (N=8M, t=1) Figure 8. DSM Post-Projection
larity (Radix-Bits). In the setting of Figure 7b we can in- our platform, this leads to 256KB clusters).

deed verify thafR| = 8M, R = 4 leads toB = 8, which
is the lowest number of Radix-Bits for which Positional-
Join runs optimally (it then achieves minimal L2 misses).
This is usually the optimal point overall, as Radix-Decluster Figure 8 summarizes the performance of the various
cost only increases with more Radix-Bits. It sometimes is DSM post-projection strategies, depending on the amount
better to use even fewer Radix-Bits. The performance hit of projection columnsmt and cardinalityN. For small
taken on Positional-Join, might then be compensated by acardinalities N < 125K), all strategies that do any kind
cheaper Radix-Cluster. As Radix-Cluster is executed only of reordering lose to simple unsorted processing of the
once, but Positional-Join for every projection column, this Positional-Joins, since the columns are so small that they
usually happens only if the number of projection columns fit the cache anyway. For larger cardinalities, however, the
T is very low. To perform well, that is, without running unsorted approach always loses by a big margin (e.g., by
into cache or TLB problems, Radix-Decluster is limited by almost a factor 10 al = 8M and = 256). With small
two factors. First, we need to process a sufficiently high i, partial-clustered processing beats sorted processing. The
w tuples from each input cluster to exploit the sequential gap shrinks with growingt, and withTt > 16, sorted pro-
memory bandwidth. We saw above, that= 32 is the cessing wins. Finally, we see that the Radix-Decluster
value to choose. Second, the insertion window size muststrategy always loses from the partial-cluster strategy, but
not exceed the cache sige From this, we can conclude s actually quite competitive, beating unsorted processing
that Radix-Decluster can handle relations of sizes up toby a large margin. As explained, Radix-Decluster is to be
IR = Cz/(SZ*WZ) efficiently. This formula resembles a used only for the second (smaller) projection table, with
similar bound as given in [11] for Jive-Join. unsorted processing as the only alternative, as sorting or
We finally analyze which DSM post-projection strategy partial-cluster is only applicable to the first projection table.
for our generic join query works best and under which cir-
cumstances. Note that for DSM systems aniypatters, not 4.2 Comparison of Overall Join Strategies
the actual number of columns in the takbe(as they are
fragmented vertically in distinct columns - and the unused Figure 10 shows a comparison of DSM Post-Projection
columns stay untouched). Therefore, a DSM experiment for using Radix-Decluster with NSM Pre-Projection, DSM Pre-
a certairrtholds for allw. We consider four strategies, each Projection, and two NSM Post-Projection variants: our own
identified with a one-letter code: Radix-Decluster and Jive-Join [11]. All these variants use
the cache-conscious Partitioned Hash-Join; they vary only
in the projection strategy. To show the overall effect of all
cache optimizations, we also include NSM Pre-Projection
s Sorted: first Radix-Sort the join-index, then execute With naive non-partitioned Hash-Join ("NSM-pre-hash).
the Positional-Joins. To analyze the impact of all par_ameten; N,h), Fig- '
ure 10 depicts three plots, each varying one parameter while
¢ partial-Cluster: first partially cluster the join-index. keeping the others fixed. We observed similar behavior in
We take the number of Radix-Bits that works best (on experiments with different values for the fixed parameters.

d radix-Declusteriike the previous, but each Positional-
Join is followed by Radix-Decluster.

u Unsorted:one Positional-Join from the join-index into
each projection column.

691

3e+04 T T T 3e+04 T T 2 3e+04 e T
[TLB L1 L2 [+ L2 : TLB L1 1 [L2 -~ - TLB A1
le+04 | B le+04 | ey S 4 E le+04 | A . B
i R PO Sk AN [.. s £
1e+03 |- e E 1e+03 Fx* X . FA E 1e+03 | HHH+++ : 4
) [+t o) ! .] [PN
= xR XRRRRTK 2 R sesescnd PRt 2 ES .
3 XX xx X 5] L Skttt b 3 | 2OOx TR by
2 XXX) 2 X % 2 SR .
= le+02 *%****‘*%*% El 2 1e+02 | B 2 1le+02 Fy : \XX » E El
£ %%**We*xx‘% £ F E \b‘\;\ £ v ><><><-v><A><r>< HXHHEXXK KK 5
[gy i ro :
1e+0l | mpmos? E le+01 | 7 PeogEBonn E le+01 PPy ! X
[[K [e E
[eislalslsis|aajaiuin}
L b ; 1 b O
1e+00 1 1 1 1 1 | le+00 1 Y' 1 1 1 | 1e+00 1 1 1 1 1 |
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
number of radix-bits number of radix-bits (0 = unclustered) number of radix-bits (0 = unclustered)
cardinalities in all plots: 16000000 + 4000000 x 1000000 * 250000 o
a) Radix-Cluster b) Partitioned Hash-Join ¢) Clustered Positional Join
3e+04 ‘ ‘ ‘ 3e+04 ‘ ‘ 3e+04 — —
[TLB L1 L2 [TLB L1 L2 1 [L2 .~ /TLB L1
le+04 B le+04 E le+04 i E !
L [TSRS [s
B
r , +* [Ed 1 [; 4
1e+03 [SAFFTTEETT 1e+03 | Lt oo 1e+03 b #3770]
8 [L*T X K4 [++++ Y XK XX 4 [++ > ;
5 TS o B e < /></ e 5 . R S R
é 1e+02 -_ X’X ** - § 1e+02 -_ el 9@»*%%%%* - é 1e+02 -_ e N ,‘
g 0ot ek X5 LSHHFHK £ e F % 50 =S le+02 ¢ LS 2 IVIIVIVIVLAN
E rx ¥ = [kxrk* e i E [’
| *%x' | ppoood
e . =R S ’
le+01 | % B[JD E 1e+01 | goonE” E letOl | o : E
T t bl
ooooon
1e+00 1 1 1 1 1 | le+00 1 1 1 1 | 1e+00 i v'\" R i 1 1 1 |
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
number of radix-bits number of radix-bits number of radix-bits
cardinalities in all plots: 16000000 + 4000000 x 1000000 * 250000 o
d) Radix-Decluster e) Left Jive-Join f) Right Jive-Join
Figure 9. Modeled (lines) vs. Measured (points) Performance of various Join-Phases (DSM, m=1)

Figure 10b shows that with decreased hit-rate, all strate-all other alternatives. Due to the column-at-a-time execu-
gies become cheaper (due to the smaller join result) buttion in MonetDB, its operators have “zero degree of free-
DSM Post-Projection even more, which is explained by the dom”, such that in their implementation a hard-coded oper-
decreased overall impact of the projection phase (with theation on a hard-coded type is executed in a tight inner loop
relatively expensive Radix-Decluster), with respect to the that iterates over large arrays. Modern compilers can handle
cost for creating the join-index with Partitioned Hash-Join. such code well, achieving high IPC by e.g., loop pipelining.

Figure 10c shows that all strategies scale linearly with The other strategies handle all projection columns simulta-
cardinality. The steeper increase of DSM Post-Projection neously (tuple-at-a-time), and have to deal with some de-
(“DSM-post-decluster”) in the lower range afoccurs be- gree of freedom, namely a list of projection columns, which
cause on small cardinalities, individual columns fit in the is passed at run-time (additionally, the NSM strategies have
cache, such that the relatively expensive Radix-Decluster isto extract column values from a NSM record by looking at
not necessary, as indicated by the point types that identifyrecord offsets stored in a table header). Such code not only
the projection method used for both the left and the right has to perform some more work (CPU overhead) but the ad-
table (with the one-letter codes defined in Section 4.1). ditional complexity and dependencies in the inner loops are

bound to hinder the compiler in getting a good IPC.

4.2.1 Pre-Projection Altermnatives The main difference in Figure 10a between DSM Pre-

Most systems other than MonetDB that use DSM or other Projection (“DSM-pre-phash”) and DSM Post-Projection is
forms of vertical fragmentation, such as transposed files [4] this very CPU advantage of the latter. A second smaller dif-
or projection indices [16], use a scan operator that scans alfference is that as Pre-Projection handles all projections at
columns simultaneously (callédsemble() in[17]). the same time (during the join), less tuples fit in the clusters
One factor to consider in all our comparisons is that created by Radix-Cluster, such that it more quickly needs
DSM Post-Projection has a CPU efficiency advantage overmultiple passes. This is again compounded by the CPU

692

3000

3000

T T T T T T — 10000 T T T T Pl
—+ NSM-pre-hash -©- NSM-pre-phash DSM-post-decluster: M
- NSM-post-decluster & DSM-pre-phash left/right: u/u [« ey
-+- NSM-post-jive (applies to all plots) c/u - E//
(applies to all plots) c/d B i g
< = L s/d ™ e |
1000 e y 1000 \\\ 1000 (applies to all plots) T E
ey . e
i i[‘ ’ z . %1 100k 4 .
[} L 1] N) L Pt
g 1o E S - A
] T S ~lZ-e | © ;
- -3 3 . .
o e 2 8 Ak
= " = = 1oko ; E
E é £ g 10F .- i
100 1 1 1 1 1 1 1 100 1 1 é 1 1 1 1 1 1
1 2 4 8 16 32 64 1:3 1:1 31 15k 62k 250k M am 16M
number of projection-attributes (1) join hitrate (h) cardinality (N)

a) Impact of Projectivity
(N = 50K, w= 64, h=1:1)

b) Impact of Join Hit Rate
(N =50, w= 64, t=4)

¢) Impact of Cardinality
(w=64,1n=4h=11)

DSM Post-Proj. vs NSM Post-Proj. (Radix-Decluster & Jive-Join) vs NSM Pre-Proj. (simple & partitioned Hash-Join) vs DSM Pre-Proj.
(Error bars indicate sparse DSM Post-Projection performance; i.e., one join relation is a 10% resp. 1% selection of a larger base table.)

Figure 10. Overall Join Performance

disadvantage, allowing it to trade less extra CPU for better Jive-Join first sorts the join-index, and then carries out a
memory access (e.g., two-pass Radix-Cluster for creatingspecial Positional-Join (“Left Jive-Join”) with the one join
many clusters almost never wins, leaving the strategy with input, that directly re-sorts its output on ttie s of the other
a bad memory access pattern). table. It generates two separate outputs, in the same order
The difference between DSM Pre-Projection and NSM (which is the final result order), one containing the clus-
Pre-Projection (“NSM-pre-phash”) is mainly in the better teredoid s, the other containing all projection columns from
cache-line usage of DSM. On the positive side, the projec-the first join input. In the second phase, a second special
tions done by the Radix-Clustering of the NSM relations Positional-Join (“Right Jive-Join”) is done between each
access the input relation sequentially. Thus, even if cache-<cluster ofoid s (that is first sorted for better access) and the
lines are used sparsely, the pain will be reduced somewhasecond table, where the results are written back in the order
by automatic memory prefetching on modern hardware (it is of the result (the order of thed s before re-sorting) [11].
“only” a bandwidth problem). As can be seenin Figure 10a, As the detailed performance results on Left and Right
this impact is only considerable at law Jive-Join in Figures 9e and 9f show, the Left Jive-Join phase
Finally, the big difference in NSM Pre-Projection be- may suffer from a too high cluster fanout in much the same
tween non-partitioned and Partitioned Hash-Join is ex- way single-pass Radix-Cluster does, while the Right Jive-
plained by the performance hit taken by uncachable randomJoin may suffer from too few (=big) clusters, much like Par-
memory access. As the projectivityncreases, naive Hash- titioned Hash-Join does. However, the strategy of creating
Join uses its cache lines relatively better, and it approachesiot too many cluster in the first phase, then refining them
Partitioned Hash-Join (but on no occasion surpasses it). with Radix-Cluster in order not to have too big clusters in
the Right Jive-Join, does not work as then the reordering in
Right Jive-Join has random access to a too large cluster.
The scalability of both Radix-Decluster as well as Jive-
The performance of NSM Pre-Projectionrat= 1 in Fig- Join is limited toO(C?/T?), whereT is the tuple width.
ure 10a roughly corresponds to the first phase (the creationTherefore, on large cardinalities, wide NSM tuples can
of the join-index) in the NSM Post-Projection strategies. quickly get these algorithms into cache problems, limiting
This cost is considerable, giving both Radix-Decluster on their applicability for cache-conscious join.
NSM (“NSM-post-decluster”) and Jive-Join (“NSM-post-
jive”) a hard time competing with the other strategies, as
creating the join-index is only their first step. Subsequently,
they need to access the wide NSM base tables one mor&parse projections occur when a join relation is a selection
time for performing the projections. This would of course on a base table. Figure 11 shows that the performance of
have been very different had we assumed the (clustered)Positional-Join suffers significantly with a decreasing se-
join-index to be already present as an accelerator structurelection percentage. This is more of an issue for DSM than
As we concentrate on large ad-hoc joins, however, the join-for NSM, as in DSM cache-lines hold values of multiple
index cannot have been precomputed. consecutive tuples, and if only a small percentage is used,

4.2.2 NSM Post-Projection Alternatives

4.2.3 Sparse Projections

693

2e+02 T T T T T T

le+02 |

..* «

T
X5 2o e K= X
KoK R K

milliseconds

1le+01 Lt 1 1 1 1 %
0 5 10 15 20 25

number of radix-bits (0 = unclustered)

selectivities: 1% + 10% x 100% *

Figure 11. Impact of Selectivity: Sparse Clus-
tered Positional Join (N = 1M)

sequential RAM bandwidth utilization decreases. In NSM,
cache-lines typically hold only values of a single tuple, and
bandwidth efficiency mainly depends projectivity, not on

selectivity. Still, this need not be a show-stopper, as sequen

tial RAM bandwidth is in rather generous supply and unlike
latency shows steady progress as hardware evolves.

The effect of sparse projections on DSM Post-Projection
is also shown in all Figures 10a,b,c using error bars. The

PHASE 1: radix-decluster, but only fill an integer array
SIZE_VALUES with the (variable) tuple length.

(CLUST_RESULT) (CLUST_VALUES) (SIZE_VALUES)

o[4] o efficient o H =strlen("great’)+1
1]5] _ 1| fast | 11181 =strlen("hashing")+1
2[0] 12| great Bl | =strlen("fast")+1

4 14] hashing | 14
s 5 effecive | INSERTION WINDOW

PHASE 2:

make a sequential pass
over SIZE_VALUES creating
incremental sums.

PHASE 3: radix-decluster again,
using SIZE_VALUES to copy each
tuple to its correct page and offset

insert "fast"

r

page header

record offsets
at end of page

2 PAGE,OFFSET COMPUTATION:
page#=B/P

page offset=B % P

B = sizeof(short)*i + CLUST_VALUES]i]

P = sizeof(page)—(sizeof(hdr)+sizeof(short))

ALLOCATED
BUFFER MANAGER PAGES

Figure 12. Handling Non-Continuous Ad-
dressing and Variable-sized Data

smallest error bar shows performance with 10% selectivity Using a PCI-X RAID consisting of 12 SCSI disks.

(i.e., cardinality of the underlying base-table is\)@nd the
second corresponds to 1% selectivity (cardinality isSN)OO

While we see that DSM Post-Projection performance de-

A case for a DBMS with mixed DSM-NSM storage is
made in [17], which also describes how updates could be ac-
commodated efficiently using differential files to the DSM

creases with a lower selectivity percentage, it clearly staysfile images. In such an architecture, a buffer manager would

the better strategy overall.

still be used as an efficient means of well-controlled (asyn-

We should note that this comparison is worst-case for chronous) 1/O. In MonetDB, however, columns are con-
DSM Post-Projection. First, for brevity we omitted the tiguous arrays, while in an RDBMS the columns would
sparse access data for NSM, which is also affected by spars€€ stored in pages at various locations of the buffer pool.
access, only to a much lesser degree. Second, if the seleclherefore, the Radix-Decluster technique of inserting “by

tivity is low, such as 1% or less, then in many cases the in-

position” in the insertion window would not apply directly.

termediate relation would become small, making the join an Finding the correct page and offset would be especially dif-
“easy” instead of a “hard” case (see Section 3). For “easy” ficult if we were to handle variable-sized values such as

joins, DSM Post-Projection could use an u/u strategy, thusstrings. Figure 12 shows how both problems are solved in

significantly improving its performance.

5 DSM Radix-Decluster in a NSM DBMS

a buffer manager that uses NSM-like pages for storing se-
guences of variable-size values. Output space has been allo-
cated in a number of buffer pages, whose start addresses are
stored in an index array. First, the Radix-Decluster is exe-
cuted, but it does not insert any values, but just records the

Our results strongly suggest that RDBMS performance l€ngths of the variable-size values in an extra integer array.
can be enhanced by introducing vertical fragmentation as I'his temporary array is, of course, addressable by position.
an accelerator structure, i.e., projection indices [16]. Such aln & second phase, the lengths are summed to calculate lo-

“DSM-subsystem” would profitin OLAP queries that touch

cations. In a third phase, the Radix-Decluster operation is

many tuples but few columns, and would preferably use re-executed to copy values into the result, and this time the
CPU-efficient MonetDB-like hard-coded operators that ma- correct page and offset for each value can be calculated,

nipulate columns at-a-time, such as Positional-Join, Radix-

Cluster and Radix-Decluster. The very purpose of Mon-

using the computed location accessible by position in the
array. Note that for fixed-size values, the extra passes are

etDB's cache-conscious query processing algorithms is tonoOt even necessary, and page and offset can be determined
restrict all random access to very small ranges that fit thefrom theoid , which is the result tuple sequence number.

CPU caches. Thus, the only I/0O access to the DSM frag-
ments are sequential bulk reads and writes. On our evalu
ation platform, our algorithms caused read and write rates

SPreliminary experiments with lightweight data (de-)compression indi-
cate that a negligible CPU investment can more than half the needed 1/0
bandwidth on problems like TPC-H. As I/O bandwidth is precious, this

between 200MB/s and 500MB/s, which can be supportediooks a worthwhile approach to help scale DSM to disk-based scenarios.

694

6 Conclusion
, , , (2]

We have investigated the problem of performing large
equi-joins with projections in a cache-conscious manner.
As can be seen in the left graph of Figure 10, performance [3]
may vary by more than an order of magnitude with differ-
ent relation projectivity, thus proving that projection cost
can have a strong impact on overall join efficiency. [4

Our main contribution, the Radix-Decluster algorithm, is
the crucial tool of MonetDB to process (i.e., join, but also [5]
re-order) huge tables with a good access pattern, both in
terms of CPU cache access as well as 1/0 access (through
virtual memory).

In our experiments, we tested various cache-conscious
join (projection) strategies both on the NSM and DSM stor-
age schemes. One important conclusion from these exper-
iments is that Partitioned Hash-Join significantly improves 7]
performance not only for MonetDB and DSM, but also for
the NSM pre-projection strategy, as is used by all standard
RDBMS products (compare in Figure 10 the non-cache-
friendly “NSM pre-hash” with “NSM pre-phash”), proving
that this algorithm carries generic merit.

The performance evaluation further shows that Radix-
Decluster is pivotal in making DSM post-projection the
most efficient overall strategy. We should note, that un-
like Radix-Cluster, Radix-Decluster is a single-pass algo-
rithm, and thus has a scalability limit imposed by a maxi-
mum number of clusters and thus tuples. This limit depends[lo]
onthe CPU cache size and is quite generous (assuming four-
byte column values, the 512KB cache of a Pentium4 Xeon
allows to project relations of up to half a billion tuples) and [11]
scales quadratically with the cache size (so the 6MB Ita-
nium2 cache allows for 72 billion tuples).

This limitation also explains why Radix-Decluster is
less successful in NSM post-projection, as its scalability
is also inversely quadratically related to the tuple width. [13]
Rephrased positively, vertical fragmentation (DSM) and
column-wise execution reduce tuple width, fit more tuples
in the CPU cache and quadratically improve scalability. [14]
For NSM, however, we find the “traditional” pre-projection
technique to work best, also outperforming the alternative
NSM post-projection strategy of Jive-Join, which was not [;5
intended as a generic join method, but rather for exploiting
precomputed join-indices.

As for the prospects of applying DSM Radix-Decluster [16]
in off-the-shelf RDBMS products, we support the case
made in [17] for systems that combine DSM and NSM
natively, or that simply add DSM to the normal NSM
representation aprojection indices[16], and show how
such disk-based systems could use our Radix-AIgorithms[ls]
through their buffer manager.

(6]

(8]

(9]

[17]

References (19]

[1] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. Weav- 2%

ing Relations for Cache Performance.RAroc. VLDB Conf.

695

pages 169-180, Roma, Italy, Sept. 2001.

A. Ailamaki, D. DeWitt, M. Hill, and D. Wood. DBMSs
on modern processors: Where does time goPrbt. VLDB
Conf, pages 266-277, Edinburgh, Scotland, UK, Sept. 1999.

L. Barroso, K. Gharachorloo, and E. Bugnion. Memory Sys-
tem Characterization Of Commercial Workloads. Rroc.
ISCA Barcelona, Spain, June 1998.

] D. Batory. On Searching Transposed Fil€QDS 4(4):531—

544, 1979.

P. Boncz. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications PhD thesis, UVA, Amster-
dam, The Netherlands, May 2002.

P. Boncz, S. Manegold, and M. Kersten. Database Architec-
ture Optimized for the New Bottleneck: Memory Access. In
Proc. VLDB Conf. pages 54-65, Edinburgh, Scotland, UK,
Sept. 1999.

G. Copeland and S. Khoshafian. A Decomposition Storage
Model. In Proc. SIGMOD Conf.pages 268-279, Austin,
TX, USA, May 1985.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The Microarchitecture of the
Pentium 4 Processor. limtel Technology Journalhttp://
developer.intel.com/technology/itj/, Feb. 2001.

K. Keeton, D. Patterson, Y. He, A. Raphael, and W. Baker.
Performance Characterization of a quad Pentium Pro SMP
using OLTP workloads. InProc. ISCA pages 15-26,
Barcelona, Spain, June 1998.

G. Lauterbach and T. Horel. UltraSparc-Ill: designing 3rd
generation 64bit platform3EEE Micro, 19(3):56-66, 1999.

Z.Liand K. Ross. Fast Joins Using Join Indic&se VLDB
Journal 8(1):1-24, 1999.

] S. Manegold. Understanding, Modeling, and Improving

Main-Memory Database PerformancePhD thesis, UVA,
Amsterdam, The Netherlands, Dec. 2002.

S. Manegold, P. Boncz, and M. Kersten. Generic Database
Cost Models for Hierarchical Memory Systems. mnoc.
VLDB Conf, pages 191-202, Hong Kong, China, Aug. 2002.

S. Manegold, P. Boncz, N. Nes, and M. Kersten. Cache-
Conscious Radix-Decluster Projections. Technical Report
INS-E0406, CWI, Amsterdam, The Netherlands, June 2004.
Available viahttp://www.cwi.nl/htbin/ins1/publications .

A. McCalpin. Memory Bandwidth and Machine Balance in Cur-
rent High Performance ComputerfEEEE Technical Committee on
Computer Architecture newslettedec. 1995.

P. O’'Neil and D. Quass. Improved Query Performance with Variant
Indexes. InProc. SIGMOD Conf.pages 38-49, Tucson, AZ, USA,
May 1997.

R. Ramamurthy, D. DeWitt, and Q. Su. A Case for Fractured Mir-
rors. InProc. VLDB Conf.pages 430-441, Hong Kong, China, Aug.
2002.

A. Shatdahl, C. Kant, and J. Naughton. Cache Conscious Algorithms
for Relational Query Processing. Rroc. VLDB Conf. pages 510-
512, Santiago, Chile, Sept. 1994.

Sybase Corp. WhitepapeAdaptive Server IQJuly 1996. http://
www. sybase. com/ content/ 1008840/igp_|00899. pdf.

P. Valduriez. Join Indices. ACM Trans. on Database Systems
12(2):218-246, June 1987.

