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Abstract

It is well established that bitmap indices are
efficient for read-only attributes with low at-
tribute cardinalities. For an attribute with a
high cardinality, the size of the bitmap in-
dex can be very large. To overcome this
size problem, specialized compression schemes
are used. Even though there are empiri-
cal evidences that some of these compression
schemes work well, there has not been any
systematic analysis of their effectiveness. In
this paper, we systematically analyze the two
most efficient bitmap compression techniques,
the Byte-aligned Bitmap Code (BBC) and the
Word-Aligned Hybrid (WAH) code. Our anal-
yses show that both compression schemes can
be optimal. We propose a novel strategy to
select the appropriate algorithms so that this
optimality is achieved in practice. In addition,
our analyses and tests show that the com-
pressed indices are relatively small compared
with commonly used indices such as B-trees.
Given these facts, we conclude that bitmap
index is efficient on attributes of low cardinal-
ities as well as on those of high cardinalities.
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1 Introduction

Bitmap indexing scheme of one kind or another have
appeared in all major commercial database systems.
This is a strong indication that the bitmap index tech-
nology is indeed efficient and practical [9]. The basic
bitmap index scheme builds one bitmap for each dis-
tinct value of the attribute indexed, and each bitmap
has as many bits as the number of tuples. The size
of this index can be very large for a high cardinality
attribute where there are thousands or even millions
of distinct values. Many strategies have been devised
to reduce the index sizes, such as, more compact en-
coding strategies [5, 6, 10, 13], binning [11, 12, 14, 19],
and compression [2, 3, 16, 17]. In this paper, we study
how compression schemes improve the bitmap indices.
A number of empirical studies have shown that some
compression schemes can reduce the index sizes as well
as the query response time [8, 16, 17]. In this paper, we
present analyses and performance tests on two of the
most efficient compression schemes, and show that the
compressed bitmap indices are efficient for attributes
of any cardinality.

Let N denote the number of tuples in a relation,
the basic bitmap index for any attribute of the relation
has N bits in each bitmap; one corresponding to each
tuple. If an attribute has c distinct values, where c is a
short hand for its cardinality, then there are c bitmaps
with N bits each. For example, in the bitmap index
for an integer attribute in the range of 0 ... (c−1), the
ith bit of the jth bitmap is 1 if the attribute’s value
in the ith tuple equals to j. Without compression,
this bitmap index requires cN/8 bytes to store. If the
attribute values are 4-byte integers, a typical B-tree
index from a commercial database system is observed
to use 10N to 15N bytes which is about 3 to 4 times
the original data. If the cardinality is high, the bitmap
index can be much larger than the B-tree index and
the original data. One effective way to overcome this
size problem is to compress the bitmaps.

There are many general-purpose text compression
schemes, such as LZ77 [4, 8, 20], that can compress
bitmaps. However these schemes are not efficient for
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answering queries[8, 16]. To answer a query, the most
common operations on the bitmaps are bitwise logical
operations, such as AND, OR and NOT. For example,
for an integer attribute “I” with values ranging from 0
to 99, to answer a query for the form “I < 50”, 50 of the
bitmaps corresponding to values from 0 to 49 will be
ORed together. Bitwise logical operations on bitmaps
compressed with a typical text compression algorithm
are generally much slower than the same operations
on the uncompressed bitmaps [8, 16]. To improve the
speed of operations, a number of specialized bitmap
compression schemes have been developed. Two of the
most efficient schemes are the Byte-aligned Bitmap
Code (BBC) [2] and the Word-Aligned Hybrid code
(WAH) [17]. Both are based on the run-length encod-
ing. They represent a long sequence of 0s or 1s using a
counter, and represent a mixture of 0s and 1s literally.

There are a number of empirical studies that indi-
cate that these two compression schemes are efficient
[1, 8, 16, 17]. In this paper, we systematically analyze
the performance of answering range queries using com-
pressed bitmap indices. The first result of the analyses
is that the sizes of the compressed bitmap indices are
relatively small compared with the typical B-tree in-
dices. This is true even for attributes with very high
cardinalities. The second result is that the time and
space required to perform a bitwise logical operation
on two compressed bitmaps are at worst proportional
to the total size of the two. Furthermore we show that
bitwise OR operations on a large number of bitmaps
can be performed in time linear in the total size by us-
ing an in-place algorithm. This is optimal because it
has the same complexity as reading the same bitmaps
once. For a searching algorithm, one stringent defini-
tion of optimality is that its time complexity is linear
in the number of hits. Using this definition, the com-
pressed bitmap index is optimal for high cardinality at-
tributes because the total size of the bitmaps involved
in answering a query is proportional to the number of
hits.

Depending on the number of bitmaps involving in
answering a query, different algorithms achieve the op-
timal performance. Guided by the above analyses, we
developed a simple yet effective strategy to select the
appropriate algorithms to ensure the best performance
in practice. Tests show that the bitmap indices, com-
pressed with both WAH and BBC, scale linearly with
the total size of bitmaps involved as predicted by the
analyses. In the tests reported in this paper, a WAH
compressed index typically uses about half the time re-
quired by a BBC compressed index to answer the same
query. When querying high-dimensional datasets, the
projection index is often the best option [10]. In out
tests, a WAH compressed index always outperforms
the projection index, a BBC compressed index may
take more time than the projection index.

The rest of this paper is organized as follows. Sec-

tions 2 and 3 contain our analyses of the worst case
sizes with WAH and BBC compression. Section 4 has
a discussion on the time complexity of bitwise logical
operations on two bitmaps. We discuss the options
to operate on a large number of bitmaps in Section
5, and show that the in-place OR algorithm is a lin-
ear algorithm. A number of measurements are shown
in these sections to verify the analyses. However, the
bulk of performance measurements are shown in Sec-
tion 6, where we also discuss how to select the best op-
tions to perform logical operations on many bitmaps.
Finally, a short summary is given in Section 7.

2 Sizes of WAH Compressed Bitmap
Indices

The Word-Aligned Hybrid (WAH) code is much sim-
pler than the Byte-aligned Bitmap Code (BBC) and
much easier to analyze. For this reason, we start with
WAH. WAH is a hybrid of the run-length encoding
and the literal bitmap [16, 17]. It contains two types
of code words, literal words for storing literal bits and
fill words for storing fills. In general, a fill is a consecu-
tive group of bits of the same value. A group of 0s is a
0-fill and a group of 1s is a 1-fill. Both WAH and BBC
require their fills to be of specific lengths. This causes
short groups of bits with mixed 0s and 1s to be left
out. Both schemes store these left out bits literally.
We say a bitmap is uncompressible if all of the bits
have to be stored literally. A bitmap is uncompressed
if all bits are stored literally.

Since there are two types of words in WAH, one
bit is required to distinguish them. In a literal word,
the remaining bits are used to store raw bit values.
To improve operational efficiency, WAH requires each
fill to contain an integer multiple of bits stored in a
literal word. For example, on a machine that uses 32-
bit words, a literal word can store 31 bits from the
bitmap, therefore each fill must contain a multiple of
31 bits. The length of a fill is recorded as the multiple
of literal word size. For example, a fill with 93 bits
would be recorded as length 3. In a fill word, one bit
is used to distinguish it from a literal word, one bit
is needed to record the bit value of the fill, and the
remaining bits are used to store the fill length. On
a 32-bit machine, the maximum fill length is 230 − 1,
which represents a fill with 31× (230 − 1) bits.

In an implementation of the bitmap index, the in-
dex is typically segmented. In this case, a bitmap
index can be viewed as having a number of smaller
indices each for a subset of the tuples of the relation
indexed. This is necessary to reduce the size of each
bitmap, improve the flexibility of the index genera-
tion process, and reduce possible access conflicts dur-
ing update. Under this arrangement, a bitmap might
contain only a few thousand bits or a few million bits.
The maximum fill length is usually much smaller than
230. With this observation, we can safely assume that
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a fill of any length can be represented in one fill word.
This significantly simplifies the analysis of WAH com-
pressed bitmaps.

Using WAH to compress a bitmap, we first divide
the input bits into groups that fit in literal words. If
there are two or more consecutive groups with only
0s (or 1s), these groups form one fill and can be rep-
resented in one fill word. All remaining groups are
represented literally. Let us call a fill followed by a
group of literal bits a run and call the literal bits in a
run the tail, see Figure 1 for an example. A run takes
at most two words to represent; one fill word for the
leading fill and one literal word for the tail. The only
run that might not have a tail must be the last run
of a bitmap. Typically, the last few bits of a bitmap
do not use up a literal word, however a whole word
has to be used to store them. Even though the last
run might not have a tail, we always need at least a
literal word. All together, the number of words in a
WAH compressed bitmap is at most twice the number
of runs, which proves the following theorem.

Theorem 1 Let r denote the number of runs in a
bitmap, the WAH compressed version of it requires at
most 2r words.

A bit with value 1 is also known as a set bit. All
runs of a bitmap, except the last one, must contain at
least one set bit. If a bitmap has n set bits, then it
can have at most n+1 runs. Using the above theorem,
the WAH compressed bitmap would use at most 2n+2
words.

The number of 1s in any particular bitmap depends
on the characteristics of the attribute. However, the
total number of 1s of the entire bitmap index must
equal the number of tuples N . Because of this, the
maximum total size of all bitmaps is 2N+2b, where b is
the number of bitmaps used. This proves the following
theorem.

Theorem 2 Let N be the number of tuples in a re-
lation, and let b denote the number of bitmaps used
in the basic bitmap index for an attribute, using WAH
compression, the maximum number of words required
by the compressed bitmap index is 2N + 2b.

In the extreme case where every value of the at-
tribute is distinct, the number of bitmaps is the num-
ber of tuples, i.e., b = N . In this case, a total of
4N words are required for the bitmap index. This ex-
treme value is close to the typical size of a B-tree index.
Therefore, with WAH compression, even in the most
extreme case the bitmap index size is no larger than
the commonly used B-tree index. As long as the at-
tribute cardinality is much smaller than N , the bitmap
index size is about half of that of a B-tree.

When a bitmap index is segmented, more bitmaps
are used than the unsegemented index. This will in-
crease the total size of the index. However, this in-
crease is straightforward to account for. To ease the

type fill tail encoding

1 short normal header, tail
2 short special header
3 long normal header, counter, tail
4 long special header, counter

Figure 2: The four types of BBC runs. The special tail
is one byte long and has only one bit that is different
from the fill just before it. A normal tail may have up
to 15 bytes of any value. A fill is considered short if it
has no more than three or seven bytes, see footnote 1.

analyses and comparisons, we concentrate on unseg-
mented indices from now on.

3 Sizes of BBC Compressed Bitmap
Indices

In this section, we derive an upper bound for the sizes
of BBC compressed bitmap indices. To do this, we first
outline the BBC compression scheme, then compute
the maximum number of runs required to index a high
cardinality attribute and the average size of the runs.
3.1 Outline of the BBC Compression

The Byte-aligned Bitmap Code (BBC) was devel-
oped by Antoshenkov and is used in a commercial
database product [2]. There are two main variants
of this scheme. One is designed primarily to compress
0-fills and the other to compress both 0-fills and 1-fills.
The former is known as the 1-sided BBC and the later
the 2-sided BBC. For sparse bitmaps, the 1-sided vari-
ant compresses slightly better than the 2-sided variant.

The BBC compression scheme breaks a bitmap into
bytes. A BBC fill is a consecutive group of bytes that
contains the same bits. In BBC, a run contains a
fill followed a number of literal bytes. BBC encodes
a bitmap one run at a time. A header byte is always
used for each run. The length of a fill is recorded in the
number of bytes. For short fills1, its length is recorded
in the header byte. For a longer run, a multi-byte
counter is used to record the fill length. Each byte of
the counter reserves one bit to indicate whether there
are more bytes in the counter, and the remaining seven
bits are concatenated in the order of their appearance
to form a binary integer. This integer plus an offset2 δ,
is the actual number of bytes in the fill. Each byte of
the multi-byte counter is basically a digit of a base 128
integer. For a fill with f bytes (f ≥ δ), the multi-byte
counter uses 1 + log128(f − δ) bytes3. In the example
shown in Figure 1, using the 2-sided BBC, the first two
runs have short fills and the rest have long fills. The
counters for runs 3 and 4 are one-byte long with value
8 indicating the fills have 12 bytes and 96 bits. The

1For a 1-sided variant, a short fill can have up to seven bytes;
for a 2-sided variant, a short fill can have up to three bytes.

2For a 1-sided variant, the offset δ is eight; for a 2-sided
variant, the offset δ is four.

3When f = δ, one byte is used.
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sample bits 30*1, 1*1, 8*0, 9*1, 100*0, 100*1, 1060*0, . . .

WAH run 1 run 2 run 3 run 4 run 5
30*0,1*1; 8*0,9*1,14*0; 62*0; 24*0,7*1; 93*1; 1054*0, . . .
4 bytes 4 bytes 8 bytes 4 bytes 4+ bytes

BBC run 1 run 2 run 3 run 4 run 5
30*0,1*1,1*0; 7*0,9*1; 96*0,4*0,4*1; 96*1; 1060*0,. . .
type 2 type 1 type 3 type 3 type 3/4
1 byte 3 bytes 3 bytes 2 bytes 3+ bytes

Figure 1: A sample bitmap
.

fill in run 5 has 132 bytes, which requires a two-byte
counter. The counter records the value of 128, which
is 1 0 in base 128 integer.

BBC also identifies a special tail. This special tail
is one byte long and has only one bit different from
the majority. The majority of the bits are the same
as the preceding fill. This special byte is not explicitly
stored. Instead three bits of the header byte are used
to store the position of the bit that is different. Clearly,
this special byte is very common in sparse bitmaps. In
its simplest form, a BBC compression scheme divides
runs into four types as illustrated in Figure 2 [2, 8].
3.2 Number of Runs

In this paper, we only analyze sparse bitmaps. Let
N denote the number of bit in a bitmap and n denote
the number of set bits. A sparse bitmap satisfies the
relation n < N/100. As with WAH compression, a
run must have at least one set bit, except the last run
which might not have any set bit. The worst case
size of BBC can be computed by assuming that all
BBC runs, except the last one in each bitmap, contain
exactly one set bit. This leads to a maximum of N + b
runs in the entire index.

The key to compute an upper bound of the index
size is to show that having the maximum number of
runs indeed requires more space. This basic idea is
formalized in the following theorem.

Theorem 3 For sparse bitmaps (n < N/100), the
maximum size of a BBC compressed bitmap is achieved
when each each run has at most one set bit and the last
run has no set bit.

Proof. We prove this theorem by contradiction,
i.e., by showing that merging set bits together would
not increase the storage required.

Let runs A and B be two arbitrary runs of a sparse
bitmap, and let C be the run immediately following B.
Runs A and C may be the same. If the set bit in B is
moved to the tail byte of run A, then run A changes
from type 4 to type 3 or from type 2 to type 1, because
the tail byte is no longer a special byte. This causes
the tail byte of A to be explicitly stored and the new
run A requires one more byte than before.

To see what happens to the runs B and C, we first
assume both of them are type 4 runs. After remov-
ing the set bit from run B, runs B and C will merge
to form a longer fill. Let fB and fC denote the fill
lengths of B and C before merging. The length of the
combined fill is fB + fC + 1, since the tail byte of B
is now part of the fill. The multi-byte counter for run
B has (1+ blog128(fB − δ)c) bytes, and the multi-byte
counter for run C has (1 + blog128(fC − δ)c) bytes. In
most cases, the length of the combined fill can be rep-
resented using the same number of bytes as the larger
of these two counters. In these cases, the space used to
store the shorter of B and C is removed. This removes
at least two bytes. Since only one extra byte is used
by run A, moving the set bit from B to A reduces the
total size by one or more bytes.

If the set bit is moved from another run to run A
again, the size of A will not change, and the total size
will definitely decrease. In general, if a run has mul-
tiple set bits, the total size of the compressed bitmap
would be smaller than if all the runs have only one set
bit.

The above is for the normal cases where combin-
ing B and C does not increase the size of the counter.
Next, we examine the special cases where the combined
fill takes more bytes to represent. An important obser-
vation is that the combined fill needs at most one more
byte than the larger one of the two old counters. This
can happen when both fB and fC are smaller than an
integer power of 128, but fB + fC + 1 − δ is not. For
example, with the 2-sided BBC, when fB = 66 and
fC = 65, counters for both runs are one-byte long, but
the combined fill has 132 bytes which requires a two-
byte counter. In this case, moving the set bit from B to
A may reduce the total size of the compressed bitmap
if the shorter one of B and C takes more than two
bytes. It does not change the total size if the shorter
one of B and C takes exactly two bytes.

If either B or C has only a short fill, i.e., the run
requires only one byte to represent, then removing the
set bit of B actually increases the total size of the
compressed bitmap by one byte. Let us assume C
has a short fill, in order for the combined fill to use
one more byte than that of B, the fill length of B
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must be fairly close to an integer power of 128. In
this case, some fill bytes can be moved from B to C to
make run C a long fill, this increases the total storage
required. Therefore, the sparse bitmap that has the
maximum compressed size must not have any short
fills. Similarly, if B is the last run of the bitmap and C
does not exist, the total size of the compressed bitmap
can be increased by moving some fill bytes from B to
C. Therefore the last run of a compressed bitmap with
the maximum size should have no set bit.

In a bitmap index, there is always a few bitmaps
whose last run contain set bits. These bitmaps will be
slightly smaller than the maximum computed here.
3.3 Average Size of a Run

If the set bit from B were moved to the middle of A’s
fill, run A would be split in two. This does not change
the number of runs, but changes the distribution of 0-
fills. Next we construct a way to rearrange the 0-fills
of an infinite bitmap to maximize the average number
of bytes required to represent each run.

If a multi-byte counter is m-byte long, the minimum
fill length4 it represents is 128m−1 + δ. If each fill is
the minimum length for the counter, then the number
of bytes required by the counters would be maximized.
This is the core idea behind the following construction.

If f is the average number of bytes in a fill, the size
of the multi-byte counter is m = 1 + blog128(f − δ)c.
To use the same size counter, the minimal fill length
is f = 128m−1 + δ. We can take away f − f bytes
from each fill without decreasing the size of the counter
used, and these bytes can be added to some fills to
increase the sizes of their counters. The number of
bytes required to make an average fill use (m+1) byte
is f = 128m+δ, which needs f−f new bytes. We need
to take the excess bytes from γ (≡ (f − f)/(f − f))
runs in order to make one run have a larger counter.
After this redistribution, we have γ runs with (1 + m)
bytes for every run with (2 + m) bytes. The average
number of bytes needed to represent a run is

(γ(1 + m) + 2 + m) /(γ + 1).

It easy to see that there is no fill that takes m or less
bytes, because some bytes can be taken away from a
run with 2+m bytes and make many shorter ones with
1 + m bytes.

In the above construction, we assume that the
bitmap has infinite number of bits, otherwise there
may not be enough 0-fills to increase the bytes used
by any counter. This indicates that the average num-
ber of bytes used by an infinite bitmap is an upper
bound for a finite bitmap.
3.4 Size of a Compress Bitmap

4For m = 1, the minimum fill length is δ, not 1 + δ as the
formula shown. This will cause the average fill size computed
to be less accurate for denser bitmaps, particularly those with
n ∼ N/100.
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Figure 3: Sizes of compressed bitmap indices on a syn-
thetic dataset (N = 108).

For ease of estimation, let us assume the index is
not segmented. Thus the number of bitmaps b is the
attribute cardinality c. The total number of bits in
the entire bitmap index is Nc, the total number of
runs is N + c, and the average number of bits in a run
is about Nc/(N + c). Plugging in the formula for the
average number of bytes per run, we have the following
theorem for the maximum size of a compressed index.

Theorem 4 Let N denote the number of tuples in a
relation, and let c denote the cardinality of the at-
tribute indexed (c > 100), then the maximum number
of bytes in a BBC compressed bitmap index is approx-
imately

(N + c) (γ(1 + m) + 2 + m) /(γ + 1),

where γ = (f − f)/(f − f), f = 128m−1 + δ, f =

128m + δ, m = 1 + blog128(f − δ)c, f = Nc

8(N+c) − 1.

When f = f , the maximum size is (N + c)(1 + m).

To verify the above formulas, we show the sizes
of actual bitmap indices against the maximum values
given by Theorems 2 and 4. The results are shown
in Figures 3 and 4. Figure 3 shows the index sizes
on some synthetic data and Figure 4 shows the in-
dex sizes on a set of real application data. The solid
lines are based on the formula given in Theorem 2
and the dashed lines are based on the formula given
in Theorem 4. These predicted maximum sizes are
achieved with bitmap indices on uniform random at-
tributes. Indices for other attributes are smaller than
the predicted maximum.

4 Logical Operation on Two Bitmaps

It was observed that the time complexity of a bitwise
logical operation is proportional to the total size of
two compressed operands [16, 17]. It is straightfor-
ward to count the number of operations required by
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Figure 4: Sizes of compressed bitmap indices on a com-
bustion dataset (N = 2.5 × 107).

examining the algorithms used to perform these op-
erations. However, due to space limitation we would
not discuss the details. Instead, we describe the major
steps performed in these operations and provide the
upper bound for the time and space complexities of
the algorithms.

With either WAH or BBC, a bitwise logical oper-
ation on two sparse bitmaps basically need to decode
the compressed bitmaps, determine the result bitmap
one piece at a time, and put the pieces together to
form the compressed result. It is easy to see the time
required to decode the operands is proportional to the
size of input bitmaps. With an appropriate algorithm,
the pieces produced at each step should be as large
as possible. For sparse bitmaps, the result contains
at most the same number of runs as the total number
of runs in the two input bitmaps. Therefore, the size
of the result, and the time required to compute and
compress the result are also proportional to the total
size of the input bitmaps. Overall, both the time and
space complexity of a bitwise logical operation is linear
in the total size of the input bitmaps. This is optimal
because an arbitrary logical operation has to at least
examine every byte of the input operands.

We have measured the result sizes of many bitwise
OR operations. The results are displayed in Figure 5.
In this plot, the dashed line along the diagonal shows
that the result size is exactly equal to the total size of
the two input bitmaps. Each dot is a test case on two
random bitmaps. For sparse bitmaps, i.e., those with
small total sizes, the result size is very close to the
total size of input bitmaps. As the sizes of the input
bitmaps become larger, the size of the result becomes
less than the total size of the input bitmaps. Larger
bitmaps have more runs, therefore more literal tails.
This increases the likelihood of two literal bits from
the input bitmaps being located close enough to each
other to produce tails that contain multiple 1s. This
reduces the number of runs, and consequently reduces
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Figure 5: The result size of a logical operation plotted
against the total size of two operands (N = 108).

the size of the resulting bitmap. The result with the
maximum size is an uncompressed bitmap. In this
case, its size is about 13 MB. When the total size of
two input bitmaps are larger than 13 MB, the result
is always 13 MB.

The above shows the worst case behavior of binary
logical operations. Though these worst cases are often
achieved, an actual operation may be a lot faster. For
example, when performing an AND operation, if one
of the operands is a single 0-fill, then the result is also
a single 0-fill no matter what the other operand is.

5 Algorithms for Many Bitmaps

For a high cardinality attribute, the basic bitmap in-
dex contains many bitmaps. To answer a query such
as “find all records with attribute I less than 100”, one
may need to OR a large number of bitmaps. Without
compression, the execution time could be much longer
than scanning the projection of the attribute I. We
propose that the compressed bitmap index is efficient
in this case. One evidence supporting this proposition
is that the total size of a compressed bitmap is rela-
tively small. With WAH compression, the compressed
index sizes is about 2N words for high cardinality at-
tributes where c � N . The size of a BBC compressed
bitmap index is even smaller. In any series of OR op-
erations, at most half of the bitmaps are involved. If
more than a half of the bitmaps are required, it is easy
to use the remaining bitmaps to compute the comple-
ment of the solution. Using WAH compressed index,
we need to access no more than N words. In many
data warehousing applications, the projection index5

is considered the most efficient scheme when the at-
tribute cardinality is high [10]. For an attribute whose
values take one word each to store, the projection in-
dex requires N words. Using the projection index one

5The projection index is typically implemented as a sequen-
tial scan of a materialized view of a projection.
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balanced evaluation treeb_1 b_2

b_3

b_4

b_1 b_2 b_3 b_4
skewed evaluation tree

Figure 6: Two evaluation trees. A balanced tree is
shorter and reduces the evaluation cost.

always accesses all N words, but using a compressed
bitmap index one accesses N words only in the worst
cases.

Previously we discussed operations on two com-
pressed bitmaps. Next we discuss five different strate-
gies to perform OR operations on many compressed
bitmaps. The goal is to find a strategy that performs
the best.

Let us denote the bitmaps b1, b2, . . . , bk, and denote
their sizes in bytes as s1, s2, . . . , sk. The first option is
a simple application of the binary logical OR operator,
which can be expressed as a simple for loop, where
the variable r denotes the result and the operator |=
denotes a bitwise OR operation that stores the result
back to the variable on the left hand side.

r = b1;
for i = 2 to k, do r |= bi.

To see the worst case behavior of this approach, we
assume the result of a bitwise OR operation always
has the maximum size. In addition, we assume that
the time required to perform a bitwise OR operation is
exactly proportional to the total size of the two input
bitmaps. Let Cc be the proportional constant. The
total time required to complete k−1 logical operations
is

t1 = Cc(s1 + s2) + Cc(s1 + s2 + s3) + . . .

= −Ccs1 + Cc

k∑

i=1

(k + 1 − i)si. (1)

If all the compressed bitmaps have exactly the same
size s, then the above equation simplifies to

t1 = Ccs(k + 2)(k − 1)/2.

This option is very easy to implement and requires
the minimal number of bitmaps in memory. In the
following tests, we refer to this as option 1.

Since the multiplier in front si decreases gradually,
we can order the bitmaps so that the smaller ones are
in the front to decrease the overall cost. This approach
of sorting the bitmaps according their sizes is referred
to as option 2 in the following tests. Clearly, sorting
the bitmaps does not change the worst case complex-
ity, which is still quadratic in k.

Pictorially, the evaluation process of options 1 and
2 can be depicted as a skewed binary tree, which we
call the evaluation tree. It is easy to see that balancing

the evaluation tree will reduce the multipliers in front
of the variables si in the expression for the total time.
If all the bitmaps have the same size s, and k = 2h,
where h is an integer, the total time required using a
balanced evaluation tree would be

t3 = Ccsk log2(k). (2)

As k becomes large, this approach clearly is better
than the two previous options. For our implementa-
tion, we use a priority queue to hold all input bitmaps
and intermediate results. The priority queue puts the
smallest bitmap on the top. Every binary OR opera-
tion is then performed on two bitmaps from the top of
the queue. This ensures that the cheapest operations
are performed first. It effectively implements the bal-
anced evaluation tree without explicitly maintaining a
tree. We refer to this as option 3.

Both option 2 and 3 require the sizes of all input
bitmaps before any operation can be carried out. Typ-
ically, this means the input bitmaps have to be read
into memory. Therefore, these options require more
memory than option 1. If these input bitmaps are
held in memory during the whole process, a maximum
of three times the total size of the input bitmaps may
be required near the end of the process. If we free
the input bitmaps immediately after they are used,
the factor goes down from three to two. This amount
of space is required to store the last two intermediate
results and the final result.

All previous approaches use compressed bitmaps as
the result of bitwise logical operations, which requires
bitmaps to be generated and destroyed for each in-
termediate result. The cost of which may become a
significant portion of the total execution time. One
way to avoid this is to use an uncompressed bitmap to
store the result. In fact, one uncompressed bitmap can
be used for all intermediate results and the final result.
Since the uncompressed bitmap is not deleted or allo-
cated repeatedly, it might reduce the overall cost of the
operations especially for a large number of bitmaps.
We have implemented two variations of this approach,
which we call option 4 and 5. Option 4 decompresses
the first input bitmap, and option 5 decompresses the
largest input bitmap. Normally, in any compressed
bitmap, fills are stored in a compact form. The de-
compression procedure explicitly forces all fills to be
stored literally, therefore turns a compressed bitmap
into an uncompressed one.

In our implementations of options 4 and 5, we use
the same data structure for both compressed and un-
compressed bitmaps. Since we use compressed data
structures to store uncompressed bitmaps, we pay a
small percentage of storage overhead. However, this
allows us to efficiently operate between uncompressed
and compressed bitmaps. When the left-hand side of
the operator |= is an uncompressed bitmap, it always
writes back the result into the uncompressed bitmap
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without allocating any new storage. In later discus-
sions, we refer to this as the in-place OR operation or
the in-place operation.

The in-place OR operation can be implemented
very efficiently. In tests, we observed that the time
required for these functions are linear in the total size
of the compressed bitmaps. A detailed analysis is be-
yond the scope of this paper, here we give the key ideas
that support the observations. The in-place OR oper-
ation can be viewed as a function that modifies the
uncompressed bitmap to add more 1s. These new 1s
are from the compressed operand. With either BBC or
WAH, it is straightforward to determine the position
of these 1s and the cost of determining these positions
is proportional to the size of the compressed bitmaps.
The number of words or bytes that need to be modified
is determined by the number of runs in the compressed
operand. If there are lots of bitmaps to be ORed, each
bitmap must be very sparse. For sparse bitmaps, it
is very rear to have 1-fills. For each run in the com-
pressed bitmap, only one word or a small number of
bytes of the uncompressed bitmap need to be modi-
fied. The number of runs in a compressed bitmap is
proportional to its size. Overall, the time required to
modify an uncompressed bitmap with a compressed
bitmap is linear in the size of the compressed bitmaps.
The constant term in the linear expression comes from
the initial time required to generate an uncompressed
bitmap with only 0s. Since this initial cost depends on
N , it does not qualify to be a constant in the strictest
sense. However, because this initial cost is so small
compared with others, when a large number bitmaps
is involved, this initial cost is negligible, and the total
execution time is indeed proportional to the total size
of the input bitmaps.

We can express the time required by option 4 as

t4 = Cd + Ci

k∑

i=1

si, (3)

where Cd is the constant time required to generate a
uncompressed bitmap and Ci is the per byte cost of
performing the in-place logical operation. For option
5, there is an extra cost of finding the largest bitmap,
which should be relative small. Since it is also pro-
portional to k, it does not change the theoretical com-
plexity.

Figure 7 contains a summary of the five options
discussed. Clearly, for a large number of bitmaps, the
best option is either option 4 or 5, and for a small
number of bitmaps, one of the first three options might
be better. In next section, we examine their relative
performance and determine a way to combine them to
always achieve the best performance. In the rest of this
section, we briefly compare these algorithm against a
theoretical optimal one.

Without considering the setup cost, the minimal
cost of any searching algorithm is proportional to the

size of the search result, because it needs to enumer-
ate the result. Let h denote the number of hits, a hy-
pothetical optimal search algorithm would have both
time and space complexity of O(h). Using the basic
bitmap index to answer a range query, the number of
hits is the number of set bits in all bitmaps involved.
In the worst case, with both BBC and WAH com-
pression, the sizes of the bitmaps are proportion to
the number of set bits, sk ∝ h. This shows that all
complexity expressions of the form O(sk) are optimal.
More specifically, the space complexities of options 1, 2
and 3 are optimal and the time complexities of options
4 and 5 are optimal.

6 Selecting the Best Algorithm

From analyses, we know that different algorithms have
different performance characteristics, to achieve the
best performance in practice, we need to dynamically
select the best algorithm for answering a particular
query. To address this issue, we start by measuring
the performance of all five options. By analyzing their
relative performances, we come to a simple combined
strategy for ensuring the best overall performances.

For measuring the performance of the five different
options outlined in the previous section, we tested a
large number of range queries on two sets of data, a
set of random integers with various distributions and
a set from a combustion simulation [7, 15]. Most of
the tests are performed on the random data set be-
cause their bitmap indices are closer to the predicted
worst case sizes. The real application data show signif-
icant skewness which makes the bitmap indices much
smaller, see Figure 4.

The timing tests are conducted on a Linux machine
with 2.8 GHz Pentium IV Xeon processor and a small
hardware RAID with two SCSI disks. The machine
has 1 GB RAM and the maximum reading speed of
the disk system is about 80 MB/s. For sequential scan
of large amounts of data, it actually sustains a read
speed of about 40 MB/s. To scan 100 million records
of a projection index, 400 MB in size, it takes about
10.3 seconds. This is the performance of projection
index, which we use as the yard stick to measure the
performance of other indices.

The random data set contains 100 million tuples of
discrete random attributes some following a uniform
distribution and other following different Zipf distri-
butions. Their sizes are shown in Figure 3. The at-
tributes with the uniform distribution have the largest
bitmap indices compared with other attributes of the
same cardinalities. Timing results from bitmap in-
dices on these attributes also follow the formulas more
closely.

We have generated bitmap indices with both WAH
and BBC compression. The time used to perform bit-
wise OR on different number of bitmaps are shown in
Figures 8 and 9. Each point in the plots shows one
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option description memory time

1 unordered bitmaps, three compressed bitmaps O(sk) O(sk2)
compressed result

2 ordered bitmap, all input bitmaps plus O(sk) O(sk2)
compressed result two intermediate results

3 priority queue, all input bitmaps plus O(sk) O(sk log2(k))
compressed result many intermediate results

4 decompressed first bitmap, one uncompressed bitmap O(N) O(sk)
uncompressed result plus one compressed

5 decompressed largest bitmap, one uncompressed bitmap O(N) O(sk)
uncompressed result plus one compressed

Figure 7: Summary of the five options used to OR many compressed bitmaps, where N is the number of bits in
a bitmap, s is the average size (bytes) of the bitmaps involved and k is the number of bitmaps.
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Figure 8: Time to OR many bitmaps compressed with
WAH. Dashed trend lines are defined by formulas given
in Figure 7.

timing measurement. The total size of the bitmaps
is used as the horizontal axis. Assuming the bitmaps
are the same size, the time required for the various
options should follow the complexity formulas given
in Figure 7. The dashed lines in the figures are the
trend lines defined by these complexity formulas. The
bitmaps from the indices for the uniform random at-
tributes are about the same size. The time required
to operate on these bitmaps basically follow the trend
lines.

Of the five options, options 1 and 2 use about the
same amount of time in many cases; options 4 and
5 take about the same amount of time in every case.
This suggests that option 4 should be used since op-
tion 5 needs to find the largest bitmap. The cost to
decompress a bitmap dominates the execution time
when the total size of the input bitmaps is small. To
decompress 100 million bits, it takes about 0.05 sec-
onds with WAH compression and 0.33 seconds with
BBC compression. Let S denote the total size (bytes)
of the input bitmaps, the trend line for options 4 and
5 drawn in Figure 8 is t = 0.05+ 1.1× 10−8S, and the
same trend line in Figure 9 is t = 0.33 + 5.1× 10−8S.

We also notice that there is a significant number of
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Figure 9: Time to OR many bitmaps compressed with
BBC. Dashed trend lines are defined by formulas given
in Figure 7.

test cases that are far from the trend lines. This is
largely because the trend lines are established for the
worst cases.

To find out which option to use for a particular
set of bitmaps, we plot the best options for the sets
of bitmaps tested. Figure 10 shows the best options
for WAH compressed bitmaps and Figure 11 shows
the best options for BBC compressed bitmaps. As
expected, option 3 is better for a small number of
bitmaps and bitmaps with small sizes, but options 4
and 5 are better for a large number of bitmaps and
bitmaps with large sizes. In each plot, we have drawn
a dashed line to separate the region dominated by op-
tion 3 from the rest. The dashed lines separate the
regions fairly cleanly. However, there are some cases
with a small number of bitmaps, where option 1 is the
best. We have examined these cases and found the
performance differences between option 1 and option
3 to be very small. For ease of implementation, we will
only use option 3 in these cases.

Option 1 also showed up in many test cases with
very large bitmaps. In these cases, the first few
bitmaps are relatively large and the intermediate
results produced from operating on these bitmaps
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Figure 10: The best option to perform bitwise OR on
WAH compressed bitmaps.

quickly become uncompressible. This effectively turns
option 1 into option 4 because the same operator |= is
used in the implementation of both options. This sug-
gests that if the total size of first two bitmaps is larger
or equal to the size of an uncompressed bitmap, option
1 should be used to avoid explicitly decompressing any
bitmap.

In cases where option 1 works well, we expected
option 2 to do even better. This turns out not to be
the case because option 2 delays the generation of the
uncompressible results and increase the time spent in
generating intermediate results.

To perform operations on a small number of
bitmaps, say two or three, clearly, it is best to use op-
tion 1. In cases where the first two bitmaps are very
large we should also use option 1. Outside of these
cases, the two primary options to consider are option
3 and option 4. The dashed lines shown in Figures 10
and 11 suggest a way to choose between the two. All
cases above the lines should use option 4 and all those
below the lines should use option 3. Next, we explain
how we draw the lines.

Since we have derived the estimated time for all
options, one way to decide whether to use option 3
or option 4 is to compare their expected time t3 and
t4, and use the one with a smaller expected execution
time. In this case, the divider would be defined by
equation t3 = t4. Let s denote the average size of the
bitmaps and let k denote the number of bitmaps. The
dividing line is given by the following equation.

s =
Cd

k(Cc log2(k) − Ci)
. (4)

To use this equation, we need to estimate three pa-
rameters, Cc, Cd and Ci. We have computed Cc as
the average of t3/(nk log2(k)) for all the test cases,
and used a linear regression to compute the parame-
ters Cd and Ci from the measured results. The line
for WAH is plotted as the dotted line in Figure 10.
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Figure 11: The best option to perform bitwise OR on
BBC compressed bitmaps.

It is easy to see that the dotted line does not divide
the points cleanly. This is because Equations 2 and 3
are derived for the worst case scenarios. More impor-
tantly, to use Equation 4, we have to estimate three
parameters. For this reason, our actual implementa-
tion uses the following equation to decide whether to
use option 3 or option 4.

sk log2(k) = C, (5)

where C is the size of one uncompressed bitmap. We
use this equation to define the divider because it works
well for both compression schemes and there is no pa-
rameter to estimate.

There is a small number of cases where the trian-
gles representing option 3 fall on the wrong side of
the line defined by Equation 5. However, the differ-
ence between using option 3 and 4 is relatively small
in these cases. For example, for the triangle that is
above the line in Figure 10 with 5 bitmaps (total size
about 7.4 MB), the time spent using option 3 is 0.11
seconds and using option 4 is 0.12 second. In these
cases, using either option 3 or option 4 gives reason-
able performance.

When performing a bitwise logical operation on two
bitmaps, we have found that if the total size is greater
than that of one uncompressed bitmap, it is faster to
decompress one operand and use the in-place operation
to produce an uncompressed result [18]. This indicates
that with two bitmaps the dividing line between option
3 or 4 is s1 + s2 = C. Equation 5 can be viewed as
an extension of this observation based on the expected
execution time, see Equation 2.

Analyses show that the time required to answer a
query using the compressed bitmap indices is propor-
tional to the total size of bitmaps involved and to the
size of the search result. Figure 12 plots the time mea-
surements against the number of hits in the synthetic
dataset. In this figure, the total time refers to the total
query processing time, including the time to operate
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Figure 12: The total query processing time plotted
against the number of hits for two type of random
attributes, uniform and Zipf(1/x).
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Figure 13: The total query processing time plotted
against the total size of bitmaps used for the combus-
tion dataset.

on the bitmaps and the time to read the bitmaps from
disk. The total time shown here is measured using the
combined option for operating on many bitmaps. The
linear relation between the total time and the num-
ber of hits is clearly evident from this plot. Because
of the use of the complement when more than half
of the bitmaps are involved, the query processing time
for uniform random attributes actually decreases when
more than half of the records are hits. The time re-
quired using WAH compressed indices is about half of
that using BBC compressed indices.

Figure 13 shows the timing results on the combus-
tion dataset against the total size of the bitmaps in-
volved. The total time is measured using the combined
option and also includes time for all IO operations.
The solid line and the dashed line shown are the aver-
age cases assuming the total time is proportional the
total size of the bitmaps involved. Even though lin-
earity is only expected for some cases, we see that the

random, N = 108

average max

projection 10.3 10.3
WAH 1.2 6.8
BBC 2.8 12.5

combustion, N = 2.5 × 107

average max

projection 2.6 2.6
WAH 0.2 2.7
BBC 0.4 3.9

Figure 14: The average and worst case time (seconds)
used by various searching schemes.

timing results follow the linear relation fairly closely.
Figure 14 shows how the bitmap indexing schemes

compare with the projection index. On the average,
both types of compressed bitmap indices are signifi-
cantly faster than the projection index. In the worst
cases, the WAH compressed bitmap indices are no
worse than the projection index, but the BBC com-
pressed indices may take longer because operations on
BBC compressed bitmaps are slower.

The relative performance difference between WAH
and BBC compressed bitmap indices in these tests is
at the low end of the performance differences measured
in previous tests [17]. This is consistent with the fact
that most of the bitmaps used in these tests are very
sparse. On denser bitmaps, the performance difference
can be much larger.

7 Summary

The effectiveness of the bitmap indexing scheme for
low cardinality attributes is well accepted. There are
also evidences that compressed bitmap indices can
work well for high cardinality attributes [16, 17]. To
fully understand their effectiveness for high cardinal-
ity attributes, we analyze the space and time com-
plexities of WAH and BBC compressed bitmap indices
for answering one-dimensional range queries. The
analyses show that the total sizes of the compressed
bitmap indices are fairly modest even for attributes
with very high cardinalities. For most high cardinal-
ity attributes, where c � N , the WAH compressed in-
dices use about 2N words, which is about half the size
of a typical B-tree index. The BBC compressed indices
are even smaller. We also develop a strategy to select
the best algorithm to operate on a large number of
bitmaps. This strategy is important for us to achieve
predicted optimal speed in practice. Timing measure-
ments confirm this optimality because the query re-
sponse time is indeed linear in the number of hits for
uniform random attributes. The query response time
on other types of attributes is much lower than that
for uniform random attributes.

Event though bitmap indices compressed with both
BBC and WAH are theoretically optimal. On the aver-
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age, WAH compressed bitmap indices are about twice
as fast as BBC compressed indices in our tests. Be-
cause the projection index is often the best option for
searching high dimensional datasets, we also measured
its performance. On the average, bitmap indices com-
pressed with both BBC and WAH can significantly
outperform the projection index. In the worst cases,
the WAH compressed indices take no more time than
the projection index, but the BBC compressed indices
may take longer because they require more CPU time.

We currently have a prototype software that can use
both WAH and BBC compressions. In the future, we
plan to implement a more robust version based solely
on WAH compression. The software would include
segmented indices mentioned earlier. The prototype
implementation currently makes a number of decisions
based on the number of bitmaps involved rather than
on the total size of the bitmaps involved. For exam-
ple, on attributes with non-uniform distributions, this
may lead to wrong decisions on when to compute the
complement of the query conditions. According to the
analyses presented in this paper, the decision of when
to use the complement should be based on the total
size of the bitmaps involved.
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