Efficient Processing of Top-k Dominating Queries on Multi-dimensional Data

M. L. Yiu
Aalborg University

N. Mamoulis
University of Hong Kong
Outline

- Motivations and applications
- Background
- Eager approach
- Lazy approach
- Experimental results
- Conclusions
Top-k Query, Skyline Query

- **D**: set of points in multi-dimensional space \mathbb{R}^d
- **Top-k query**
 - k points with the lowest F values
 - Top-2: p_4, p_6
 - Require a ranking function 😞
 - Result affected by scales of dimensions 😞
- **Skyline query**
 - $p > p'$: ($\exists i, p[i] < p'[i]$) \land ($\forall i, p[i] \leq p'[i]$)
 - Points not dominated by any other point
 - Skyline: p_1, p_4, p_6, p_7
 - Uncontrolled result size 😞
Top-k Dominating Query

- Intuitive score function: \(\mu(p) = | \{ p' \in D, p > p' \} | \)
- Top-k dominating query
 - Also called k-dominating query [Papadias et. al. 2005]
 - Returns k points with the highest \(\mu \) values
 - Top-2 dominating points: \(p_4(3), p_5(2) \)
- Advantages 😊
 - Control of result size
 - No need to specify ranking function
 - Result independent of scales of dimensions
- Application: decision support
 - The query captures the most `significant' hotel
 - A conference participant attempts to book \(p_4 \)
 - If \(p_4 \) is fully booked, then try the next one (\(p_5 \))
Related Work

- Spatial aggregation processing
 - E.g., count the number of points in a region
 - Aggregate R-trees [Papadias et. al. 2001]
 - Example: COUNT R-tree
 - Each entry is augmented with the COUNT of points in its subtree
 - Query: find the number of points in W
 - W contains the entry e_{19}
 - Increment the answer by $\text{COUNT}(e_{19})$, without accessing its subtree
 - Augmented values speed up the counting the process
Top-k Dominating Query

- Processing of the top-k dominating query
- Naïve solution: Block Nested Loop join, compute the score of every point
 - Quadratic cost of input size
- Goal: develop efficient algorithm on indexed multi-dimensional points (R-tree)
 - Eager approach
 - Lazy approach
Existing Skyline-based Solution

- [Papadias et. al. 2005] Apply a skyline algorithm iteratively to obtain k-dominating points
- Example: top-2 dominating query
- Iteration 1
 - Property: \(\forall p, p' \in D, p > p' \Rightarrow \mu(p) > \mu(p') \)
 - Find the skyline points
 - Count their scores (by accessing the tree)
 - Report the first result: \(p_2 \) (4)
- Iteration 2
 - Find the constrained skyline (gray region)
 - Region dominated by \(p_2 \) but not others (\(p_1, p_3 \))
 - Count their scores and compare them with points in all previous iterations
 - Report the next result: \(p_4 \) (2)

Slow! At large skyline size!

Counting cost
Our Observation

- The counting operation is the most important
 - Index the dataset by a COUNT R-tree
- Corner locations of an entry e
 - Lower corner e^-, upper corner e^+
- Three possible dominance relationships
 - Full dominance: $p_1 \succ e_1^-$
 - p_1 dominates all points in e_1
 - Partial dominance: $p_2 \succ e_1^+$ and $p_2 \not\succ e_1^-$
 - p_2 may dominate some points in e_1
 - No dominance: $p_3 \not\succ e_1^+$
 - p_3 dominates no points in e_1
- Similar dominance relationships between entries
 - e_1 fully dominates e_3
 - e_1 partially dominates e_4
Our Eager Approach

- **Tight-most** upper-bound score of an entry e: $\mu(e^-)$
 - Tight-most in the sense that the subtree content of e is not used
 - Compute $\mu(e^-)$ by visiting nodes in the tree
- Traverse the nodes in the tree, in **descending order** of their upper bound scores
 - Use a max-heap H for organizing the entries to be visited in descending order of their upper bound scores
 - For each encountered entry e, compute its $\mu(e^-)$ immediately
 - Keep the best-k points (with the highest scores) found so far
 - Terminates when the top entry of H has upper-bound score smaller than the current best-k points
- No need to compute the whole skyline!
Tight-most Upper-bound Score Necessary?

- It suffices to derive a loose upper-score bound $\mu^u(e)$, for a non-leaf entry e
- Eager algorithm is correct, as long as $\mu^u(e) \geq \mu(e^-)$
- Develop the **lightweight counting** technique to compute $\mu^u(e)$, without accessing leaf nodes
 - Based on dominance relationships between entries
 - Much lower cost, relatively tight bound 😊
- Comparison on the example
 - Tight-most bounds: $\mu(e_1^-)=3$, $\mu(e_2^-)=7$, $\mu(e_3^-)=3$
 - Loose bounds: $\mu^u(e_1)=3$, $\mu^u(e_2)=9$, $\mu^u(e_3)=3$
 - The child node of e_2 will still be accessed first
 - Ordering of entries approximately preserved (i.e., effective search ordering) 😊
Our Lazy Approach

- Problem of the Eager approach
 - Some tree nodes may be visited multiple times (due to explicit counting of upper score bounds of entries)

- We then propose a Lazy approach
 - Visit each tree node at most **ONCE**!
 - Maintain lower $\mu_l(e)$ bound and upper $\mu_u(e)$ bound for each visited entry, initially $\mu_l(e)=0$ and $\mu_u(e)=N$
 - When a node is accessed, we **refine** the bounds of visited entries
Lazy Approach: Example

- Traversal order: assume that the node with highest upper bound is visited first
- Update bounds only based on visited entries
- Access root node
 - $\mu(e_1) = [0,3]$, $\mu(e_2) = [0,9]$, $\mu(e_3) = [0,3]$
 - $S = \{e_1, e_2, e_3\}$
- Access the child node of e_2
 - $\mu(p_1) = [1,7]$, $\mu(p_2) = [0,3]$, $\mu(p_3) = [0,3]$
 - Score bounds of e_3 unchanged
- $S = \{e_3, p_1, p_2, p_3\}$
-

[1] e fully dominates e'
 $\Rightarrow \mu'(e)$ and $\mu'(e)$ both added by COUNT(e')

[2] e partially dom. e':
 \Rightarrow only $\mu'(e)$ added by COUNT(e')
Traversals Order of Lazy Approach

- Performance of Lazy depends on its traversal order.
- Intuitive order: choose the non-leaf entry (in S) with the highest upper bound score $\mu^u(e)$.
- Is this really the best traversal order?
- Example
 - Access ordering: root, e_{18},
 - $S=\{e_{17}, e_{19}, e_{20}, e_{11}, e_{12}, e_{9}, e_{10}\}$
 - Current score bounds of e_{11}
 - Upper bound=40
 - Lower bound=10+2=12 (low, due to partial dominance)
 - Current best score=12, only few entries can be pruned!
- Objective of search
 - Examine entries of large upper bounds early
 - Eliminate partial dominance relationships of entries in S
Analysis of Partial Dominance

- Assume that \(\alpha \) and \(\beta \) are two entries
- Let \(\lambda_\alpha \) be the length projection of \(\alpha \) along a dimension
- \(\Pr(\alpha \text{ and } \beta \text{ do not intersect along a given dimension } \tau) = 1 - (\lambda_\alpha + \lambda_\beta) \)
- \(\Pr(\alpha \text{ and } \beta \text{ have partial dominance relationship }) = \Pr(\alpha \text{ and } \beta \text{ intersect at least one dimension }) = 1 - (1 - (\lambda_\alpha + \lambda_\beta))^d \), where \(d \) is the number of dimensions
- Observation: the above probability is low when \((\lambda_\alpha + \lambda_\beta) \) is small, i.e., both \(\alpha \) and \(\beta \) are at low levels
- A better traversal ordering
 - Find non-leaf entries (in \(S \)) with the highest level
 - Among them, choose the one with the highest upper bound score
Experiments on Synthetic Data

- **Algorithms**
 - ITD (Existing **Skyline-based** method, plus optimizations)
 - LCG (**Eager** approach, with lightweight counting)
 - CBT (**Lazy** approach, with our novel traversal order)

- **Synthetic datasets**
 - UI (independent), CO (correlated), AC (anti-correlated)

- **Default parameters values**
 - Node page size of COUNT R-tree: 4K bytes
 - LRU buffer size (%): 5
 - Datasize N (million): 1
 - Data dimensionality d: 3
 - Result size k: 16
Counting Technique in Eager

Compare the computation of
exact upper-bound score and
loose upper-bound score

Uniform data

Node accesses

Upper-bound score of the entry

value ~ location of the entry e
Traversals Order in Lazy

Compare the traversal of
upper-bound order and
novel order

Uniform data

- **Value of γ**
 (best score of a point)

- **Size of S**
 (number of existing entries in memory)
I/O cost vs N

UI data

AC data

CO data
Application of Top-k Dominating Points

- Real datasets (sports statistics)
 - NBA: 19112 players; BASEBALL: 36898 pitchers
- Apply top-k dominating queries to discover “top” players, without using any expert knowledge
- Results match the public’s view of super-star players in NBA and BASEBALL

Identified by player name & year

<table>
<thead>
<tr>
<th>Score</th>
<th>NBA Player / Year</th>
<th>gp</th>
<th>pts</th>
<th>reb</th>
<th>ast</th>
</tr>
</thead>
<tbody>
<tr>
<td>18299</td>
<td>Billy Cunningham / 1972</td>
<td>84</td>
<td>2028</td>
<td>1012</td>
<td>530</td>
</tr>
<tr>
<td>18062</td>
<td>Kevin Garnett / 2002</td>
<td>82</td>
<td>1883</td>
<td>1102</td>
<td>495</td>
</tr>
<tr>
<td>18060</td>
<td>Julius Erving / 1974</td>
<td>84</td>
<td>2343</td>
<td>914</td>
<td>462</td>
</tr>
<tr>
<td>17991</td>
<td>Kareem Abdul-Jabbar / 1975</td>
<td>82</td>
<td>2275</td>
<td>1383</td>
<td>413</td>
</tr>
</tbody>
</table>

Attributes

<table>
<thead>
<tr>
<th>Score</th>
<th>BASEBALL Pitcher / Year</th>
<th>w</th>
<th>g</th>
<th>sv</th>
<th>so</th>
</tr>
</thead>
<tbody>
<tr>
<td>34659</td>
<td>Ed Walsh / 1912</td>
<td>27</td>
<td>62</td>
<td>10</td>
<td>254</td>
</tr>
<tr>
<td>34378</td>
<td>Ed Walsh / 1908</td>
<td>40</td>
<td>66</td>
<td>6</td>
<td>269</td>
</tr>
<tr>
<td>34132</td>
<td>Dick Radatz / 1964</td>
<td>16</td>
<td>79</td>
<td>29</td>
<td>181</td>
</tr>
<tr>
<td>33603</td>
<td>Christy Mathewson / 1908</td>
<td>37</td>
<td>56</td>
<td>5</td>
<td>259</td>
</tr>
<tr>
<td>33426</td>
<td>Lefty Grove / 1930</td>
<td>28</td>
<td>50</td>
<td>9</td>
<td>209</td>
</tr>
</tbody>
</table>

Top-5 dominating points

Not skyline points!
Skyline vs Top-k Dominating points

- Perform a skyline query, compute top-k dominating points by setting k to the skyline size (69 for NBA and 50 for BASEBALL).
- Plot their dominating scores in descending order.
- Observations
 - Top-k dominating points have much higher scores than skyline points.
 - Top-k dominating points are more informative to users.
Conclusions

- Recognize the importance of top-k dominating query as a data analysis tool
- Our algorithms on R-tree
 - LCG (Eager approach, with lightweight counting)
 - CBT (Lazy approach, with a novel traversal order)
- CBT has the best performance, relatively stable performance across different data distribution
- Future work
 - For non-indexed data, algorithms based on hashing
 - Approximate top-k dominating result, with error guarantee
References

Alternative solutions?

- Pre-computation possible? ✗
 - Materialize the `score' of every point
 - Updates: change the `score' of influenced points
 - Update cost is expensive for dynamic datasets

- Approximation by using dominating area? ✗
 - DomArea\(p_i\) = Area dominated by the point \(p_i\)
 - Dominating area cannot provide bounds for \(\mu\)
 - DomArea\(p_1\) > DomArea\(p_4\)
 - but \(\mu(p_1)=1 < \mu(p_4)=2\) !!!

- Unlike the dominating area, computing \(\mu\) value (or even its upper bound) requires accessing data

- Related work on skyline
 - Skyline on R-tree: BBS [Papadias et. al. 2005]
 - Best-first traversal (from the origin) of R-tree
 - Keep found skyline points for pruning others