DATABASE REPLICATION

ATALE OF RESEARCH ACROSS COMMUNITIES

Bettina Kemme Gustavo Alonso
Dept. of Computer Science Systems Group
McGill University Dept. of Computer Science
Montreal, Canada ETH Zurich, Switzerland

School of Computer Science

Postgres-R (Dragon project)
Protocols [Kemme, Alonso, ICDCS'g8]
Implementation [Kemme, Alonso, VLDB2000]

Distributed
systems
person

Database
person

Dntro to Replication
ostgres-R

n perspective
SYStEmS Today
The next 10 years

A

Don't be lazy. be

pew way 10 implemen

consistent: Po

t Data hase

srg_t'es—R.
Rep]ifatiun

A brief introduction to
database replication

Database Database

Copy Copy

Database
Copy

= Scalability
= Fault-tolerance
= Fast access

suibu3 4d

suibu3 4d

Primary Copy vs. Update Everywhere

—
"‘H-n»_‘__“

Eager (synchr.) vs. Lazy (asynchr.)

Theory of replication 10 years ago

PRIMARY COPY UPDATE EVERYWHERE

EAGER
P

Replication in practice 10 years ago

PRIMARY COPY UPDATE EVERYWHERE

EAGER

WoVA

Replication in 2000

= Read-one /Write All

= Distributed locking (writes)

= 2 Phase Commit

Gray et al. SIGMOD 1996

The Dangers of Replication and a Solution
Jim Gray (Gray@Microsoft.com)
Pat Helland (PHelland@Microsoft.com)
Patrick O'Neil (POneil@cs.UMB.edu)
Dennis Shasha (Shasha@cs.NYU.edu)

Abstract: Update anywhere-anytime-anyway transactional
replication has unstable behavior as the workload scales up: a
ten-fold increase in nodes and traffic gives a thousand fold
increase in deadlocks or reconciliations. Master copy replica-
tion (primary copy) schemes reduce this problem. A simple
analytic model demonstrates these results. A new two-tier
replication algorithm is proposed that allows mobile
(disconnected) applications to propose tentative update trans-
actions that are later applied to a master copy. Commutative
update transactions avoid the instability of other replication
schemes.

1. Introduction

{" |ugLognegiou

2C\ene?’
nhoae aunsicnoll? SAa e TIVanItich o ofiet 1 eht e e o

Eager replication delays or aborts an uncommitted trans-
action if committing it would violate serialization. Lazy
replication has a more difficult task because some replica
updates have already been committed when the serializa-
tion problem is first detected. There is usually no auto-
matic way to reverse the committed replica updates, rather
a program or person must reconcile conflicting transac-
tions.

To make this tangible, consider a joint checking account
you share with your spouse. Suppose it has $1,000 in it.
This account is replicated in three places: your check-
book, your spouse’s checkbook, and the bank’s ledger.

poog’ 2ont 2bonze 2 cpecypooy’ guq pe pInK 2 |6qR6L:

e gcconmyg 12 16bjicareq 1w pree bjacez: hom. cpecy-
hon 2pgte mirp hom 2bonzes pnbboze 1t pez 21°000 W 0
1o mave e ranPimnie’ cotziact o lamnmr cuecwiit® aceanr

Response Time and Messages

centralized database

| ~ ~ ~ ~ ~ o~
~
I N N R P P
\ \ ~ ~ NN
| N N ~ L ~<
| \ \ \\\ . NNN
I N N S o Al S~o
N\ N\ ~ \\ ~ o

replicated database

update: 2N messages

2PC

... and that's not all

= Network becomes an issue
 Messages = copies x write operations

= Quorums?

e Reads must be local for complex SQL
operations

e Different in key value stores (e.q.

Our goal

Can we get scalability and consistency
when replicating a database?

Postgres-R in detail

Fundamentals

= Exploitation of group communication
systems

 Ordering semantics

* Affect isolation [concurrency control
 Delivery semantics

- Affect atomicity

Key insight in Postgres-R

BEFORE AF

IEm
|

TER
¥
Pre-Ordering Mechanism

l

The devil is in the details

= Total order to serialization order

= Provide various levels of isolation / atomicity
degrees

» Read operations always local
= Propagate changes on transaction basis
= No 2PC

 Rely on delivery guarantees

e Return to user once local replica commits
= Determinism

Distributed locking

Did we really avoided the
dangers of replication?

)]
€
£
v
E
[
[0
]
c
o
o
0
[
(24

3 4

Postgres- R Number Servers

Postrges-R removed a lot
of the overhead of
replication, providing
scalability while
3 maintaining strong

Number Servers consisten cy

%
S
£
o
£
|_
)
»
c
o
Q
0
J)
e

24

In perspective

What worked

* Ordered and guaranteed propagation of changes
through an agreement protocol external to the
engine

* The implementation was crucial to prove the point

» Thinking through the optimizations / real system
Issues

What did not work

= Modify the engine
« Today middleware based solutions

= Enforce serializability
« Today Sl and session consistency
« Data warehousing less demanding

Systems today

Very rich design space

= Applications (OLAP vs OLTP)
= Datalayer (DB vs. others)

* Throughput/Response time
= Staleness

= Availability guarantees
= Partial vs. full replication

= Granularity of changes, operations

A Suite of Replication Protocols

Correctness

1-copy

SRR crializability

Cursor
Stability

no lost updates
no dirty reads

allows
write skew

Snapshot
isolation

Hybrid — [Eade)

serializability

Local decisions

write locks
abort conflicting
local read locks

write locks
abort conflicting
local read locks

first writer to
commit wins
(deterministic)

as serializability
for update
transactions

Mssgs/txn

2 mssgs
write set
confirm commit

2 mssgs
write set
confirm commit

1 mssg
write set

2 mssgs
write set
confirm commit

Problems

very high
abort rate

inconsistent
reads

high abort
rate for update
hot-spots

requires
to identify
the queries

Architecture

= Eventually all this moved to a middleware
layer above the database

= Middle-R
= All systems out
there today

Snapshot isolation,
optimistic cc,

conflict detection,
relaxed consistenc

Middle-R
GORDA project
Tashkent
Pronto/Sprint
C-JDBC

C. Amza et al.

Primary copy

Specialized satellites

* Ganymed

= DBFarm

= SQL Azure

= Zimory
(virtualized
satellites)

= Xkoto (Teradata)
= Galera

= Continuent

= SQL Azure

= Ganymed

MySQL, DB2,

SQL Server, Oracle,
Heterogeneous

= Xkoto (Teradata)
= SQL statement
propagation
= Continuent
= | og capture

= Determinism!

SQL statement
Log entries

= Cassandra

= PNUTS

= Big Table
Key value - ClOUdy
stores, files, R

tables

With a lot of related topics

= Consistency (Khuzaima et al., Cahill et al.)
= Applications (Vandiver et al.)

= Agreement protocols (Lamport et al.)
= Determinism (Thomson et al.)
= Recovery (Kemme et al., Jimenez et al.)

The next 10 years

Understanding the full picture

= Paxos- Group communication protocols differ in
the exact properties they provide

« Often difficult to understand for outsiders
* Subtleties in implementation and efficiency
« Complex implementations

= Adjusting the agreement protocols to the needs of
databases

« Properties that suffice
 Efficientimplementation

Database and distributed systems

= Databases and distributed systems have
converged in practice

« Many similar concepts
= Research
« Work still done in separate communities
= Teaching
* Dire need for joint courses (thanks to Amr El

Thanks

= Andre Schiper, Fernando Pedone, Matthias
Wiesmann (EPFL)

= Marta Patino, Ricardo Jiménez (UPM)
* The PostgreSQL community

* PhD and master students at ETH and
McGill who have worked and are working
on related ideas

