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Protocols [Kemme, Alonso, ICDCS'g8]
Implementation [Kemme, Alonso, VLDB2000]
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A brief introduction to
database replication
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Database
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= Scalability
= Fault-tolerance
= Fast access
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Primary Copy vs. Update Everywhere
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Eager (synchr.) vs. Lazy (asynchr.)




Theory of replication 10 years ago
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Replication in practice 10 years ago
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Replication in 2000




= Read-one /Write All

= Distributed locking (writes)

= 2 Phase Commit






Gray et al. SIGMOD 1996

The Dangers of Replication and a Solution
Jim Gray (Gray@Microsoft.com)
Pat Helland (PHelland@Microsoft.com)
Patrick O'Neil (POneil@cs.UMB.edu)
Dennis Shasha (Shasha@cs.NYU.edu)

Abstract: Update anywhere-anytime-anyway transactional
replication has unstable behavior as the workload scales up: a
ten-fold increase in nodes and traffic gives a thousand fold
increase in deadlocks or reconciliations. Master copy replica-
tion (primary copy) schemes reduce this problem. A simple
analytic model demonstrates these results. A new two-tier
replication algorithm is proposed that allows mobile
(disconnected) applications to propose tentative update trans-
actions that are later applied to a master copy. Commutative
update transactions avoid the instability of other replication
schemes.

1. Introduction
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Eager replication delays or aborts an uncommitted trans-
action if committing it would violate serialization. Lazy
replication has a more difficult task because some replica
updates have already been committed when the serializa-
tion problem is first detected. There is usually no auto-
matic way to reverse the committed replica updates, rather
a program or person must reconcile conflicting transac-
tions.

To make this tangible, consider a joint checking account
you share with your spouse. Suppose it has $1,000 in it.
This account is replicated in three places: your check-
book, your spouse’s checkbook, and the bank’s ledger.
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Response Time and Messages

centralized database
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replicated database

update: 2N messages

2PC




... and that's not all

= Network becomes an issue
 Messages = copies x write operations

= Quorums?

e Reads must be local for complex SQL
operations

e Different in key value stores (e.q.




Our goal

Can we get scalability and consistency
when replicating a database?




Postgres-R in detail



Fundamentals

= Exploitation of group communication
systems

 Ordering semantics

* Affect isolation [ concurrency control
 Delivery semantics

- Affect atomicity



Key insight in Postgres-R

BEFORE AF

IEm
|

TER
¥
Pre-Ordering Mechanism

l



The devil is in the details

= Total order to serialization order

= Provide various levels of isolation / atomicity
degrees

» Read operations always local
= Propagate changes on transaction basis
= No 2PC

 Rely on delivery guarantees

e Return to user once local replica commits
= Determinism



Distributed locking

Did we really avoided the
dangers of replication?

)]
€
£
v
E
[
[0
]
c
o
o
0
[
(24

3 4

Postgres- R Number Servers

Postrges-R removed a lot
of the overhead of
replication, providing
scalability while
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In perspective



What worked

* Ordered and guaranteed propagation of changes
through an agreement protocol external to the
engine

* The implementation was crucial to prove the point

» Thinking through the optimizations / real system
Issues



What did not work

= Modify the engine
« Today middleware based solutions

= Enforce serializability
« Today Sl and session consistency
« Data warehousing less demanding




Systems today



Very rich design space

= Applications (OLAP vs OLTP)
= Datalayer (DB vs. others)

* Throughput/Response time
= Staleness

= Availability guarantees
= Partial vs. full replication

= Granularity of changes, operations



A Suite of Replication Protocols

Correctness

1-copy

SRR crializability

Cursor
Stability

no lost updates
no dirty reads

allows
write skew

Snapshot
isolation

Hybrid — [Eade)

serializability

Local decisions

write locks
abort conflicting
local read locks

write locks
abort conflicting
local read locks

first writer to
commit wins
(deterministic)

as serializability
for update
transactions

Mssgs/txn

2 mssgs
write set
confirm commit

2 mssgs
write set
confirm commit

1 mssg
write set

2 mssgs
write set
confirm commit

Problems

very high
abort rate

inconsistent
reads

high abort
rate for update
hot-spots

requires
to identify
the queries




Architecture

= Eventually all this moved to a middleware
layer above the database

= Middle-R
= All systems out
there today




Snapshot isolation,
optimistic cc,

conflict detection,
relaxed consistenc

Middle-R
GORDA project
Tashkent
Pronto/Sprint
C-JDBC

C. Amza et al.



Primary copy

Specialized satellites

* Ganymed

= DBFarm

= SQL Azure

= Zimory
(virtualized
satellites)




= Xkoto (Teradata)
= Galera

= Continuent

= SQL Azure

= Ganymed

MySQL, DB2,

SQL Server, Oracle,
Heterogeneous




= Xkoto (Teradata)
= SQL statement
propagation
= Continuent
= | og capture

= Determinism!

SQL statement
Log entries




= Cassandra

= PNUTS

= Big Table
Key value - ClOUdy
stores, files, R

tables




With a lot of related topics

= Consistency (Khuzaima et al., Cahill et al.)
= Applications (Vandiver et al.)

= Agreement protocols (Lamport et al.)
= Determinism (Thomson et al.)
= Recovery (Kemme et al., Jimenez et al.)



The next 10 years



Understanding the full picture

= Paxos- Group communication protocols differ in
the exact properties they provide

« Often difficult to understand for outsiders
* Subtleties in implementation and efficiency
« Complex implementations

= Adjusting the agreement protocols to the needs of
databases

« Properties that suffice
 Efficientimplementation



Database and distributed systems

= Databases and distributed systems have
converged in practice

« Many similar concepts
= Research
« Work still done in separate communities
= Teaching
* Dire need for joint courses (thanks to Amr El
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