
Towards SSD-Ready Enterprise Platforms
Annie Foong
Intel Corporation
2111 NE 25

th
 Ave

Hillsboro, Oregon 97124

annie.foong@intel.com

Bryan Veal
Intel Corporation
2111 NE 25

th
 Ave

Hillsboro, Oregon 97124

bryan.e.veal@intel.com

Frank Hady
Intel Corporation
2111 NE 25

th
 Ave

Hillsboro, Oregon 97124

frank.hady@intel.com

ABSTRACT

High-performance solid state disks (SSDs) deliver a 2–3 orders of

magnitude increase in I/O operations per second (IOPS) over hard

disk drives (HDDs). Extreme-performance SSDs can produce up

to 120,000 IOPS for random-access reads, taking as few as eight

direct-attached SSDs to reach one million IOPS. However,

today’s multi-core platforms have long been optimized for HDDs,

leading to the question: Are platforms ready to deliver such

extreme IOPS to the application? To this end, we provide

measurements aimed to expose the correct optimizations

necessary to deliver such performance. We found that the majority

of platform I/O latency still lies in the SSD and not in system

software. We identified data copies, uncacheable MMIO reads,

interrupt processing, and context switches to be the primary

contributors of I/O processing cost. We found typical reference

platforms to be surprisingly robust, delivering up to 177,000 IOPS

from a single host-bus adapter (HBA). We validated almost

500,000 IOPS with as many HBAs we can put into the platform

while maintaining 50% CPU utilization, showcasing the extreme

IOPS capable on single volume platform.

1. INTRODUCTION
Solid State Drives (SSDs) achieve latencies 1/100 that of hard

disk drives (HDDs) and deliver unprecedented random-access

performance. Currently, a single Intel® X25-E SATA* II SSD

can deliver 40,000 read IOPS [1], a Crucial* C300 SATA III SSD

ca deliver 60,000 IOPS, and the PCIe-based Fusion-io* ioDrive*

can deliver 120,000 IOPS [2]. It now takes as few as 8 direct-

attached SSDs to deliver one million IOPS to a single platform—

something that requires a SAN array of HDDs to deliver.

This new storage technology motivated many ideas about using

SSDs to deliver platform performance. Researchers suggest that

self-managing SSDs must be approached differently from HDDs,

and proposed that a more expressive interface (e.g. object-based

storage) be adopted [3]. Others have focused on designing new

caching schemes and file systems specifically for SSDs [4][5].

However, most studies failed to provide quantitative evidence of

performance improvement. To characterize file systems suitability

for SSD, Shin, et.al., empirically compared common Linux file

systems (NILFS, btrfs, ext2, ext3, ext4, ReiserFS, and XFS) by

running Postmark (an email server) on SSDs [6]. He noted

performance differences when key parameters (e.g. block size,

allocation policies, barrier enforcement) are changed.

Benchmarking led him to conclude that correct alignment is

important for SSDs and specific file systems (e.g. xfs) perform

significantly better when mounted without barriers.

Since SSDs fill the gap between memory and disk cost and speed,

many have proposed to adopt SSDs as a cache, either as OS-

managed extension of the buffer cache [5][7] or managing HDDs

and SSDs in storage hybrid pools [8]. Roberts, et.al., argued for

the extended buffer cache model as the best way to integrate

NVM into servers [5]. They showed through trace-driven

simulation that splitting NVM-based buffer cache into read and

write regions improved power performance and reliability. Still

others have proposed reconfigurable flash controllers to adapt to

differing workloads [9]. These efforts have been based on the

assumption that the platform is already designed to handle the

extreme I/O improvement that SSDs deliver.

Does this assumption hold, and if not, how should platforms be

redesigned to deliver extreme IOPS cost-effectively? While

performance reports of SSDs abound in trade literature [1][10],

market-targeted performance measurements and empirical studies

alone are inadequate to enable systems architecture advancement.

New technologies require exposing basic relationships. Accardi

and Wilcox took a first step by implementing an ATA-based and

SCSI-based RAM disk in Linux [11]. They found the ATA-based

emulation to perform significantly better than the SCSI-based

version. From this observation, they deduced that SCSI adds

significant overheads. However, due to the adoption of a RAM

disk, their analysis did not consider overheads due to HW/SW

interaction, nor other OS-support processing (besides SCSI)

occuring in the SCSI layer. Further root-causing is required.

Agrawal, et.al., provide an excellent assessment of algorithms and

basic design considerations of SSDs [12]. Chen, et.al., designed a

set of measurement methods targeted specifically to expose

differing SSD behavior from different vendors [13]. These

researchers provided the basics necessary for assessing SSDs as

individual devices. In this paper, we expose the basics for

assessing them as part of the larger system. We include in our

analysis chipsets, HBAs, cores, software and the interactions

among them (Figure 1). Our goals are two-fold:

Figure 1. Architecture of a reference multi-core platform.

M

C

H

cores

IOH

memory

SSD

SSD

HBA

ICH

integrated

SSD

memory

M

C

H

SSD

PCIe

cores

1. provide fundamental measurements and relationships

that form the primitives necessary to frame platform

storage architecture research, and

2. pinpoint platform bottlenecks and optimization

opportunities as a first step toward solutions.

We kept the existing HW platform and operating system (OS)

infrastructure in place, and determined how far we can push

current architecture. We assumed applications to be well-

parallelized, and we isolated system software and hardware

bottlenecks exposed by SSDs. To this end, we focus on three sub-

goals:

1. minimize platform latency,

2. ensure processing efficiency to maximize throughput

per core, and

3. scale performance with the numbers of cores and SSDs.

Trade literature claimed that direct PCI Express connectivity can

deliver 10x lower latency than SATA-based SSDs by eliminating

the need for intermediate protocols [14]. However, we confirmed

that platform latency is not an issue—the SSD remains the

primary contributor. We determined that HBAs with optimized

host interfaces enable a processing efficiency of 20K clocks (CPU

cycles) per I/O. Ironically, except for the block layer, we found

the majority of processing overheads lay in the cost of generic

device/OS functions (e.g. the driver, copies, interrupts and

context-switching) and not in storage specific functions such as

SCSI or ATA processing. However, we did find a scaling

limitation imposed by a single HBA as we push IOPS with more

SSDs and cores.

In the next section, we present background necessary to

understand the reference platform and system software. We then

proceed to present the experimental designs and measurements

needed to achieve the goals we have outlined.

2. PLATFORM AND ARCHITECTURE
We used Linux* as a reference OS for experiments. The

components (Figure 2) can be generalized to any general-purpose

OS.

The file system organizes data into files and directories and

provides methods to create, update or delete data. The virtual file

system (VFS) in Linux provides a common application interface

for multiple types of file systems. It also provides raw disk access

by treating whole disks and partitions as files (e.g. /dev/sda).

The generic block layer is responsible for locating the actual

storage device and logical block address (LBA) on the drive for

each I/O request. This typically involves translating a partition

and offset into an absolute LBA. The generic block layer may also

invoke the device-mapper if the partition belongs to a logical

device. For example, it may invoke the Logical Volume Manager

(LVM) to translate a request for a logical device into a physical

device. Once a real device and LBA are found, the generic block

layer invokes the I/O scheduler which attempts to reduce media

seek time by reordering requests and coalescing adjacent requests.

Devices, that use common storage protocols (e.g. SAS* and

SATA), are abstracted and exposed to the generic block layer as

SCSI disks via the SCSI mid-layer. Requests to SATA and SAS

adapters are translated from SCSI to their respective protocols,

either through an OS-supplied library (e.g. libata and

libsas), or through solutions supplied by HBA vendors.

Four major I/O paths may be composed between the application

and device (Table 1) by choosing one of each of the following:

1. I/O through a file system or directly to a block device,

and

2. I/O through the buffer cache (buffered) or directly to the

device (direct I/O).

Using the VFS, Linux presents the same interface to applications

independent of the chosen path. If data is accessed through a file

system, extra processing and disk reads are needed to access

meta-data to locate the actual file on first access. Such meta-data

are stored in the buffer cache to accelerate future accesses to the

same data. The meta-data is always brought into the buffer cache

even if data accesses were done in the direct I/O mode. As such,

the method of acquiring meta-data is dependent on the workload

and the state of cache. There are usage models that benefit from

using or bypassing the buffer cache or controlling its use

explicitly.

Whether an application incurs buffered or direct I/O and whether

it hits or misses buffer cache when doing meta-data accesses are

workload and policy dependent. Workload and file system

characterization of real applications is required to solicit the most

frequently occurring (and hence important) complex paths. In this

paper, we offer an initial characterization of the complex paths,

but focus our in-depth analysis on direct I/O. Direct I/O
without a file system is the most primitive path upon which
the other paths are built, and its performance is relevant to
any application.

Figure 2. Architecture of the Linux I/O subsystem.

Table 1. Make up of different I/O paths.

 Direct

I/O

Buffered Direct

I/O

Buffered

 Block Block Files Files

VFS x x x x

filesystem x x

metadata x x

cache

management

 x x

copies x x

I/O stack x x x x

DMA x x x x

hardware

interface

x x x x

Application

VFS

File system

Generic block layer

File cache

SATA-based SSDs

App buffer

IO scheduler

SCSI mid-layer

Low level device drivers

SATA and SAS Translation

Host-bus adapter

App buffer
copy

Block device

DIRECT IO BUFFERED IO

F
o
cu

s
o
f

A
n
al

y
si

s

3. METHODOLOGY AND SETUP
Having identified independently separable components of an I/O

path (Table 1), we build upon microbenchmarks (FIO [15]) that

exercise these components exactly. We have also identified a

minimum set of platform parameters that is important for

duplicating our measurements in (Table 2).

We measured path timing by reading the processor’s timestamp

counter (rdtsc() [16]), and we gathered statistics reported by

the OS (e.g. mpstat, iostat [17]). We adopted OProfile [18],

a statistical event sampling tool, as an alternate means of

validating clocks and instruction count. To maintain a small

number of representative experiments, we focused on fixed-size

4KB random reads. Random I/O ensures that improvements are

observed independent of I/O merging policies. We used only

reads since writes take a nearly identical path through the platform

(with data transfer in the opposite direction). Furthermore, SSDs

deliver much higher performance for read versus writes. A read-

intensive workload pushes the platform further—if the platform

can deliver full performance for reads, it certainly will deliver full

performance for writes.

4. PLATFORM BOTTLENECK ANALYSIS
We classified platform I/O bottlenecks into three types and we

examined them separately.1

1. Platform latency bottlenecks—We isolated the

component which dominates I/O latency, thus

determining which component to fix to reduce overall

latency.

2. I/O processing bottlenecks—We determined which

software contributed the most CPU overhead for I/O

processing. I/O processing overhead reduces the

maximum bandwidth per CPU and limits the CPU

clocks available to the application.

1 Performance results are based on certain tests measured on

specific computer systems. Any difference in system hardware,

software or configuration will affect actual performance. For

more information, go to http://www.intel.com/performance.

3. Performance scaling bottlenecks—We measured

performance as the number of CPU cores available for

processing increased, and we determined which

platform components limited scaling of performance.

4.1 Platform Latency
We define Total I/O latency seen by an application thread as the

time from when the application issues an I/O to the time it

receives its completion (last byte):

Time due to platform includes latency through software (I/O issue

and completion processing), time through queues, platform

hardware (e.g. chipsets), adapters, and the time it takes to
transfer a given size of the payload data through a given link
speed.

Because there is no ―seek time‖ to an SSD, the I/O scheduling

policy has minimal impact on performance for SSDs. We set the

I/O scheduling policy to no-op and ensured (and validated) nearly

zero wait time in queues. From our processing cost measurements

(Section 4.2), we derived total latency through software.

Measurements taken at the SATA bus (using a SATA bus

analyzer) exposed media latency and time taken to transfer

payload bytes across the 3Gbps SATA II link. Combining both

sets of measurements, we derived latency contributions of the

entire I/O path through the platform.

Despite huge improvements in media access times, the SSD is still

the major contributor of latency (Figure 3). The platform only

contributes 26% of the total latency. Optimizing the media is

necessary to make meaningful latency improvements.

4.2 I/O Processing Cost
I/O processing on the platform must be highly efficient in terms of

CPU clocks to reach the high IOPS made possible by SSDs. We

consider clocks (CPU cycles) per I/O as the metric of processing

efficiency. We used instead of nanoseconds to reflect the

efficiency of a platform with a given memory architecture. In this

section, we restrict analysis to a single core, differentiating it from

scaling analysis that is addressed later (Section 4.3).

We connected the SSDs to the platform-integrated AHCI-based

SATA controller. Figure 4 shows the processing time of an I/O

from issue to completion. An I/O issue request begins with a

system call by the user application and transitions into kernel

space. User-kernel-user transitions (system call and return) took

924 clocks. The original file-based I/O is framed into blocks, then

Table 2. Test system setup.

Platform Dual 2.93GHz Intel Xeon® X5570

Processors

Adapters Integrated AHCI SATA adapter

8-port LSI* Fusion MPT* SAS adapter

Application FIO synchronous I/O with up to 128

concurrent threads

Operating

system

Linux 2.6.28

File systems direct block access, ext3

I/O scheduler No-op

Drives Intel X25E SSDs

Hitachi* Deskstar* HDDs

Other

configuration

SMT, CPU low-power states, frequency

scaling disabled; Linux tickless timer

disabled; 10ms scheduler time slice;

polling when idle

Figure 3. Latency of a 4KB I/O to a SATA II SSD through the

platform as experienced by an application.

141 19 12 12

0 50 100 150 200

I/O Latency (µs)

SSD latency storage interconnect

hardware & adapter software

http://www.intel.com/performance

into SCSI commands and prepared by the driver for issue to the

HBA. Once the I/O request is handed off to the adapter (through

the issue of a doorbell), CPU clocks are no longer expended.

When the disk completes the request, an interrupt to the CPU

enables entry into driver’s interrupt service routine (ISR) and

completes the rest of the I/O; the I/O is finally handed back to the

application.

Processing an I/O required about 35,000 clocks with disks

connected via AHCI. The largest hotspot was in the return path of

the driver. The most expensive functions were in

ahci_interrupt() and ahci_scr_read(). These

functions executed uncacheable (UC) reads from memory-mapped

device registers on the adapter. The UC reads incurred significant

processing cost, averaging 2,100 clocks per UC read. Device

interfaces that adopt message signaled interrupts (MSI), and the

added intelligence to push status to drivers, can eliminate such UC

reads. We predict that this optimization alone will reduce

overhead by about 8,400 clocks/IO.

We were able to validate this insight using an enterprise-targeted

adapter (the LSI Fusion MPT SAS adapter). Figure 5 is based on

the same instrumentation done in Figure 4 but is presented in a

different way for ease of comparison. The profile combines both

issue and completion processing on a per-layer basis. We found

no UC reads in LSI’s driver (mpt2sas). Additionally, no SATA-

related routines were used. The LSA adapter offloaded the

SAS/SATA conversion saving 1,600 clocks on the host. While the

cost-targeted AHCI SATA controller had served the industry well

for HDDs, SSDs expose the need for higher performance

adapters. Given LSI adapter’s more optimal interface, further

measurements are done with LSI adapters. I/O processing, when

done through an MSI-based interface like LSI’s, incurred 25,000

clocks/IO, yielding a 30% improvement in processing efficiency.

The LSI’s driver return path (5250 clocks/IO) is still substantial.

We expected this to reduce due to batch processing of I/O

interrupts by employing interrupt coalescing. Our validation of

this optimization potential is shown in Figure 6. At large numbers

of coalesced interrupts, all but 650 clocks remain in the driver

return path, resulting in about 20,000 clocks/IO for throughput-

intensive workloads that can leverage interrupt coalescing.

Beyond these optimizations, the largest system overheads for the

direct I/O path occurred in OS context switching and the block

layer. We found that the clocks/instruction (CPI) of the block

layer to be small (1.3), and it would be difficult to improve CPI

further. Improving and/or finding alternatives to reduce context

switches may yield better results.

To put further potential optimization into perspective, we offer a

quick assessment of the overheads for other paths that exist in the

Figure 4. Processing requirements from I/O issue to completion in clocks (not to scale).

Figure 5. I/O processing distribution with LSI (4KB reads,

single-core). SATA and UC read costs are shown for

comparison.

I/O issue:

vfs_read()

VFS

301

Block

3,859

SCSI

1,935

Driver

1,376 HW+SSD
App

3,960

vfs_return()

from previous I/O

Issue to

block layer

Issue to SCSI

Issue to

driver

Doorbell

Issue processing

libata

1,643

(A)

Driver

13,650

SCSI

653

Block

272

VFS

854

wake

blocked

thread

5,287Interrupt

Driver

done

SCSI done

Block

done

I/O complete:

vfs_return()

Completion processing

(A)
User-

kernel

transitions

924

softIRQ

323

Deferred

ISR

done

0k 2k 4k 6k 8k 10k

application

user-kernel transition

VFS

generic block layer

SCSI mid-layer

process scheduling

low-level device driver

SATA translation

4 UC reads

clocks/IO

I/O stack (Table 1)—including a file system (ext3) and buffered

I/O. As noted earlier, analysis of these complex paths are a topic

of future work and will require more careful treatment than given

here. Nevertheless, it is still worthwhile to get an indicator of the

magnitude of these overheads.

When the application uses a file system, meta-data is required to

determine the location of the intended block. The number of meta-

data accesses is dependent on the file system in question.

Moreover, the meta-data may or may not be in cache depending

on the application workload. We made a simplifying assumption

that platforms have a well-resourced buffer cache, and as such, a

majority of file accesses do not require meta-data access from the

device (except for the very first access to a location in the file).

Our measurements are taken by first ensuring that the file

system’s meta-data is already in cache. The clocks/IO attributed to

the file system is the processing required to read data (not

including meta-data) from the disk. We noted that the file system

(ext3) adds only 3,400 clocks (<15%) to the path (Figure 7).

In the case of buffered I/O, the buffer cache is now the DMA

destination, requiring an extra copy of the payload to its final

destination in the application (Figure 2). We designed our

experiments to fully expose the entire buffered I/O path (and not

just a copy from cache). The difference in clocks is expected to

increase with payload sizes. The extra cost of copies and

associated cache management was validated to be a near-linear

function of request size (2.1 clocks/byte) (Figure 7). We note that

Figure 6. I/O processing cost with interrupt coalescing.

Figure 7. Processing overheads of file system and buffered

I/O.

Figure 8. IOPS and CPU utilization for 3 SSDs taken on a

single core.

Figure 9. IOPS scaling and CPU utilization for 8 SSDs on 8

cores.

Figure 10: Scaling of IOPS as the number of adapters

increases with the number of cores.

0k

5k

10k

15k

20k

25k

30k

1 2 4 8 16 32 64 128

cl
o
ck

s/
IO

coalescing threshold (# of I/Os)

4,600 clocks

0k 50k 100k 150k 200k

4KB

64KB

direct I/O (no file system)

file system overhead

copying/buffering overhead

0%

20%

40%

60%

80%

100%

0k

20k

40k

60k

80k

100k

120k

140k

1 2 3

C
P

U
 u

ti
li
za

ti
o
n

IO
P

S
 (
b

a
rs

)

number of SSDs

throughput (IOPS) CPU utilization

0%

20%

40%

60%

80%

100%

0k

50k

100k

150k

200k

250k

300k

350k

1 2 3 4 5 6 7 8 C
P

U
 u

ti
li

za
ti

o
n

 (
li

n
e

s)

IO
P

S
 (

b
a

rs
)

Number of SSDs

total IOPS ideal IOPS

avg. CPU utilization

0k

100k

200k

300k

400k

500k

600k

1/3 2/6 3/9 4/12

th
ro

u
g
h

p
u

t
(I

O
P

S
)

number of cores & adapters/number of SSDs

measured ideal

this overhead can overwhelm I/O stack requirements at large

transfer sizes, and may be a worthy candidate of attention.

4.3 Performance Scaling
With the ubiquity of multi-core platforms, we turn our attention to

ensuring that I/O processing scales with cores and SSDs. Having

ensured processing efficiency, we now focus on achieving

maximum throughput (IOPS and MB/s) platform-wide.

We show in Figure 8 that the maximum throughput on a single

core for 4KB random reads reached 129,000 IOPS. At this point, a

single core was fully saturated—more cores were required.

Figure 9 shows that with all eight cores available for I/O

processing, throughput stalled at 177,000 IOPS with one adapter.

Thus, we added more adapters. As shown in Figure 10, adapters

were increased one at a time from one to four while also

increasing the number of available cores from one to four. (Due to

the limited number PCI Express* slots on our reference platform,

we were only able to showcase up to four adapters.) We tested

three SSDs on each adapter for a maximum of twelve. The figure

shows that throughput scaled within 15% of linear—up to 445K

IOPS. Since more adapters enabled higher total throughput, the

single adapter was the bottleneck. At this performance, I/O

processing saturated four cores—half the available cores on the

platform.

We also measured data throughput across the four adapters and 12

SSDs with 64KB I/O sizes. The result was 3GB/s, within 2% of

linear (Figure 11).

5. CONCLUSIONS
We have exposed all platform bottlenecks that may interfere with

delivering full SSD performance to applications, and have

pinpointed further areas of investigation. The following

measurements make up key primitives that drive our future design

decisions:

1. I/O latency (for 4KB reads): 180µs. The platform

hardware and software made up 20µs of the latency

while the the SSD accounted for the rest.

2. I/O processing cost (using performance-targeted

adapters): 25K clocks/IO (20K with interrupt

coalescing).

3. Performance scaling: Limited to 177,000 IOPS with a

single adapter. We reached 445K IOPS (15% from

linear) and 3GB/s (2% from linear) with four adapters at

50% average CPU utilization.

We set out to determine if HDD-targeted platforms could deliver

the full performance from SSDs. From our investigation, we

concluded that the SSD, not the platform, is still the primary

contributor to I/O latency. We also concluded and validated that

removing UC reads and employing interrupt coalescing will

reduce I/O processing cost significantly for SSDs behind an AHCI

host interface, and we found an enterprise-targeted adapter to be

CPU-efficient. We found a performance scaling bottleneck

incurred by using a single adapter which delivered 177K IOPS

(matching the IOPS of 4 SSDs). We had to increase the number of

adapters to achieve more—a total of four adapters were required

to deliver 445K IOPS (matching the IOPS possible from 12 SSDs)

For enterprise workloads that would not require extreme IOPS

from a single adapter, we found that existing platforms to be ready

for SSDs.

6. FUTURE WORK
Beyond these issues, we recommend the following directions as

worthy of pursuit:

1. Determine the scalability of file systems and RAID

implementations. We have exposed scaling issues when

SSDs are used as JBOD (just-a-bunch-of-disks), but real

enterprise applications run with file systems and RAID

arrays. Additionally, file systems may gain from

organizing meta-data in a way that take into account the

special characteristics of SSDs.

2. Determine whether the overheads of context-switching

can be mitigated with asynchronous I/O (AIO). We did

not observe processing cost improvements with AIO,

and believe (but have not confirmed) that Linux’s use of

a kernel thread to emulate AIO to be insufficient. Such

an implementation moved (but did not eliminate) the

context switch. We call for developers to optimize AIO

in Linux.

3. Expose I/O behavior of real applications. We have

focused on data transfer as the performance-critical

path, but cannot assume such behavior to be universally

true of all applications. Characterization of more

applications may expose bottlenecks in other important

paths (e.g. retrieval of meta-data).

Removing platform bottlenecks is a necessary first step—further

optimization based around SSDs unique characteristics can now

follow. We have established an accurate set of fundamental

measurements and performance expectations, which we hope

provide a reference that other researchers can build upon,

ultimately leading to innovations that drive new platform

architectures around this exciting technology.

7. REFERENCES
[1] Coles, O. Marvell SATA-6G SSD performance vs. Intel

ICH10. Benchmark Reviews.com. 2009.

http://benchmarkreviews.com/index.php?option=com_conte

nt&task=view&id=413&Itemid=38.

[2] FUSION-IO. MySpace uses fusion powered I/O to drive

greener and better data centers. 2009.

[3] Rajimwale, A., Prabhakaran, V., and Davis, J.D. Block

management in solid-state devices. In USENIX Annual

Figure 11: Scaling of MB/s as the number of adapters

increases with the number of cores.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12

th
ro

u
g
h

p
u

t
(G

B
/s

)

number of SSDs

Technical Conference Proceedings (San Diego 2009),

USENIX.

[4] Kim, H. and Ahn, S. BPLRU: a buffer management scheme

for improving random writes in flash storage. In FAST

Proceedings (San Jose 2008), USENIX.

[5] Roberts, D., Kgil, T., and Mudge, T. Integrating NAND

flash devices on to servers. Communications of the ACM, 52,

4 (April 2009), 98–106.

[6] Shin, D. About SSDs. In Linux Storage and File System

Workshop Proceedings (San Jose 2008), USENIX.

[7] Graefe, G. The five-minute rule 20 years later.

Communications of the ACM, 52, 7 (2009), 48–59.

[8] Leventhal, A. Flash storage memory. Communications of the

ACM, 51, 7 (July 2008).

[9] Shin, J.Y., Xia, Z.L., Xu, N.Y., Gao, R. Cai, X.F., Maeng,

S., and Hsu, F.H. FTL design exploration in reconfigurable

high-performance SSD for server applications. In ICS

Proceedings (Grenoble, France 2009), ACM.

[10] Connolly, C. Windows 7 HD and SSD performance

analyzed. 2009. http://hothardware.com/Articles/Windows-

7-Disk-Performance-Analyzed/.

[11] Accardi, K.C. and Wilcox, M. Linux storage stack

performance. In Linux Storage and Filesystem Workshop

(San Jose 2008), USENIX.

[12] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D.,

Manasse, M., and Panigrahy, R. Design tradeoffs for SSD

performance. In USENIX Annual Technical Conference

Proceedings (Boston 2008), USENIX.

[13] Chen, F., Koufaty, D.A., and Zhang, X. Understanding

intrinsic characteristics and system implications of flash

memory based solid state drives. In SIGMETRICS

Proceedings (Seattle 2009), ACM.

[14] DOLPHIN. Dolphin expands PCI Express SSD storage

product line. SEO Press Releases, Marlborough, 2009.

http://www.seopressreleases.com/dolphin-expands-pci-

express-solid-state-disk-ssd-storage-product-line/2563.

[15] Axboe, J. Flexible IO Tester (fio). 2010.

http://git.kernel.dk/?p=fio.git;a=summary.

[16] INTEL. Intel 64 and IA-32 Architectures Optimization

Reference Manual. 2009.

[17] Godart, S. SYSSTAT. 2010.

http://sebastien.godard.pagesperso-orange.fr/.

[18] Levon, J. OProfile. 2009.

http://oprofile.sourceforge.net/news/.

*
 Other names and brands may be claimed as the property of others.

