
The Features of BigOWLIM that Enabled the BBC’s
World Cup Website

Atanas Kiryakov, Barry Bishop, Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev,
Ruslan Velkov

Ontotext AD, 135 Tsarigradsko Chaussee, Sofia 1784, Bulgaria

ABSTRACT
Semantic repositories – RDF databases with
inferencer and query answering engine – are set to
become a cornerstone of the Semantic Web (and
Linked Open Data) due to their ability to store and
reason with the massive quantities of data involved.
In this paper, we describe the features of BigOWLIM
that have allowed it to penetrate into the commercial
sector, focusing on one particular use-case, that being
its use in the BBC’s World Cup website.

General Terms
Query answering, Semantic Web, Full-text Search

Keywords
Database, Triple Store, RDF, SPARQL, OWL

1. INTRODUCTION

There is no formal definition of the term ‘semantic
repository’ so for the purposes of this article we use
this term for Database Management Systems
(DBMS) that can be used to store, query and manage
data structured according to the Resource Description
Framework (RDF) standards [5]. Compared to
Relational DBMS, such systems use flexible
ontological schemata where data is processed by an
inference-engine according to a well-defined
semantics.

While semantic repositories have been around for
more than a decade, so far they have not managed to
win the hearts of a sizeable fraction of software
architects. We believe there are two major reasons
for this: immature tools and inconsistent feature sets.
The first is a natural child illness of each new
technology – mature tools can only appear on top of
large user communities, which are not present for
young technology. More worrying are some

misconceptions about their essential features, which
are widely spread across many of the providers and
users of semantic repositories. We will point out two
of those:

• Misconception 1: Reasoning is not an
important feature; materialization does not
work, all the required inference can be
handled efficiently during query evaluation;

• Misconception 2: Data-partitioning is an
important feature; it is the way to deal with
critical constraints of the technology, e.g.
performance and scalability.

We show that these are “urban myths” by presenting
the basic design decisions behind BigOWLIM – a
semantic repository which delivers best overall
performance according to multiple independent
evaluations conducted recently [2][11][9]. We will
focus on features that appeared to be critical for the
successful realization of BBC’s World Cup 2010 web
site, which was qualified in [7] as “the first large
scale, mass media site to be using concept extraction,
RDF and a Triple store to deliver content.”

2. BigOWLIM

OWLIM is a family of semantic repositories that
provide storage, inference and novel data-access
features delivered in a scalable, resilient, industrial-
strength platform. The flagman of the family,
BigOWLIM combines the robustness and scalability
of relational databases, the reasoning capabilities of
inference engines, and the efficiency of column
stores in handling sparse data and evolving schemata.
BigOWLIM delivers this functionality as an engine
whose performance and resilience allowed it serve in
the core of the semantic web publishing stack
running the BBC’s World Cup web site [8]. Here
BigOWLIM handles millions of queries per day in a
mission critical production environment, where the
data is updated hundreds of times per hour.

BigOWLIM is also optimized to integrate and
reason with linked data – these capabilities are
proven in a couple of linked data portals
(http://FactForge.net and http://LinkedLifeData.com),
which provide public access to billions of linked data
statements integrated from tens of datasets.

Copying without fee all or part of this material is permitted only for
private and academic purposes, providing that the title of the
publication, the authors and its date of publication appear. Copying
or use for commercial purposes, or to republish, to post on servers
or to redistribute to lists, is forbidden unless an explicit permission
is acquired from the copyright owners; the authors of the material.
Workshop on Semantic Data Management SemData@VLDB 2010
September 17, 2010, Singapore.
Copyright 2010: www.semdata.org.

3. INFERENCE CAPABILITIES

The inferencing strategy in OWLIM is one of total
materialization (apart from an optimization for
owl:sameAs that is not discussed in this paper)
based on R-Entailment (as defined by ter Horst [10])
where Datalog [3] like rules with inequality
constraints operate directly on a single ternary
relation that represents all triples.

Total materialization involves computing all the
entailed statements at load time. While this
introduces additional reasoning cost when loading
statements in to a repository, the desirable
consequence is that query evaluation can proceed
extremely quickly.

Several standard rule sets are included in all
editions of OWLIM and these include (in more or
less increasing levels of complexity): ‘empty’ (no
inference), OWL-Horst [10], RDFS [1], owl-max
(RDFS plus most of OWL-Lite) and OWL2-RL [6].

In addition to the standard semantics, user-defined
rule-sets can be used. In this case the user provides
the full pathname to a custom rule file that contains
definitions of axiomatic triples, rules and consistency
checks.

4. RETRACTING ASSERTIONS

As mentioned above, OWLIM materializes all
inferred statements at load time and whenever new
statements are added to the repository. This has the
highly desirable advantage that query answering is
very fast, due to the fact that no further inference
needs to be done. Updates that simply add new
statements are treated in the same way as at load
time, i.e. new statements are fed to the inference
engine that applies the inference rules (making joins
across new statements with existing statements) until
no new inferences are obtained. Since the semantics
(both standard and custom) must be monotonic,
insert operations incrementally add to the set of
explicit and inferred statements. However, retracting
explicit statements that are used to infer other
statements becomes more complicated. In
SwiftOWLIM, this is achieved by simply
invalidating all inferred statements and re-computing
the full-closure whenever an update is committed.
This has the advantage of simplicity of
implementation, but the disadvantage of poor update
performance and lack of scalability.

BigOWLIM has a specific optimization for
handling delete operations that updates the full-

closure incrementally. This technique labels
statements to be deleted and then uses forward-
chaining to identify those statements that can be
inferred from them, followed by backward chaining
to identify those inferred statements that are still
supported by other means.

The result is that delete performance is only
slightly worse than the insertion of new statements.
This allows the repository to handle rapidly changing
data even when answering queries over tens of
billions of statements.

5. TRANSACTION CONTROL

OWLIM supports the ‘read committed’ transaction
isolation level. It guarantees that changes will not
impact query evaluation, before the entire transaction
they are part of is successfully committed. It does not
guarantee that execution of a single transaction is
performed against a single state of the data in the
repository. Regarding concurrency, multiple
update/modification/write transactions can be
initiated and stay open simultaneously, i.e. one
transaction does not need to be committed in order to
allow another transaction to complete Furthermore,
update transactions are processed in sequence and do
not block read requests in any way, i.e. hundreds of
SPARQL queries can be evaluated in parallel (the
processing is properly multi-threaded) while update
transactions are being handled on separate threads.

One should note that OWLIM performs
materialization, making sure that all the statements
which can be inferred from the current state of the
repository are indexed and persisted. By the time the
commit method completes, all reasoning activities
related to changes introduced by the corresponding
transaction will have already been performed.

6. REPLICATION CLUSTER

BigOWLIM can be used in a cluster configuration
where replication is used to improve resilience and
provide scalable query answering.

The query performance of the cluster represents
the sum of the throughputs that can be handled by
each of the instances. In a simple configuration of 3
or 4 worker nodes, hundreds of thousands of query
requests can be answered per hour while at the same
time processing thousands of updates per hour – with
non-trivial inference.

In a cluster configuration, there are two types of
nodes: Masters and Workers. Masters act as the

gateway to the cluster and all read/write requests go
through these nodes. A cluster can have more than
one master node, but only one is allowed to operate
in read/write mode. The other master nodes operate
in read-only mode, otherwise known as ‘hot-
standby’. They can be used for marshalling read
requests and can take over handling updates if the
current read/write master fails. Worker nodes are
standard BigOWLIM instances exposed by the
Sesame HTTP server – a servlet running in Tomcat
or similar. Read and write requests are passed to the
workers from the master nodes. This simple
arrangement allows for a great deal of flexibility in
the design of a cluster topology. The example given
in Fig. 1 has two master nodes and three worker
nodes. At any moment in time, clients of the cluster
can send read requests (queries) to either master
node, but updates can only be handled by the master
in read/write mode. If this master node should fail,
the hot standby master can be brought in to
read/write mode and from then on will handle both
read requests and updates, as well as taking over
responsibility for ensuring the synchronization of all
the worker nodes.

Each master node implements a JMX MBean [4]
that is accessible using standard Java instrumentation
tools, such as JConsole, and can be used to monitor
and control the cluster while it is running. Typical
activities supported include the monitoring of the
health of each node, statistics gathering, adding and
removing worker nodes.

Fig. 1 A typical replication cluster configuration

During normal operation, a master node will keep
track of the size of each worker’s read request queue,
such that each read request is sent to the worker with
the shortest read queue. Update requests are handled
differently. First of all, the update is tested against a
single worker node. If the update is successful and
subsequent consistency checks pass then the update
request is considered ‘safe’ and is passed to the rest
of the worker nodes. Master nodes take additional
care to ensure that the states of all worker nodes are
properly synchronized and if an anomaly is detected,
the problem worker node is released from the cluster.
The monitor and control JMX interface can be used
to return worker nodes to the cluster and initiate their
synchronization.

In the event of a failure of a worker node, the
performance degradation is graceful with respect to
the number of healthy workers. The cluster can
remain operational with just a single worker node.

7. CONCLUSION

The emerging Web of data has provided new
challenges for software components that must expose
this data and enable its widespread consumption. The
OWLIM family of semantic repositories is ideally
suited to this task due to its ability to store, reason
and answer queries using the massive datasets
involved.

OWLIM’s development over the last 6 years was
driven by pragmatic design decisions aimed to meet
the requirements of a range of real-world
applications, using it for data integration, metadata
management and multi-paradigm information
retrieval techniques that combine structured queries
and reasoning on the one hand with full-text search
and co-occurrence analysis on the other. This
allowed OWLIM to develop to the point of maturity
and comprehension which allowed it to serve as the
back end for such a high-profile application as the
BBC’s World Cup 2010 web site. This use case
demonstrated the viability of several design
decisions:

• Distributed configuration, based on data
replication, is ideal for applications where
resilience and horizontal scalability with
respect to query loads are key; in such
environments data partitioning is inefficient
and inappropriate;

• Reasoning based on forward chaining and
materialization provides very good overall
performance. When paired with intelligent

Worker 1

Read/Write
Master

Hot standby
Master

Worker 2 Worker 3

Standard BigOWLIM instances

Dispatches queries
and updates to

workers
(read/write)

Dispatches queries to
workers

(read only)

retraction techniques, it can cope with large
numbers of updates, while simultaneously
dealing with heavy query loads.

OWLIM continues to evolve with various new
features planned for the near future. The next release
of OWLIM will include enhanced support for geo-
spatial data and some of the widely accepted geo-
spatial vocabularies. Specialized indices will be used
to access spatial data and a range of SPARQL
extension functions will allow for expressive queries
using 2D and 3D geometry.

The next release will also include interfaces that
support the JENA RDF framework, enabling
OWLIM to be used with both Sesame and JENA, the
two most widely used RDF frameworks.

The current set of advanced features and world-
leading performance have helped to position
OWLIM as the semantic repository of choice for all
environments that manage RDF data, particularly for
Web-scale applications. The future evolution of
OWLIM towards better compatibility and even more
powerful data management features will ensure the
continued uptake of this technology.

8. REFERENCES

1. Brickley, D.; Guha, R.V, RDF Vocabulary Description
Language 1.0: RDF Schema, W3C (10 Feb 2004)
http://www.w3.org/TR/rdf-schema

2. Bizer, Ch., Schultz, A.: BSBM Results for Virtuoso, Jena
TDB, BigOWLIM (November 2009). http://www4.wiwiss.fu-

berlin.de/bizer/Berlin
SPARQLBenchmark/results/V5/index.html

3. Hervé Gallaire, Jack Minker (Eds.): Logic and Data Bases,
Symposium on Logic and Data Bases, Centre d'études et de
recherches de Toulouse, 1977. Advances in Data Base
Theory, Plenum Press, New York, 1978.

4. Java Management Extensions (JMX), homepage:
http://download-llnw.oracle.com/javase/1.5.0/
docs/guide/jmx/

5. Klyne, G; Carrol , J. J; (eds). (2004). Resource Description
Framework (RDF): Concepts and Abstract Syntax. W3C
Recommendation 10 Feb. 2004. http://www.w3.org/TR/rdf-
concepts/

6. Motik, B; Cuenca Grau, B; Horrocks, I; Wu, Z; Fokoue, A;
Lutz, C. (eds.) (2009). OWL 2 Web Ontology Language
Profiles. W3C Candidate Recommendation 11 June 2009.
http://www.w3.org/TR/owl2-profiles/

7. O'Donovan, J. The World Cup and a call to action around
Linked Data. BBC blog post.
http://www.bbc.co.uk/blogs/bbcinternet/2010/07/the_world_
cup_and_a_call_to_ac.html

8. Rayfield, J. BBC World Cup 2010 dynamic semantic
publishing", BBC blog post.
http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_
cup_2010_dynamic_sem.html

9. Stoilos G., Grau B. C., Horrocks I. How Incomplete is your
Semantic Web Reasoner? In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 10), 2010

10. ter Horst, H. J. Combining RDF and Part of OWL with
Rules: Semantics, Decidability, Complexity. In Proc. of
ISWC 2005, Galway, Ireland, November, 2005, pp. 668-684

11. Thakker, D., Osman, T., Gohil, S., Lakin, P, A Pragmatic
Approach to Semantic Repositories Benchmarking. In Proc.
of the 7th Extended Semantic Web Conference, ESWC 2010.

