
Transactional Partitioning: A New Abstraction for
Main-Memory Databases

Vivek Shah
(supervised by Marcos Vaz Salles)

University of Copenhagen
Copenhagen, Denmark

bonii@di.ku.dk

ABSTRACT
The growth in variety and volume of OLTP (Online Trans-
action Processing) applications poses a challenge to OLTP
systems to meet performance and cost demands in the exist-
ing hardware landscape. These applications are highly in-
teractive (latency sensitive) and require update consistency.
They target commodity hardware for deployment and de-
mand scalability in throughput with increasing clients and
data. Currently, OLTP systems used by these applications
provide trade-offs in performance and ease of development
over a variety of applications. In order to bridge the gap be-
tween performance and ease of development, we propose an
intuitive, high-level programming model which allows OLTP
applications to be modeled as a cluster of application logic
units. By extending transactions guaranteeing full ACID
semantics to provide the proposed model, we maintain ease
of application development. The model allows the applica-
tion developer to reason about program performance, and
to influence it without the involvement of OLTP system de-
signers (database designers) and/or DBAs. As a result, the
database designer is free to focus on efficient running of pro-
grams to ensure optimal cluster resource utilization.

1. INTRODUCTION
OLTP applications have grown in volume, variety and per-

formance demands [20]. In addition to the classic banking,
reservation, and order entry systems, novel applications in-
clude massively multiplayer online worlds (MMOW) or vir-
tual worlds, massively multiplayer online role playing games
(MMORPG), financial applications (e.g., online trading),
telecommunication applications and information visualiza-
tions. These applications demand scalability in through-
put with growing data and clients. They exhibit high in-
teractivity (latency sensitive) while maintaining consistency
on updates. Furthermore, they typically target commodity
hardware for deployment. We will refer to them as HIC-
CUP (Highly-Interactive Commodity-Hardware Consistent-
on-Update) applications.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org.
Proceedings of the VLDB 2014 PhD Workshop.

Stonebraker et al. have shown that OLTP systems can
be deployed in main-memory using shared-nothing cluster
of machines at modest cost [21]. This leads to order-of-
magnitude gains in performance over classical relational database
management systems (RDBMS). With the reduction in prices
of commodity hardware and growth of cloud computing [1],
a cluster-based infrastructure consisting of shared-memory
commodity hardware nodes increasingly provides flexible main-
memory deployment options to meet HICCUP application
requirements.

In order to build HICCUP applications for cluster-based
architectures, there are currently two dominant program-
ming models exposed to the application developer. The
first approach abstracts the distributed architecture into a
uniform shared-memory space, which is then presented us-
ing a unified data model, e.g., the relational model under
strong consistency semantics (ACID transactions). The sec-
ond approach abstracts the distributed architecture into a
low-level distributed storage-oriented model, e.g., key value
stores with no/loose consistency semantics.

Although the first approach provides ease of development,
performance varies with the variety of applications. This
is because of the sensitivity of the approach to data and
code partitioning to reduce the impact of distributed trans-
actions [11]. In the second approach, performance is con-
trolled by the application developer, but development is ex-
tremely hard due to no/loose consistency semantics and the
low-level, storage-oriented programming model. There are
in-between approaches that partition the unified data model
and provide consistency semantics within partitions [2, 19].
However, in these systems, the clients must specify these
partitions and handle consistency across partitions. This
increases application complexity, especially for HICCUP ap-
plications which cannot always be architected to eliminate
inter-partition accesses.

We want to address this gap by exploring a middle ground
between the two extreme approaches. Strong consistency se-
mantics (ACID transactions) provide ease of application de-
velopment. Sacrificing consistency semantics is not enough
to guarantee OLTP application performance [10]. We want
to build a transactional system maintaining global consis-
tency semantics in the cluster to enable ease of development
while guaranteeing optimal cluster performance. In order
to do so, we propose to extend the transactional abstraction
with a logical distribution abstraction. This enables the
application developers to reason about the performance of
their application in terms of distributed transactional logic
units and thus write efficient programs.

1

While the logical distribution abstraction hides the low-
level distributed architecture, it allows application develop-
ers to understand program performance behavior in a cluster
setup and to influence it. Database designers can then fo-
cus on running the programs efficiently for optimal cluster
resource utilization. This approach ensures that the appli-
cation developers can participate in improving the perfor-
mance of the application. The approach also reduces the
criticality of data and code partitioning. As a result, it
removes database designers from the critical path of perfor-
mance improvement over a variety of applications by sep-
arating concerns of writing efficient programs (application
developers) and running them efficiently (database design-
ers). Global consistency guarantees in the cluster free the
developer from worrying about consistency issues, thus re-
ducing program complexity and development costs.

The remainder of the paper is organized as follows. In
Section 2, we provide a background of the project by laying
down the design requirements for OLTP systems and review-
ing the state of the art with respect to these requirements.
In Section 3, we describe our approach in greater detail with
an example OLTP application (the TPC-C 1 benchmark).
Finally, in Section 4, we outline the challenges and roadmap
over the course of the project with some initial thoughts on
how to tackle them.

2. BACKGROUND
In this section, we provide a background of the Ph.D.

project by first isolating the OLTP design requirements in
the current hardware and software landscape and then re-
viewing the state of the art with respect to these design
requirements.

2.1 OLTP Design Requirements

1. In order to meet the requirements of a growing vari-
ety of HICCUP applications, OLTP systems must ex-
pose a programming model which allows application
developers to reason about program performance in a
cluster-based setup and to improve the performance of
their architected applications (programs).

2. Lack of global consistency semantics and a low-level
distributed storage-oriented programming model make
application development extremely expensive, error-
prone and limit the adoptability of such a system [22].
OLTP systems must provide a high-level, intuitive pro-
gramming model with strong global consistency se-
mantics over the distributed cluster setup to ease ap-
plication development.

3. To take advantage of advances in commodity hardware
and the growth of cloud computing [1], OLTP systems
must target a hardware ecosystem of shared-memory
nodes in a shared-nothing setup, allowing flexible de-
ployments varying in performance and cost. OLTP
systems must also be designed to utilize the multi-
processor, multi-core processor and multi-tiered cache
architecture in individual cluster nodes to ensure op-
timal hardware performance [13].

1http://www.tpc.org/tpcc/spec/tpcc_current.pdf

2.2 State of the Art
In recent times there have been numerous implementa-

tions of systems that can be used by HICCUP applications.
There has been an explosion in the implementation of key-
value stores, which provide varying performance, scalabil-
ity and availability characteristics. Amazon Dynamo [8],
Google BigTable [3], Yahoo! PNUTS [5], Amazon HBase
and Cassandra [15], Amazon S3, Google Cloud Storage,
Windows Azure Storage are some examples of distributed
key-value stores. These systems target commodity hardware
in a cluster-based architecture and provide high availability
and scalability at the cost of lower consistency semantics and
a low-level storage-oriented programming model. In order
to build HICCUP applications using these systems, appli-
cations must implement multi-key transactions and man-
age the low-level key-value based infrastructure, which is
extremely complex and error prone, thus limiting ease of
development [22].

In order to fix these problems, transactional capabilities
were introduced in distributed data stores, such as Google
Spanner [6] and Megastore [2], or exposed using client li-
braries [9, 18]. Megastore [2] provides full ACID semantics
but only within partitions of the data, which limits the ease
of application development and flexible deployments. Warp
[9] and Percolator [18] provide multi-key transactions us-
ing client libraries but their storage-oriented programming
model and client-based execution make it difficult to reason
about application performance for varying cluster-based de-
ployments.

On the other end, classical RDBMS provide a high-level
uniform shared-memory abstraction, which makes applica-
tion development extremely easy. However, these systems
face performance scalability issues. In order to meet these
challenges, Shore-MT [13] and DORA [16] target shared-
memory architectures for high performance. Shore-MT op-
timizes a classical RDBMS engine by reducing or removing
contention points for multi-core and multi-processor hard-
ware. DORA proposes a novel methodology to partition
data amongst the processing threads and migrates transac-
tions between threads based on the partitioning. Although
both these systems ease application development, reasoning
about program performance remains extremely hard. These
systems are also not suited for cluster-based deployment un-
less a shared-memory layer is built underneath them.

H-Store was one of the first systems to target cluster-
based deployments for OLTP applications [14]. In order
to provide a high-level relational abstraction, H-Store is re-
liant on inferring optimal data partitioning from application
logic to minimize the impact of distributed transactions [7].
This makes it extremely difficult for application develop-
ers to reason about program performance over a variety of
applications and increases the performance reliance of the
system on automatic data [17] and code partitioning [4],
or database administrators (DBAs). This brings database
designers and/or DBAs in the critical path of performance
improvements of varying OLTP applications and ignores ap-
plication developers as a valuable resource.

Our approach is to provide a high-level, intuitive pro-
gramming model over a cluster-based architecture where
the uniform shared-memory space is partitioned by appli-
cation logic. This partitioning is done by the application
developers, which allows them to reason about the perfor-
mance of their programs and to improve them. By extending

2

transactions to provide this abstraction with global ACID
semantics, our approach maintains ease of application de-
velopment.

3. APPROACH
In this section, we explain our approach in detail with an

example HICCUP application (the TPC-C benchmark) and
demonstrate how it meets the design requirements outlined
in Section 2.

3.1 Logical Partitions
In a cluster-based architecture, the programming model

must provide an abstraction to balance ease of development
and utilization of cluster resources. We want to explore
the middle ground between the two current dominant ap-
proaches by allowing programmers to reason about the per-
formance of their programs in the distributed setup while
maintaining ease of use. We do so by introducing the notion
of logical partitions. A logical partition forms the unit of
logical code isolation. A programmer architects his appli-
cation to consist of multiple application logic units, which
communicate with each other, and establishes control flow
dependencies between them. An application logic unit must
be associated with a logical partition by the programmer.
Communication between the application logic units is ex-
pensive, which encourages the developers to think about the
performance of the constructed program and to make it more
efficient. In order to provide ease of development, ACID se-
mantics are maintained globally across logical partitions via
transactions, which form the unit of code construction in
this model .

In our model, a program (transaction) begins execution
on a logical partition. During its execution the program can
only access data on that logical partition. If it needs to
access data on another logical partition, it must explicitly
do so by invoking a program on another logical partition
which is executed as a subtransaction [25, p. 253]. When
a transaction or subtransaction is invoked, the logical par-
tition where it must be executed must be specified as well.
Program code is pre-compiled on each logical partition and
executed within the database process for performance.

In contrast to partitioning data, our model forces the ap-
plication developer to partition his application logic. The
programmer must construct his application in terms of dis-
tributed logical partitions by associating application logic to
them. Data partitioning is a consequence of the code par-
titioning formulated by the application developer. Existing
OLTP systems either provide the view of a single data par-
tition or fragmented data partitions, but not partitioning
in terms of application logic. This increases the reliance
of these systems on optimal code and data partition lay-
out, thus making it hard for application developers to rea-
son about the performance of a variety of applications using
these systems.

In summary, our model allows the application developer to
reason about program performance in terms of distributed
application logic units by exposing coordination costs be-
tween logical partitions. The database designer can focus
on providing efficient mapping of logical partitions to physi-
cal partitions (machines) for optimal cluster resource utiliza-
tion. Our model allows ease of construction and deployment
of different HICCUP applications across various cluster con-
figurations.

txn new order(w id, d id, c id , order) {
//Get the order id from the district and insert the
//next order id to be used in it
<wh,dist,cust> = gen order id(w id, d id, c id , order);

total = 0;
for(ord item in order.items) {
//Get the amount for the number of items ordered
amount = get amount(ord item);
total += amount;

//Get the district information of the stock from the
//supplier warehouse
stock info = get dist info stock (ord item);

//Update the stock of the supplier warehouse
update stock(ord item, amount);

add(”order line”, dist . order id , w id, d id , stock info ,
amount, ...) ;

}
total pay = (1 + wh.tax + dist.tax) ∗ total ∗ (1 − cust.

discount);
return total pay;
}

Figure 1: New order transaction

Modeling hard to partition applications. The model is
ideally suited for applications where partitioning is implicit
in the application logic. Fortunately, this property holds for
a large class of HICCUP applications. Although applica-
tions that are hard to partition, e.g., social networks would
not be a compelling use case for our model, there is no rea-
son for them to perform worse using our model compared to
RDBMS and key-value stores. On the contrary, the model
provides an analytical playground to application developers
to experiment with different partition layouts. This allows
them to adopt the appropriate model (relational or key-value
stores) for their application depending on the performance
needs and development costs. The goal of the model is not to
infer a partitioning layout for non-partitioned transactions
but to provide a framework to the application developer to
specify transactions with respect to a partitioning layout.

System Initialization. The model deterministically as-
signs transactions to logical partitions. Since the model al-
ways starts with an initial empty database state, the user
application must provide initialization transactions to create
an initial database state. Since those transactions would be
created using the proposed model, data distribution would
always be deterministic and unambiguous. It is important
to mention that command logging to provide durability can
be interpreted as an automatic program to generate a given
desirable initial database state. This highlights the focus of
the approach to logically partition code and not data.

3.2 TPC-C Example
The ease of partitioning application logic will determine

the ease of applicability of this approach. HICCUP appli-
cations that have simple application logic are well suited
for this approach as we demonstrate by explaining our ap-
proach using the new order transaction class from the TPC-
C benchmark as an example. We will not go into the de-
tailed explanation of the benchmark which is available in its

3

txn new order update stock(order) {
result = <>;
for(ord item in order.items) {
amount = get amount(ord item);
stock info = get dist info stock (ord item);
update stock(ord item, amount);
append(result,<stock info,amount>);
}
return result;
}

Figure 2: Transaction to read and update stock in-
formation

PARTITIONING FUNCTION map(w id) {return w id;};
new order PARTITION MAPPER map;
new order update stock PARTITION MAPPER map;

Figure 3: Mapping transactions to logical partitions

specification2.
We begin by expressing the new order application logic

without any notion of partitioning. This is followed by the
transformation of the program into the proposed model by
partitioning the new order transaction by warehouses. Fi-
nally, we show how developers can reason about the perfor-
mance of this transaction and rewrite it in order to make it
more efficient.

3.2.1 New Order Application Logic
The pseudocode for the new order transaction is outlined

in Figure 1. The pseudocode preserves the data dependen-
cies in the transaction class, but abstracts away other details
of the implementation including data types. In the trans-
action logic, the order is first sanity checked and an order
id is generated. For each item in the order, the amount
for the number of ordered items is computed. The stock
of the supplier warehouse is then updated and an order
line is inserted for each item along with the district infor-
mation of the stock. Finally, the total amount to be paid
by the customer is computed and returned by the transac-
tion. It is important to note that the fields retrieved by the
get dist info stock method from the stock relation, which
are used to insert a row in the order line relation, are never
updated by the update stock method. The price for each
item is present in the item relation, which is never updated
and never grows as more warehouses are added.

The TPC-C benchmark was designed to scale in the num-
ber of warehouses, i.e., with additional warehouses, there are
more customers who request greater number of new order
transactions. Warehouses form the unit of distribution and
scale-up in the benchmark. Many HICCUP applications
have similar properties where a distribution unit leads to
growth in both data and client requests and importantly,
application logic is mostly affine to the distribution unit.
Existing programming models fail to take advantage of this
property. Our approach, which provides a high-level, intu-
itive, partitioned programming model with ACID guaran-
tees, is ideally suited for this class of applications.

3.2.2 Code Partitioning by warehouses
In the TPC-C benchmark, a warehouse is the unit of logi-

cal partitioning. This follows intuitively because transaction

2http://www.tpc.org/tpcc/spec/tpcc_current.pdf

txn new order (w id, d id, c id , order) {
<wh,dist,cust> = gen order id(w id, d id, c id , order);
results [order.num s w id]; i=0;

for(s id in order. supplier w id) {
//Execute the remote transaction for all the order
// items requested of the remote supplier warehouse
results [i++] = EXEC new order update stock
(subset(order, s id)) ON PARTITION (s id);
}

//Use results to add order line and compute total pay
total = 0;
for(result in results) {
for(item result in result) {

total += item result.amount;
add(”order line”, dist . order id , w id, d id ,

item result , ...) ;
}
}
total pay = (1+wh.tax+dist.tax)∗total∗(1−cust.discount);
return total pay;
}

Figure 4: New order transaction partitioned by
warehouses

logic is warehouse-affine and both data and number of client
transactions increase with additional warehouses. In order
to allow orders to be entirely supplied by a customer ware-
house, each warehouse replicates the item relation.

Under this logical partitioning model, the new order trans-
action code is mostly local to the customer warehouse (w id).
In order to execute the get dist info stock and update stock
methods, the transaction needs to access a remote partition,
since these methods operate on the supplier warehouse. We
need to group these methods under a new order update stock
transaction as shown in Figure 2, so that they can be invoked
on the remote supplier warehouse logical partition.

In the partitioned model, each logical partition is identi-
fied by a unique logical partition identifier. Without loss of
generality, the logical partitions can be identified by unique
natural numbers. When a transaction is invoked, the logi-
cal partition where it would be executed must be specified,
which establishes the relationship between the application
logic unit and a logical partition in the model. This is done
by using a mapping function that operates on the call pa-
rameters or any available context and returns an appropri-
ate partition identifier. Each transaction class declares the
mapping function it uses and defines it; however, all map-
ping functions output partition numbers in the same domain
of logical partitions. For our example, warehouse id can be
used as the logical partition identifier. The mapping func-
tion is declared and defined as shown in Figure 3. Now, a
new order transaction can be invoked as:
EXEC new order (w id, ...) ON PARTITION (w id)

Finally, we re-partition the original new order transac-
tion as shown in Figure 4, so that it is aware of logical par-
titions by invoking new order update stock on remote sup-
plier warehouse logical partitions. Since transactions guar-
antee full ACID semantics even across logical partitions, the
programmers do not have to worry about consistency issues.

3.2.3 Further Optimizations
A closer look at the partitioned new order transaction

shown in Figure 4 exposes several performance issues ow-

4

txn new order (w id, d id, c id , order) {
<wh,dist,cust> = gen order id(w id, d id, c id , order);

//Execute the remote transaction for all the order items
//requested of the supplier warehouse in parallel
PARALLEL EXEC new order update stock
(subset(order, s id)) ON PARTITION (s id)
for s id in order. supplier w id ;

total = 0;
for(ord item in order.items) {
//Compute the pay amount
amount = get amount(ord item);
total += amount;
//Get the district information of the stock using the
//replicated stock table
stock info = get dist info stock (ord item);
add(”order line”, dist . order id , w id, d id , stock info ,
amount, ...) ;

}
total pay = (1+wh.tax+dist.tax)∗total∗(1−cust.discount);
return total pay;
}

Figure 5: New order transaction with further opti-
mizations

ing to control flow dependencies upon remote transaction
results. There is a dependency on the results from the re-
mote new order update stock transaction in order to insert
order line entries. Since the item relation is already repli-
cated on each logical partition, the amount can be computed
locally. The real dependency of order line entries is to get
the district information of the stock from the remote sup-
plier warehouse. The district information fields are never
updated so these fields can be replicated on each logical
partition. Then, the new order update stock transaction
can be modified so that it does not have to return a result
and the new order transaction can be rewritten as shown in
Figure 5. In order to invoke subtransactions in parallel, we
provide PARALLEL EXEC construct. In order to use the
construct, the transaction to be executed and the iterator to
be used must be specified. Using this construct in Figure 5,
“EXEC new order update stock (order) ON PARTITION
(s id)” is invoked in parallel for all iterator elements (s id)
in order.supplier w id list.

Since new order transactions constitute ∼43% of the work-
load mix, this optimization might be worthwhile. As the
number of warehouses increase, however, the size of the
replicated stock relation with the district information fields
increases as well. For a large number of warehouses, this
optimization option may thus not be viable. Nevertheless,
it is important to note that the model allowed the applica-
tion developer to reason about the performance of the de-
veloped programs (new order programs) and improve them
using the mentioned optimizations. Consequently, OLTP
systems exposing a logical partitioning model can provide
performance guarantees over varying classes of applications.

3.2.4 Summary
In a cluster-based setup, it is important to separate the

concerns of writing efficient programs and ensuring their ef-
ficient execution by mapping to physical machines. This
is done by exposing a programming model based on logi-
cal partitioning, which allows the application developers to
reason about program performance. HICCUP applications,

which have an implicit distribution unit, can be intuitively
modeled in the proposed programming model as shown in
the TPC-C example. Strong global consistency semantics
ensure ease of program development.

4. CHALLENGES AND ROADMAP
In this section, we outline the challenges that need to

tackled during the course of the project. We also provide
some initial thoughts on how to address them.

4.1 Physical Implementation and Evaluation
Logical to Physical Mapping. In order to deploy a set
of logical partitions over a set of physical partitions (phys-
ical machines with varying hardware characteristics), the
logical partitions need to be mapped to the set of physical
partitions. Each physical partition needs to run a partition
executor that is responsible for handling transactions. This
gives rise to the following sub-challenges, which we plan to
investigate: (1) How to reuse a transaction processing sys-
tem which meets performance demands on modern main-
memory multi-core machines and extend it with the logical
programming abstraction? (2) How to map a set of logical
partitions to a set of physical partitions to ensure optimal
resource usage of the cluster?

In order to meet the first challenge, we plan to use a
state-of-the-art transaction processing system designed for
main-memory multi-core machines [24], and extend it to
operate in a distributed setup to provide the logical par-
titioning abstraction. In order to meet the second chal-
lenge, we plan to investigate cost models that attempt to
approximate transaction execution costs in a physical cluster
setup. This involves identifying and characterizing metrics
in the cost model. The cost model can then be used to pro-
duce an initial mapping, which can be changed if workload
characteristics change. We also plan to investigate trans-
action scheduling strategies without violating performance
constraints, which would help in better resource utilization.
Local Concurrency Control and Global Commit. One
of the simplest models to run multiple transactions is to run
them serially, which is what H-Store advocates [14]. This
simple model will not work for distributed transactions un-
less a global schedule is pre-decided [23]. Running transac-
tions serially would be a waste of compute power in multi-
core architectures of today. There is also a need to hide
memory latencies, network latencies and commit latencies.
However, multi-threading with pessimistic concurrency con-
trol leads to contention bottlenecks in the lock manager [13]
and multi-phase commits, which hurt performance.

In a partitioned model, distributed optimistic concurrency
control holds promise owing to its parallel nature, lack of
long critical sections and multi-phase commits [12]. It pro-
vides a global commit order in the distributed setup using lo-
cal commit ordering decisions without necessitating a multi-
phase protocol and hindering local transactions. We want to
investigate the performance of a distributed optimistic con-
currency control mechanism in order to support the trans-
actional semantics of our approach. We also want to in-
vestigate how transaction aborts hurt performance under
contention, and whether hybrid concurrency control and/or
program repartitioning would improve system performance.
Evaluation. In order to evaluate the system implemen-
tation, we plan to measure the scalability in transaction
throughput, latency, abort rates and cost per transaction

5

with growing data and number of clients. We are particu-
larly interested in evaluating these metrics for various phys-
ical machine configurations and logical-to-physical partition
mappings. We plan to evaluate the system using the TPC-C
benchmark. We are also interested in looking at other non-
standard application benchmarks, which could provide clues
on usability of the proposed model. We plan to compare the
results with that of H-Store, a commercial RDBMS and Silo
to characterize the system performance and understand the
architecture design trade-offs.

4.2 Cloud Integration
The cloud computing infrastructure provides a flexible

ecosystem for deployment of the system. In order to tar-
get the cloud computing infrastructure and satisfy varying
HICCUP application requirements, we plan to investigate
the necessary set of self-tuning tools to make the system
cloud-ready. Deployment advisors that self-manage diverse,
changing resources [26], adapt to the cloud infrastructure
[27], have received a lot of attention lately. We plan to de-
velop a deployment advisor that generates an optimal clus-
ter configuration in the cloud from an application’s require-
ments (e.g., throughput, latency, cost constraints and goals)
and programs by constructing and solving an optimization
problem. We plan to investigate techniques to allow the de-
ployment advisor to adapt to the variance and workload mix
in the cloud infrastructure.

5. CONCLUSION
Designing main-memory OLTP systems that provide high

performance, scalability and ease of development over a va-
riety of HICCUP applications is an open challenge. In this
paper, we identify the need to allow application developers
to reason about the performance of their programs while
maintaining ease of use. We propose an extension to the
transactional abstraction to provide a high-level, intuitive,
distributed logical programming model with strong global
consistency semantics to the application developer. We have
also shown how the model can be intuitively used by the
application developer by using TPC-C as an example. We
plan to evaluate the potential of this approach to meet the
requirements of a variety of HICCUP applications.

6. REFERENCES
[1] M. Armbrust, et al. A view of cloud computing.

Commun. ACM, 53(4):50–58, 2010.

[2] J. Baker, et al. Megastore: Providing scalable, highly
available storage for interactive services. In CIDR,
pages 223–234, 2011.

[3] F. Chang, et al. Bigtable: A distributed storage
system for structured data. ACM Trans. Comput.
Syst., 26(2), 2008.

[4] A. Cheung, et al. Automatic partitioning of database
applications. PVLDB, 5(11):1471–1482, 2012.

[5] B. F. Cooper, et al. Pnuts: Yahoo!’s hosted data
serving platform. PVLDB, 1(2):1277–1288, 2008.

[6] J. C. Corbett, et al. Spanner: Google’s
globally-distributed database. In OSDI, pages
261–264. USENIX Association, 2012.

[7] C. Curino, et al. Schism: a workload-driven approach
to database replication and partitioning. PVLDB,
3(1):48–57, 2010.

[8] G. DeCandia, et al. Dynamo: amazon’s highly
available key-value store. In SOSP, pages 205–220.
ACM, 2007.

[9] R. Escriva, B. Wong, and E. G. Sirer. Warp:
Lightweight multi-key transactions for key-value
stores. Technical report, Cornell University, Ithaca,
2013.

[10] A. Floratou, et al. Can the elephants handle the nosql
onslaught? PVLDB, 5(12):1712–1723, 2012.

[11] P. Helland. Life beyond distributed transactions: an
apostate’s opinion. In CIDR, pages 132–141, 2007.

[12] M. Herlihy. Apologizing versus asking permission:
Optimistic concurrency control for abstract data
types. ACM Trans. Database Syst., 15(1):96–124,
1990.

[13] R. Johnson, et al. Shore-mt: a scalable storage
manager for the multicore era. In EDBT, volume 360,
pages 24–35. ACM, 2009.

[14] R. Kallman, et al. H-store: a high-performance,
distributed main memory transaction processing
system. PVLDB, 1(2):1496–1499, 2008.

[15] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. Operating
Systems Review, 44(2):35–40, 2010.

[16] I. Pandis, et al. Data-oriented transaction execution.
PVLDB, 3(1):928–939, 2010.

[17] A. Pavlo, C. Curino, and S. B. Zdonik. Skew-aware
automatic database partitioning in shared-nothing,
parallel oltp systems. In SIGMOD Conference, pages
61–72, 2012.

[18] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. In OSDI, pages 251–264. USENIX
Association, 2010.

[19] J. Shute, et al. F1: A distributed sql database that
scales. PVLDB, 6(11):1068–1079, 2013.

[20] M. Stonebraker. New opportunities for new sql.
Commun. ACM, 55(11):10–11, 2012.

[21] M. Stonebraker, et al. The end of an architectural era
(it’s time for a complete rewrite). In VLDB, pages
1150–1160. ACM, 2007.

[22] D. Terry. Replicated data consistency explained
through baseball. Commun. ACM, 56(12):82–89, 2013.

[23] A. Thomson, et al. Calvin: fast distributed
transactions for partitioned database systems. In
SIGMOD Conference, pages 1–12, 2012.

[24] S. Tu, et al. Speedy transactions in multicore
in-memory databases. In SOSP, pages 18–32. ACM,
2013.

[25] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan
Kaufmann, San Francisco, CA, USA, 2002.

[26] Q. Yin, et al. Rhizoma: A runtime for self-deploying,
self-managing overlays. In Middleware, volume 5896,
pages 184–204. Springer, 2009.

[27] T. Zou, et al. Cloudia: A deployment advisor for
public clouds. PVLDB, 6(2):109–120, 2012.

6

