
TIMBER: A SOPHISTICATED RELATION BROWSER

Michael Stonebraker and doseph Kalash

DEPARTMENT OF ELECTRICAL ENGINEERING AND CCMPUTER SCIENCE
UNIVERS!?Y OF CALIFORSIA

BERKELEY, CA.

ABSTRACT
This paper ditcusses the functions preseni in a sophisti-
cated relation browser with support for icons, maps, text
and normal fixed format relations. A discussion of some
of the required data base extensions to support, such a
browser is also presented.

I INTRODUCTIOX

This paper suggests the design of TIMBER (Text, icon

and Map Browser for Extended Relations), a user

friendly, graphics-oriented browser for a relational data

base. There are four motivations for TIMBER which will be

discussed in t,urn.

1) Relation Editor

There is a need for a software iacility which would allow a

user to “browse” through a relation. Commands such as

“next tuple” and “search for the first tuple” sztisfying a

given constraint are required. A proposal along these

lines is presented in [CATEBO] for a CODASYL data base.

The various proposals for interaction with a data

base through forms, e.g. [ROWE32, DEJOBO], can be used

to implement a relation editor. One would define a

default form which can be used with any reiation. Tuples

from any given relation can then be displayed through

the form. However, most forms proposals are limited to

a single form on the screen at one time and to a single
data base tuple in any form. What we propose is a more

sophisticated facility.

2) ICON Display

Both Query By Example [ZLOO75, ZLOO77] and CUPID

[MCD075] were early examples of the application of

graphics to naive user interfaces. More recently, SDMS

[HEROEO] presents a more sophisticated approach. All

three systems have the common feature that the

representation of either the query or the output data is

done through the use of “icons”, which are graphica!

tokens representing data base objects.

Query By Example (QBE) and CUPiD allow a -user to

specify a relationa! query by using icons. In QBS the icon

is a skeleton of a table while in CUPID it is a collection of

rectangles, hexagons and circles. To specify a query in

QBE one inserts values in these skeletons; in CUPID he

connects the rectangles, hexagons and circles together.

Both systerns then “answer” the user command by

displaying a tabular representation of desired data on

the screen.

On the other hand, SDMS allows a user a graphical

query language who commands are essentially:
move cursor
zoom
unzoom

A user is shown the entire data base represented as

icons on multiple graphics terminals. In a reported

example [HEROBO], one portion of the data base con-

cerned Navy ships and the initial display was an icon for

each ship in the data base. A user could then move his

cursor to a ship of interest and zoom to tid more detail.

The problem with this approach is that only a very

weak query language can be provided. For example, sup-

pose a user wants to know whether the Enterprise has

more seamen than the Chicago. He must first move to

the Enterprise, zoom and then write down the number of

seamen from the display. Then he zooms on the Chicago

and does the comparison. It is impossible to get detailed

information for both ships on the screen at once unless

they happen to be next to each other in the initial

display.

SDMS is a sophisticated data browser but lacks a

sophisticated means to specify non-trivial data base

interactions. On the other hand, QBE and CUPID lack a

mechanism to browse the result of queries. A basic

Proceedings of the Eighth International Conference
on Very Large Data Bases

1
Mexico City, September, 1982

motivation of TIMBER is to support a more comprehen-

sive data manipulation facility for icon oriented data

bases.

3) Text Editors

Modern visual oriented editors, e.g. VI [JOY 791 or

EMACS, support sophisticated visual interaction with the

data in a text file. For example, a user is allowed to

browse and update his text with comprehensive cursor

commands.

It appears to be beneficial to have normal text

stored in a data base system. For example, suppose one

has a mailing list stored in a relational data manager and

has an application which requires sending the same

letter to everybody on the mailing list. Basically, one

would like to “join” the letter to the mailing list. If the

letter is stored in the data base, such a join is possible.

A basic goal of TIMBER is the support of visual

oriented editing of text stored as data base objects.

4) Geographic Data

In urban planning applications there is a need for

display of geographic data. Moreover, several geo-data

systems have been implemented, some on top of rela-

tional data base managers, e.g. [G075, MANT73]. More

recently, computer aided design (CAD) and VLSI d.esign

systems have been suggested as application areas for

data,base management. Again, one requires the storage

and manipulation of spatial information. Our last goal

for TIMBER is to provide support for spatial objects,

In summary, we are proposing a user interface to a

relational data base system that can be:

a
1

a relation browser for fixed format relations
b a sophisticated browser for relations with icons
c) an editor for text data stored in relations
d) a map browser for geographic data

It is the thesis of this proposal that these four applica-

tion areas require essentially the same functions and can

be served by common software.

Hence, in the next section we turn to the TIMBER

user interface and then in Section III to the architecture

of this system. Section IV contains some comments on

extending a relational data manager such as INGRES

[STON76, STONBO] to effectively support icon, map and

text oriented data. Lastly, Section V contains some con-

clusions.

II TIMBER

Proceedings of the Eighth International Conference
on Very Large Data Bases 2

TIMBER has two basic concepts: a window on a

sophisticated graphics terminal and a relation in a data

base. The screen of the terminal can be split into a col-

lection of rectangular windows and relations “bound” to

such windows. In this manner tuples from the relation

appear in the window and can be manipulated by TIMBER

commands. These commands are presented in an

English textual syntax which is solely for ease of reading

this presentation. As will be noted in Section III a small

application program will control the syntax seen by an

end user. Presumably, this will involve function keys,

the cursor and menus.

2.1 Widows

Windows can be created, destroyed and expanded as

follows:

CREATE WINDOW (Xl, Yl, X2, Y2)

This command creates a window which is rectangular

shaped with lower left hand corner at (Xl, Yl) and upper

right corner at (X2, Y2). To achieve some terminal

independence, 0 <= Xl, Yl, X2, Y2 <= 1. Hence,
CREATE WINDOW (O,O,l.,l.)

would be a window incorporating the whole screen.

DESTROY WINDOW

This command destroys the window in which the cursor

is currently positioned.

EXPAND WINDOW (Xl, Yl, X2, Y2)

This command changes the window size of the window in

which the cursor is currently positioned to the coordi-

nates indicated. There is no restriction that windows

cannot overlap; however, TIMBER will not do visually

pleasant things for such occurences.

2.2 The Cursor

Another of TIMBER’s fundamental concepts is a cur-

sor. It is positioned at a specific location on the screen,

and is controlled in our environment by a bit pad and

mouse. Many TIMBER commands affect the window in

which the cursor is currently positioned.

The windows on the screen are arbitrarily ordered,

and the following commands move the cursor to a

different window:
NEXT WINDOW
PREVIOUS WINDOW

Mexico City, September, 1982

2.3 Relations

Another fundamental concept in TIMBER is a rela-

tion. A relation can be “bound” to a window by the follow-

ing TIMBER command:
BROWSE RELNAME

REL-NAME is assumed to be the name of a relation which
may be specified in one of three ways:

1) by specifying a QUEL RETRIEVE command whose out-

put is a relation

2) by specifying a relation in a data base

3) by specifying a view on a relation or relations in a data

base

This relation’ is “bound” to the window in which the cur-

sor is currently positioned. Binding entails three opera-

tions:

a) the screen format for a tuple must be ascertained.

This will determine the visual representation of data on

the terminal.

b) a two dimensional geometry must be associated with a

relation. This will give any relation an (X,Y) coordinate

system and a location to any tuple in the relation. This

coordinate system will be called “the relation coordinate

system” or more briefly “relation space”.

c) the window must be positioned in relation space and

its size determined. This will determine which tuples are

initially visible on the screen and where they are posi-

tioned.

TO accomplish a) and b), each relation has a default

coordinate system and screen format. TIMBER recog-

nizes four kinds of coordinate systems:

1) normal fixed format relations

Such relations are exactly like existing INGRES relations.

Display of such relations on a graphics terminal con-

forms to the current INGRES display of relations. For

example. suppose

EMP(name = ~12, salary = i2)

is. a relation, then its screen image would be:
name salary

Proceedings of the Eighth International Conference
on Very Large Data Bases 3

Kalash 10000
Stonebraker 20000

More precisely, the coordinate system for a relation with

N tuples, each M bytes wide is a rectangle with corners

(l,l), (l,N), (M.1) and (M,N). The Ith tuple occupies loca-

tions (1,l) to (M,lj as noted in Figure 1. The relation

header giving the names of the columns appears in the

0th row of relation space.

2) A text relation

If a user creates a document, it will typically have the

format:

CREATE DOCUMENT (line-id = i4, text = ~132)

In Section 4.2 we propose the notion of an ordered rela-

tion to support documents. INGRES will automatically

(ill)

(1.1)

(Ml 1)

-- Ith tuples go here --

Relation Space for
Fixed Format Relations

Figure 1

maintain line numbers for ordered relations. Hence,
TIMBER will assume that any text relation is an ordered

relation. It will then suppress line numbers as distracting

and display the remainder of the relation as a fixed for-

mat object. Hence, the coordinate system for an ordered

relation is identical to that of a fixed format relation,

except for the suppression of line numbers.

3) relations containing an ICON field

Any relation can have a field whose data type is “icon” In

this field a graphical token is stored which is used to

assist in the visual representation of the row. Creation

of icons for data base objects is discussed in Section 4.1.

Mexico City, September, 1982

For example, suppose an EVP relation is declared as fol-
lows:

CREATE EMP (name = ~10, salary = i2, visual = icon)

Suppose the graphical token for an employee has been

specified as a rectangle. It might be represented as
some coding for the following information:

lines:

(ao)

I
SO) 1; I;:;]

(“04;) 1; i
0,i)
090)

text:
“name =‘I at (L3)
“salary =‘I at (2,3)
fields:
name at (1,lO)
salary at (2,lO)
scale-x = l/24
scale-y = l/24

and have a screen image of:

11

Afl entries above are self explanatory except for the scal-

ing factors. These are used to alter the relative size of

the icon when it is placed on the screen.

Icon relations are assumed to be stored as two

dimensional ordered relations, a concept to be discussed

in Section 4.2. Hence, every tuple in this kind of relation

has an X-line-id and a Y-line-id. Both of these ids are non

negative integers, and the location of any tuple in rela-

tion space is this X-Y pair. The icon for each tuple is

scaled by the scaling factors noted in the example above

and all coordinates in the icon definition are translated

by the X-Y location of the tuple. This scaling and transla-

tion produces a representation for a tuple which is

intended to fit in the square bounded by (X,Y), (X+l,Y),

(X,Y+l) and (X+l,Y+ 1). As long as the scaling factors are

chosen wisely, the icon for a given tuple will not overlap

the icons for any of its neighbors.

4) Map Relations

Any relation can have a field who data type is “map”. In

this field is stored a coding of a geographic object. A

“map” data type differs from an “icon” data type in only

one way; icons are translated to the coordinates of a

tuple whereas all map components are relative to (0,O)

and no translation is performed.

Proceedings of the Eighth International Conference
on Very Large Data Bases

4

Once the coordinate system for a relation has been

ascertained, task c) above can be accomplished by plac-

ing the windovr in the upper left hand corner of relation

space as indicated in Figure 2. For fixed format and text

relations, the initial zoom is set so as to put the first 80

columns of each of the first 24 tup!es on the initial

display. For icon and map relations, the i.nitial window

will contain al! objects within an arbitrarily set square

with boundaries of (0.0). (10.0). (O,lO), and (10,lO).

2.4 Screen Manipulation

I initia! windox;; !

relation space

The Init ill Window For
Brouwed Relations

Figure 2

There are three waqrs to alter tile c:o~nFcn~.s or the

screen.

Cursor motion is supported in a v;indoy:. If the cursor

moves of; the edge of a ~\~kdo\;, tile v:ir~:l’i~:- is ~,utom~t.i-

tally repositioned in rela’ion c space. Inteiligent

buffering, discu:.vi 5 in S:Jclion 111, attrr:.:.i.i to rr;,;ke tl;is

movement possi!Le with good r~~;;x~nse ti:;l-.

2) by zooming

The user can alter the size of the disp!a;: b;y a zoo~m as

follows:

ZOOM (X-factor, Y-factor)

This command zooms the current window by the X and Y

factors indicated. If these factors are less than one, the

display is “shrunk” and if more than one ii is “blown up”.

Mexico City, September, 1982

Initially TIMBER has six relational com:;~ar~ds as follows:

a) NARROW domain-list

no longer in the window. If no expressios is indicated,

the icon or tuple at the current cursor position is

picked.

This command performs a projection on the relation in

the current window preserving only the named fields in

the domain list.

‘he user can now rnove the cursor to another spot on the

screen in the same or a different window and then drop

anything picked up as follows.

e) DROP

b) RESTRICT expression

This commnnG remove’: the icons or the rows which do

not satisfy the expression. This is a reiat.ional restriction

operation as in [CODDi’Z]. We expect to allow the follow-

ing possible expressions:

i) string-constant

This command will drop all picked objects at the location

on the screen where the cursor is now posit.ioned.

A user is expected to create “scratch” windows.

Then he can pick various objects of interest and move

them to a scratch wyindow for detailed study. Howe+- a

user may sometimes wish to make a copy of data in his

scratch window. If a copy of objects is desired the user

can do so as follows:

A row would be removed unless it had some field which

contained t?:e indicat.ed string. For exam$e, f) COPY expression

RESTRICT se

would remove all rows which failed to contain the string

‘ke”.

COPY is a PICK without deleting the picked objects from

the window.

ii) domain-name t-cl-op value 2.5 Data Update

A row would be rerrloved unless tne specified domain

name had an appropriate value. Rel-op is one of t<, <=,

=, !=, >=, >I. For example
RESTRiCT salary ; 20000

When the cursor is positioned in a field of a relation,

the user can modify the value of this fieid using the fol-

lowing commands. The scope of the command is either

the whole field for numeric data or the character string

between the first blank or punctuation, mark in both

would remove all low paid employees. Of course, we directions from the cursor for ASCII fields.
would allow any boolean combination of such clauses. R string

c) SEARCH DIRECTION expression
This will replace a numeric field or portion of a character

field with the string indicated.
D

This command would search in the given direction for

the first icon or row which satisfied the expression. It

would then position the window over the desired object.

Direction can be I! (up), D (down), R (right) or L (left).

This will delete the string at the current cursor position
DD

This will delete the whole tuple at the current cursor

position

It is possible to pick up some of the data from one

window and move them to another window. This is

accomplished as follows.

I string

This will insert the indicated string into the field at the

current cursor position
A tuple

d) PICK expression

This command will cause all tuples in the current window

which satisfy the indicated expression to be “picked”.

These tuples are now associated with the cursor and are

This command will insert a new tuple into the browsed

relation. It should be noted that the new tuple may not

be placed in relation space at the current position of the

cursor. For example. if the EMP relation is stored

indexed sequential on employee name and a new

Proceedings of the Eighth International Conference
on Very Large Data Bases 5 Mexico City, September, 1982

employee “aardvark” is inserted, he will be placed at the

top of relation space and not at the position of the cur-

sor.
X

This will delete the specific character that the cursor is

currently pointing to
C character

This will change the character at the current cursor

position to the indicated one.

Using these commands a user can browse through the

relation associated with a window and make random

updates, inserts and deletes. A commit mode is required

to make these changes appear in the data base:
COMMIT commit-mode

When a collection of changes are made to the data in a

window, a decision must be made concerning when to

update the actual data base. Most text editors require

speciAc user commands to write the contents of the

editor workspace back to the file in question. TIMBER.

requires the same sort of advice, as follows:
commit-mode = now

Every time a user changes a data item, the change is

immediately spooled to a data base update process and

the change is accomplished. No further screen manipu-

lation is possible until the update is installed in the data

base. In order to allow a user to continue browsing while

the data base update is occuring, the second commit

mode is:
commit-mode = at-your-convenience

TIMBER spools all changes to a data base update process.

This process may lag the user by an indeterminate

amount.
commit-mode = end-of-session

TIMBER saves all changes, and at the end of a session it

commits all updates. This is similar to the mechanism

employed by many text editors.

Of course, the commit mode can be changed at any

time during a TIMBER session.

2.6 Miscellaneous Commands

Windows can be saved and cleared using the follow-

ing commands:
SAVE in REL-NAME

This command will save the contents of the current win-

dow in a new relation called REL-NAME. An error will

result if the user has changed the data in such a way

that the window no longer corresponds to a relation. This

Proceedings of the Eighth International Conference 6

could happen, for example, if he picked and

icons with different data into the same window.

CLEAR

dropped

This will cause’the current window to be cleared. This is

the opposite of the BROWSE command as it disassociates

the window with a relation. This is considered the end of

the session with respect to commit@ updates to that

relation. The user can now BROWSE through another

relation in the same window.

III ARCHITECTURE OF TIMBER

TIMBER is composed of six major modules as indi-

cated in the diagram below. The INGRES DBMS has been

extensively described elsewhere [STON76, STONBO].

Hence, in the next four subsections we discuss the other

pieces of TIMBER. The CRT in our environment is an AED

512 color graphics terminal with Barco monitor.

3.1 Low Graphics

This module is a standard low level drawing package.

It contains routines to draw lines, points, boxes, print

text and move the cursor. This level of the system knows

only about the display of objects at absolute locations on

the screen. All terminal dependence is isolated at this

level.

3.2 High Graphics

This module is a higher level graphics package,

whose major concepts are windows and objects. An

object is a graphical representation for a tuple in a rela-

tion. The co-ordinates of each object indicate its position

relative to the upper left hand corner of the window.

Nigh Graphics contains a collection of routines which:
a) display a list of objects in a window
b erase an object
c 1 clear a window
d) move an object
e) update an object

3.3 Intelligent Buffer

This level attempts to provide an intelligent cache

for the INGRES relations that are being browsed. On a

per window basis, it is responsible for fetching tuples and

transforming them to object representation. When a

window is moved or zoomed. this module is responsible

for f’Inding any new objects which might now fit in the

on Very Large Data Bases Mexico City, September, 1982

r Low
--rL

i
Low

1 Graphics 1 Graph:

Application

Program

v

Intelligent

Buffer

INGRES

&

I High

L Graphics

-1

Proceedings of the Eighth International Conference
on Very Large Data Bases 7 Mexico City, September, 1982

window and passing them to I-iigh Graphics. These

objects are either in the cache, or the INGRES data base

must be accessed to obtain them.

This module is the only place where the relation

coordinate system must be understood. The commands

from the application program to the intelligent buffer

are essentially the commands described in Section Ii.

3.5 Application Prograrn

An ordered relation contains an extra field called a line

identifier (LID), which is a positive Integer. Moreover,

there exists a sort order of the tup!es so that. LY:‘s cre in

ascending se?uenee. Tnc LID field can bc rrthr~ii!u!,.ite,-’ in

QUEL just like an ordinary field with a few changes in

semantics.

For an ordered relation

This layer supports the actual syntax of user

interaction with the screen. It corresponds to the “ter-

minal monitor” of IKGRES [STON76] and the “User

DOCUMENT (L.ID, TEXT)

and a command:

Friendly Interface” for System R [ASTR76]. It is

expected that several terminal monitors might be con-

strutted for TIMBER with various syntactic conventions.

APPEND TO DOCUMENT (LID = 100,

TEXT = “a new line io be inseried”)

IV INGRES EXTENSIONS

In order to support TIMBER, several extensions to a

relational data base manager appear desirable. We dis-

cuss three in turn below.

4.1 icons as a Data Type

the LID of this tuple becomes 100 and all lines with LID

greater than or equal to 100 get incremented by 1. On a

delete command,

RANGE OF 1) IS DOCUMENT

DELETE D WHERE D.LID =lOO

It is evident that icons must be added as a new

INGRES data type. The sequence of (x,y) pairs which

describe the icon must be stored. In addition, there

must be a “slot” for each field in the relation which can

hold a data value and optionally a label. Although icons

are stored initially as character strings, a more elegant

solution solution would be desirable.

In [STONEZ] we suggested a particular use of

abstract data t,ypes which allow user defined types for

the columns of a relation and new data base operations

on these types. This proposal is a generalization of the

notion of data base experts [STONBOa]. Storage of icons

appears an ideal use of this facility. Moreover, functions,

such as translating or rotating an icon, can be imple-

mented as new QUEL operators.

4.2 Ordered relations

Storage of documents fundamentally requires the

notion of an ordered collection of records (i.e. lines of

text). Without additional mechanisms a relational data

base system which stores unordered tuples has diffikulty

with documents. We propose to extend INGRES with the

notion of an ordered relation. An unordered relation

R(A, B, C) can be ordered by a utility as follows:

ORDER R

then the appropriate tuple is removed and all LID’s

greater tharl the LID of the deleted tuple are decre-

mented. On a replace command such as

REPLACE D(LID = 50) WHERE D.LID = 100

then the semantics are that of a delete followed by an

append. On the other hand, if the new LJD is greater

than the old one, the append must precede the delete.

A command such as

RETRIEVE INTO TEMP (D.LID, D.TEXT) WHER,E D.TEXT =
“*the*”

has the effect of creating a TEMP with all lines containing

the string “the”. The TEMP formed is an ordinary rela-

tion and the LID is a normal data item. As such it does

not have the sequencing property of ordered relations.

To create an ordered relation, one must:

RETRIEVE INTO TEMP (D.TEXT) WHERE D.TEXT = “*the*”

ORDER TEXT

Ordered relations can have secondary indexes in the

conventional way. That is, every tuple in any relation has

a tuple identifier (TID) which is an indirect pointer to its

storage address. A secondary index in INGRES for R(A, B,

Proceedings of the Eighth international Conference
on Very Large Data Bases 8 Mexico City, September, 1982

C) is specified as follows:

INDEX ON R IS INDEX-NAZfE(B)

This has the effect of creating a relation INDEX-NA.ME as
follows:

Ordered relations and the above auxiiiary structure

provide a one dimensional ordering for a relation. In

[STON@Za] a generalization of this structure is suggested

which supports multiple sequencing fields for a tuple. In

this way a tuple can have several LIDs and a resulting

rnultiple dimension ordering.

INDEX-NAME (B, TID-of-R) 4.3 Concurrency Control

We now discuss the relationship between TID’s and

LID’s. The basic function of TID’s is to facilitate secon-

dary indexes and the deferred update performed to allow

crash recovery. As such, it is important that TID’s

change as infrequently as possible. On the other hand,

LID’s serve to generate an ordering of a relation and. thus

change frequently.

It would be possible to use a TID to support order-

ing. However, it is difficult to to find taple number 2700

without a sequential scan of the 2699 preceding tup!es.

Consequently, both LID’s and TID’s appear necessary-.

We propose to support ordered relations as follows.

When any relation is ordered, a special access structure

is constructed. This structure is similar to a B-i- Tree

[COME791 whose leaf pages contain TIDs for tuples in the

relation being ordered. LIDS are assigned to tuples in

ascending sequence as leaf pages are passed Ieft to

right. Hence, the leftmost TID on the leftmost leaf page

has a LID of 1, its neighbor to the right an LID of 2, etc.

Each index block in this access structure stores a collec-

tion of pairs <page pointer, N> where N is the number of

TIDs in the subtree pointed to by the page pointer, as

noted in Figure 3.

The intelligent buffer (IB) Mary want to have a large

part of a relation already converted to object represen-

tation in virtual memory. In this way cursor motion can

be supported with minimal response time. However,

potentially any object in IB can be updated; conse-

quently all tuples in IB must, be locked. The net effect

will be that TIMBER will have potentially large portions of

relations locked and may hold such locks for the dura-

tion of a browsing session.

One solution to a similar situation is proposed in

[BROWSE] for the Cedar DBMS. One writer and several

readers for an object are allowed. When an update to an

object occLIrs, the data manager broadcasts a “dirty

data” message to any process that has read a particular

object. Each reader must either release the read lock

on the object or abort.. In a browsing environment, how-

ever, it is difficult to tell under what circumstances such

a read lock can be released. If an object has appeared

on the screen, a browsing user may have noted its value

and be using this value in a subsequent action. As a

result, an abort of the transaction may be inevit.able.

To support the correct semantics for LIDS, the

insertion of a new tuple into an ordered relation causes

an insert of its TID into tha new access structure at its

correct position in the LID ordering. All values for N on

the path to the root must be incremented. A page split

via conventional B+ tree techniques is performed as

necessary. The delete algorithm is analogous.

In a separate paper we propose a new kind of user

interface to a relational data manager which will allow

multiple concurrent browsers which perform updates

[STON62b]. This proposal may also allow some of the

buffering needed by TI?&BER to be done inside the data

manager.

V CONCLUSIONS

AUXILIARY STRUCTURE RELATION
TEXT

For Score
and seven years
ago our forefathers
brought forth
on this continent
a new
nation

We have presented the specification and overali

architecture for TIMBER in this paper. It is intended as a

sophisticated two-dimensional graphical browser for text

relations, flxed format relations, and relations containing

icons or maps.

At this time (February 1982) substantial portions of

Low Graphics and High Graphics are operational. The

intelligent buffer has not been addressed, so a “hollow

shell” which does no buffering at al! is in place. Most of

the functions specified for fixed format relations and

text relations are operational. We expect to have a com-

The Structure To Support LID’s
Figure 3

Proceedings of the Eighth International Conference
on Very Large Data Bases Mexico City, September, 1982

plete syste

months.

[ASTR76]

[BROWBI]

[CATEBO]

[CODD72]

[COME791

[DEJOBO]

[GO751

[HERO801

[JOY791

[MANT73]

[MCD075]

!m for internal experimentation within six 1975.

REFERENCES

Astrahan, M. et. al., “System R: A rela-

tional Approach to Data,” TODS, June

1978.

Brown, M., et. al., “The Cedar DBMS: A

Preliminary Report,” Proc. 1981 ACM-

SIGMOD Conference on Management of

Data, Ann Arbor, Mich., May 1981.

Catell, R., “An Entity-based Database

User Interface,” Proc. 1980 ACM-

SIGMOD Conference on management

of Data, Santa Monica, Ca., May 1980.

Codd, E., “Relational Completeness of

Data Sublanguages,” Courant Com-

puter Science Coloquium, New York,

1972.

Comer, D., “The Ubiquitous B-Tree,”

Computing Surveys, June 1979.

de Jong, P. and Byrd, R., “Intelligent

Forms Creation in the System. For

Business Automation,” IBM Research,

Yorktown Heights, N.Y., RC 8529,

October, 1980.

Go, A. et. al., “GEOQUEL: A Relational

Geo-data System,” Proc. ACM

SIGGRAPH-SIGMOD Workshop on Appli-

cation of Data Management to Graph-

ics, Waterloo Ontario, September

1975.

Herot, C., “Spatial Management of

Data,“ TODS, December 1980.

Joy, W., “The Text Editor, VI,” (unpub-

lished working paper)

Mantey, P. et. al., “Information for

Problem Solving: The Development of

an Interactive Geographic Information

System,” IEEE Conference on Com-

munications, Seattle, Wash., June

1973.

McDonald, N. and Stonebraker, M..

“CUPID: A User Friendly Graphics

Query Language,” Proc. 1975 ACM-

PACIFIC, San Francisco, Ca., April

[ROWEBZ:]

[STON76j

[STON80]

[STON80a]

[STON82]

[STON82a]

[STON82b]

[ZLOO75]

[zLOO77]

Rowe, L. and Schoens, K., “A Forms

Application Development System,”

Proc. 1982 ACM-SIGMOD Conference on

management of Data, Orlando, Fla.,

June 1982.

Stonebraker, M., “The Design and

Implementation of INGRES,” TODS,

Sept. 1976.

Stonebraker, M., “Retrospection on a

Data Base System,” TODS, June 1980.

Stonebraker, M. and Keller, K.,

“Embedding Expert Knowledge and

Hypothetical Data Bases in a Data

Base System,” ACM-SIGMOD

Conference on Management of Data,

Santa Monica, Ca., May 1980.

Stonebraker, M., “Application of AI

Techniques to Data Base Systems,”

Proc. NSF Workshop on Data Seman-

tics, Bretton Woods, N.H.. June 1982.

Stonebraker, M., et. al., “Document

Processing in a Relational Data Base

System,” University of California,

Electronics Research Laboratory,

Memo ERL M82/24, April 1982.

Stonebraker, M., et. al., “Data Base

Windows: A New Application Program

Interface,” (in preparation).

Zloof, M., “Query By Example,” Proc.

1975 National Computer Conference,

Anaheim, Ca., June 1975.

Zloof, M., “Query By Example: A Data

Base Language,” IBM Systems Journal,

December 1977.

Proceedings of the Eighth International Conference
on Very Large Data Bases

10 Mexico City, September, 1982

