
An Interactive Query Language for External Data Bases

F.H. Lochovsky
DC. Tsichritzis

Computer Systems Research Group
University of Toronto

ABSTRACT

The amount of information that is available in
computerized form is growing steadily. Two developments in
recent years - the growth of communication networks and the
advent of videotex systems - provide the potential for allowing
the public convenient access to this information. In this paper
we explore the nature of the mechanism by which people in
their homes using a videotex information service might access
data bases external to the videotex. system itself. We first
consider briefly the process of accessing a data base (querying)
in terms of the user interaction characteristics of the process.
We divide the querying process into three parts: request, reply
and dynamics. For all three parts, certain characteristics are
identified that describe the parameters of the user interaction.
We then propose some requirements that a query language for
external data bases should have. With these requirements in
mind we detail a design for such a query language.

1 INTRODUCTION

Recent years have seen a substantial growth in the number
of on-line, computer-based information sources (data bases).
Many of these on-line data bases provide information to the
public (e.g., library systems) airline systems and government
information services. However, the public generally does not
have convenient and direct access to these data bases. Instead,
some intermediary queries the data base and supplies the
response, or the information is available in a non-selective
manner in fixed locations.

Another development has been the installation and growth
of communication networks. These communication networks
allow data bases to be queried remotely at reasonable cost.
This in turn raises the possibility of permitting access, by the
public, to on-line “consumer information” data bases. An
important question in this context is from where ‘and how is
this access to be permitted.

A third development has been the emergence of videotex
systems. videotex systems are interactive, visual communication
systems intended, in part, to permit public access to external
data bases. By an external data base we mean one whose
contents and format are not under the control of the
information delivery (videotex) system. Telidon is an example
of such a system [Bown et al., 19781. The interaction with the
system is via a suitably modified television receiver which acts
as the terminal display. Input is accomplished by a keypad or
keyboard which allows certain data to be selected for display.

Given that the public will eventually have access to
videotex systems, several issues relating to user interaction with

Proceedings of the Eighth International Conference
on Very Large Data Bases 11

these systems arise [Bown et al., 19791. One of these issues
concerns how the public will request information from the
various external data bases that will be available to them.
Currently, a number of different languages each with its own
syntax and vocabulary exist for querying data bases [McDonald
and Stonebraker, 1975; Denny, 1977; Zloof, 1977; Codd et al.,
1978; Ellis and Nutt, 1980; Herot, 19801. It seems intuitively
undesirable for a user of a videotex system to have to learn and
remember a different query language for each external data
base that will be accessed. To help ensure user acceptance of
videotex information retrieval services, there should be one
query language for accessing external data bases via videotex
systems that is easy to learn and use by the public. In this
paper we outline a framework for evaluating interactive query
languages and propose a particular approach to a query language
for external data bases.

2 USER INTERACTION PARAMETERS

The general area of person-computer interaction has been
the subject of much study [Martin, 1973; Gilb and Weinberg,
1977; Guedj et al., 1980; Schneiderman, 1980; Mehlmann,
19811. In the area of interactive query languages the studies
are far fewer [Reisner, 19811. As a way of interpreting the
results of some of this research and of providing more structure
to the human factors evaluation of interactive query languages,
we propose that the querying process be viewed as consisting of
three parts: request, reply and dynamics. For each part of the
querying process certain characteristics can be identified. These
characteristics describe the parameters of user interaction. The
“values” that these parameters have in a given query language
determine whether or not the query language has “desirable”
characteristics with regard to the person-computer interface. In
the rest of this section we will identify and define several
characteristics for each part of the querying process. For a
more detailed discussion of these parameters see [Lochovsky
and Tsichritzis, 19811.

2.1 Request

Request deals with the formulation of a query to the system
by the user. The user informs the system of some action that
he wishes it to do for him. We are principally concerned here
with requests for stored information. Usually some form of
“language” that is mutually acceptable to the user and the
system is used to specify a request. This language can take
several forms (e.g., visual, verbal, pantomime, etc.). In our
opinion, six characteristics of formulating requests are
important for evaluating interactive query languages.

Mexico City, September, 1982

1.

2.

3.

4.

5.

6.

Keystrokes are a quantification of the amount of user-
supplied input required before the system fully understands
the user’s request.
Commands are the set of instructions a user has available to
tell the system what action it should perform.
Formulation of a request concerns how difficult it is to
specify a request that is incorrect either syntactically or
semantically.
Selectivity is the ability of the user to specify as precisely as
possible that data which he wishes to retrieve.
Unniformi@ concerns the independence of the query language
from the type of data base it is accessing and the application
for which the language is being used.
Customizing of a query language deals with matching the
form of a query language to that of a particular application.

2.2 Reply

Reply deals with informing the user of the result of an
action. The result can be the answer to a query or information
about the status of a request. Presenting output to the user
should be done in a way that is palatable to the user and easy
for him to assimilate. Again, some form of “language” is
required to communicate the output. Displayed output, either
as tables, graphs, pictures, etc., seems to be the natural choice
for videotex systems with possibly sound also available. In our
opinion, five characteristics for representing replies are
important for evaluating interactive query languages.

1.

2.

3.

4.

5.

Presentation complexi& is a measure of how long it takes the
user to grasp the content of a reply.
Multi-media is a measure of the number of ways in which
the system allows people to communicate.
Customizing of replies, as for customizing of requests,
means that the form of the reply is determined by the
environmental factors of the interaction.
Dynamic control is a measure of the ability of the user to
control the pace at which and form in which the reply to a
request is presented to him.
Reusability of a reply is a measure of whether the reply to a
request is only for immediate consumption, or may be
useful at a later time as input in the formulation of another
request.

2.3 Dynamics

Dynamics deals with the nature of the interaction between
the user and the system. The request and reply processes must
be accomplished via some communication medium between the
user and the system (i.e., the “languages” must have some
means of transport between the two “participants”). For
example, the interaction can be by typing, pointing, speaking,
etc. The quality of this interaction, from the user’s viewpoint,
is a critically important aspect of the querying process. In
videotex systems, we would like this interaction to be as easy
and interesting for the user as possible. In our opinion, five
characteristics of the interaction between the user and the
system are important for evaluating interactive query languages.

1. The bandwidth of interaction is a measure of the speed at
which the user and the system communicate with each
other.

2. Gamesmanship is a measure of how challenging and
interesting the interaction between the user and the system
is.

3.

4.

5.

Protocol complexity is a measure of the number of protocols,
and their difficulty, available to the user.
Responsiveness is a measure of how fast the system responds
to a user’s request.
Control is a measure of how comfortable people feel in
using a system.

In most interactive query languages, these three issues are
lumped together. This is a mistake since a language used for
formulating requests has different user requirements than a
language that is used for presenting replies. In addition, the
dynamics of a language are independent of the static aspects of
formulating requests or presenting replies. Thus requirements
for the dynamics of a query language can be considered
independent of request and reply requirements.

3 QUERYING REQUIREMENTS

In the previous section, we divided the querying process
into three parts: request, reply and dynamics of interaction. As
far as the user interaction is concerned, the most difficult of
these three parts is the request part and its dynamics. The
reason for this is that in forming a request the user is trying to
inform the system precisely of what he wants. The user must
provide the system with a great deal of guidance and be very
exact in specifying a request if the system is to understand it
correctly. Replies from the system on the other hand are much
easier for the user to understand even if they are presented
badly. This is because humans are much more intuitive and
adaptable than computer systems. This is not to say that reply
aspects of querying are not important. However, for the rest of
this paper we will concentrate mainly on the request aspects of
a query language and its dynamics. In this section, we will
indicate what, in our opinion and that of some of the studies
cited earlier, constitutes a “desirable” value for some of the
characteristics of the request and dynamics parts of the querying
process.

In general, a user wishing to access an external data base is
not a typist and probably does not want to become one to use
the query language. Hence, there should be a minimum
number of keystrokes required to communicate with the
system. In order to meet this requirement it is essential that
some type of pointing mechanism be available for pointing at
things on the screen. The pointing method should be
mechanical (e.g., a joystick or mouse) so that the user is free to
concentrate on the screen while manipulating the pointing
device. Most likely, it will be impossible to eliminate all typing.
Therefore, to be least tedious, it is also essential that typing
mistakes be allowed and corrected by the system and that the
user be able to assign aliases to refer to objects in the external
data bases.

Any commands that are required to direct the system to
perform some action should be provided via function keys or
menus of operations and be named to reflect their functionality.
In addition, the number of such commands should be kept to a
minimum. In this way the user is not required to remember
the commands available and can easily recall their function
from their names.

The system should guide the user in formulating his
requests. To this end it should display options available and
also provide instructions on-line at any point during an
interaction, The way in which requests are formulated should
be intuitive to the user. In this respect, there should be a
paradigm for formulating requests that the user can easily
understand and that helps him remember the interaction
protocols. In addition, the system can provide cues to the user

Proceedings of the Eighth International Conference
on Very Large Data Bases

12
Mexico City, September, 1982

(e.g., by the form of the display) that help the user formulate
correct requests.

While providing guidance to the user in formulating his
requests, we must be careful not to put the user in a
straightjacket by completely predetermining the requests that
can be formulated. The query language must still allow the
user some latitude in determining the selectivity of his requests.
To this end, the query language must at least allow the user to
specify the contents of his reply if not its exact format.

In most query languages the user is supposed to know the
structure, called the schema, of the data base he is accessing.
For external data bases, we cannot expect the user to know or
even understand the structure of the data base or the difference
between the schema and the data base. Instead, there should
be a mechanism to guide the user through the structure part to
the data part. In addition, the way in which the user queries
the structure of a data base should be as similar as possible to
the way he queries the data base itself. In this way the user
only needs to learn one set of interaction protocols that apply to
all his interactions with the system.

Studies have shown that users of computer systems can
become very lost if they do not know where they are in the
system [Mantei, 19821. In addition, a user cannot be expected
to remember everything that has transpired during an
interaction. To help orient the user, we should retain on the
screen as much as possible the route we have followed in
querying the data base (or at least have it available for display).

User interfaces for querying nonformatted data are often
very different from those that query formatted data. When
querying external data bases, we may have many different types
of data available. Most data will probably be in such a form
that a user cannot distinguish formatted data (e.g., inventory
information) from nonformatted data (e.g., catalogue sales
information). In addition, it is probably not desirable to require
a different set of protocols for different types of data. Thus, the
user interface should be as uniform as possible for querying the
different types of data found in external data bases.

Even though we provide uniform interaction protocols for
all types of requests, we can allow a very nonlinear user
interface in terms of difficulty of request formulation. That is,
simple requests are extremely easy to formulate while more
elaborate requests can be very complex. In fact, joins and other
complex requests can be assumed not to be frequent. The user
interface should allow these queries through a higher level,
expertise interface which can access the same data as the
interface for naive users.

The user interface should use to advantage the ability of
people to remember and easily recognize abstract patterns. For
example, people are much better at processing image data than
are computers. In addition, they readily associate abstract
images, such as logos, with the objects which the images
identify. One should make use of the image processing and
associative capability of people in a query language.

Finally, the available technology (graphics, colour and
sound) should be used to distinguish between different types of
things on the screen. For example, we could use different
colours to distinguish between the data that the user is
searching for, is providing for selection or is provided by the
system. Although we will not elaborate further on this aspect
in this paper, it can be very important for guiding the user in
his interactions with the system and should be carefully
considered in the design of the screen layout.

4 PARADIGM

The paradigm that we choose for accessing information via

an interactive query language for external data bases is that of
navigating a personal spaceship through space. Our spaceship is
of the latest design and is very powerful. It can travel both
long distances (e.g., those between galaxies) and short distances
(e.g., those between nearby planets) with relative ease. Our
usual objective in travelling through space is to arrive at a
planet and explore it, although we may just want to explore
space per se. Once we arrive at a planet, we can use our
spaceship to explore it by flying around or by landing and
examining an area in more detail. Space is very vast and
complex, and usually unfamiliar to us. Our spaceship is
equipped with a view screen which can show us a visual picture
of space in any direction, but only a limited portion of it at a
time. It is very difficult, in general, to navigate without aids
(i.e., visually only) although when we are exploring an area of a
planet this may be desirable. To guide us in our travels, our
spaceship can provide us with detailed maps. These maps come
in different levels of abstraction from those showing the general
structure of a galaxy to those showing the general structure of a
planet. .These maps can be displayed on the view screen in the
spaceship.

In a similar fashion, we can think of the information
sources that we wish to access as residing in a vast information
space. The composition of this information space is patterned
after the composition of space itself. It is composed of abstract
objects, such as galaxies and star systems, and concrete objects
such as planets. In the case of the information space, the
abstract objects correspond to the structure part (schema) of the
data. The structure part tells us something about the nature of
the data we can access. The concrete part corresponds to the
data part (data base) of the information space. The data part is
the smallest level of detail that we can explore in the
information space. Using our spaceship (the computer system)
we can explore the information space. Our spaceship command
post in this case is provided by the query language and our view
screen is provided by the CRT (TV) screen through which we
view the information space. Just as we can only see a portion
of space at a time on our spaceship view screen, so we can only
see a portion of the information space at a time on our CRT
screen.

We note two points about this paradigm. First, we
distinctly separate the structure part from the data part
conceptually, but operationally (as we will see) they are handled
(almost) the same. This separation could be important in the
future as the structure part could reside in the user’s terminal
much like the maps in the paradigm reside in the spaceship.
The data part exists at an information source and to access and
explore it the user has to “go to” the information source just as
he has to go to a planet to explore it in detail. Second, the way
in which we have described the user interaction with the
system, most of the details of how to access information are
automatic. The user supplies certain guidance, but the system
worries about the details of how to do things. This mode of
operation is preferred for the novice user, but may be tedious
for the experienced user. Therefore, we could provide a
manual override to the user and let him guide the system more
directly, much like we could provide a manual override in our
spaceship. This corresponds to the option of providing a more
powerful and complex query language for the experienced user.
In this paper we only discuss the “automatic” query language.

5 DESIGN OVERVIEW

In this section we describe the overall design of the query
language. We discuss what can be done and not how to do it.
Thus we describe the operations generically and use generic

‘roceedings of the Eighth International Conference
on Very Large Data Bases Mexico City, September, 1982

**** VIDEOTEX INFORMATION SERVICE ****

ROUTE:

CATEGORY CONTENTS

MESSAGE:

Figure 1 Empty display template.

terms such as “point at”, “fill in” and “select” without discussing
how these operations are done. We use the analogy developed
in the previous section to explain the operations in the query
language. In the next section, we consider how these
operations are done by the user.

5.1 Choosing an External Data Base

Suppose that we are in our persona1 spaceship somewhere
out in space and would like to choose a destination to go to.
Using our view screen, we can scan space and look at the stars.
However, all that we see by doing this is an abstract pattern. If
we are experienced space pilots, we may be able to choose a
destination from the star pattern directly and direct our
spaceship to go to it. However, in genera1 we probably will not
be familiar with space. To choose a destination for our
spaceship, we can scan different parts of space and look at maps
of each part. We can ask to look at only certain parts of space
that have some specified properties or we can look at all parts
of space. As we look at the maps, we can ask for a more
detailed map of a specific region of the current map. While
looking at the maps, we may mark some regions of a map for
future reference as being of interest and requiring a second
look. Eventually, we will decide on a destination and direct our

spaceship to go there.
Consider now trying to access external data bases. When

we first sign on, we are like the person in the spaceship. We
are out in space and in the view screen (TV screen) we can see
an abstract pattern (template) of the data bases that we can
select from. The image that we see is like the view of space
that just shows us the star patterns without any information
about what they represent. For example, we can be presented
with a template in the view screen such as that shown in figure
1.

The exact format of the template in the view screen is not
important here (this is subject to study to determine the best
layout). The important point to note is that the template is
divided into three basic parts. One part specifies the path we
have taken to arrive at the current template in the view screen.
The ROUTE field in the example contains this information. A
second part is used for the spe@ation and display of data. In
the example the CATEGORY and CONTENTS fields serve
this purpose. Finally, there is a part used for system feedback to
the user, labelled MESSAGE in the example.

If we have no idea which external data base we would like
to access, we can ask the system to display all the information it
has about data bases at this level. In this case we get a display
of all entries that correspond to the template. For example, we

**** VIDEOTEX INFORMATION SERVICE ****

ROUTE:

CATEGORY CONTENTS

Entertainment

News

Restaurants

Films
Livelaat
phi
ports * T .eley!sion

Chinese

MESSAGE: Frame 1 of 10
Figure 2 Nonselective display of all available information sources.

Proceedings of the Eighth International Conference
on Very Large Data Bases

14
Mexico City, September, 1982

**** VIDEOTEX INFORMATION SERVICE ****

ROUTE: Entertainment

CATEGORY CONTENTS

Films

Live arts

Exhibits

Sports

MESSAGE: Frame 1 of 2

Figure 3 Nonselective display of Entertainment information source.

might get a display such as that shown in figure 2 if we initially
ask for a display of all entries. We now can examine the
information map, marking some entries for future reference by
pointing at them or selecting one by pointing at it. Selecting an
entry allows us to look at more detailed information about it.
For example, selecting the category ‘entertainment’ and
requesting a display of all its entries would give us a display
such as that shown in figure 3.

Alternatively, we may know the kinds of external data
bases we are interested in, but not where they are. In this case,
we can ask the system to show us more information about these
destinations by pointing at and filling in the CATEGORY field.
For example, we may fill in the value ‘entertainment’ in the
CATEGORY field and ask for a display of its contents as in
figure 4. Subsequently we can examine the information map,
mark some entries for future reference and/or select one by
pointing at it. For example, if we select the ‘entertainment’
entry and subsequently ask for a display of its entries we get the
display shown in figure 3.

Rather than explicitly entering a field value, we can fill in a
field value by pointing at the field and requesting a display of all
the field values. We can then mark some entries as being the
values we want to fill in for this field. In this case rather than
entering a value explicitly, we do it implicitly by marking some
values from those displayed. Thus, for example, we could

specify the display shown in figure 4 by’ pointing at and
requesting a display of the values in the CATEGORY field,
marking the entry ‘entertainment’ and requesting a display
again.

Finally, if we know where we want to go, then we can
specify this directly and the system will take us there. We
specify this information by pointing at and filling in a value for
the ROUTE field. This directs the system to a certain
destination and causes it to show us a template of the
destination selected.

By applying this technique repeatedly, we can navigate the
structure of a data base to arrive at the data of interest. Every
time we select something in a template we get more detailed
information about the route to a data base. We also retain
information about the path we chose to get to the current
template. This is analogous to trying to determine a destination
for our spaceship. This technique can be carried out to several
levels, but it is desirable to keep the number of levels small to
reduce the amount of interaction required to get to the data. In
general, the number of levels required will be determined by
the complexity of the data base being accessed. This aspect is
in line with our stated goal of relating complexity of access to
complexity of the information or type of request formulated.

By means of the CATEGORY and CONTENT fields, we in
effect provide a keyword and cross referencing capability. That

ROUTE:

**** VIDEOTEX INFORMATION SERVICE ****

CATEGORY CONTENTS

Entertainment

MESSAGE: Frame 1 of 1

Figure 4 Selective display of available information sources.

Proceedings of the Eighth International Conference
on Very Large Data Bases

15 Mexico City, September, 1982

**** VIDEOTEX INFORMATION SERVICE ****

ROUTE: Entertainment.Films.First run

STARRING THEATRE PHONE#

MESSAGE:

Figure 5 Empty display template for information source Entertainment.Films.First run.

is, all data bases related to a specified category or categories will
be displayed. As well, some information may apply to more
than one category. Note that the displayed information may be
at different levels in the structure part. That is, some words
may refer to data bases themselves, while others may refer to
parts of a data base. However, this is irrelevant to a user and
he need not be aware of this distinction. What appears in the
view screen is a function of how the cross references to data
have been designed within the system.

Associated with each keyword displayed in the view screen
is a more detailed description of the information represented by
the keyword. At any point in time we can point at a keyword
and ask for a description of it. This is analagous to consulting a
guidebook associated with a map. We only do so when we want
to know more detailed information about a point of interest.

The ROUTE field allows us to see the path we have taken
to arrive at our current location. At any time we can backtrack
by pointing at the level (name in the path) we want to go back
to.

5.2 Exploring the Data

Our eventual destination in our spaceship is a planet. Once
we arrive at a planet, we can fly around and look at it or we can
land and explore a small area of the planet. Again to help us
navigate, we require maps of the planet. These maps show us
the abstract structure of the planet but no detail about it. By
flying around and/or landing we can explore the planet in detail.

In a similar manner, we eventually reach the data part of a
data base. As in exploring and navigating the structure part, we
can now explore and navigate the data part. As for the
structure part, we again are presented with an abstract pattern
(template) of the data in the view screen. An example of such
a template is shown in figure 5.

Specific template entries are selected by pointing at and
filling in a field. For example, to display all films starring
Donald Sutherland, we would point at the STARRING field
and enter the value ‘Donald Sutherland’. The system would
then display all films starring Donald Sutherland that are
showing currently. Alternatively, we could fill in a field by
pointing at it and asking the system to display all values that it
has for that field. We can then mark certain field values by
pointing at them. The system will then show us a complete
display of all entries in which that field value appears. For

Proceedings of the Eighth International Conference
on Very Large Data Bases 16

example, we could ask that the system show us all values for
the STARRING field. We then choose those values of interest
to us for further inspection.

If we are just interested in browsing, then we can ask that
all template entries be displayed. Subsequently, we can mark
specific entries for further examination by pointing at them.
This action has the effect of eliminating those entries that are
not of interest to us and thus reducing the size of the data
display.

5.3 Predefined Routes

As we travel around in our spaceship we soon discover that
there are certain destinations that we go to very often. We
become familiar with the routing to these destinations and soon
do not require maps to help us get there. We can specify the
destination precisely by visual navigation.

In a similar manner, when accessing external data bases
there will be certain data that we access very frequently. To
speed up our routing to this data, we can predefine the route
that the system should take. We can name this route and then
specify it explicitly in the ROUTE field. This is analagous to
pointing to our destination directly on the visual star patterns
that we see from our spaceship. These predefined routes are
appended to the structure part of the videotex information
service, but are only available to the user who defined the
routes. The destination of the routing can be a point in the
structure part, data part or part of the data part (i.e., a subset of
the data). In this way the output that the user receives can be
customized to some extent by, for example, filtering out certain
information in the data part. Predefined route names can be
distinguished from regular data base names by highlighting
them in some suitable manner.

6 DESIGN CONSIDERATIONS

In the previous section we discussed what the query
language can do, but no details were provided about how it
might do it. We used generic terms such as “point at”, “fill in”
and “select” without specifying how these actions are done. In
this section we elaborate on how the actions discussed in the
previous section are performed by a videotex user.

Mexico City, September, 1982

6.1 Pointing

One of most fundamental actions required in the interaction
protocols discussed in the previous section is the ability to point
at something within a view screen for the purpose of marking
or selecting it for further actions. Ideally, this pointing should
not distract the user’s attention from what is being displayed in
the view screen. The pointing mechanism employed in our
system is a puck and tablet. In this way, the user is able to
position a cursor to the appropriate position within the view
screen and to indicate the selection of this position.

We generally need to be able to specify a field in a template
and perhaps an entry within a field. For generality, these two
specifications are independent of each other. The exact
semantics of the specification depend on the characteristics of
the template displayed in the view screen. The ability to select
a specific field and a specific entry leads to the notion of a
current field and entry. Visually this situation is indicated by
highlighting the current entry and field using a different colour.

Some functions (as defined below) require a field as a
parameter. If no field is explicitly specified, then the default
field is the entire template. Thus, display mode with no field
explicitly specified refers to a display of all the values associated
with a template, while display mode following the selection of a
field refers to a display of only the values associated witn the
selected field. If the current field is the template, then an entry
refers to all the values that define one instance of the template.

6.2 Positioning

In our discussion we have not considered any restrictions
on the size of the template that could be displayed in the view
screen. We implicitly assumed that everything could be
displayed at once. In general, however, templates may be
larger than the view screen size. Ideally, we would like to be
able to move the view screen continuously across the template
as if it were a TV camera.

In videotex systems, the information space is usually
divided into fixed size units (pages) which are the size of the
view screen and continuous motion in all directions is not
possible. Accordingly, we assume instead that templates are
divided up into fixed size frames. A frame is a part of the
information space that can be viewed through the view screen
at one time (much as one views a phqtographic slide through a
slide projector). In general, frames exist in all directions from
the current frame (rather than just forward and backwards as
when viewed through a slide projector). Frames above and
below the current frame hold, respectively, previous and next
template entries. Frames to the right and left of the current
frame hold additional data related to the current frame that
cannot be displayed all at once through the view screen. Thus,
for example, tables of data that are too wide to fit within the
view screen are divided up into several vertically adjacent
frames (right and/or left of each other), while tables of data
that are too long to fit within the view screen are divided up
into several horizontally adjacent frames (above and/or below
each other).

To position the view screen to the desired frame, there is a
frame operation with the following options and semantics:

1. frame up - moves the view screen to the frame above the
current frame

2. frame down - moves the view screen to the frame below
the current frame

3. frame left - moves the view screen to the left adjacent
frame

Proceedings of the Eighth International Conference
on Very Large Data Bases

17

4. frame right - moves the view screen to the right adjacent
frame

5. frame name - moves the view screen to the named frame.

Frames can be named symbolically so that it is possible to
position the view screen on them directly. In most cases it is
desirable not to have right and left frames as this will fragment
the data a great deal.

If it is necessary to have left and right frames, then some
way of orienting the user as to his current position is desirable.
This orientation has two aspects to it. First, we want to tell the
user where he is with respect to the entire information space
visible at this level. In our system, we use the message area to
indicate the displacement of the user left and/or right of some
reference point much as we showed the displacemlnt vertically
in previous examples.

The second aspect that we need to worry about is
maintaining a semantic connection between the different frames
in the view screen. In the vertical direction this is not a great
problem since as we scan up and down the same template or
the same part of the template is displayed in the view screen.
However, in the horizontal direction the part of the template
visible in the visw screen changes as we move left and right. It
is therefore desirable to keep some common thread between
horizontally adjacent frames. In our system we designate one
of the template fields as a key field and keep this field in the
view screen at all times as we move horizontally. For example,
in figure 5 one of the fields of the template, say FILM, could
be kept in the view screen as we move the view screen position
horizontally.

6.3 Control Functions

Control functions deal with signalling the system that it
should note something about its current state and perform
some action based on the state, The effect of invoking a
control function can be thought of as invoking a procedure that
takes as its input the current system state and/or field value.
Depending on the value of the input parameter(s), certain
actions occur.. Control functions are provided as function
buttons in our system.

SELECT

The select function takes as its input parameter the current
field value. The result of the function depends on the
characteristics of the field value. If we select a category field
value, then the result is to make that category part of the route
we are following. Selecting a name in the ROUTE field causes
the system to back up our routing to that point. As we will see,
selecting a data value that is of type image or voice results in the
display of a picture, the showing of a film or videotape, or the
playback of recorded voice messages. If a field value has no
explicit procedure defined for it, then selecting it has no effect
(i.e., a null action results).

MARK

The mark function takes as its input parameter the current field
value. The result of the function is that the system notes the
marked value for future reference. For example, when we are
examining field values we can mark certain ones for further
3%0n. Marking can only be done in display specification
:;lode.

Mexico City, September, 1982

DESCRIBE 6.4 Specification Modes

The describe function takes as its input parameter the current
field value. The result of the function is that the system
provides a detailed explanation of the current field value. This
explanation can be visual, verbal or both. For example, for a
category field value the describe function can be used to get an
explanation of the information available in the category. Not
all field values need have descriptions associated with them.
Therefore, invoking this function can result in no description
(i.e., a null action).

HELP

The help function takes as its input parameter the current
system state. The result of invoking the help function is to
receive instructions as to what actions can be performed by the
user, and how, given the current system state.

UNDO

The undo function takes as its input parameter the current
system state. The result of the function is to undo the last
control function or the current specification mode.

SUSPEND

The suspend function takes as its input parameter the current
system state plus optionally a user supplied name. The result
of the function is to save the current state of the user
interaction. A suspended user interaction can be reactivated at
any time. The interaction proceeds from the point of
suspension as if it had never been interrupted. Suspended user
interactions are kept in a local data base named ‘suspended’ and
can be reactivated by selecting them.

The exit function takes as its input parameter the current
system state. The result of the function is to end the current
user interaction. No information about the current interaction
is saved.

SAVE

The save function takes as its input parameters the current
system state plus a user supplied name. The result of the
function is to save the specification of the user interaction and
to name it explicitly. Saved interactions are kept in a local data
base named ‘saved’. The interaction can subsequently be
duplicated by selecting the user defined name. The user
defined name becomes part of the structure part information for
this user. The save function provides a view definition
capability. The save function differs from the suspend function
in that a suspended interaction is only maintained temporarily
until it is completed. A saved interaction on the other hand is
maintained permanently by the system.

Specification modes deal with the way in which a user
specifies requests for information to the system. Invoking a
specification mode implies that a sequence of actions will follow
to form the specification. A specification mode is ended
implicitly by the select function, save function or another
specification mode, or explicitly by the undo function or exit
function. When interacting with external data bases, there are
two ways that the user can specify his request. One of these
will be the default mode; which one is determined by the user.
The default mode is entered initially when the user signs on
and after every select, suspend, save or drop function.

FILL

Fill mode allows the user to select various fields and to specify
a value or values for each field selected [Zloof, 1975a,b, 19771.
Fields are selected by pointing at them. They are filled in
explicitly by entering a value from a keyboard or implicitly by
marking displayed values as explained under display mode.

If multiple values are specified for a field, then the or
boolean operation is assumed among the values (i.e., match
where value-l or value-2, etc.). Note that an and boolean
among values does not make sense unless an entry within a
field in fact can have multiple values. If more than one field is
filled in, then the and boolean operation is assumed among
fields (i.e., match where field-l and field-2, etc.). An or
boolean among fields is handled by filling multiple templates.

The end of template filling is signalled by entering display
mode with the current field being the template. The user is
then shown all entries of the template that match the
specification. If no fields have been filled in, then all entries
corresponding to the template are displayed.

DISPLAY

Display mode allows the user to look at entries of fields or
templates in the view screen. If the template is empty when
display mode is invoked, then all entries are displayed. If the
template has been filled in, then only entries that match the
filled in template are displayed as discussed under fill
specification mode.

In display mode the template entries can be scanned using
the pointing and view screen positioning operations. The
current field and entry can be selected using the select function
which invokes the procedure associated with the current field
value. Field values can also be marked in display mode.
Subsequently, entering display mode again selects only marked
field values for display. If the current field is the template,
then marking has the effect of selecting only the marked entries
for display. If the current field is a field within the template,
then the effect is to select only those entries that match the
marked field values. The same conventions apply in this case
as for fill mode.

DROP 6.5 Data Types

The drop function takes as its input parameter the current field
value. If the current field value is a saved interaction, then the
result of the function is to drop the saved interaction from the
structure part information for this user. Dropping a non-saved
interaction results in a null action.

Most traditional query languages handle only formatted data
in a reasonable manner. However, there are other types of data
that may need to be dealt with when querying external data
bases. Some of these are: formatted text data, nonformatted
text data, image data, and voice data. Because of the nature of
the different types of data, the way in which they are queried is

Proceedings of the Eighth international Conference
on Very Large Data Bases 18 Mexico City, September, 1982

**** VIDEOTEX INFORMATION SERVICE ****
ROUTE: Entertainment.Films.First run

FILM STARRING THEATRE TIME

MESSAGE:

Figure 6 Display template for formatted data.

PHONE#

specific to the data type. However, the same interaction We select from text by specifying a pattern for which we are
protocols can be used on all types of data. looking in the text [Tsichritzis and Christodoulakis, 19821. We

do this by filling in the text pattern in the appropriate field.
FORMATTED TEXT DATA Displaying the specified pattern causes the system to show us

Once we reach the data part (instance level) in the querying
the pattern in context (i.e., where it appears in the text). In

process, we are presented with a template of the format of the
this case, the next and previous options for the entry operation

data part. An example of such a template is shown in figure 6.
show us the next and previous entries with the pattern in

We select from such a template by using the fill and/or
context (if the current field is the template). We can also look

display specification modes discussed above. The default for
at other frames around the current frame with the frame

field filling assumes that we want an exact match for the value
operation. Entering display mode without form filling shows us

specified. For certain types of fields we can also allow other
all the text.

kinds of matches such as pattern matches @rid a certain pattern
in a field), less than, less than or equal, greater than, greater

IMAGE AND VOICE DATA

than or equal and not equal matches. These options are Certain fields within formatted or nonformatted text data may
indicated by prefixing the specified value with a suitable symbol
(e.g., <, <, etc.) [Zloof, 19771. Fields to be filled are selected

correspond to image or voice data. Currently it is very difficult
to query these types of data directly. In the future it may be

using the pointing operation discussed earlier. possible to input a picture or a voice message and ask the
system to find all instances of them. However, for now it is

NONFORMATTED TEXT DATA only possible to display or play back the image or voice data.
Accordingly, this playback or display action is initiated by

If the data part consists of nonformatted text data, then when selecting the appropriate entry within an image or voice field by
we arrive at the data part we are again presented with a the select function. In order to indicate to the user the nature
template of the nonformatted text data. An example of such a of these fields, they are marked by special graphic symbols
template is shown in figure 7. (e.g., an icon of a camera to indicate photographic pictures).

**** VIDEOTEX INFORMATION SERVICE ****

ROUTE: Books,Novel.Gone with the Wind.Chapter 1

MESSAGE

Figure 7 Display template for nonformatted data.

Proceedings of the Eighth International Conference
on Very Large Data Bases 19 Mexico City, September, 1982

7 DISCUSSION OF THE QUERY LANGUAGE DESIGN

In this paper, we examined the process of querying via an
interactive query language in general and with respect to
external data bases in particular. In developing our design, we
concentrated on the request and dynamics aspects of the query
language. Let us examine the proposed design with respect to
the characteristics of these parameters.

The number of keystrokes required to specify a request
depends on the specification mode chosen by the user. If the
user displays and marks entries, then he need only point at,
mark and select values. Marking requires one keystroke for
each value marked while selecting also requires one keystroke
for each value selected. If fill mode is used, then the user may
have to point at fields and type in field values. However, even
in this case many keystrokes can be avoided if the user displays
field values and marks them.

In the proposed design there are two specification modes,
nine control functions, .one pointing operation and one
positioning operation. One of the two specification modes will
be the default mode so the user need not specify it explicitly.
Of the nine control functions, two are likely to be used heavily
- select and mark. Since the control functions are
implemented as function buttons and labelled with the function
names, there is no need for the user to remember the function
names. In addition, the functions are named so as to clearly
convey their meaning and on-line help is always available via
the help function.

Because of the way the user interaction has been designed,
it is very difficult to formulate a request incorrectly, either
syntactically or semantically. Syntactically, the query language
has no syntax to remember. The specification modes accept
any input state for the templates, from empty to fully filled.
Control functions are always valid although they may return a
null result. Semantically, field names always appear in the view
screen and the user can see the structure of the data via the
template. It is possible to specify a complicated request
incorrectly (e.g., if there are many fields to be qualified with
u&s and or’s). However, the way in which fields on a
template interact by default (and’s between fields, or’s within a
&Id) is fairly intuitive. We feel that it must be accepted that
complicated requests are complex and therefore prone to error
in their specification.

The selectivity of the query language is almost BS good as
keyword and by example query languages. The only difficult
operation to specify is a join-like operation (in fact we have not
said how to do it). One possibility is to use a saved interaction
as input to another interaction. However, we do not feel that
there will be a general need for a join-like capability in a query
language for external data bases. In any case, one can always
have the option of going to a more experienced user interface
(i.e., a keyword query language) for such requests.

In the proposed query language, we did not make any
assumptions about the structure of the external data bases. The
nature of the interface chosen - templates - does not
presuppose any particular underlying structure for the data base.
Thus, the query language can be used to interface to any type
of data base provided suitable translation algorithms are
provided to translate the operations and structures in the query
language to the operations and structures of the DBMS of the
external data base. This is currently an active research area and
several approaches to the problem can be taken [Date, 1980;
Vaasiliou and Lochovsky, 19801.

The query language can be easily customized to particular
applications by customizing the templates through which the
user interacts with the system. No other aspect of the query

language need change to accommodate this customizing. In
particular, the hardware required for interaction and the
pointing and positioning operations, control functions and
specification modes remain the same.

The bandwidth of interaction achieved depends on the
mode of specification chosen. For display and marking it can
be very high. For template filling it can be moderate. Note
that the basic concepts behind the interaction remain
unchanged as we move from pointing via a mechanical device
to, say, voice-directed pointing. Thus, as technology advances
allow the bandwidth to increase, the query language can take
advantage of these advances.

The gamesmanship of the query language is moderate to
good. The user can easily explore alternate paths in the
structure with little effort since he can easily save paths and/or
back up at any time. This exploration process gradually allows
the user to move toward his goal and he can see his progress by
the ROUTE field in the view screen. Depending on how the
cross references are constructed, the user can reach the same
data from many different paths. The pointing, marking,
displaying and filling types of activities involve the user in the
interaction. The design of the templates and th: lse of colour
and sound can add to the gamesmanship of the query language.

There are several protocols for querying data bases - fill,
display and predefined routes. The user can choose the one he
feels is most effective for his particular interaction and skill
level. He can also set the default specification mode to suit his
knowledge level of the system.

Responsiveness may be a limiting factor for the query
language with today’s technology. Display mode especially
requires that the system quickly display the requested
information. When we are at the data part level this can mean
the retrieval of a great deal of information. Being able to
display the values of any field implies that there is some fast
access mechanism available to quickly retrieve all the values.
The use of display mode may have to be limited initially to the
structure part and certain fields of the data part to overcome the
response problems. However, advances in technology may
soon make such a restriction unnecessary.

Finally, the entire nature of the user interaction, directing
the system to display things, mark things, etc., contributes to
the user’s feeling of control. He is directing the system to do
things for him in reaching his goal. Also, the paradigm for
querying introduced earlier helps to contribute to this feeling of
control. The paradigm makes the user feel that the system is
his friend helping him guide his space ship (the system)
through the unfriendly environment of space (the information
space) and protecting him from it.

8 SUMMARY

The advent of videotex systems and the growth in
communications networks are making feasible access to a
variety of computerized information sources by people not
familiar with computer technology. In order to make effective
use of these information sources, access to external data bases
will have to be via an easy to use interactive query language.
In this paper, we proposed a design for such a query language.

We first considered the process of accessing a data base
(querying) in terms of the user interaction characteristics of the
process. We divided the querying process into three parts:
request, reply and dynamics. For all three parts, certain
characteristics were identified that describe the parameters of
the user interaction. For requests, the parameters are number
of keystrokes required, type and number of commands
available, degree of freedom in request formulation, selectivity

Proceedings of the Eighth International Conference
on Very Large Data Bases

20
Mexico City, September, 1982

of requests, uniformity of requests with respect to data bases
accessed and ability to customize the request formulation for
specific applications. For replies, the parameters are the form
in which the reply is presented to the user, whether the reply
can be presented via more than one medium, whether the reply
can be customized, the degree of dynamic control over the
reply and the possibility of saving the reply and using it as input
at some later time. For the dynamics of interaction, the
parameters relate to the bandwidth between the user and the
system, the degree of gamesmanship involved in the
interaction, number of protocols available for interaction, the
responsiveness of the system to a user request and the degree
of control experienced by the user in an interaction.

For each of these parameters some requirements that a
query language for external data bases should have in terms of
a desirable “value” for the parameter were identified. With
these requirements in mind we then proposed a design for a
query language for accessing external data bases.

For describing the query language, a paradigm of navigating
a personal spaceship through space using detailed maps for
guidance was used. Basically the user is able to request maps of
the information space available to him and to choose his
destination from these maps. The maps are presented in the
form of templates which show the structure and/or contents of
the external data bases. Most of the interaction is accomplished
by pointing at fields of the templates and either filling in values
or requesting a display of values. The nature of the interaction
allows formatted data, nonformatted text data, image data and
voice data to be manipulated in a uniform manner.

The query language is being implemented in C running
under UNIX on a VAX-11/780. Initially, relational data bases
will be accessed, but the capability to access DBTG-network
data bases will also be investigated.

ACKNOWLEDGEMENT

This research was sponsored by the Department of
Communications, Ottawa, Canada under Department of Supply
and Services contract serial no. OSU80-00124.

REFERENCES

Bown, H.G., O’Brien, C.D., Sawchuk, W., and Storey, J.R. 119781. A
General Description of Telidon:- A Canadian Proposal for Videotex
Systems, Tech. note 697-E, Communications Research Centre,
Department of Communications, Ottawa.

Bown, H., O’Brien, CD., Sawchuk, W., Storey, J.R., and Treurniet,
W.C. 119791. “Telidon Videotex and User-related Issues,” Proc.
Conf on Visible Languages.

Codd, E.F., Arnold, R.S., Cadiou, J-M., Chang, CL., and
Roussopoulos, N. 119781. RENDEZVOUS Version 1: An
Experimental English-language Query Formulation System for Casual
Users of Relational Data Bases, Tech. rep. RJ2144, IBM Research
Lab., San Jose, Calif.

Date, C.J. I19801. “An Introduction to the Unified Database
Language,” Proc. ACM Intl. Conf Very Large Data Bases, pp. 15-
32.

Denny, G.H. 119771. An Introduction to SQL, A Structured Query
Language, Tech. Rep. RA93, IBM Research Lab., San Jose, Calif.

Ellis, C.A., and Nutt, G.J. 119801. “Office Information Systems and
Computer Science,” ACM Computing Surveys 12, pp. 27-60.

Gilb, T. and Weinberg, G.M. 119771. Humanized Input: Techniques for
Reliable Keyed Input. Winthrop Publishers.

Proceedings of the Eighth International Conference
on Very Large Data Bases 21

Geudj, R.A., tenHagen, P.J.W., Hopgood, F.R.A., Tucker, H.A., and
Duce, D.A. teds) I19801. Methodology of Interaction, IFIP
Workshop on Methodology of Interaction, Seillac, France.
North-Holland, Amsterdam.

Herot, CF. 119801. “Spatial Management of Data,” ACM TODSS, pp.
493-513.

Lochovsky, F.H., and Tsichritzis, D.C. I19811. Interactive Query
Languages for External Data Bases. Dept. of Communications,
Ottawa, Canada.

McDonald, N., and Stonebraker, M.R. [1975]. “CUPID - The
Friendly Query Language,” Proc. ACM Pac.@ 75 Regional Coti,
pp. 127-131.

Mantei, M. 119821. Disorientation Behaviour in Person-Computer
Interaction, Ph.D. thesis, Annenberg School of Communications,
Univ. of Southern California.

Martin, J. 119731. Design of Man-Computer Dialogues. Prentice-Hall,
Inc., Englewood Cliffs, N.J.

Mehlmann, M. [1981]. When People Use Computers - An Approach to
Developing an Interface. Prentice-Hall, Inc., Englewood Cliffs,
N.J.

Reisner, P. 119811. “Human Factors Studies of Database Query
Languages: A Survey and Assessment,” ACM Computing Surwys
13, pp. 13-31.

Shneiderman, B. [19801. SofnVare Psychology: Human Factors in
Computer and Information Systems. Prentice-Hall, Inc., Englewood
Cliffs, N.J.

Tsichritzis, DC., and Christodoulakis, S. 119821. “Message Files,”
Proc. ACM SIGOA Conf on O&e Iflormation Systems, pp. llO-
112.

Vassiliou, Y., and Lochovsky, F.H. [19801. “DBMS Transaction
Translation,” Proc. COMPSAC ‘80, pp. 89-96.

Zloof, M.M. 11975al. “Query-by-example: The Invocation and
Definition of Tables and Forms,” Proc. ACM Intl. Co& Verv
Large Data Bases, pp. l-24.

Zloof, M.M. 11975bl. “Query-by-example,” Proc. AFIPS 44, NCC, pp.
431-438.

Zloof, M.M. [19771. “Query-by-example: A Data Base Language,”
IBM Systems Journal 16, pp. 324-343.

Mexico City, September, 1982

