
A Heuristic Approach to Distributed Query Processing

Jo-Mei Chang

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a distributed database environment, finding the optimal
strategy which fully reduces all relations referenced by a general
tree query, may take exponential time. Furthermore, since
reduced relations are to be moved to the final site, the optimal
strategy which fully reduces all relations does not give an
optimal solution to the problem of minimizing the total
transmission cost. For a general query, even with only one join
attribute, the problem of finding an optimal strategy to reduce
the total data transmission cost has been shown to be NP-hard.

In this paper, a heuristic approach is taken to the distributed
query processing problem. Different cost benefit functions are
defined based on the nature of the relations involved in the
semijoin. The proposed algorithm will produce a sequence of
cost beneficial semijoin operations to reduce the total data
transmission cost involved in answering a general query. For
each join attribute, a two phase reduction process is used. The
order in which the semijoins are performed is controlled by the
projected size of the join attribute. This algorithm produces
optimal sequence of semijoins for simple queries. For general
queries, The experimental results, obtained by simulation,
indicate a substantial improvement over the SDD-1 query
processing algorithm.

1. Introduction

The problem of distributed query processing is to find an
efficient or optimal strategy to process queries referencing data
at different sites. Answering such a query requires data
movement between sites. It usually takes the following
steps[BERNS 81 b]:

1. reduce the relations referenced in the query.

2. transmit the reduced relations to one designated site, and
then execute the query locally at that site.

The critical optimization problem is to perform the reduction
step efficiently. A common assumption in distributed query
processing is that the cost of data transmission between nodes
is the dominant cost and the cost of the local processing is
negligible. The objective of distributed query processing is
therefore to process queries with a minimum quantity of inter-
site data transfers. To further reduce the size of the database,
data from two or more relations must be combined. Semijoins
[BERNS 81a] can usually be computed with much less data
transmission than a join. It also always reduces the number of
tuples of the relation on which it is performed. The problem of
distributed query processing thus transforms to generating an
efficient or optimal sequence of semijoin operations to reduce

Proceedings of the Eighth International Conference
on Very Large Data Bases

54

the total data transmission cost. Research in this direction can
be found in [CHILI 801,iW 80,8l],[HEVNE 79l,[BERNS 8lb].

[CHIU 801 and [YU 801 both use dynamic programming
techniques to obtain an optimal sequence of semijoins to fully
reduce the output relation for tree queries . However, for
general tree queries, finding the optimal strategy which fully
reduces relations referenced by the query, may take exponential
time[YU 801. Furthermore, since reduced relations are to be
moved to the final site, the optimal strategy which fully reduces
all relations does not give an optimal solution to the problem of
minimizing total transmission cost in distributed query
processing. For a general query, even with only one join
attribute, the problem of finding an optimal strategy to reduce
the total data transmission cost has been shown to be NP-hard
[HEVNE 8Ol,[YU 811. (General queries include both tree
queries and cyclic queries). [HEVNE 791 presents an algorithm
that constructs an optimal sequence of semijoins for solving a
given simple query. (A simple query references only single
domain relations). However, their algorithm for a general
query, uses an improved exhaustive search and does not
consider the fact that the reduction of one join attribute will
indirectly reduce the other attributes in the same relation.
[BERNS 81bl proposes a heuristic algorithm for answering
general queries in SDD-1 [ROTHN 801. Although the
heuristics are simple, the sequence of semijoins generated is in
general suboptimal. In this paper, we propose a simple yet
efficient heuristic algorithm to generate a sequence of semijoin
operations to reduce the total transmission cost of answering a
general query. In section 2, the assumptions are made. In
section 3, the costs and benefits associated with a semijoin are
examined. In section 4, the heuristic algorithm is described.
In section 5, examples are given to illustrate the algorithm. In
section 6, experimental results are given. Some concluding
remarks are given in Section 7.

2. Assumptions

In this paper, relational database systems are considered.
Further, it is assumed that the cost of local processing is zero
and all possible initial local processing has been performed first.
A query Q is of the form of conjunctions of equi-join clauses.
All attributes are renamed such that the join attributes in a join
clause have the same attribute name. The join clause is of the
form R,.C = R,.C. Each query Q consists of k join attributes:
Cl,CZ,C., where k can be any number. After the initial
local processing, the attributes in each relation are either output
attributes or join attributes. Relations referenced in the query
are assumed to be located at different sites. Also, when
multiple copies of a relation exist, it is assumed that one copy
has already been preselected.

Mexico City, September, 1982

The cost measure is defined in terms of the total data
transmission cost. The transmission cost of sending X bytes of
dam from site A to site B is assumed to be Ke + K ,*X, where
KO and K t are some constants.

Similar to [BEBNS 81b], the following assumptions are made
for estimating the effect of a semijoin.

1. The distinct values in an attribute of a relation are
assumed to be uniformly distributed.

2. If the number of distinct values in one attribute is
reduced by a semijoin, the number of distinct values in
each of the other attributes in the same relation will also
be reduced. The hit-ratio model [YAO 771 is used to
estimate the reduction on the other attributes.

It is assumed that the following system parameters are available
in the system catalog. For each relation R,, i=l, M: ni is
the number of records, Ui is the number of attributes, and S, is
the size of Ri (in bytes).

For each attribute Aij, j=l, Ui, of relation R,: p,, is the
selectivity. pij =Uij/Vrj, where t+j is the number of current Ag
values in Ri, and Vij is the number of possible Aij values. bv is
the projected size of Aij. bij=uij*wli (in bytes), where wij is the
size of data item in Aij (in bytes).

3. Cost Benefit Semijoin

3.1 Relevant Set

For a query Q, the relevant set of a join attribute C,, REV(C,),
consists of all relations with C, as the join attribute. For
example,
Q: R,.C, = R2.C, A R2.C, = R,.C, A R,.C2 = R,.C>

REV(Cd = 1 RI, R2. Rsl,
REV(C2) = I RI, RsI.

When Ck is clearly specified in the context, we will use Bi and
Pi to represent the projected size and selectivity of C, for
relation Ri in REV(&). For each C,, there is a corresponding
set of Ri and Pi values associated with each Ri in REV(&).
In the above example, if A ,, = C,, Azl = C,, A22 = C2. and
A 31 = c29

In REV(Cd, PI = PII. P2 = PZI.
In REV(C2), p2 = p22, P3 = p31.
3.2 Effect of a Semijoin

The semijoin iBERNS 81bl of relation Ri with relation Rj on
clause Ri.C = Rj.C, equals the join of Rr and Rj on that
clause projected back onto attributes in Rj. The notation (Ri
--t Rj) on C or simply (Ri * Rj) will be used
interchangeably to denote the semijoin operation. The semijoin
(Ri --t Rj) eliminates the unqualified tuples in Rj. Ri is called
the input relation and Rj the reduced relation. A sequence of
semijoins is called a strategy. For a chain of semijoins defined
on C, (RI + Rz), (R2 + Rj), (Rj-1 - R,), Rj will have
the accumulated effect of all the semijoins. The join attribute
of Rj is referred to as the accumulated join attritmte. The process
of performing a sequence of semijoins on C is referred to as
accumulating the values of the join attribute C. The reduced
value of Bj, B>, is referred to as the accumulated project size
of C in Rj. The selectivity, Pi, of the join attribute of R, is the
probability that an arbitrary value can be found in the join
attribute of Rj. For a given join attribute C, the selectivity of
C in Ri is proportional to the projected size of C in Ri. P; is
the accumulated selectivity of the join attribute of R,. That is ,
P is the selectivity accumulated due to the semijoins. After the
semijoin (R, -) R,), the size of Rj, S’,. and the projected size

of the join attribute, B), is reduced proportionally to the P$
value. i.e., R’, = R, * P>, and S’, = Sj * P’j. These values
are important for the estimation of Cost and benefit associated
with a semijoin. For a sequence of semijoins (R, + RI) in a
given strategy, the estimation of the value of P’,, R>, and S’,
is described in detail in [CHANG 811.

3.3 Cost Benetit Function

The cost of performing the semijoin (R, + Rj), Cost(R,, R,),
is the data transmission cost of moving the join attribute from
the input relation R, to the site where Rj is located. Therefore,
Cost(R) , R,) = KO i- K t * R,, where R, is the projected size
of the join attribute of Ri 9 Ke and K i are some constants. The
benefit due to the semijoin (R, -) R,), BENEFIT(Rr , R,), is
the reduction in the transmission cost due to the size reduction
of RI. Therefore, BENEFIT(R, ,R,) is K1 l (Zfj - S;), where
S, is the size of relation R, before the semijotn and S\ is the
reduced size of relation R, after the semijoin.

A cost benefit function associated with semijoin (RI --+ R3,
COST-BENEFIT(& , RI), is equal to BENEFIT(R, , Rj) -
Cost(R, , Rj). A cost benefcial semijoin is a semijoin whose
corresponding benefit is greater than its cost, i.e. COST-
BENEFIT > 0, with the following exceptions.

A single attribute relation is a relation which consists of only one
join attribute after the local processing, such as select and
project, is performed. A multi-attribute relation is a relation
which consists of more than one join attribute and/or output
attribute after the local processing is performed. The existence
of single attribute relations in the query is common. However,
it has the following special features to be considered.

1. For a single attribute relation R,, if no semijoin (R, +
Rj) is performed, R1 will have to be moved to the final
site.

2. For a single attribute relation R, , if semijoin (RI + R,) is
performed, the join operation between Ri and R, is
completed. Ri will no longer be moved to the final site.

Therefore, for a semijoin (R, -+ RI), if Ri is a single attribute
relation, this would actually save the cost of moving R, to the
final site. the cost of performing such a semijoin is actually
zero. Also, if Rj is a single attribute relation and it has already
been the input relation of some semijoin, Rj will not be moved
to the final site. The benefit of reducing such a relation is
actually zero.

Therefore,

1. If Rj is a single attribute relation and it has been used as
the input relation of some semijoin, the semijoin with Rj
as the reduced relation is non-cost beneficial.

2. Otherwise, if RI is a single attribute relation, the first
semijoin with R, as the input relation is cost beneficial.

In our approach, we require all the semijoins performed to be
cost-beneficial.

4. A Heuristic Algorithm

A heuristic algorithm is proposed to determine the sequence of
semijoins used to answer an arbitrary general query Q. We
divide the reduction process of the query processing into two
phases. Phase 1 concentrates on accumulating the values of the
join attributes. Phase 2 concentrates on using the accumulated
join attribute values to reduce the sizes of the relations. This
division allows simple solutions to be found in each phase. To
answer a query, this two phase reduction process will be
repeated for each join attribute Ck. The reduced relations are

Proceedings of the Eighth International Conference
on Very Large Data Bases

55 Mexico City, September, 1982

then sent to the final site, and Q is executed at that site.

4.1 PHASE 1 Reduction Process

Observation: The cheapest way to accumulate the values of C,
from all relations in REV(Ck) is to continue moving the
join attribute which has the smallest (accumulated)
projected size to the site which would produce the smallest
accumulated projected size [CHANG 811.

Consider the following situation:
REV(Ck)=(R,, R,, Rk].
relations Ri are renamed so that Bt I B2 I . . . I Bk.
The cheapest way to accumulate the values of Ck is to perform
(R, + R2), (R2 -+ R3), . . . (Rk-, + Rk). In each of these
semijoins, the input relation Ri always has the smallest
(accumulated) projected size of Ck. The reduced relation Rj is
always the relation that will produce the smallest accumulated
size of C, with Ri as the input relation. Each time a semijoin
is performed the relation with the smallest (accumulated)
projected size of Ck changes dynamically. After each semijoin,
since the relation Rj has the accumulated effect of the
semijoins performed, it has the current smallest accumulated
projected size of C,. Rj will be used as the input relation for
the next semijoin.

In our approach, all semijoins performed are required to be
cost-beneficial. Based on the above observation and the
contraint on cost-beneficial semijoins, the following basic rules,
are used in our algorithm to determine the sequence among all
the possible cost beneficial semijoins.

RULE 1:
For a given C, and a R, in REV(Ck), among all the cost
beneficial semijoins (Ri - R,) on C,, always perform (Ri
- Rk) such that the value of E;, the reduced Bk, is the
smallest among all B'j.

RULE 2:
For a given Ck, among all the relations in REV(Ck), always
try to use the relation Ri which has the smallest projected
size of Ck as the input relation. (Only when no cost-
beneficial semijoin with R, as the input relation can be
performed, will other relations can be considered as the
input relation.)

RULE 1 will determine the reduced relation of a semijoin.
RULE 2 will determine the input relation of a semijoin. With
RULE 2, between two relations Ri and Ri, if Bi < Bjq we
always first try to perform (Ri + Rj). Only when (R, + RI) is
not a cost beneficial semijoin,will we consider (R, -+ Ri).
When all the semijoins are cost-beneficial, RULE 1 and RULE
2 will produce the sequence of semijoins which has the smallest
costs among all the possible semijoin sequences which
accumulate the values of the C, from all the relations in
REV(C,) .

The algorithm for performing the phase 1 reduction process for
a given C, is described in the following algorithm (
ALGORITHM H-l). In ALGORITHM H-l, a list SA is used
to record the relations that have been involved in semijoins. A
list SI is used to record the relations that are not in SA.
Strategy(Ck) is used to record the resulting semijoins for the
phase 1 reduction process of C,. Initially, SA consists of the
relation with the smallest Br among all the relations in
REV(Ck). SI consists of the rest of the relations in REV(Ck)
in increasing B, order. ALGORITHM H-l maintains proper
order among the relations in both SA and SI. The first relation
in SI always has the smallest B, value among all the relations in
SI. Also the last relation in SA always has the smallest B,
value among all relations in REV(Ck). There are two

alternatives that a relation can be added to SA. The first
alternative is to semijoin the relation in SA with the relation in
SI. Since Pi is proportional to Bi, performing the semijoin
between the last relation of SA and the first relation of SI
which satisfies the cost-beneficial requirement will always
produce the smallest accumulated projected size of C,. RULE
1 is thus obeyed. Since the last relation in SA always the
smallest Bi value, RULE 2 is also obeyed. This process will
continue until all the possible semijoins are exhausted. Because
of the constraint on cost beneficial semijoins, SA may not yet
have all the relations in REV(&). The second alternative of
adding relations to SA is to semijoin the relation in SI with the
relation in SA. Since the relations in SI will always have larger
projected size of Ck than relations in SA, according to RULE 2,
this alternative will only be considered when the first alternative
is exhausted.

ALGORITHM H- 1:

Input: Q, C,, REV(&).
Output: Strategy(Ck).
Initialization: relations Ri in REV(Ck) are renamed so that
B, I Bz 5 . . . I Bk.
SA={R,), SI=(R 2, . . . ,Rk), Strategy(C,) = empty.

STEP 1: If SI is empty, STOP.
Let Rim be the last element in SA. Scan SI in
sequence. Select the first Rj in SI that satisfies
COST-BENEFIT(R,n,Rj) >O.
Remove Rj from SI and add to the end of SA. Add
(R,,, + Rj) to the end of Strategy(&).
Repeat STEP 1.

STEP 2: If no element in SI satisfies COST-BENEFIT(Rin,Rj)
>O, go to STEP 3.

STEP 3: Let R’in be the first element in SI. Scan SA in
sequence. Select the first Rj in SA that satisfies
COST-BENEFIT(R’h ,R,) > 0 .
Remove R’in from SI and add to SA right before Rj.
Add (R/i,, --t Rj) to Strategy(Ck) right after the last
semijoin reduces Rj.
Go to STEP 1.

STEP 4: If no element in SA satisfies COST-
BENEFIT(R’r,,,R]) > 0 and no single attribute
relation in SI, STOP. Otherwise, move the first single
attribute relation in SI as the first element in SI, and
go to STEP 3.

In ALGORITHM H-l, STEP 1 implements the first alternative
of adding elements to SA. STEP 3 implements the second
alternative of adding elements to SA. The relative order of the
elements in SA and SI are properly maintained by
ALGORITHM H-l. Basically, the last element in SA has the
smallest P,. Therefore, in STEP 1, if the last element of SA
cannot obtain any Cost-Beneficial semijoin with elements in SI,
no other element in SA can obtain Cost-Beneficial semijoins
with elements in SI. The first element in SI has the smallest
projected size of Ck. Similarly, in STEP 3, if the first element
in SI cannot obtain any Cost-Beneficial semijoin with elements
in SA, no other element in SI, with the exception of single
attribute relations, can obtain Cost-Beneficial semijoins with
elements in SA. STEP 4 therefore either stops ALGORITHM
H-l or moves the single attribute relation to the beginning of
the SI. (In most of the cases, STEP 3 is rarely used).

ALGORITHM H-1 will collect the values of the join attribute
from each relation in REV(&) at most once, i.e. each relation
will be the input relation of some semijoin at most once. Due
to STEP 3, it is possible taht some relation may be the reduced

Proceedings of the Eighth International Conference
on Very Large Data Bases 56 Mexico City, September, 1982

relation of some semijoin more than once. In an improved
version of ALGORITHM H-l, STEP 3 is modified such that all
relations in REV(Ck) will be the input/reduced relation of
some semijoin at most once. For the detail of the modified
algorithm, please refer to [CHANG 811.

The join attribute has the smallest ACCk value has the
highest priority.

4.2 PHASE 2 Reduction Process

In phase 2 of the reduction process, the accumulated join
attribute will be used to further reduce a multi-attribute relation
when the corresponding cost benefit function is greater than 0.
For a single attribute relation R,, since the cost of performing
the first semijoin with R, as the input relation is 0, its join
attribute value will always have been collected during phase 1.
It is therefore not necessary to further reduce any single
attribute relation in Phase 2.

The algorithm H-l and H-2 are repeated for each join attribute.
The overall strategy for Q, Strategy(Q), is therefore
Strategy(Q) = (Strategy(C,), Strategy(C,),..., Strategy(C
where each C’i is selected dynamically, after C,-, is selected and
Stmtegy(Ci-l) is produced. Initially, C, is selected as the join
attribute with the highest priority.

4.4 Encbancement Rules and Rule of Shipping

This subsection discusses the enchancement rules used to
further reduce the cost of the semijoins. Also, a specific rule,
rule of shipping, is used to specify which relations are to be
shipped to the final site in order to form the correct reponse set
for the user queries.

To further reduce the transmission cost, the project operation is
to be performed to eliminate the join attributes that are not to
be used for future processing. For a query Q, C, is R,-
reducible, if (1) there is only one multi-attribute relation R, in
the REV(&) and the rest are all single attribute relations, and
(2) Ck is not an output attribute. If Ck is R,,,-reducible, we
can eliminate C, from R,,, at the end of phase 2 and still
obtain the correct answer for Q.

The algorithm for performing the phase 2 reduction process is
described in ALGORITHM H-2.

We assume that the reduction of the join attribute will reduce
the other attributes in the same relation. Since (Ri + Rj) will
reduce the projected size of other attributes in Rj besides the
join attribute, it would sometimes be beneficial if some
semijoins in Strategy(Ci+,) are performed before semijoins in
Stmtegy(Ci). However, when the semijoins in Strategy(Q) are
reordered, the relative order of each of the semijoins in a
stmtegy(Ck) cannot be changed. That is, if semijoin i is before
semijoin j in Strategy(&), then semijoin i has to be before
semijoin j in Strategy(Q).

ALGORITHM H-2: Consider the following example:
Input: SA, Strategy(&).
Output: Strategy(&).

STEP 1: Let Rin be the last element in SA. Perform (Rin -
Rj) for every multi-attribute relation Rj satisfying
COST-BENEFIT(Rin ,Rj) >O.
Add (Ri,, --t R,) to the end of Strategy(Ck).

STEP 2: Eliminate C, from R,,, , if C, is R,,,-reducible.

StmWu(Cd =@I - R2), (R2 + RI)),
Strategy(Cd =I@2 * Rd, (R3 -(R2)h

4.3 Rule of Ordering

Since (R3 + R2) reduces R2, the cost of (R2 - RI) on Cl can
be decrease by delaying it until (Rl - R2) on C2 is performed.
This reordering also does not increase any other semijoins.
Strategy(Ql)=I(Rl - Rd, (R2 -+ Rd. CR, - R2), CR2 -
R,)) has a lower cost than Strategy(Q) ==((R, - R2), (R2 --)
R,), CR3 + RI), (RI - R3)).

To answer a query Q, the two phase reduction process is
repeated for every join attribute Ck to obtain Strategy(&).
The order of which the join attributes are to be processed is
determined based on the following observations:

Observation 1:
Since the reduction of one join attribute will indirectly
reduce the other attributes in the same relation, one
reasonable choice of ordering the join attributes is to first
process the join attribute that will most reduce the relations
in its relevant set. That is, to first process the join attribute
with the smallest value for the product of the selectivity for
all the relations in its relevant set.

The permutation rule in [BERNS 81bl permutes the order of
semijoins in a given strategy to decrease the cost of semijoins
without increasing the cost of any others. This permutation
rule will be used to reorder the semijoins in Strategy(Q) to
further reduce the total cost. The details of the permutation
algorithm, can be found in [BERNS 81bl.

RULE 4: Rule of Transformation
Using the permutation rule in [BERNS 81bl, reorder the
semijoins in Strategy(Q) .

Observation 2:
for a given C,, the cost of performing the semijoins on Ck
are influenced by the projected sizes of R,s in REV(Ck).
Another choice of ordering the join attributes is to order the
join attributes according to its projected size.

At the end of the reduction phase, reduced relations are sent to
a designated site and the query Q is executed locally at that site.
The following rule specifies which relations are to be sent to the
final site in order to produce the answer for Q.

RULE 5: Rule of Shipping

The following heuristic rule is therefore used. For a given Ck,
let RANGE-Ck be the number of possible values in the
domain of C,.
Let AC& = RANGE-Ck * II pj.

i E REVtCk)

If all relations referenced by Q are single attribute relations,
move the relation which was reduced last to the designated
site. Otherwise, move all multi-attribute relations to the
designated site.

The order of which the join attribute is processed is determined
according to its associated AC& value. The join attribute has
the smallest AC& value will be processed first.

MOVE(R,,Rj) is used to represent the move of the relation Ri
to the site where R, is located. For each relation R, moved to
the final site, MOVE(R,,R,) will be added to the Strategy(Q).
The cost associated with the move operation is Ke + K1 l S,,
where S, is the size of the Ri.

RULE 3: Rule of Ordering In calculating the cost benefit function, the fact that a relation

Order join attributes C, according to the following priorities: may already be located at the final site was not taken into

Proceedings of the Eighth International Conference
on Very Large Data Bases

57 Mexico City, September, 1982

account. If a relation Rf is located at the final site, there is no
need to move it and moreover a reduction in its size does not
directly contribute to the total cost reduction. To determine
whether to include the semijoin (R, - R,) in the strategy,
where RI is any relation and Rf is a relation located at the final
site, we compare the cost of the two strategies with and without
the semijoin.

There are two possibilities for a semijoin (Ri - R,) on C, to
be included in the strategy: either in phase 1 or in phase 2 of
the

(1)

(2)

reduction process of ?i.

If (R, -) R,) occurs during phase 1: After (R, -) R,),
there exist semijoin (Rf - RI) on Ck. To remove (RI
-B Rf) will involve changing all (R, + Rj) to (Ri + R,),
where R, f R,,

If (Ri - Rf) occurs during phase 2: (R, -+ R,) will not
be followed by any (Rf + R,) on Ck. Removal of (R, -
RI) will not affect other semijoins.

RULE 6: Rule of Final Site
Given a Strategy(Q), for each semijoin (R, -* Rf) on C,

(1) If (Ri + RI) is followed by semijoin (R, -) Ri) on
C,, Stmtegy(Q t) is constructed as follows:

Since R,,, is the final site, no new rule is added.
Strategy(Q) = ((RI -t Rd, (R2 ---) R3), (&,-I +
R,,,)}.

00 IfR,,, #R/.

(a) Remove (R, + Rf).
Apply Rule of Shipping, MOVE(R,,, ,R,) is added.
Stmtegy(Q) = ((RI + Rd, (R2 - Rd, UL-I -,

(b) Translate each (RI + R,) into (Ri -+ R,),if R, #
R,. Otherwise, remove (Rf - Rj).

The cost of the Strategy(Q) is compared to the cost of
the Strategy(Qt). If the latter cost is lower, Strategy(Q)
is replaced with Strategy(Q 1).

&,,),MOVEUC,,,R/)}.

(2) If (RI - R,) is not followed by any semijoin (Rf -
Rj) on Ck, Strategy(QJ is constructed by removing
(4 - R,) from Strategy(Q). The cost of the
Strategy(Q) is compared to the cost of the Strategy(QJ.
If the latter cost is lower, the semijoin is removed from
Strategy(Q). Strategy(Q) is replaced with Strategy(Q i).

Apply Rule of Final Site, the cost of Strategy(Qi) is
compared with Strategy(Q), where
Strategy(Qd = ((RI - R2), (Rf-I -) Rf+A
(&,-I - &n),MOVE(Rm&)).
Therefore, Strategy(Q) is equal to
(1) if Cost(Strategy(Q)) < Cost(Strategy(Ql)),
Strategy(Q)=((Rl --) Rd, (R/-I + R/l, CR/ -
++I), .a., (&,-I - 4,,),MOVE(R,,,,R/)~.
(2) otherwise,
Stmtegy(Q)=((Rl + R2), (&-I - Rf+d,
(&,,-I + &),MOVE(Rm&)).

The overall processing for a general query Q is described in the
following algorithm.

Since all RI are single attribute relations, B, = S,, for all i.
The solution obtained above is actually the optimal solution for
a simple query as presented in [HEVNE 791.

ALGORITHM H-Q: 5.2 General Query

Input: Q.
Output: Strategy(Q).
Initialization: Strategy(Q) = empty. JOIN, = {C,,..C,,,], Ci
are join attributes in Q. k= 1.

STEP 1: If JOIN, is empty, go to STEP 4.

STEP 2: Apply Rule of Ordering to select the attribute with the
highest priority among attributes in JOIN] as Ck.

STEP 3: Apply ALGORITHM H-l and H-2 to produce
Strategy(C,).
Strategy(Q) = IStrategy(Strategy(G)).
Remove C, from JOZN,, k = k + 1.
go to STEP 1.

STEP 4: Apply Rule of Transformation.

STEP 5: Apply Rule of Shipping.

STEP 6: Apply Rule of Final Site. STOP.

Example 2: Given a distributed database with four relations, I?
EMPLOYEE (E#, ENAME, SEX), C: COURSE (C#,
CNAME. LEVEL), SC STUDENT-COURSE (E#, C#), TC:
TEACHER-COURSE (E# , C# , ROOM) [HEVNE 791.
Assume that the site containing the TEACHER-COURSE
relation is at the result site. Consider the following query Q:
“for all male employees who are teaching advanced courses in
Room 103 and are students in at least one course, list the
employees’ names and the courses they are teaching.”
The first step is to do local processing. The local restrictions on
E.SEX. C.LEVEL, and TC.ROOM are performed and the
required joining attribute and output attributes E.ENAME and
C.CNAME are projected.
The qualification of Q is
(E.E# =SC.E#) A (SC.E# =TC.E#) A (TC.C# =C.C#).
The target list of Q is E.ENAME and C.CNAME.
The parameters associated with the relations are given as
follows.
4 s, B,(W) P,(E#) B,(C#) 4(Cdo
TC 600 200 115 200 112
SC 600 600 315
C 1200 100 114
E 2000 200 115

5. Examples

In order to illustrate the algorithm described in Section 4. the
following examples are given.

5.1 Simple Query

A simple query [HEVNE 791 is defined such that after initial
local processing each relation in the query contains only one
attribute, namely, the join attribute.

Example I: Let Q be a simple query with relations Ri, i= 1,
m. Each Ri consists of only one attribute C.

The relations R, are reordered, so that
5B21 ... SB,.

Apply ALGORITHM H-l and H-2 for C:
Since all Ri are single attribute relations, (R, -t Ri+l) is
always cost beneficial.
Stmtegy(C) = ((RI -, Rd, (R2 - RJ), (&-I - &,)I.
Since there is only one join attribute,
Strategy(Q) = Strategy(C) = ((R, - R2), (R2 -) Rx),
UL-I + &,)I.

Apply Rule of Shipping and Rule of Final Site:

(4 IfR,,, = R/.

Proceedings of the Eighth International Conference
on Very Large Data Bases 58 Mexico City, September, 1982

Let Ks = 10, K, =l.

TC is at the final site, rule of final site will remove (SC -
TC), (C - TC) from the strategy. Therefore,
Strategy(Q)= {(E - TC), (TC - SC), (SC - E), (TC *
C), MOVE(E, TC), MOVE(C, TC)).

This presents the correct solution to the problem suggested in
[HEVNE 791. The solution suggested by [HEVNE 791 is ((E
+ TC), (TC - SC), (SC + E), (C -) TC), (TC + C),
MOVE(E, TC), MOVE(C, TC)}. They failed to recognize that
the size of relation TC had been considerably reduced by the
reduction process of E#. The semijoin (C -) TC) as suggested
in their solution is not a cost-beneficial move and therefore
their solution is incorrect according to their own problem
formulation.

Example 3: Consider the same query as in Example 2. The
qualification of Q is
(E.E# =SC.E#) A (SC.E# =TC.E#) A (TC.C# =C.C#).
However, the target list consists only E.E#. Also, TC is
assumed to be located at the final site [YU 801.
The parameters associated with the relations are given as
follows.

Apply Rule of Ordering:
REV(E#) = {TC, SC, Ej, REV(C#) = {TC, C).
ACC(E#) < ACC(C#). E# will be processed first.

Phase 1 reduction for E#: BE < Bn: < Bsc.
(a) first try (E + TC):
COST-BENEFIT(E, TC) = (l-1/5)*600 -(200+10) >0
Strategy(E#)={(E - TC)).
(b) try (TC -t SC):
COST-BENEFIT(TC, SC) = (l-1/25)*60 - (40+10) >O
Strategy(E#)={(E - TC), (TC -) SC)).

Phase 2 Reduction for E# :
COST-BENEFIT(SC, E) > 0, COST-BENEFIT(SC, TC) >
0.
Strategy(E#)={(E - TC), (TC - SC), (SC - E), (SC +
WI.

Phase 1 reduction for C#:
B’x=40.(Using hit ratio model). BIT= < Bc.
first try (TC + C):
COST-BENEFIT(TC, C) > 0.
Strategy(C#) = {(TC - C)).

Phase 2 reduction process for C# :
COST-BENEFIT(C, TC) > 0.
Strategy(C#)= {(TC -) C), (C -) TC)).

Strategy(Q)= {(E - TC), (TC + SC), .(SC - E), (SC --)
TC), (TC - C), (C -4 TC)).
Applying Rule of Transformation does not change the order
of the semijoins in Strategy(Q).

Apply Rule of Shipping:
Strategy(Q)= {(E - TC), (TC + SC), (SC - E), (SC -
TC), (TC + C), (C + TC), MOVE(E, TC), MOVE(C,
‘WI.

Apply Rule of Final Site:

Proceedings of the Eighth International Conference
on Very Large Data Bases 59

4 Si Bi(E#) pi(E#) Bi(C#) Pi(C#)

TC 600 300 314 300 112

SC 240 240 315

C 300 300 112

E 200 200 112
Let K, = 10, K, = 1.

l Apply Rule of Ordering:
REV(E#) = (TC, SC, E), REV(C#) = (TC, C).
ACC(E#) < ACC(C#), E# will be processed first.

l Apply ALGORITHM H-l and H-2 for E#:
BE-=Bsc<BTC.
Strategy(E#)=((E -, SC), (SC -+ TC)}.

l Apply ALGORITHM H-l and H-2 for C#:
B’TC = 180 (according to hit ratio model).
B’,<B,.
Strategy(C#)=((TC 4 C), (C + TC)).

Strategy(Q)={(E - SC), (SC - TC), (TC - C), (C -)
W 1.

l Apply Rule of Transformation , Rule of shipping and Rule
of Final Site:
Since TC is the final site, Strategy(Q) is the same.
Cost (Strategy(Q)) = Cost(E,SC) + Cost(SC,TC) +
Cost(TC,C) + Cost (C,TC) =(lO +200) +(lO + 120) +
(10 + 180) + (10 + 90) = 630.

Using the algorithm in SDD-1, their strategy is to perform the
semijoin which maximizes the immediate gain. According to
the cost benefit definition in IBERNS 81b1, the only cost
beneficial semijoin is (E * TC). Therefore, their solution
would be:
Strategy(SDD-1)= {(E - TC), MOVE(SC, TC), MOVE(C,
WI.
This is also the solution that the algorithm in [HEVNE 791
would suggest.
Cost(Strategy(SDD-l))=Cost(E, TC) + Size(SC) + Size(C)
=(10 + 200) + (10 + 240) + (10 + 300) = 870.
This is much higher than our strategy.

6. Experimental Results

Simulation programs were written to compare the performance
of our proposed heuristic algorithm and SDD-1 query
processing algorithm. For a given query, separate sequences of
semijoins are generated according to the SDD-1 algorithm and
our algorithm. The costs of performing these sequences of
semijoins are then calculated. Both the SDD-1 strategy and our
strategy have been applied under the following conditions: (1)
the rule of transformation and rule of final site have not been
used. (2) after the reduction phase, the site with the largest
relation size is dynamically chosen to be the final site.

The performance improvement of our algorithm over SDD-1
algorithm is calculated as follows:

improvement = (Cost(Strategy(SDD-1)) - Cost(Strategy(Q))
)/ Cost(Strategy(SDD-1)).

For each query, the corresponding system parameters (the
number of tuples, the number of attributes in each relation,
and the selectivity associated with each join attribute) are
randomly generated. The average improvement for a query Q
is calculated as the average improvement of Q tested over 500

Mexico City, September, 1982

different combinations of relation sizes, possible join attribute
values and selectivities.

We have empirically tested the common query patterns, i.e.
queries consisting of one ,two and three join attributes. These
query patterns included cyclic queries as well as tree queries.
The empirical results indicate up to 50% performance
improvement of our algorithm over SDD-1. The improvement
over SDD-1 increases in general with the increase of (1) the
number of relations referenced in the query, (2) the percentage
of single attribute relations referenced in the query.

Let M be the total number of relations referenced in the query
and S be the number of single attribute relation referenced in
the query. For each query pattern, experiments have been
performed for different combinations of M and S values. The
characteristics of the corresponding system parameters used in
each experiment are described in Table 1. When a wider range
of relation sizes and join attribute values is used in the
experiments, similar results have also been obtained.

Figure 1 gives the average improvement of our algorithm over
SDD-1 algorithm when the query consists of one join attribute.

Q,: (Ra.A = Ri.A) A (R,,.A = Rs.A) A (R,,.A = RM-,.A)

Experiments have been performed for M = 3, 4, 5 and for S
=o ,..., M.

Queries consisting of two join attributes are generated from Qp

Q2: (Ro.A - R,.A) A (Ro.B - R2.B) A equi-join -clausei A
equi-join -clause,+, A . . .

where equi-join-dausei is in the form of (Ro.A - R,..A) or
(Re.B = R,.B)

Figure 2 shows the improvement in cases where the total
number of relations varies from 4 to 6 and the number of
single attribute relations varies from 0 to M-l.

Queries consisting of three join attributes are generated from
the following two query patterns.

Q3,: &.A = RpA) A (Re.B - Rs.B) A (R,,.C = R3.C) A
equi -join -clause, A equi -fin -clause,+, A . . .

where equi-join--clause, is in the form of (Ro.A = R,.A) or
(Ro.B - Ri.B) or (Ro.C = R,.C).

Q32: (ReA = Rt.A) A (ReB = R2.B) A (R,.C = R>C) A
equi-jkn -clausei A equi-join -clausei+, A . . .

where equi-join-dame, is in the form of (R*A - R,.A) or
(Rs.B = R,.B) or (R,.C = R,.C).

Figure 3 shows the average improvement over SDD-1 when
Qst is used. In Figure 3, M varies from 4 to 6 and S varies
from 0 to M-4. Figure 4 shows the average improvement over
SDD-1 when Q32 is used. In Figure 4, M varies from 4 to 6
and S varies from 0 to M-3. Q32 in fact generates cyclic
queries.

7. Coaclusions

To summarize, we have proposed a distributed query processing
algorithm, which produces a squence of semijoins for general
queries. In our algorithm, the COST-BENEFIT definition has
been modified to reflect the special feature of single attribute
relations. Also, a two phase reduction process was used. Phase
1 concentrates on accumulating the values of the join attributes.
Phase 2 concentrates on using the accumulated join attribute
values to reduce the sizes of the relations. This reduction
process allows simple solutions to be found in each phase.

Proceedings of the Eighth International COnferf3nCe

on Very Large Data Bases
60

This algorithm produces optimal solution for simple queries.
For general queries, the empirical results indicate up to 50%
performance improvement over SDD- 1.

REFERENCES

[BERNS 81a] P. A. Bernstein and D. M. Chiu, “Using Semi-
joins to Solve Relational Queries”, JACM 1981.

[BERNS 81bI P. A. Bernstein, N. Goodman, E. Wong, C. L.
Reeve and J. B. Rothnie, “Query Processing in A System For
Distributed Databases (SDD-I)“, ACM TODS, Dee 1981.

[CHIU 801 D. M. Chiu and Y. C. Ho, “A Methodology For
Interpreting Tree Queries Into Optimal Semi-Join Expressions”,
Proceeding ACM SIGMOD 1980.

[CHANG 811 J. M. Chang “Distributed Query Processing: A
Heuristic Approach”, submitted for publication.

[HEVNE 791 A. R. Hevner and S. B. Yao, “Query Processing in
Distributed Database Systems”, IEEE Transactions on Software
Engineering, May 1979. p.177-~187.

[HEVNE 801 A. R. Hevner, “The optimization of Querying
Processing on Distributed Database Systems”, Ph.D. Thesis,
Dept. of Computer Science, Purdue University; 1980.

[ROTHN 801 J. B. Rothnie, Jr., P. A. Bernstein, S. Fox, N.
Goodman, M. Hammer, T. A. Landers, C. Reeve, D. W.
Shipman, and E. Wong, “Introduction to a System for
Distributed Databases (SDD-I)“, ACM TODS, March 1980.

[YAO 771 S. B. Yao, “Approximating Block Accesses in
Database organizations”, CACM April 1977.

[YU 801 C. T. Yu, K. Lam and M. Z. Ozsoyoglu, “Distributed
Query Optimization for Tree Queries”, Technical Report, Dept.
of Information Engineering, U.I.C.C. July, 1980.

[YU 811 C. T. Yu, K. Lam, C. C. Chang and S. K. Chang,
“Promising Approach to Distributed Query Processing”,
Proceeding of the 6th Berkeley Workshop on Distributed Data
Management& Computer Networks, Feb 1982.

Table 1: Descriptions of system parameters.

M: 3,4,5 --Figure 1
4,5,6 ---Figure 2,3,4

p,j: unif(O,l) ---Figure 1,2,3,4

Vii: unif(500,lOOO) -- Figure 1, 2, 3, 4
unif(1000,10000) -- similar results were obtained when this

value range was used

n,: unif(lOO,lOOO) -- Figure 1, 2, 3, 4
unif(lOO,lOOOO) -- similar results were obtained when this

value range was used

where unif(n,m) indicates the value is uniformly distributed
between n and m.

Mexico City, September, 1982

Improvement over scn-1

0.6 I

-o------------l--‘----------- ,______________,__-_____________
0.25 0.5 0.75 1

N-5
lb4

*-3

S/M

llgura 1 Improvement over SDD-1 for queries
with one join attribute (31)

improvmcnt o”cr SD&l

cl-4

-se - -- - --

0
---,-:;-------------‘----- -____---__,--______________ S/M

0.5 0.75 1

?igurt 2 lt.proVmmnt over SDD-1 for qusries
with two join attributes (92)

I M-5
0.37%

0.25 i

i
Ix II-4

0.125-

i
I
--__-----e____

0
,----_-----____(__--__________)_________------- s/n

0.1 0.2 0.3 0.4

Proceedings of the Eighth International Conference
on Very Large Data Bases 61

0.375- --x

RI-5

m-5

I ,------------,.-------------
0.15

(______________(________________ s,*
0.3 0.45 0.6

Ilgure 4 Improvrmt over SDD-1 for cyclic queries
with the.. joln attributes (032)

Mexico City, September, 1982

