
ON LINE PROCESSING OF COMPACTED RELATIONS

F. BANCILHON, P. RICHARD, M. SCHOLL

INRIA B.P. 105
78153 Le Chesnay Cddex - France

ABSTRACT

Most data base machines use some kind of "filter"
that performs unary relational operators (selec-
tion and projection) on relations Cl to 71.
These filters operate "on the fly" that is, at
the speed of the disk, while the relation is
being transferred into main memory, Processing
time being proportional to relation size, it is
therefore important to represent data in the
most compacted way. In this paper we address the
problem of satisfying the two seemingly contra-
dictory requirements :

i) finding an "optimal" compaction scheme
ii) processing optimally compacted relations on

the fly.

INTRODUCTION

Most database machines (DBM) use some kind of
filter that performs unary relational operators
(selection and projection) on relations (see for
example Cl to 7]).These filters operate "on the
fly", that is at the speed of the disk, while
the relation is being transferred into main memo-
ry. Processing time being proportional to rela-
tion size, it is important to represent data in
the most compacted way. Most DBM just process
standard uncompacted data [2.3,4,6.7]. We are
currently realizing a machine Cl1 that uses such
a filter to process compacted relations.

In this paper we address the problem of satisfy-
ing the two seemingly contradictory requirements :

i> finding an "optimal" compaction scheme
ii) processing optimally compacted relations on

the fly.

Section 1 addresses the problem of compacting
relations. Compaction formats are defined for
files representing a given relation. The notion
of maximally compacted file is then introduced.
To obtain an "optimally" compacted file, the
method suggested in this section is to choose
an adequate set of hierarchical dependencies
and to compact the file according to that set.

We then turn to the problem of processing such
compacted files (section 2).

Proceedings of the Eighth International Conference
on Very Large Data Bases

One reasonable way of filtering compacted files
is the Finite State Automaton (FSA) approach. In
[I] we concentrated on the problem of realizing
such a filtering mechanism and raised the follow-
ing question : given a selection projection ope-
ration and given a file compacted according to
some format, can we always find a FSA that per-
forms the operations on the fly on this file.
The answer was no and a restrictive class of com-
pacted files was exhibited on which any selection
projection operation can be performed on the fly.
In this paper we give a complete characterization
of operations that can be performed on the fly.

I. COMPACTING RELATIONS

We assume the reader familiar with relational
terminology. A relation R is defined over a set
of attributesu; with each A E Ll is associated a
domain D(A), we denote D = U D(A).

Relations are represented btctequential files.
Attribute values in these files are represented
byanattribute tag (that indicates the attribute
name) followed by the attribute value and ended
by an end tag.

A file over U is a string over D+. For instance
if U = {Course,Student,Grade) then F = MathJones
A Math Susan B Latin Mike D, is a fi?e over U.

Definition 1.1. A compaction format over U is
defined recursively as follows :

1) A and A+ are compaction formats over A
2) if *is a compaction format over X so is (e;
3) if\el and se2 are compaction formats over Xl

andX2 andX1 n X = 2 @ then $.e2 is a com-

paction format over Xl u X2.

Such a definition in fact yields a special subset
of regular expressions. Exam les of compaction
formats over ABC are (A(BC) > , (ABC)+ or (AB+C+): +P+

The language g(e) associated with (eis defined
by :

1) &A) = D(A) VAeU
2) zq.Yz2) = 9te,,. zte2,

3) -hz+) = G&e>>+

263 Mexico City, September, 1982

Of course sentences from these languages are
files over U. We shall say that file F satisfies
compaction format eif :

E.&w)

For instance

Math Jones A ?lath Susan B Latin Mike D

satisfies (Course Student Grade)+ while

Math Jones A Susan.B Latin Mike D

satisfies (Course (Student Grade)+)+.

These examples should give an intuitive feeling
of the meaning of compaction formats : the last
file consists of courses followed by sequences
of student, grade couples.

We shall find it practical to associate with a
compaction format its “syntax tree". For instan-
ce the syntax tree of (A B+ C+)+ is

i
A/i\

i i
B C

We shall also find it useful to associate with
etiery file F that satisfies Qits syntax tree.
We give an example since the notion is fairly
straightforward. Consider the file :
b b b c c over
I? E?t?f& $he5co?paition
The syntax tree of the sentence is

/‘\’
A/h+ /I\ I\ ,/.l /+\ A

B i 1 c F al bl b2 b3Cl '2

4 2, I, i:
a2 b2 cl

One can see that it can easily be obtained from
the compaction format syntax tree through an ex-
pansion process.

Files are eventually meant to represent relations
so we must define the interpretation of a file :

Definition 1.2. Let F be a file over U satisfying
compaction formateand let T be its syntax tree.
With every subtree T' in T we associate an attri-
bute set atset (T') and an interpretation int (T')
which is a relation over atset as follows 7

1) atset (a) = {A) where a E D(A)
ma) = {a)

2) atset (Tl.T2) = atset (Tl) u atset (T2)
(note that these are dis-
joint sets)

int (Tl.T2) = int (T1) X int (T2)

3) atset (+(T1 T, . . . T,)) = atset (Ti) V i
(this is always
the same set)

int (+(T1 T2 . . . T,)) = u int (Ti)
i

For instance the interpretation of the file :

bbbccabbcc al12 312 2 2 5 3 1
consists of tuples (al bl cl), (al bl c2),
(al b2 ~1) (al b2 ~21, ("1 b3 cl), (al b3 ~21,
(a2 b2 ~3)) (a2 b2 cl> (a2 bg ~3) and (a2 bg cl).

When relation R interprets file F we say that F
represents R. It is clear that several files can
represent the same relation. We are obviously in-
terested into the shortest possible representation
of a relation.

A few definitions are first necessary. The general
form of a

e=

where the
e. ' s are
t&e

format is :

(wl e; w.2 %; * ** wn yg wn+++
w.'s are sequences of attributes and the
CIbl s. This corresponds to the following

+

MVNwn+, "1 +\

I

. . . .
n

4 1
/\
sn

We call wl w2 . . . wn+l the header of the compac-
tion formate, and e1 . . . p-s tails.

Let now F be a file satisfying e and T its syntax
tree, it has the following form :

Trees T11 . . . Tin . . . T,l . . . T, will be called
subfiles of F. They satisfy the CF's (e; . . . e:.

Definition 1.3. File F is said to be maximally
compacted with respect to eiff

1) The projection of F on the header of % con-
tains no duplicate.

2) each subfile of F is maximally compacted. 0

Example

ai E
1 cl al bl c2 al b2 =1 c2 a2 bl b4 c1 =2

which satisfies (A B+ C+)+ is not maximally com-
pacted because its header is A and its projection
onAis :

Proceedings of the Eighth International Conference
on Very Large Data Bases

264 Mexico City, September, 1982

al al al a2
while al bl b2 cl c2 a2 bl bq cl c2 ismaximally
compacted. Note that they represent the same re-
lation.

Theorem 1.1. Let R be a relation and F a file
maximally compacted w.r.t e that represents R,
then :

V F' E z&) s-t. F' represents R
length (F') t length (F) 0

Proof:Let z= (wl er w2 e+ . . . f+ w +
let X = wl w2 . . . w,+l. Any x E ii(X) musf ap@l-
at least once in the file F'. It appears once and
only once in F (by definition of maximal compac-
tion) therefore the header of F' is not shorter
than that of F. The same process can then be re-
peated for all subfiles of F'. Q.E.D.

The next question is : Given a CF e on a set of
attributes U, which are the relations R(U) that
have a maximally compacted representation accor-
ding to e .

In order to determine that set of relations we
introduce the set of integrity constraints asso-
ciated with a compaction format. These integrity
constraints happen to be a special set of multi-
valued dependencies namely hierarchical dependen-
cies as defined by Delobel C 81.

We characterize the set of dependencies implied
by a compaction format (denoted IMP&) in terms
of Delobel's generalized hierarchical decomposi-
tion (GHD). We need to consider the syntax tree
associated with the compaction format.

The general form is :

<<‘\\b w
W. 1

I
9 . . . n

I

n+l L
I

%2

We recursively def
as follows :

IMP(e) =

ine IMPM (which is a tree) -

Let us consider for example the following CF :

6= (AB(CD t+ F+)+ (G H+ I+)+)+

Its syntax tree is :

AB /+\\ i\\
CD i i”ii

E F H I

Proceedings of the Eighth International Conference
on Very Large Data Bases 265

IM?&,) is :

E F H I

Thus IMP(CF) is obtained from the syntax tree of
the compaction fcrmat only by removing the I+'
signs. We recall [8; that a GHD is a particular
set of hierarchical dependencies.

In "he case of the above example, we have :

AB - CDEFIGHI
ABCD - E F

ABG 3-f H I

We can now state our main theorem.

Theorem 11.1. Let % he a CF over U
Let IMP(a) be its implied GHD.
R(U) has a maximally compacted representa-
tion according to'e iff R(U) satisfies
IMP(@. fi

Proof :

1) Only if part :

m&j is a set of hierarchical dependen-

a dependency in IMP@)
compacted file accord-

Let F, be the restriction of F on value x of
X
(Fx is the subfile of F such that its value
on X is x and that contains every tails asso-
ciated to X-value x)
Let FxlXi be the values of INS(F,)[Xi] (i.e.
a set of tuples on Xi). We know that x
appairs once and only once in F (since F is
maximally compacted). Thus the only tuples
in INT(F)CX Xl... X,1 that have X-value x are
in the following set :

CX} X Fx(Xi X ..' X FxlXn

By iterating on every X-value in F we have :

INT(F)[X Xl...X,.,] = INT(F)[X Xl3 *...* INT(F)[X X,]

Thus INT(F) obeys X - XlI.../X,. By iterat-
ing we show that it obeys the GHD implied by e:.

2) if part :

Let R(U) be a relation that satisfies a gives
GHD.
Let e= (wl 6; w2 Zi .a. wp ei wp+l)+

be a CF such that IMP&) = G. We construct
a maximally compacted file according to e
that represents R.
Let X = U Wi, and Y. = atset
then, following the definition o t the iHD,
the following dependency holds in R(U).,

x - YJ...;Yp

Mexico City, September, 1982

We use a notation defined by Delobel C8 1 :

ff x E R(X) : R(x,Y) = {y E R(Y)/xy E R(XY))

We recursively define the compaction of R(U) ac-
cording to -6 as the following file named F :

F = COMP[R(U),e'I=

x~C~~~COMP(R(~~,Y,),(~,,...~~C~~~CO~(R(~~,Y~),~~

x cw , p+,lX2rwllCOMP(R(x*,Yl)‘~l)...X2rWp+,l . . .

x~C~~ICOMP(R(~~,Y~),‘~~)...X~~W~+~~.

Where : R(X) = {xl,...,
jection Of Xi on Wj.

xn} and xi[wjl is the pro-

The definition is sound since every IMP@.) is
a GHD satisfied by R(x,Y.) for all x in R(B):
and P is maximally compakted since every Xi in
R(X) appears once in FX and since the definition
is recursive.

To end the proof the reader only has to notice
that by construction INT(F) = R(U). Q.E.D.

This theorem gives us a tool to choose CF's over
sets of attributes in order to get the maximal
compaction for the physical structure of rela-
tions. We have to check if there exists a GHD
over the relations we want to store, and to crea-
te a compaction format such that the GHD is the
set IMP(e). Then we can compact our relations,
the compaction process being information lossless.
If there is no such dependency, we can choose any
simple right compaction format and compact the
relations according to this format in order to
get maximally compacted files, obviously, this
process is generally less efficient in terms of
space than the compaction according to a general
compaction format.

For example, compacting R(Course,Hour,Room,
Student,Grade) according to (C(HR>+(SG)')+ gives
shorter files than compacting according to
(C(HR(~G)+)+)+.

II. PROCESSING COMPACTED RELATIONS

To filter compacted relations, the FSA approach
was suggested in Cl I. Such a filtering mechanism
is shown below.

Source Data Target Data

CONTROL 1

Data is read one byte at a time from a source
into the target buffer at the address indicated
by the target pointer. Data is also sent to a
FSA that controls the target pointer : it can
increment that pointer, save it into a stack,
push or pop this stack.

To each selection/projection operation corres-
ponds a FSA, i.e. a specific set of transition
and output functions. This set constitutes a
program stored in the filter memory.

The transition from a state to another will
depend upon the characters read from the source.

In the sequel we assume the automaton is dealing
with unit length words whose type it recognizes,
I.e., we ignore for clarity the lexical analysis :
an attribute value is represented by one word.

To each state correspond one or several among
the following output functions (commands to the
target pointer)

0
1 TP+TP+l The next word in sequerr

ce is read from the
source and written in
sequence into the tar-
get buffer.

0 2 DROP PUSHTP onS The target Pointer's
content is pushed onto
Stack S.

0 3 RESET

0 4 ERASE

TP+POP(S) S is popped into the
target pointer, i.e.
the next word will be
written at the address
memorized in S. Clearly,
this means erasing all
words written into the
buffer since the last
memorization.

POP s S is popped. This im-
plies keeping all words
written in the target
buffer since the last
memorization.

11.1. Right simple compaction formats

Let (RlC)[X] denote the projection on X s U of
the restriction by boolean condition C of rela-
tion R. The above filtering mechanism was design-
ed to perform restriction/projection operations
on any compacted relation.

Consider file F
(Hour,Room)+)+

: (Class,Prof,(Student,Grade)+,
and the query q1 : (RIGrade=B)

[Class,Student]. It is possible to generate a FSA
that performs this query "on the fly" on file F
(for details, see [II).

However it is easy to find counterexamples where
a query cannot be performed on the fly. In parti-
cular, on the above example of file F. with the
following query we cannot generate a FSA to filter
P on the fly. q2 : (R[Grade=BvRoom=1108)[Class,
Hour,Studentl.

Proceedings of the Eighth International Conference
on Very Large Data Bases 266 Mexico City, September, 1982

Indeed, after having scanned a set of students,
either we have eliminated all those whose grade
was not B in which case we may discover later
that the room where the class meets is "1108",
or we have kept them and discover that Room #
1108, in which case we have to backup and erase
them.

The question is then : given a file, compacted
according to some CF, and given a query on this
file, can we find a FSA that performs the query
on the fly on this file ?

Theorem 11.1. Given any CF and given a file F
satisfyingthis CF, any projection/selection
operation whose boolean condition does not con-
tain any or can be performed on the fly. Thefor-
ma1 proofwas given in Cl 1.

Theorem 11.2. Let F be a file satisfying a
Right Simple CF. Then any restriction/projection
operation can be performed on the fly on F.

Recall a CF is Right Simple (RS) if in its syntax
tree all + signs are on the right and on the same
branch.

Proof : see Cll. --
The latter condition on the set of CF's is rather
restrictive.

In order to give a complete characterization of
operations that can be performed on the fly we
give below an algorithm that, given any CF and
an operation (containing 'or' s) decides whether
the operation can be performed on the fly on a
file compacted according to this CF or not. In
the latter case the operation must be decomposed
in several operations each of them being perfor-
med on the fly.

11.2. A necessary and sufficient condition for a
query to be performed on the fly on a non
RS file

We call rank of Attribute Name 1, denoted by
rank(A), the number of attribute names counted
before A when scanning the CF from left to right.

The boolean condition Is of the query is of the
form :

\e= clvc*v...vciv...vcn
where Ci is a conjunction of terms of the form
< Attribute name > < comparator > < value >.

We denote by AM(i) the attribute name of condi-
tion Ci whose rank is the largest :

for all A 6 U II Ci we have rank(A) zz rank(%(i))

We assume we have :

rank(AM(l)) < .,. 5 rank(%(i)) 5 . . . < rank(%(n))

We denote by Tree(k) the subtree whose root is
internal node k in the syntax tree associated
with the CF.

Theorem 11.3. The following propertyIF' is neces-
sary and sufficient for the restriction/projec-
tion (RICl v . . . VCiV . . . vC,)[X] to be performed
on the fly on a file compacted according to CF
CF :

I

For all k internal nodes of the syntax tree

IP associated with CF, such that Xn Tree(k)#a.
If 3 Ci such that AM(i) e Tree(k)
then AM(j) E Tree(k) for all i< j In

As an example, consider the file

F :. (Class,(Student,Grade)+,(Hour,Room)+)+

Query q
!

: (RIGrade = BvRoom = 1108)CClass,Hour,
Student cannot be performed on the fly, since in
the subtree {Student,Grade}

1) there are both an attribute to be projec-
ted (Student) and an attribute of condi-
tion Cl (Grade = B),

2) 'Room' which belongs to condition C2
(Room = 1108)

- appears on the right of 'Grade' in the
CF

- and does not belong to the subtree.

On the contrary, on the same file F, query q2 :

(R/Grade = BvRoom = 1108)CClass,Hourl

can be performed on the fly.

Proof :

1) Necessary condition : we show that if
propertylP is not satisfix, the query cannot be
performed on the .fly :

Assume there exists Tree(N1) including
Attribute A to be projected, attribute AM(i)
of largest rank in condition Ci and that
attribute AM(j) of largest rank %-condition
Cj (j >i), does not belong to Tree(Nl), but
to Tree(N2).

Tree(N) Tree(N')

There exists Tree(N3) including both Tree(N1) and
Tree(N2). Between two successive visits to node
N3, before N2 is reached, Tree(N1) has been scan-
ned one or several times. Upon each visit to AM(i)
we can conclude whether Ci is satisfied or not
and therefore decide whether to keep (Ci satis-
fied) or erase (Ci not satisfied) one or more va-
lues ofA projected between two successive visits
to AM(i).

Proceedings of the Eighth International Conference
on Very Large Data Bases 267 Mexico City, September, 1982

Eventually when we finally leave Tree(N1) if we
have erased one or more values of A (because Ci
was not satisfied), then we may get into trouble
later on when scanning attribute AM(j) : if con-
dition Cj is satisfied, we should have kept all
values of A, not only those for which Ci is satis-
fied.

On the contrary, if we had kept all values of A
(even those for which Ci was not satisfied) then
we encounter the risk that C; is never satisfied
before coming back to node N3.

2) sufPieiant condition : clearly, when
scanning the file, upon leaving any subtree,

a) either there wa8 no attribute to be pro-
jected in-this subtree, then there is no
decision to be made,

b) or at least one attribute is to be pro-
jected. Then, if we had to make a decision
at this level (keep or erase some project-
ed values), it is because we were able to
conclude whether a condition is satisfied or
not (in this subtree we encountered the at-
tribute of largest rank for this condition).

PropertylP implies the decision is safe, i.e.
within each subtree, if we can make a decision
on one condition ~ we can make a decision on all
remaining conditrons.

We choose a constructive proof to show that if
Ip is satisfied, the query can be performed on
the fly.

We restrict ourselves to the case where :

1) e=Cavcb

2) the CF is : (A(BC+>+D+)+, i.e., the
depth of the tree is 3, there are at
most three branches and there is only
one attribute at each level.

3) All attributes are to be projected.

‘The proof can then be generalized but
with a great loss of readibility.

We exhibit now a FSA that can perform the reques-
ted restriction.

Upon scanning an attribute value, the automaton
can decide whether this value satisfies condi-
tions Co and C or not.

B
%(A) (rev. Q,(A)) is true if attribute A does
not appear in condition Co(resp. CS) or if it
Eat;;iiy belongs to Co (resp. Cb) and it is test-

The state diagram is given below. The states
(0,1,2,3,4) memorize at which level of the tree
we are.

C

We need the following variables E!o, Elb, E2o,
Ezp, Ego, E3b, E4a, E4S for memoruing the eva-
luation of C, and Cb in a given state : Eix is
true if condition C, has been satisfied at level
1.

Finally we need six more variables, Hlo, Hip,
H2a7 981 H3o and H36 to remember whether the
prefix of the current tuple has already been
validated or not :

8. 1x is true if until level i we have had
a hit with condition C,.

The following table gives for each state and
current attribute, the transition and output
functions.

State

0

1

20r3

3

30r4

4

ittribute

A

B

C

B

D

-
A

Transition

qa=H2,=H&=0

Hlfi-H2~=H3~=0

Elcr=C,(A)

E, B=C~ (A)

EZcr=Elcr" Cg(B:

E,Q=E~B"C$(B)

output

DROP

DROP

DROP

IF Eja"E3g=l

then ERASE
ELSE RESET

IF H2a"H2g=l
then ERASE

ELSE RESET

DROP

DROP

IF Eha"E46=1

ERASE
ELSE RESET

IF H3a~H3B=1
EIL4SE
ELSE RESET
DROP

Proceedings of the Eighth international Conference
on Very Large Data Bases 268 Mexico City, September, 1982

CONCLUSION

We have studied a representation of relations as
compacted sequential files and the problem of
processing unary relational operations on this
representation.

We have given a simple criterion for obtaining
a minimal representation of relation. That cri-
terion is based on hierarchical dependencies.
Then we have described a filter that can process
these representations and fully characterized
the set of operations it can perform.

One of the interesting properties of this
approach is that is allows us to process unnor-
malized relations (relations satisfying MVD's
are normally decomposed into smaller relationsof
avoid duplication thus generating frequent joins).

REFERENCES

[l] F. Bancilhon, M. Scholl, "Design of a Back
End Processor for a Data Base Machine",
Proceedings SIGMOD, Los Angeles, 1980,
pp. 93.93g.

[2] G.P. Copeland, G.J. Lipovski, S.Y.W. Su,
"The Architecture of CASSM : A Cellular
System for Non-Numeric Processing", Proc.
1st Annual Symposium on Computer Architec-
ture, Dec. 1973, pp. 121-128.

r3] C.A. Ozkarahan, S.A. Schuster, K.C. Smith,
"RAP-An Associative Processor for Data Base
Management", Proc. 1975 NCC, Vol. 45, AFIPS
Press, Montvale, N.J., pp. 379-387.

r41 5. Banerjee, R. Baum, D.K. Hsiao, llconcepts
and Capabilities of a Database Computer",
ACM Trans. Database Systems, Vol. 3, N" 4,
Dec. 1978, pp. 347-284.

CSI H. Auer et al., "RDBM - A Relational Data-
base Machine", Information Systems, Vol. 6,
no 2, 1981, pp. 91-100.

[6] E. Babb., "Implementing a Relational Data-
base by Means of Specialized Hardware"? ACM
Trans. Database Systems, Vol. 4, No 1, March
1979, pp. l-29.

[7] R. Epstein, P. Hawthorn, "Design Decisions
for the Intelligent Database Machine", Proc.
1980 NCC, AFIPS press, Montvale, N.J., pp.
237-241.

C83 C. Delobel, "Normaiization and Hierarchical
Dependencies in the Relational Data Model",
ACM Trans. Database Systems, Vol. 3, N* 3,
Sept. 1978, pp. 201-202.

Proceedings of the Eighth International Conference
on Very Large Data Bases 269 Mexico City, September, 1982

