
SPECIFICATION-BASED COMPUTING ENVIRONMENTS

R. Baker, D. Dyer, M. Fehling, S. Saunders

Information Sciences Institute

This paper considers the improvements that could result

from basing future computing environments on specification

languages rather than programming languages. Our goal is to

identify those capabilities which will significantly enhance the

user’s ability to benefit from the computing environment.

We have identified five such capabilities: Search,
Coordination, Automation, Evolution, and Inter-User

Interactions. They will be directly supported by the computing

environment. Hence, each represents a “freedom” that users

will enjoy without having to program them (i.e. be concerned

with the details of how they are achieved). They form both the

conceptual and the practical basis for this computing

environment.

SPECIFICATION-BASED COMPUTING

ENVIRONMENTS
Traditionally, our computing environments have been based

on operating systems. Each tool or facility existed as a

separate subsystem and communication was via files. Unix

allowed these files to be in-core ports and provided an

interconnection language. These systems created rigid

boundaries around each tool (subsystem) preventing

integration, and provided only narrow low-bandwidth

communication paths.

More recently, computing environments have been based

on programming languages such as Lisp and Smalltalk.

These languages provide a much wider channel between

separate tools, and hence, foster tighter integration among

those tools. Any object, or set of objects, definable in the
language can form the interface between tools. Furthermore,
the full set of control structures of the language can be used

This research was supported by Defense Advanced Research

Projects Agency (DARPA) contract MDA903-81 C-0335

Proceedings of the Eighth International Conference 3

for initiating interaction. Finally, the fact that these tools exist

in the language of the computing environment, allow them to

be modified and extended through the programming

language. This extensability, which enables user code (or

another tool) to be strategically interspersed within an existing

tool, contributes greatly to the success and popularity of these

programming language based computing environments.

In the hands of a wizard these computing environments are

truly a thing of beauty. They are highly extensible, rapidly

modified, and hence, adaptable to new situations.

Unfortunately, these systems require wizards. They lowered

the boundaries between tools, fostering interaction, but, as a

byproduct, exposed huge amounts of detail. No mechanisms

were provided for controlling this detail and keeping it

consistent. Only through force of will could users (wizards)

master this detail and maintain consistency.

This paper considers the improvements that could result

from basing future computing environments on specification

languages rather than programming languages. Our goal is to

identify those capabilities which will significantly enhance the

user’s ability to benefit from the computing environment.

We have identified five such capabilities: Search,

Coordination, Automation, Evolution, and Inter-User

Interactions. They will be directly supported by the computing

environment. Hence, each represents a “freedom“ that users

will enjoy without having to program them (i.e. be concerned

with the details of how they are achieved). They form both the

conceptual and the practical basis for this computing

environment, for to the extent that we are successful in

providing them as freedoms (specifications rather than

algorithms), and hence lower the “wizard” level of users, we

must provide corresponding automatic compilation

techniques to keep this environment responsive, and hence,

useable.

on Very Large Data Bases -=lJ
Mexico City, September, 1982

There are some obvious dependencies among these

freedoms, and this decreases the number of mechanisms that

will be needed to support them. These issues will be

considered in the Implementation Basis section following

consideration of the freedoms themselves.

Computing Environment Freedoms

Search

The main activity in a computing environment is building

and manipulating various types of objects. Many of these

objects are persistent - their iifetime exceeds, and is

independent of, the programs that build and manipulate them.

For objects to be persis!ent, they must be stored

somewhere so that they can be reaccessed rater. Current

storage and retrieval mechanisms are inadequate and require

detailed programming. Files are neither appropriately sized

nor adequately Indexed to be used as containers for objects.

External databases have strong limitations on the types of

objects that can be stored [and on the manipulations that can

be performed on stored objects]. Objects stored in a

programmmg environment are idiosyncratically indexed and

retrieved.

Consider instead an environment, based on the database

viewpoint, which houses a universe of persistent objects

within the environment itself and which provides descriptive

access to those objects. That is, rather than using some

predefined criteria, ANY combination of attributes, properties,

and reiations can be used to access an object (or set of

objects if the request was not specific enough). Objects

housed within the environment can be manipulated by the full

power of that environment. Any modification causes them to

be automatically reindexed for later descriptive reference.

This, of course, describes a fully associative entity-

relationship database [Chen79] integrated with a

programming language that creates and manipulates the

objects in that database. All objects in the environment are

represented in the database (a one-level virtual store) in terms

of their relationships (including entity-class) with other

objects. The only changes that can occur in this universe of

objects are the database operations of creating and

destroying object instances, and asserting or denying

relationships between objects. By requiring all the objects of

the environment to be housed in the database, by improsing a

full associativity requirement on that database, and by

expressing the services of the environment totally in terms of

the object (i.e. database) manipulations they perform (that is,

Proceedings of the Eighth international Conference
on Very Large Data Bases

by integrating the processing with the database), users would

be freed from having to predetermine how objects ought to be

indexed so that they can be later retrieved, and from

programming their retrieval from that predetermined structure.

Much of the complexity and difficulty of using current

environments arises from the care and feeding of such

“access structures”. In this proposed environment, any

classification structure merely becomes additional properties

of the object which can be used, like any others, as part of a

descriptive reference to that object.

Coordination (Consistency)

Given the ability to create and manipulate persistent objects

and to access them descriptively, the next most important

capability is to coodinate sets of such objects -- that is, keep

them consistent with one another. Whenever one object in

such a coordinated set changes, the others must be
appropriately updated. Currently, we attempt to realize such

coordination through procedural embedding. That is, into

each service that modifies such an object we insert code to

update the others. Since the consistency criteria are not

explicit, this currently is necessarily a manual task and is error

prone, both in the placement and form of the required update.

Such manual procedural embeddings are a key reason current

systems are complex. This problem is exacerbated by the fact

that the services, and the relationships among objects

effected by these services, are evolving independently. ’

Consider instead making the coordination rules explicit so

that coordinated objects are defined in terms of each other.

Each definition is expressed in terms of a mapping (called a

perspective) which generates a uependent object (called a

view) from one or,more objects with which it is coordinated.

Whenever a coordinated object changes, the view can be

updated automatic&y. Views are first-class objects: they can

be accessed descriptively, and, if the back mapping is defined,

they can be modified, causing the appropriate changes in the

“defining” objects. (Some of these back-mappings can be

inferred automatically, others are underdetermined and must

be explicitly defined.)

Such coordination represents a major departure from

existing systems. Coordinated objects are tightly coupled, so

that changes in one are automatically reflected in the others.

With such a mechanism, once the coordination criteria

(mappings) are stated, the system could assume full

responsibility for maintaining consistentcy among coordinated

objects. Changes to existing services or addition of new ones

‘could be accommodated automatically. Furthermore, the

system could then employ lazy evaluation [Friedman761 to

274 Mexico City, September, 1982

delay, updating views until those updates were actually

requirea.

The reason that the terms, perspective and view, were

chosen ,respectively, for the mapping and the object

produced is that, in addition to its intended use as the

mechanism to keep objects coordinated, perspectives will also

be used as the mechanism by which a user displays and
manipulates objects. Displays are just particular views (which

like other views must be kept coordinated with the object

being viewed) for which the system knows how to create a

picture an the user display screen and how user gestures

(whether by entering text, making selections, and/or graphical

motion) change the display (and hence, both the picture on

the screen and, via a back mapping, the object being viewed).

demons, and the responses become their bodies. This would

allow users to define active “agents” operating on their behalf

which autonomously monitor the computing environment for

those situations for which a response has been defined. This

freedom allows users to focus their attention on the more

idiosyncratic aspects of the computing while their agents

handle the more regularized ones. In particular, these agents

could operate in the absence of the user, responding to

interactions initiated from other user’s environments (see

Inter-User.lnteractions below).

Coordination is thus an extremely powerful mechanism. It

not only provides an explicit ‘mechanism for maintaining

consistency between objects, but also provides the

mechanism by which manipulatable filtered (i.e. partial) views

could be constructed for both internal and external (display)

use.

This automation mechanism not only frees users from

repetitive tasks, but also changes their perception of their

environment. First, it emphasizes the data base orientation of

the environment by basing responses on situations (the state

of some set of objects) rather than on the processes (code)

that produced those situations. As we will see in the next

section, this data base orientation greatly facilitates evolution

of the tools and services in the environment. Second, these

responses convert the previously passive environment into an

active one.

The user interface to this environment would therefore be a As an example of automation, consider an agent which

set of perspectives (mappings) used for display. Through responds to the arrival of a message by presorting it for the

them the user could ObSeNe objects, watch them change, user into some predefined catagory on the basis of the sender,

invoke tools and services to manipulate them, or change them the topic, and/or the content of the message, and then

himself. This user interface would be fully programmable and decides whether to inform the user of its arrival based on the

extensible (see Evolution below). user’s current activity.

As an example of the power of the coordination mechanism,

justified text is just a view of text, and object code is just a view

of source code. By defining justification and compilation as

the perspectives which produce those views, these processes

will be automatically invoked as needed. The maintenance

task (coordinating the objects) will shift from the user to the

system.

Evolution (Perspecuity)

Automation

In interacting with a computing environment, many

repetitive sequences are employed. Programming language

based environments provide the ability to bundle such

repetitive sequences as macros and/or procedures. But such

macros and/or procedures still have to be invoked explicitly.

The user is required to remain in the loop having to perform

the pattern recognition function and determine when and

upon which objects to invoke the macro and/or procedures.

One of the key problems with traditional computing

environments is the inability to modify the tools and services of

those environments. Programming language based

environments improve this situation by coding the tools and

services in the language of the environment (with which the

user is necessarily familiar) and by making the source code

available to the user. To the extent that the user can

understand the tools and services, he can modify them.

Once the commitment has been made to provide accessible

source code, evolvability is almost completely an

understandability issue. This is another way that adopting a

specification-based approach has a big payoff. Besides

alleviating implementation concerns, each of the specification

freedoms improves understandability by allowing the code to

more closely describe intent rather than implementation.

By adding demons to the computing environment, users

could be freed from being in-the-loop through automating the
way that their environment reacts to specified situations.

Those situations would become the firing Pattern of the

As a prime example, consider the use of the “automation”

demons, described in the previous section, to provide

situation-based extensions. Rather than procedurally

Proceedings of the Eighth International COnferenCe

on Very Large Data Bases

273 Mexico City, September, 1982

embedding the extension at each appropriate place in the

existing tools or services, a single demon is created that

specifies when, in terms of the objects in the environment (i.e.

a situation), the extension is appropriate. By localizing the

extension and specifying the situation to which it is to be

applied, the understandability of the resulting service is greatly

enhanced. This paradigm has already been successfully

employed for many years within Artificial Intelligence and

production-rule languages. We believe it has much wider

applicability.

But tool and service understandability need not be based

solely on the readability of the source code. These tools and

services manipulate objects in the environment. That is, they

have behavior, and that behavior provides a strong basis for

understandability. By making the behavior explicit in the form

of a recorded history (as an object in the environment) the full

power and extensibility of the viewing (coordination)

mechanism could be used to understand the recorded

behavior.

The recorded history would include attribution so that the

old debugging problem of determining how an object reached

its current state and who was responsible for it will finally be

resolved.

Recording history is a major design commitment of our

computing environment which provides the basis for its

behavior based understandability. To the extent that we are

successful in providing an evolvable, integrated, and

automated computing environment, the need for such

behavior based understanding will correspondingly increase.

The recorded history also provides the basis for an

important habitability feature - the ability to undo operations

[Teitleman72]. There are three reasons why such a capability

is crucial. First, we are faliable - from lack of forthought or just

plain carelessness. Second, no matter how consistent and

well integrated the environment is, we will occasionally be

unpleasantly surprised at the effect of an operation, or the

situation in which it was invoked. Finally users need a

convenient way to experiment to learn about unfamiliar

services, to debug their own additions to the environment, and

simply just to see the effects of some course of action. For all

these reasons, an undo mechanism which can be invoked

after the operation(s) to be undone, is a crucial habitability

feature (as shown by its popularity and use in the Interlisp

[Teitleman 781 environment). Such a facility can be easily

constructed from the recorded history.

Proceedings of the Eighth International Conference
on Very Large Data Bases

276

Inter-user Interaction

Our specification based environment has so far proposed

the freedoms of search, coordination, automation, and

evolution. These four freedoms resolve the major difficulties

encountered within a computing environment. But our future

computing environments cannot be self-contained. They must

interact with the environments of other users and with various

shared services.

As was the case when we considered persistent objects,

files are an inappropriate mechanism (though they are the

basis for existing inter-user interactions). Inter-user

interactions require no less powerful nor rich a set of

capabilities than those needed within a single environment.

Objects need to be accessed, coordinated, and manipulated

across environment boundaries. The boundary between

environments has to be suppressed so that the full power of

the computing environment can be applied to inter-user

interactions.

One remaining issue must be addressed. Our rights and

privileges are very different within someone else’s

environment from those within our own. Within our own

environment, we can do as we please - accessing any object,

manipulating it, and defining the rules of consistency which it

must obey. Within someone else’s environment, they have all

the rights and privileges. We must ask their permission for

anything within their environment.

We do this by dividing the notion of an active object

[Kay74, Hewitt771 into an active intermediary (programmed

agent) and a (passive) object owned by that intermediary. If

we are manipulating (including accessing) an object that we

own, then the manipulation is performed directly. However, an

attempt to manipulate someone else’s object is treated as (i.e.

translated to) a request to the owner of that object which can

be either honored or refused. This specification freedom

enables object owners to define external access and

manipulation rights that allow others to manipulate objects

without respect to environment boundaries, as long as they

don’t exceed those rights. Privacy and/or access can be

programmed on a local object-by-object basis and can be

both state and requestor dependent.

Mexico City, September, 1982

Beyond Freedoms:

General Support

In addition to the specification freedoms described above,

two other capabilities must be available within the computing

environment to simplify service creation and improve the

habitabilty of the environment. First is a comprehensive set of

general object manipulations. Since the main activity in any

computing environment is building and manipulating objects,

‘such a set of widely applicable object manipulations is

essential. These manipulations include object definition

(since the class of object types is not fixed), instantiation

(since the set of objects of each type is not fixed), examination

(often called browsing in interactive systems), modification,

and destruction. To the extent that traditional services have

employed idiosyncratic versions of these capabilities,

providing a comprehensive set of widely applicable object

manipulations will reduce service implementation effort while

improving the consistency and coherency (and hence

habitability) of the environment. As an example of such a

reduction consider an electronic mail service. The only

portions of this service which must be specially built are the

definition of the object message and the mail service specific

operations of sending a completed message (transferring a

copy to each of its addressee attributes) and answering a

message (partially constructing a message with the

addressees and the beginning of the body (“In reply to your

message of...“) filled in). All of the other capabilities normally

associated with a mail service such as comparing messages,

examining them, editing them, filing them, retrieving them,

deleting them, etc., are provided through the general object

manipulation capabilities of the environment. Clearly, such

reductions in the scope of service implementation greatly

facilitate the creation of new services.

The second additional capability required within the

computing environment is a suitable user interface. As

previously discussed under the coordination freedom, the

user interface will be a set of perspectives (mappings) used to

display and manipulate objects. By defining a “service

invocation” as an object, it can be instantiated, displayed, and

manipulated by this interface, and by defining a service on

such objects which invokes the named service on the

specified objects (parameters), then this interface can be used

as a “command interpreter” to specify the parameters needed

for some service and to invoke it. In addition, since a wide

variety of views will already be needed for user browsing,

Proceedings of the Eighth International Conference

these same views can be used to display the effects of

services. In fact, since all the effects of a service invocation

are recorded in the history, a much more sophisticated display

mechanism can be created, external to the services, which

examines the effects and determines what to display based

not only on these effects, but also the current user context

including what is currently displayed on the screen and on

various user declarations of personal preference. By

removing both input (service invocation) and output (how to

display effects) from service definitions, their scope will be

reduced to a kernel consisting of only the functional object

manipulation effects of the service. This will greatly simplify

service creation while simultaneously providing a more

powerful comprehensive user interface.

Implementation Basis

This computing environment has not been implemented. It

is still in the conceptual design phase. We consider here the

basis for our eventual implementation.

We have proposed quite an ambitious set of freedoms to

resolve the difficulties that have made current environments

so complex and hard to use. Each of these freedoms (and

their combinations)must be compiled into efficient

mechanisms to keep the environment responsive (and hence

useable). Yet the set of mechanisms and compilation

techniques is relatively small and, we think, manageable.

First and foremost, there is the issue of associative access.

Objects can participate in, and be accessed via, arbitrary

relations. Clearly, some set of internal inversion indices must

be selected and maintained for rapid access. This means that

object updates must also update the appropriate indices.

Modularity concerns imply all such updating be encapsulated

in a data base interface responsible for all object

manipulation. Since much of the environment exists as code,

it can be analyzed to determine which indices are (most)

needed. Yet, since the environment must be responsive to

direct user interaction, and evolution will occur in the existing

code, it must also be adaptive. Thus, it requires combining

traditional data base technology handling large statically-

indexed data bases with programming language and Artificial

Intelligence techniques for smaller dynamically indexed data

bases.

Such a technology would directly support both the

descriptive references realizing the search freedom, and the

demon firing patterns realizing the automation freedom. The

(data base) interface it imposes makes the addition Of

on Very Large Data Bases 277 Mexico City, September, 1982

automatic history recording (required for the evolution

freedom) and the active intermediary that owns remote objects

(required for the inter-user interaction freedom)

straightforward. Each of these latter two facilities has

separate efficiency requirements, but they are relatively minor

and the existing technology

[Balzer69, Teitelman78, Kay74 Rashid80, Nelson811 seems

adequate.

Only one freedom, coordination, remains unaddressed.

Since this freedom is realized in terms of explicit mappings

which define the coordination, it is trivial to apply them to

obtain updated views, Unfortunately, much more than simply

applying the mappings is required, and the needed technology

does not yet exist.

This needed technology poses the second major

implementation problem. It must address four issues. First,

there is the question of determining when an existing view is

obsolete. It is relatively simple to syntactically determine

which changes could possibly affect a view. It is much more

difficult (and in general undecidable) to determine which

actually do affect the view. To the extent that this difference is

undetected, views are needlessly obsoleted.

Second, rather than recomputing a view as soon as it is

obsoleted, this computation can be delayed until the view is

actually needed (Lazy evaluation [Friedman76]). To the extent

that obsoleted views are never referenced, or not referenced

before further obsolescence, needless compution is avoided.

Since many of these computing environments are planned for

personal machines, this lazy evaluation should become

opportunistic evaluation, utilizing any otherwise wasted wait

time to recalculate not yet required obsoleted views. Clearly

some sort of priority mechanism either a-prior or adaptive

would be required.

Third, while, in general, the back-mappings are

underdetermined, many of them are not, and given suitable

restrictions in the mapping language, they could be

automatically generated.

Finally, and most importantly, even handling obsolescence

and lazy/opportunistic evaluation appropriately still leaves a

major efficiency problem. Minimizing the frequency of view

recalculation does not mitigate the cost of each such view

calculation. Once a view has been calculated, most updates

should be dealt with incrementally, rather than recalculated

from scratch. Since views will be quite pervasive, an

incremental update facility will have a major effect on the

responsiveness of the environment. Unfortunately, such a

Proceedings of the Eighth International Conference
on Very Large Data Bases

278
. . . Mexico Citv. SeDtember. 1982

facility requires sophisticated analysis of the mapping

language. Again, suitable restrictions on that language can

have large effects on the feasibility of such analysis. AS the

amount of such technology is crucially dependent upon the

detailed conceptual design, our general strategy iS to suitably

restrict the design to minimize the need, and gradually relax

these restrictions as the technology comes into existence.

Conclusion

We have examined current computing environments and

tried to understand the causes for their limitations, particulatly

in the areas of integration and habitability. Operating system

based computing environments must be integrated at the

subsystem level. The narrow communication channel

imposed via files (whether real or in-core) appear to

fundamentally preclude tight integration.

The situation is very different for programming language

based computing environments. They appear structurally

ideal for tight integration. Arbitrary objects can be defined

and shared. The full range of control structures in the

programming language can be used to tie tools and services

together. While this programming-language basis is adequate

for integration it causes habitability problems. The

mechanisms are simply too low level (detailed) for the

computing environment task. Rather than describing what to

do, user must program how to do it, precisely because they

are dealing with a programming language.

The obvious solution is to augment the computing

environment language with higher level specificafion

constructs. Each such construct represents a freedom that

users can enjoy (because they no longer have to program the

construct) and a responsibility the system must accept to

provide an efficient implementation of the construct to keep

the environment responsive.

1. Search - the ability to locate objects via descriptive
reference.

2. Coordination - the ability to state the consistency
criteria among objects and to have it maintained as any
of them are changhed.

3. Automation - the ability to define the autonomous
response to specified situations so that the user need
not remain in the loop for repetitive operations.

4. Evolution - the ability to modify and extend existing
services through increased perspecuity of those
services and their behavior.

5. Inter-User Interaction - the ability to determine how
others will be allowed to access your objects, as they
determine.

We have no doubt that such freedoms, together with a

comprehensive set of general object manipulations and user

interface capabilities, will greatly facilitate service creation

and markedly improve the habitability of future computing

environments. These freedoms must be supported with

efficient mechanisms. Two mechanisms seem most crucial.

The first is an adaptive associative entity-relationship

database. This will require integration of techniques being

developed in the database, programming language and

artificial intelligence fields. The second is view maintenance.

It requires the integration of techniques for obsolescence

detection, Lazy (and opportunistic) evaluation, generation of

back-mappings, and most importantly for incremental update.

The open question is how long it will take to provide this

underlying support technology. We hope that others will

reach similar conclusions - that the path to progress in

computing environments lies in identifying appropriate

freedoms - and join us in this project.

Acknowledgement:

The ideas presented here have evolved from the

efforts and philosophy of the SAFE group at ISI,

particularly the development of the formal

specification language of GIST and the ability to map

it via transformations into efficient implementatigns.

Proceedings of the Eighth International Conference
on Very Large Data Bases

References

[Balzer 691 - “Exdams - Extensible Debugging and

Monitoring Systems”, Robert Balzer, Spring Joint Computer

Conference, 1969, pp. 667-880

[Chen 791 - Proceedings of the International Conference on

Entity-Relationship Approach to Systems Analysis and Design,

Dec. 1979, Los Angeles, Peter P. Chen, editor

[Friedman 761 - “CONS should not evaluate its arguments”,

Friedman, D.P. and Wise, D.S., Automator, Languages, and

Programming, Michaelson and Milner, eds., Edinburgh

University Press, 1976, pp. 257-284

[Hewitt 77]- “Laws for Communicating Parallel Processes”,

C. E. Hewitt and H. Baker, Proceedings of IFIP-77, Toronto,

Aug. 1977

[Kay 741 - “SMALLTALK, a communication Median for

children of all ages”, A. Kay, Xerox Palo Alto Research Center,

Palo Alto, Calif. 1974

[Nelson 811 - “Remote Procedure Call”, Bruce Nelson,

Xerox Palo Alto Research Laboratory, CSL-81-9,198l

[Rashid 801 - “An Interprocess Communication Facility for

UNIX”, Richard Rashid, Carnegie Mellon University, Dept. of

Computer Science, March 1989

[Teitelman 721 - “Automated Programming - The

Programmer’s Assistant”, Warren Teitelman, Proceedings of

the Fall Joint Computer Conference, Dec. 1972

[Teitelman 781 - Interlisp Reference Manual, Warren

Teitelman, Xerox Palo Alto Research Center, Oct. 1978

279
Mexico City, September, 1982

