
A SINGLE-FILE VERSION OF LINEAR
HASHING WITH PARTIAL EXPANSIONS

Per-ike Larson

Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3Gl

Abstract

Linear hashing with partial expansions
is a file organization intended for dynamic
files. In this paper an improved version of
the method is presented. Instead of having a
separate overflow area, the storage area for
overflow records is incorporated into the main
file. Hence, all the records are stored in
one file which grows and shrinks according to
the number of records stored. By using
several overflow chains per page, the retrie-
val performance is further improved. The
expected performance of the new scheme is
studied by means of a few examples.

1. INTRODUCTION

Linear hashing with partial expansion is
a new file organization primarily intended
for files which grow and shrink dynamically
[4]. It can accomodate any number of inser-
tions and/or deletions, retaining good storage
utilization and retrieval performance without
periodic reorganization. It is a generaliza-
tion of linear virtual hashing developed by
Litwin [3]. For the sake of brevity, we will
in the sequel use the term "linear hashing"
as a generic term covering both methods men-
tioned above.

Linear hashing, as presented in [4,8], is
a two-area technique: in addition to the prime
storage area, there is a separate storage area
for overflow records. Hence, we have two
files which grow and shrink according to the
number of records stored. In this paper a new
version of linear hashing is presented where
the storage area for overflow records is com-
bined with the prime storage area in the same
file. Consequently there is only one file
that expands and contracts dynamically. The
lack of a separate overflow area significantly
simplifies implementation of the scheme, es-
pecially on systems where a large floating
storage pool is not provided. An additional
change in the way overflow records are
handled reduces the amount of storage

required for overflow records and significantly
improves the retrieval performance.

Linear virtual hashing is presented in [4]
and its generalization, linear hashing with par-
tial expansion, in [8]. A performance analysis
of linear hashing with partial expansion is re-
ported in [S]. Similar, but distinct, methods
are described in [l, 3, 6, 91. A version of
linear virtual hashing where overflow records
are chained in the primary storage area has re-
cently been developed by J. Mullin [lo]. His
scheme is similar to ours in the sense that all
records are stored in one file, but retrieval is
slower. K. Karlsson developed a version of lin-
ear virtual hashing which handles overflow
records by open addressing using no pointers [2].
The performance is rather poor, however, (inser-
tions are particularly slow) and it does not
seem possible to achieve significantly better
performance by methods based on open addressing.

The rest of the paper is organized as
follows. Section 2 gives a brief introduction
to the basic ideas of linear hashing. In sec-
tion 3 a modification that speeds up retrieval
by using several overflow chains per pape is
discussed. Thereafter (section 4), the techni-
que for incorporating the overflow area into the
main file is presented. The performance of the
new method is studied in section 5 by means of
a few examples. Some remaining open problems
are discussed in the last section.

2. AN OUTLINE OF LINEAR HASHING

Because the new method is a modification of
linear hashing, the basic ideas of this techni-
que are first outlined. More detailed presen-
tations and discussions can be found in
[h, 5, 7, 81.

The starting point for linear hashing is a
traditional hash file where overflow records are
handled by separate chaining. In other words,
overflow records are stored by linking one or
more overflow pages from a separate storage area
to an overflowing primary page. Each overflow-
ing primary page has its own, completely seoar-
ate, chain of overfiow pages. The size of an
overflow pa8e may be one or larger than one

Proceedings of the Eighth International Conference
on Very Large Data Bases Mexico City, September, 1982

record.

Linear hashing is a technique for incre-
mentally expanding (and contracting) the pri-
mary storage area of a hash file. Linear vir-
tual hashing accomplishes this by splitting the
primary pages in an orderly fashion: first
paw 0, then page 1 etc. Consider a file con-
sisting of N pages, pages 0, 1, N-l. When
splitting of page j takes place,
j = 0, 1, . . ., N-l, the file is extended by one
paw, page N+ j, and approximately half of
the records from page j (and its overflow
Paws, if any) are moved to the new page, cf
fig. 1. P. pointer p keeps track of which
page is the next one to be split. When all the
original pages have been split and the size of
the primary area has doubled, the pointer is
reset to zero and the splitting process starts
over again. A doubling of the file is called
a full expansion.

0
+
P

N-l N

Pages already split

cl
Pages not yet split

lssl Pages added during
this expansion

Fig. 1 Illustrating Linear Virtual
Hashing

After splitting a page, it should be pos-
sible to locate the records which were moved
to the new page without having to access the
old page; otherwise, nothing would be gained
by splitting. The essence of the problem is to
devise an algorithm to determine which records
are to remain on the old page and which records
are to be moved to the new page. There are
several solutions to this problem. We cannot
here go into details of the solution, the
interested reader is referred to [8]. The
important point is that, given the key of a
record, it is always possible to locate the
current "home page" of the record without
accessing any other page. If the record is
not in the home page, it must be on the over-
flow chain emanating from the home page.

The development of linear hashing with par-
tial expansions was prompted by the observation
that linear virtual hashing creates an extremely
uneven distribution of the load on the file.
The load of a page that has already been split
is expected to be only half of the load of a
page that has not yet been split. To achieve a
more even load, the doubling of the file (a
full expansion) is carried out in a series of
partial expansions. If two partial expansions
are used, the first one increases the file to
1.5 times the original size, while the second
one increases it to twice the original size, cf.
Fig. 2.

(4

0
z

N 2N

(b)
1 l/4

0 + N 2N 3N
P

0 + 2N 4N
P

Fig. 2 Illustrating Linear Hashing
With Two Partial Expansions

When two partial expansions per full ex-
pansions are used, we start from a file of 2N
pages, logically subdivided into N pairs
(groups of size two) of pages, where the pairs
are (j, N + j), j = 0, 1, N-l. When the
file is to be expanded, this is done by first
expanding group 0, then group 1, etc. by one
page. When expanding group j, approximately
l/3 of the records from page j and j + N
are moved to a new page j + 2N. When the last
pair, (N-l, 2N-l), has been expanded, the file
has increased from 2N to 3N pages. Thereafter,
the second partial expansion starts, the only
difference being that now groups of three pages
(j, j + N, j + 2N), j = 0, 1, N-l, are ex-
panded to four pages, cf. Fig. 2b. When the
second partial expansion has been completed, the
file size has doubled, from 2N to 4N. The next
partial expansion reverts to expanding groups
of size two, (j, j + 2N), j = 0, 1, 2N.

Proceedings of the Eighth International Conference
on Very Large Data Bases Mexico City, September, 1982

The one after that again expands groups of size
three, etc.

To implement linear hashing with partial
expansion an address computation algorithm is
required. The algorithm must be able to com-
pute the address of the current home page of a
record at any time. Such an algorithm is given
in [4]. It works for any number of partial
expansions per full expansion.

So far, nothing has been said about con-
trolling the expansion (or contraction) rate.
The scheme explained above gives a method for
expanding the file by one page, but we also need
rules for determining when to expand the file.
A set of such rules is called a control func-
tion. Several alternatives are possible. cf.
14,8], but we will here consider only the
rule of constant storage utilization. Accord-
ing to this rule, the file is expanded when-
ever insertion of a record causes the storage
utilization of the file to rise above a thres-
hold a, 0 < a < 1, selected by the user.
When computing the storage utilization, the
overflow pages in use are also taken into
account. This rule is optimal in a certain
sense [4]. To implement the rule, it is nec-
essary to keep track of the number of primary
pages, the number of overflow pages and the
number of records stored in the file.

The results reported in [4, 5] shaJ that
increasing the number of partial expansions
per full expansion significantly improves the
retrieval performance. On the other hand, the
costs for inserting a record (which include
the costs for expansions) tend to increase.
Two partial expansions seem to be a good com-
promise in many situations.

3. SEVERAL OVERFLOW CHAINS PER PAGE

One of the features of linear hashing
causing problems is the tendency to create a
relatively larger number of overflow records.
Especially towards the end of a partial expan-
sion, the remaining unsplit pages will have
many overflow records, which adversely affects
performance. To overcome this problem, it was
proposed in [4] and [8] to use relatively large
overflow pages, thereby reducing the length of
each overflaw chain. '

This solution has one drawback, however.
When the overflm page size is larger than one,
some of the overflow pages will have empty
slots. Because of this internal fragmentation,
more overflow space than minimally needed must
be allocated. The larger the page size, the
worse will the internal fragmentation be. In
order to achieve a fixed overall storage utili-
zation, the file must be more heavily loaded.
But this in turn creates more overflow records.

This less desirable effect is clearly visible in
Table 1.

-,

Size of Overflow Overflow Records
Page Load Factor Per Primary Page

1 0.883 0.79

2 0.892 1.00

3 0.903 1.25

4 0.916 1.56

5 0.993 1.96

10 1.282 10.2

15 2.024 26.5

Primary page size: b = 20
Storage Utilization: c1 = 85

Required Load Factor and Amount of Overflow
Records at the Beginning

df an Expansion

TABLE I

An alternative solution is to use several
overflow chains per primary page. When an over-
flow record occurs, it is placed somewhere in
the overflow area and linked to one of the
chains emanating from its home page. The chain
is selected by a hashing function which depends
only on the key of the record. To retrieve a
record, we first check the records in the home
page, and then the records on the appropriate
chain.

With this solution, there seems to be no
reason for using overflow pages larger than one.
We simply chain records. (The physical page
size in the overflow area would probably be more
than one record, but the point is that the re-
solution of the chains is one record.) Natur-
ally, the number of overflow records per page is
not affected by the number of chains, but by
using several chains, each chain is kept shorter.
The cost, in terms of storage, of having several
chains is quite low: one pointer per chain in
each primary page.

Proceedings of the Eighth International Conference
on Very Large Data Bases

302 Mexico City, September, 1982

I-
Number of Expected Search Lengths
Overflow

Chains Successful Unsuccessful

1 1.125 2.350
2 1.138 1.675
3 1.108 1.450
4 1.094 1.337
5 1.085 1.270

10 1.067 1.135
15 1.062 1.090
20 1.059 1.067
m 1.050 1.000

Primary page size: b = 20

Storage utilization: CI = 0.85

No. of partial expansions: no = 2

Expected Search Lengths For Different
Number of Overflow Chains

Per Primary Page

TABLE 2

Table 2 shows the effects on the retrie-
val performance of increasing the number of
overflow chains for an example file using
linear hashing. Already a moderate number of
chains (3 - 5) gives a significant perfor-
mance improvement. Increasing it beyond five
does not seem worthwhile.

The case of an infinite number of chains
was included to show that the length of suc-
cessful searches cannot be forced to one by
increasing the number of chains. Note that
increasing the number of chains does not
change the amount of overflow records. It
merely decreases the length of the chains, to
the point where any overflow record can be re-
trieved in one extra access. The length of
unsuccessful searches, on the other hand,
approaches one because the probability of hit-
ting an empty chain approaches one.

This lower bound on successful searches
is of interest also for another reason.
Assuming that the physical page size in the
overflow area is larger than one record, one
can envision an overflow storage scheme that
attempts to keep overflow records from the
same primary page on the same physical page.
For successful searches, the case of an infin-
ite number of chains is also a lower bound on
the performance attainable by such schemes.

The page address and the chain number can
be computed by the same hashing function. If

Proceedings of the Eighth International Conference
on Very Large Data Bases

303

there are m pages and r chains per page, we
need a hashing function that hashes over the
range 3 to mr-1. If the value returned from
the hashing function is h, compute the page
address as Lh/rj and the chain number as h mod
r. In case of linear hashing, this can be ac-
complished by having the hashing function hO'
cf. [41, to hash over the range 0 to noNr-1,

and computing the (initial) page address and
chain number from the value returned by ho.

The chain number (within a page) of a record
would not be changed by expansions.

4. OVERFLOW STORAGE IN THE PRIME AREA .___-~

To get rid of the separate overflow area,
we apply an old idea used in some implementa-
tions of hashing: every kth page in the primary
storage area is reserved for overflow records.
In connection with traditional hash files, an
additional separate overflow area may still be
required. However, in connection with linear
hashing this is not necessary. If all the over-
flow pages are full, we simply expand the file.
This will normally decrease the number of over-
flow records, thus freeing some overflow space.
In any case, after expanding the file by at most
k-l pages, a new overflow page will eventually
be created.

The address computation must be modified
in order to ensure that we hash directly to
non-overflow pages only. Assume that the file
consists of m directly addressable pages with
(logical) addresses 0, 1, m - 1. Every
kth physical page will be an overflow page, re-
quiring a total of Lm/(k-l)] overflow pages.
The "real" pages k-l, 2k-1, 3k-1, . . . are
designated as overflow pages.. The "real"
address h' of a directly addressable page with
logical address h is computed as
h' = kLh/(k-l)] + h mod (k-l). The complete
algorithm for computing the "real" address
and chain number of a record is given below.

Let n o , no 2 1, denote the number of

partial expansions per full expansion and
r,rZl, the number of overflow chains per
(primary) page. Every kth page is an overflow
page, k 1 2. We start from a file consisting of
noN directly addressable pages and LnoN/(k-1)j

overflow pages. The address computation algor-
ithm below makes use of an initial hash function
ho W which hashes uniformly over

to, 1, nONr - l} and a sequence of hashing

functions D(K) = (dl(K) , d2(K), . ..>. where

each function di(K) hashes uniformly over

(0, 1, 2n0 - 1). It also requires know-

ledge of the current state of the file as

Mexico City, September, 1982

defined by the following three variables:
8: the level of the file, that is, the

number of completed full expansions,
G 2 0, initially C = 0,

n: the number of buckets per group of
groups not yet expanded during this
partial expansion, no 5 n < 2n0 , ini-

tially n = n
.o '

P: a pointer indicating the next group to
be expanded from n to n + 1 buc-

kets, 0 2 p < N2' initially p = 0.
These three variables must bE? updated when ex-
panding or contracting the file, see [4]. The
number of directly addressable pages is

m = nN2' + p and the number of overflow pages
Lm/(k-1) J. The pages are assumed to have the
real page addresses 0, 1, m + Lm/(k-1J
- 1.

The output of the algorithm is the real page
address h' and chain number c of the re-
cord with key K. The variable h is the
address when counting only directly address-
able pages, s keeps track of the number of
groups on each level, q is the size of the
group hit on the last level, while j, u, and
V are auxiliary variables.

Algorithm A

1.1 v+ho(K) , s +N

1.2 h + Lv/rJ , c + v mod r

2.1 for j f 1 to C do - -

2.2
if dj (K) ' nO -

then h+(hmods)+ -

sdjW fi ,

2.3 s+2s,

2.4 od -
3. if h mod - -s<p- then q + n + 1 else

q+n fi -
4.1 j+8+1, u+d.(K)

J

4.2 while u?q do j+j+l, - u + dj(K)

od -
4.3 if u 2 no then h + (h mod s) + su fi - -

5. h' + Lh/(k-1)Jk + h &(k-1) ,

6. end

We will assume that the rate of expansion
is governed by the rule of constant storage
utilization. To compute the storage utiliza-
tion, we need only keep track of the file size
(number of pages) and the number of records
stored in the file. If there is sufficient
overflow space, the file grows linearly, that

is, the file size is a linear function of the
number of records stored. In this case, the
storage utilization is constant and equal to
the threshold a. However, if there is an in-
sufficient amount of overflow space, the file
must be expanded orematurely and the storage ut-
ilization drops below the threshold. This is
discussed further in the subsequent section.

To make it easier to locate empty space for
overflow records, we can use a bitmap with one
bit per overflow page. A bit indicates whether
the corresponding page is full or not. The bit-
map can be stored in a parameter page in the be-
ginning of the file and fetched into main stor-
age when the file is opened. If the bitmap must
be expanded, additional portions can be stored
in one or more overflow pages. This should
normally not be necessary, except for very large
files. The procedure for locating empty space
affects the performance. Whenever possible,
overflow records from the same home page should
be stored on the same overflow page in order to
reduce the number of accesses required to scan
the chains.

A problem may occur if we allow all the
available overflow pages to become completely
filled before expanding the file. An expansion
of the file by one page should normally result
in fewer overflow records. This cannot be
guaranteed, however. The number of overflow
records may actually increase, even though it
is extremely unlikely. This could occur, for
example, if all records from a group of pages
are moved to the new page during an expansion.
To avoid problems with such unlikely but possi-
ble cases, we should start expanding the file
before completely running out of overflow space.
The safety margin need not be large, one or two
pages should be enough.

5. EXPECTED PERFORMANCE

A mathematical model of the scheme present-
ed above has been developed. Because of space
limitations, it could not be included in this
paper. We will here study a few numerical ex-
amples to gain some understanding of the expect-
ed performance.

A few words on the assumptions of the model
are necessary. The model is asymptotic, cf.
[5]. It is assumed that several overflow chains
per page are used and that every kth page is
designated as an overflow page, giving an over-
flow storage ratio of f = l/k. All pages, in-
cluding overflow pages, are assumed to have the
same capacity. This is slightly unrealistic
because there are more pointers on an overflow
page than on a directly addressable page. The
analysis is pessimistic in the following sense:
all overflow records from the same home page are
assumed to reside on different overflow pages.

Proceedings of the Eighth International Conference
on Very Large Data Bases 304 Mexico City, September, 1982

This means that, when traversing an overflow
chain, fetching the next record always requires
one read access. The impact of this assumption
is greatest on the cost of expanding the file:
every overflow record belonging to a page must
be independently read and written.

All the necessary file parameters (para-
meters required for address computation, number
of records stored, etc.) and the bitmap are
assumed to be available and updated in main
storage. Hence, free overflow space can be
located without accessing the file.

For the first example, we choose the fol-
lowing parameter combination: page size 20
records, 5 overflow chains per page, required
storage utilization 0.85, overflow storage
factor 0.0625 (every 16th page) and 2 par-
tial expansions. The graphs of figures 3 -7
show the expected performance of this file
over a full expansion.

1.1 Relative no. of records

Fig. 4: Expansion rate (number of pages
added per inserted record)

1

.9

.8 .9

.7

i

i

T
1

.85
1.25 1.5 1.75 2

Relative no. of records

Fig. 3: Utilization of available overflm
storage

Proceedings of the Eighth International Conference
on Very Large Data Bases 305 Mexico City, September, 1982

1 1.25 1.5 1.75 2

.8

1 1.25 1.5 1.75 2

Relative no. of records

Fig. 5: Overall storage utilization

1.4

1.3

1.2

1.1

1 I 1 I I
1.25 1.5 1.75 2

Relative no. of records

Fig. 6: Expected number of accesses for
successful (lower line) and
unsuccessful (upper line)
searches

5

4.25

3.5

2.75

The overflaw storage factor was deliberate-
ly set low in order to show the behaviour of the
file when running out of overflow space. Fig. 3
shows the utilization of the available overflow
space. When the relative number of records in
the file reaches 1.12, all the overflow space
is in use. This causes a sudden increase in the
expansion activity, see Fig. 4. From 1.12 to
1.4@, the expansion rate is completely overflow-
controlled. At 1.40, overflow storage ceases to
be a bottleneck and the expansion rate returns
to its normal level (0.059 pages/record or 17
records/page), see Fig. 4. During the whole
second partial expansion, there is enough over-
flow storage available.

The increased expansion rate temporarily
forces the overall storage utilization below
0.85, see Fig. 5. Because of the lower storage
utilization, the expected search lengths grow
more slowly during this period, see Fig. 6.
There are three sudden changes in the cost of
inserting a record, see Fig. 7. The changes at
1.12 and 1.40 are caused by the switch to/from
overflow-controlled from/to load-controlled ex-
pansion. At 1.5 the first partial expansion
ends and the second one begins.

For this file, the average performance over
a full expansion is:

Successful Search 1.085

Unsuccessful Search 1.270

Insertion 4.305

Table 3 and 4 list the average performance
of files with bucket size 20 and 40 records.
The number of overflow chains is 5. In each
case, the overflow storage factor is the lowest
possible, such that at no point of an expansion
lack of overflow storage occurs. In other
words, the expansion rate is fully load-control-
led. Further results will be given in a forth-
coming paper dealing with the analysis of the
scheme.

1 1.25 1.5 1.75 2

Relative no. of records

Fig. 7: Expected number of accesses for
inserting a record. The lawer line
does not include costs for expanding
the file.

Proceedings of the Eighth International Conference
on Very Large Data Bases 306 Mexico City, September, 1982

I I
Storage Overflow Successful Unsuccessful

Expansions Utilization Storage Ratio Search Search Insertion
I

n0 = 1 0.75 1113 1.112 1.341 3.952
0.80 l/9 1.177 1.527 4.500
0.85 l/6 1.290 1.842 5.280
0.90 l/4 .1.507 2.422 6.383

no = 2 0.75 l/33 1.031 1.101 3.374
0.80 l/20 1.055 1.178 3.815
0.85 l/l3 1.096 1.304 4.419
0.90 118 1.175 1.539 5.281

no = 3 0.75 l/49 1.021 1.069 3.430
0.80 l/29 1.038 1.125 3.827
0.85 l/l7 1.069 1.223 4.433
0.90 l/l0 1.129 1.407 5.313

Expected Performance For A File With Page Size 20 Records And 5 Overflow

Chains Per Page

TABLE 3

Successful Unsuccessful
Expansions Utilization Storage Ratio Search Search Insertion

no = 1 0.75 l/l4 1.130 1.570 3.946
0.80 l/9 1.229 1.949 4.737
0.85 l/6 1.405 2.574 5.872
0.90 l/4 1.761 3.746 7.657

no = 2 0.75
0.80
0.85
0.90

no = 3 0.75
0.80
0.85
0.90

l/54
l/29
l/l7
l/l0

l/l12
l/55
l/29
l/l5

1.018 1.096 2.835
1.039 1.200 3.291
1.080 1.394 3.998
1.166 1.776 5.087

1.008 1.046 2.709
1.019 1.105 3.051
1.043 1.225 3.637
1.096 1.483 4.628

Expected Performance For A File With Page Size 40 Records And 5 Overflow

Chains Per Page

TABLE 4

Proceedings of the Eighth International Conference
on Very Large Data Bases 307 Mexico City, September, 1982

A comparison of the results in table 3 and
4 with the corresponding results for the two-
file version in [5] shows that for n0 = 1

the expected search lengths of the current
scheme are higher. For n0 > 1 they are

approximately the same or lower. However, it
should be borne in mind, that the model here is
quite pessimistic and that there is still room
for improvements (see next section). As to
insertions, the same comment applies and, fur-
thermore, some of the costs of inserting a re-
cord were deliberately ignored in the analysis
of the two-file version, cf. [5]. The main ad-
vantage offered by the single-file version is
simplified storage management.

6. OPEN PROBLEMS

As indicated by table 3 and 4, the basic
operations of the proposed scheme are expected
to be quite fast. Even so, further improve-
ments are still possible. Two such ideas are
briefly outlined below.

The performance model above assumes that
all overflaw records from the same home page
reside in different overflaw pages. Some
scheme that attempts to cluster them on one or
a few pages would significantly improve the
performance. To improve retrieval performance
it is enough to keep all records on the same
overflow chain stored on the same page. This
would also reduce the cost of inserting a re-
cord because fewer accesses are required to
scan down a chain. Going further, attempting
to keep all overflaw records from the same
home page on one overflm page, would not, re-
duce the search lengths further. It can only
reduce the cost of expanding the file, but
these savings may well be offset by additional
accesses for rearranging records during inser-
tion.

Designing an efficient clustering scheme
for overflow records is an open problem.
Nevertheless, we can still find a lower bound
on the expected length of successful searches.
Fetching an overflm record always requires at
least one extra access, whatever the clustering
scheme be. As mentioned in the section three,
this situation can be modelled by having the
number of overflow chains approach infinity.

Proceedings of the Eighth International Conference
on Very Large Data Bases 308 Mexico City, September, 1982

Jo. of partial Storage Ut- Bucket Size
expansions ilization b = 20 b = 40

1 0.75 1.059 1.052
0.80 1.087 1.082
0.85 1.131 1.128
0.90 1.203 1.204

2 0.75 1.020 1.010
0.80 1.034 1.020
0.85 1.056 1.039
0.90 1.095 1.074

3 0.75 1.014 1.005
0.80 1.024 1.011
0.85 1.042 1.023
0.90 1.075 1.048

Lower bound on the average length

of successful searches

TABLE 5

The lower bound is tabulated in table 5 for
bucket size 20 and 40 records. The overflow
storage factor is the same as in table 3 and 4.
A comparison with the results of table 3 and 4
shows that there is some room for improvement,
expecially for nO = 1 and large buckets.

Smaller buckets and several partial expansions
per full expansion result in fewer overflow re-
cords per bucket, thereby reducing the margin
for improvement. For insertions the margin for
improvement should be greater, but on this pro-
blem we have no results.

In the present version of the scheme, add-
itional overflow space is always allocated at
the same rate, but the demand for overflow space
is heaviest in the middle of an expansion, cf.
fig. 3. If additional overflow space could be
assigned at a variable rate (less in the be-
ginning and end, and more in the middle of an
expansion) the performance should be improved.
The problem is to keep the address computation
simple.

ACKNOWLEDGEMENT

Valuable assistance with the performance
analysis was given by Kok-Weng Lee.

REFERENCES

1. Fagin R., Nievergelt J., Pippenger N.,
Strong H.R.: Extendible hashing - a fast
access method for dynamic files, ACM Trans.
Database Syst., 4, 3, 1979, 315-344.

2. Karlsson K.: Resolution de collisions du
hachage virtue1 lineaire par une methode du
type addressage ouvert, Rap. D.E.A. Inf.,
Institut de Programmation, Univ. Paris VI,
1979.

3. Larson P.-i.: Dynamic hashing, BIT, 18, 2,
1978, 184-201.

4. Larson P.-i.: Linear hashing with partial
expansions, Proc. 6th Conf. Very Large
Data Bases, Montreal, 1980, 224-232.

5.

6.

Larson P.-i.: Performance analysis of
linear hashing with partial expansions,
ACM Trans. Database Syst. (to appear).

Litwin W.: Virtual hashing: a dynami-
cally changing hashing, Proc. 4th Conf.
Very Large Data Bases, Berlin, 1978, 517-
523.

7. Litwin W.: Hachage virtuel: une nouvelle
technique d'adressage de memoires, These
de Doctorat d'Etat, Univ. Paris VI, 1979.

8. Litwin W.: Linear hashing: a new tool
for files and tables addressing, Proc.
6th Conf. Very Large Data Bases, Montreal,
1980, 212-223.

9.

10.

Martin G.N.N.: Spiral storage: incremen-
tally augmentable hash addressed storage,
University of Warwick, Theory of Computa-
tion Report No. 27, 1979.

Mullin, J.K.: Tightly controlled linear
hashing without separate overflow storage!
BIT 21, 4, 1981, 389-400.

Proceedings of the Eighth International Conference
on Very Large Data Bases 309 Mexico City, September, 1982

