
Parallel Algorithms and Their Implementation in MICRONET*

Stanley Y. W. Su
Krishna P. Mikkilineni

Database Systems Research and Development Center
Department of Computer and Information Sciences

University of Florida

Abstract

This paper describes a simple microcomputer
network system and its architectural support for
four categories of database operations. The de-
sign and implementation of hardware and software
and the parallel algorithms for the database
operations are described and illustrated. Three
new algorithms, one for finding maximum/minimum,
and two for sorting distributed files, are pre-
sented together with their implementations in
MICRONET. The results of the analyses of the
new sorting algorithms and a comparison with
other sorting algorithms are also given. The
system is characterized by its simplicity in
network connection and communication, flexibility
in expanding or contracting the size of the net-
work, reliability achieved by interchangeable
hardware and software, and high performance
achieved by one-to-all broadcasting, hardware
scheduling, and special control lines for inter-
processor communication and synchronization.

1. Introduction

The continuous decrease in hardware cost and
the idea of a high-performance computer system
tailored for database applications have motivated
many researchers to investigate many types of
"database machines", which are surveyed in [SMI79,
SU79, HS180, EPS80, SON81]. Many systems take
advantage of the availability and low cost of
microcomputers to interconnect these computers
into networks which provide the distributed and
parallel processing capabilities needed for hand-
ling large databases [MAD75, SU78, LIP77, DEW79,
BAN79, WAH80, GAR80, HSI81]. Due to the differ-
ence in architectural designs and special hard-
ware facilities available in the existing sys-
tems, the same software algorithms may be imple-
mented quite differently from system to system.
The design of various parallel algorithms for
database operations in some of these systems has
been presented in [SIJ79, BOR80, HSI80a, VAL82,
MAW81], but algorithms proposed in one system
may not be optimal to implement in other systems.
Thus, new algorithms may have to be specially de-
signed to suit a particular architecture and the
hardware may have to be tailored to support a
specific algorithm. The interaction and integra-

tion of hardware and algorithm designs are of
paramount importance to achieve the needed effi-
ciency for handling database problems.

This paper deals with the use of a simple
and flexible microcomputer network (MICRONET)
for the implementation of four categories of
algorithms useful for database management. It
describes the architectural supports for the
implementation of the relational algebraic oper-
ators and the hardware and software algorithms
for handling aggregate functions such as maxi-
mum/minimum, sum and count, and the sorting of
distributed files. The present system, whose
hardware implementation has been completed,
differs from the earlier version of MICRONET
[SU78] in the following ways: 1) There is no
single dedicated control computer in the system;
all microcomputers in the network can become the
control computer to oversee the execution of a
database command, 2) the system now operates
in two modes (global and local) which allow the
network to perform as a MIMD machine rather than
a SIMD machine, and 3) the hardware facilities
such as control lines for system inter-processor
communication and synchronization and hardware
scheduler for the control of the network bus
have been designed and implemented to aid the
design of software algorithms.

The intended contributionsof this paper are
as follows: 1) It demonstrates that very sim-
ple hardware facilities can be added to a common-
bus network system to greatly reduce the amount
of message passing and hand-shaking among the
processors and simplify the task of synchronizing
the concurrent operations of database operations;
2) it presents the techniques for implementing
some familiar algorithms, such as those for im-
plementing Selection, Projection, Join, etc.,
using the hardware facilities; 3) it presents
an algorithm for finding the maximum/minimum
value of an attribute of a distributed file
without having to transfer the values to a speci-
fic processor for comparison; and 4) it pre-
sents two sorting algorithms (one software and
one hardware) for sorting distributed files in

*This research is supported by Department of
Energy contract #DE-AS05-81ER10977 and the Center
of Excellence, College of Engineering, University
of Florida. The computer systems used in this
project were provided by the National Science
Foundation under grant #MCS 76-21029.

Proceedings of the Eighth International Conference
on Very Large Data Bases

310 Mexico City, September, 1982

both of which the global sorting of the locally
sorted file segments can be accomplished in time
close to the time needed to transmit all records
to a designated processor. The result of an
analysis of five alternative sorting algorithms
that can be implemented in bus networks in gen-
eral and MICRONET in particular is also given.

We present in section 2 the hardware design
and implementation of MICRONET and in section 3,
the software architecture and data organization.
The algorithms for various categories of data-
base operations and their implementation tech-
niques are presented in section 4, which is fdl-
lowed by a conclusion summarizing the features
of the system.

2. Architecture and Hardware Design-e- -
mentation

MICRONET consists of a set of microcomputer
systems interconnected by a system bus which has
16 data lines and 16 control lines designed to
facilitate interprocessor control, communication
and synchronization. The "multidrop" bus con-
figuration allows one-to-many communication among
the processors (Figure 1). Data, commands, or
messages placed on the bus by any processor can
be simultaneously received by all the processors.
The use of the system bus by different processors
to broadcast data, commands, or messages is con-
trolled by a distributed ring register which im-
plements the round-robin scheduling algorithm.
This is implemented by the sender granting cir-
cuit shown in Figure 2 which ensures that only
one computer is in control of the bus and, con-
sequently, the entire network for the duration of
one global operation.

The processor which obtains the bus to broad-
cast a dataprocessing command (relational opera-
tion) becomes the "control computer" (CC) which
oversees the execution of that command. All
other processors become the "data processors"
(DPs) which, together with the control computer,
execute the command against their respective
local databases. The results of the processing
can be either stored distributively in the data
processors for further processing or transferred
tc the control computer for output to the user.

Since the communication is one-to-all in
MICRONET, the control computer interrupts all the
processors and sends a code word. Each computer
in the network reads this code word and will then
return to local processing if it is not addressed
by the control computer. The decoder shown in
Figure 2 selects one of the I/3 buffers. The
interrupt circuit (Figure 2) is responsible for
interrupting the other computers in the network
or for acknowledging the interrupt.

The processing of distributed databases in a
network system often requires an excessive amount
of interprocessor communication and synchroniza-
tion. In MICRONET, interprocessor communication
and synchronization are aided by the control
lines. The communication synchronization circuit
shown in Figure 2 handles the synchronization be-

tween sending and receiving the data. Two con-
trol lines called "sender ready" (SR) and "re-
ceiver ready" (RR) are used for this purpose.
After sensing that the SR is set, the computer
which is ready to receive the data that has been
put on the bus receives the data into its buffer
and sets its local receiver ready line. The
sender computer, after sensing by means of the
global RR line (logical-AND of all the local
RR's) that all the computers have received the
previous word, sends another word on the bus and
sets the SR line. Five of the control lines
(global lines) are the logical-AND of the local
lines. Individual processors set the local lines
to report their local conditions. When all the
local lines are set, the corresponding global
line will be set automatically. The global line
can be sensed by all the processors to determine
a global condition, which could be the comple-
tion of a command, the receipt of a message, etc.
Much of the needed hand-shaking and communication
protocol found in conventional network systems
are, therefore, eliminated.

In MICRONET, the microcomputer systems are
connected to the network bus through a set of
identical interfaces. The size of the system
can be expanded or contracted simply by plugging
or unplugging microcomputers to or from the
interfaces. Additional hardware flexibility
and reliability is achieved by its interchange-
able processors and I/O devices. A prototype
MICRONET which consists of three PDP 11103
microcomputers has been implemented. The proto-
type system provides a proper environment for
conducting research in distributed processing
and distributed database management. Here, we
have presented only a broad outline of MICRONET.
A detailed description of this system can be
found in [SU78, LEE78, NIC80, NIC81].

3. Software Architecture and Data Organization

The data model used in this system is the
relational model. The advantages in adapting
the relational data model in single processor
systems can be realized in distributed process-
ing systems also. Moreover, the simplicity of
data representation in the relational model
matches the simplicity of MICRONET. The physi-
cal data representation using a modified invert-
ed file structure had been originally considered
and presented in [SU78]. Relations are estab-
lished in the local database based on the natural
distribution of data among the microcomputer
systems. The locality of data is, therefore,
preserved on each network node. However, from
a network perspective, these local relations are
segments of global relations which are horizon-
tally partitioned and stored in a distributed
fashion. In the local mode, the commands of a
database query are executed against the local
database. In the global mode, each command is
broadcast to all the processors. The ones that
contain the relevant data files will be operated
under global control to carry out the command.

Proceedings of the Eighth International Conference
on Very Large Data Bases

311
Mexico City, September, 1982

The ones that do not contain the data files will
continue their local processing after a short
interrupt by Lhe global command.

The users of MICRONET submit queries through
the microcomputers. These queries are trsnslat-
ed into sequences of commands for execution. I;1
the global mode, the execution of these sequences
is interleaved. Thus, a command of a sequence
can be executed before the other sequence is
completed. However, an interrupt to a sequence
can only be recognized at the end of a command
execution. In this system, relational opera-
tions (commands) are carried out by the data
processors in parallel against the local data-
bases. A relational operation may or may not in-
valve interprocessor communication during its
execution. For exampie, a selection operation
can be carried out independently by the data
processors, where a Join operation would involve
transferring relational tuples from one system
to another. The processing of the tuples has
tc be synchronized in the latter case. The iocal
and global control lines described in the pre-
ceding section are used for this purpose.

In this system, all microcomputers use iden-
tical software. Thus, the software of one system
can be reloaded from another system in case of
failures. This increases the speed of recovery
from system failure and reduces the overall sys-
tem development cost. All relations in the net-
work are addressed by their names, rather than
by the specific processors in which they are
stored. Therefore, data are not tied to the
processors. The secondary storage devices (e.g.,
disks) of the microcomputers can be freely inter-

changed without affecting the computation results.
Furthermore, the disks of a failed processor can
be mounted on another system (for example, a
spare system) and the network would continue to
function. The high availability and flexibility
of the network system is, therefore, achieved.

4. Architectural Supports and Algorithms for
Database Operations

In this section, we describe the algorithms
for several categories of database operations
and the hardware facilities for supporting these
algorithms. Performance evaluation and analysis
of these algorithms can be found in [GEN81, BR080,
LEE78a, SU82b].

Many parallel algorithms have been developed
and analyzed after the advent of the parallel
processors [KUN76, VAL75, PRE77], but most of
them are tailored for a specific architecture
[BOR80, SU79, BAN78, HSI80a]. After a close
evaluation of some of these algorithms [KNU73],
we decided that some of them are not suitable for
adaptation in MICRONET. Thus, new algorithms for
finding maximum/minimum and for record sorting
are formulated. We shall classify the algorithms
we developed into four categories based on the
type of data transfer among the processors in
MICRONET. They are:

Type 1: Algorithms which can be carried out

by the processors independently with-
out data transmission among the pro-
cessors (e.g., Select, Project (with-
out elimination of duplicates), De-
lete, Update, and Insert).

Type 2: Algorithms which require the trans-
mission of data values among the
processors (e.g., the aggregate func-
tions such as Sum, Maximum/Minimum,
Average, and Count).

Type 3: Algorithms for sorting files which
require transfer of a large number of
tuples from the data processors to
the control computer.

Type 4: Algorithms which need the broadcast-
ing of tuples (or records) among the
processors (e.g., Intersect, Union,
Join, and elimination of duplicates).

4.1 De 1 AlForithE

The control computer broadcasts the macro-
command to all the data processors including it-
self. All processors then execute the command
concurrently. Each processor will set a speci-
fic local acknowledge line after completing the
specified operation. When all the processors
finish the processing of the macrocommand, the
global line which is the logical-AND of all
these local lines will be set automatically.
After sensing that the global line is set, the
control computer releases the control status.
All processors then compete to gain control of
the bus to process their macrocomnands. The
setting of local lines and the sensing r,f the
global line In this system achieve the needed
interprocessor communication and synchronization
and avcid the time-consuming message transfer
among processors through the netwark bus. T'rp
Iperations in this category utilize the parallel-
ism and the property of data distrihuticn i? the
network to improve the performance of these
operations over large files. Once che command
is broadcast, all the data processurs execllte
that operation both independently and concurrent-
ly. ihus, the execution time complexity of these
algorithms is equal to the time for processing
the largest of the distributed segments at one
processor. The common algorithms used for per-
forming these operations in single processor
systems also determine the efficiency of these
algorithms in MICRONET. If we assume that the
sizes of the individual segments of a file de-
crease with the increase in the number of pro-
cessors in the network, the total execution
time of these operations also reduces with more
processors in the network.

4.2 Type 2 Algorithms

Aggregate functions such as Sum, Maximum,
Minimum, Count, and Average are important func-
tions in statistical database applications.
They are generally used in conjunction with re-
trieval operations where a set of records is

Proceedings of the Eighth International Conference
on Very Large Data Bases

312 Mexico City, September, 1982

first selected and an aggregate function is ap-
plied on the selected records. In MICRONET, the
retrieval operation is carried out simultaneous-
ly by all processors, as explained earlier. The
selected records (tuples) are stored in a dis-
tributed fashion. To compute the global Sum,
Count, or Average, the processors will first com-
pute in parallel the local Sum, Count, or Aver-
age over their local segment of a relation. The
local values are then transferred to the control
computer which computes the global Sum, Count,
or Average. The global value may be output to
the user or be broadcast to all the processors
for subsequent processing. The computation of
these functions requires that the value of an
attribute in every record be examined. The
described approach allows the computation to be
performed simultaneously over distributed seg-
ments of a large file. Thus, the performance
of these algorithms depends mostly on the effi-
ciency of the algorithm for finding the local
Sum or Count on one processor. The global re-
sult can be made available to all processors
easily due to one-to-all broadcast strategy
used in MICRONET.

To find the global maximum/minimum in
MICRONET, we utilize two of the five control
lines that are globally wire-ANDed over the net-
work. The algorithm is illustrated in Figure 3.
Initially, the local maximum value is computed
on all the processors in parallel. Before start-
ing the global operation, each processor places
the local maximal value in a separate register
(Rl) and then sets its local line L . When all
the processors set their respective'L s, the
global wire-AND of these lines,
and the global operation starts.

Go wi *P 1 be set
All processors

simultaneously check the contents of their Rls
bit-by-bit, starting from the most significant
bit, and set the two local lines Ll and L2 accord-
ingly. If the value of the bit is 1, then a pro-
cessor will set its L

,',"z ~~~~~~,"o"~s'~k~,"?

liny",e~~f;tLits &;no;lylse

in a bit pos$;ion, Lls of
all the processors are set and consequently the
wire-AND of these lines Gl will be set. When all
the processors have 0 in a bit position, the
global line G will be set. If either G
is set, all

or G2
t i e processors continue to c eck ii

the next less significant bit in their Rls.
When both Gl and G2 are 0, the processors which
had 0 in that bit position will stop participat-
ing in the comparison operations, since some
other processor's Rl obviously has a larger value.
These processors can then return to their local
processing chores. One processor remains com-
paring towards the end signifying that it has the
global maximum value in that processor. The
tuple having the maximum value is then trans-
ferred to the control computer from that proces-
sor. The minimum value can be found likewise by
placing the complements of the actual values in
Rls of the processors. This algorithm thus
avoids the unnecessary communication among pro-
cessors and achieveathe maximum amount of paral-
lelism. The above algorithm is similar to that

proposed by Foster [FOS81J which uses a number
of logical wire-OR gates.

The execution time of these algorithms is
the sum of the time for performing the local
maximumlminimum, the time for finding the global
maximum out of these local maximal values,and
the time for transferring the tuple having the
global maximal attribute value. The efficiency
of the above algorithm is quite apparent when we
see that the worst case execution time depends
only on the maximum number of bits used to repre-
sent the attribute and not on the number of pro-
cessors connected to MICRONET. This is because
the global wire-AND control lines in MICRONET
are realized by using open collector-AND gates.

4.3 Type 3 Algorithms

Sorting is one of the important operations
performed frequently in data processing appli-
cations. Other database operations, such as
Join, Intersect, Elimination of Duplicates, etc.,
can also benefit from having relations sorted in
order. The efficiency of a sorting algorithm is,
therefore, very important.

In our design of the sorting algorithm for
MICRONET, we feel that it is important to avoid
the transfer of tuples (records) over the net-
work as much as possible during the sorting pro-
cess. This is because the data transfer ties up
the most important network resource, i.e., the
network bus, and the transfer of large records
can be very time-consuming. For this reason, we
rejected several existing sorting algorithms
which require that tuples be transferred to some
specific processor(s) for sorting by merging.
For MICRONET, we have investigated a software
sorting algorithm and a hardware algorithm using
a special function processor to perform the sort-
ing operation. They are described below.

4.3.1 Key Broadcasting Algorithm

All processors first perform the local sort-
ing of their local segments of a relation and
obtain an array of the sort key values (Sort
Array) before the start of the global sorting
operation. Figure 4.1 shows some locally sorted
arrays. The processors will then broadcast their
first key values to the other processors as shown
in Figure 4.2. Each processor will compare the
received key value to find the lowest received
value, LRV. The LRV is then compared against the
first key value in the sort array to see if it
has the lowest value in the global sort order.
Here, we assume that the sorting is in ascending
order. The computer which has the lowest value
will compare the subsequent key values in its
array until it finds the one greater than the
LRV. Then that processor will send the key value
(the one that is greater) to all the other pro-
cessors and the block of tuples which corres-
ponds to the smaller values in its sort array
(which are in global sort order) to the control
computer (see Figure 4.3). While the tuples are
being transferred, the other computers will have-

Proceedings of the Eighth International Conference
on Very Large Data Bases 313 Mexico City, September, 1982

completed the comparison process and one of those
computers will be ready to send another biock of
tuples. This process continues until the control
computer has received all the tuples in global
sort order. The three main features of this al-
gorithm are: (1) blocks of tuples which are in
global sort order are transferred on the bus in-
stead of one tuple at a time, thus reducing the
time required for the transfer and the frequency
of interrupts to the processors; (2) the compar-
ison process for sorting is overlapped to a large
extent with the secondary storage I/O and the
tuple transfer and, thereby, reducing the effec-
tive sorting time considerably; and (3) during
the sorting process, only the key values are
transferred among the processors; the tuples
are not transferred unnecessarily, but are trans-
ferred to the control computer only if they are
already in the global sort order.

ciently. Furthermore, we have eliminated the
unnecessary transfer ot tuples as in the soft-
ware algorithm by transferring to the control
computer only the tuples that are known to be
in the global sort order.

4.3.2 Hardware Algorithm

The hardware algorithm for sorting makes use
of special hardware we designed for this purpose.
Figure 1 illustrates the way this special pro-
cessor is connected to MICRONET. All the pro-
cessors first perform the local sort operation
like in the software algorithm and then trans-
fer the first key values in their sort arrays
(Figure 4.1) to the special processor. The
special processor contains a set of shift regis-
ters, each one corresponding to a computer in
the network. The registers are used to hold the
key values transferred to the functional proces-
sor (Special Processor). By shifting the higher
order bits to the left and testing the higher
order bit values, the maximum of all the key
values in all the shift registers can be found.
A number of control lines are used to connect the
special processor with each computer (Figure 1).
They are used to synchronize the starting of the
sorting operation and to enable the loading of
the key values into shift registers.

We have conducted a thorough analysis of
both the software and hardware sorting algor-
ithms. We have compared the performance of
these algorithms against that of some other al-
gorithms that one can adapt to perform sorting
on common-bus networks. Figure 5 illustrates
the behavior of these different algorithms with
increasing file sizes.
tion time of the

Tl is the total execu-
sorting algorithm, where all

the segments of the file from all the data com-
puters are transferred to the control computer,
which then sorts the combined file segments
using an external sorting method. T2 is the
execution time of the algorithm, where all the
segments are initially sorted locally at the
corresponding data computers. The data com-
puters then transfer, one after the other, their
logical segments to the control computer to be
merged with the resultant segment of the pre-
vious merging operations. The control computer
will have the final sorted file when the segment
from the last data computer is merged completely.
T

?
is the execution time of the algorithm which

a so initially sorts locally all the distributed
segments. Each data computer then transfers a
smaller block of its sorted segment of the file
to the control computer which merges these blocks
into a single list. The final globally sorted
file is formed when all these blocks from all
the computers are merged completely. T
are the execution times of the key broa 3

and T5
casting

and hardware sorting methods, respectively.

When the special processor finds the maximum,
it will notify the particular computer which has
sent that value. That computer then sends the
next value in its sort array to its shift regis-
ter in the functional processor and then sends
the selected tuple to the control computer.
Since the comparison for the maximal value can be
done by the special processor during the time
when the tuple is being transferred, the special
processor will be ready to notify this or another
computer which will transfer the next tuple in
global sort order.

Although the functional processor is designed
to find the maximal value for sorting in descend-
ing order, sorting in ascending order can be done
by transferring the complements of the field
values to the processor. Also, the aggregate
functions maximum and minimum can be handled by
this processor. In this algorithm, sorting time
is completely overlapped with the tuple transfer
time. The additional advantage of this algorithm
is that the same piece of hardware can be used to
calculate the global maximum (also minimum) effi-

Our results show that both the above algor-
ithms perform much better than the others under
different conditions created by varying the num-
ber of processors, the bus speeds, the interrupt
times, the file sizes, and the I/O times. The
key broadcasting algorithm is very close in its
performance to that of the hardware algorithm
presented in section 4.3.2, leading us to con-
clude that the extra cost and time involved in
designing hardware are not worthwhile, when we
have a simple software algorithm designed to
suit a simple architecture. The execution times
of both the above algorithms decrease with the
increase in the number of processors. The other
observation we made from our results is that the
slower network bus bandwidths deteriorate the
performance very quickly, whereas the higher band-
widths do not add to the performance benefits
very much. Therefore, high-performance networks
do not seem to provide the expected improvements
in the efficiency of the algorithms for parallel-
sorting, in proportion to their added cost and
complexity. A complete study of these algorithms
and their performances can be found in [SU82b].

4.4 TJJXX 4 Algorithms

Statistical analysis of data often involves
correlating large quantities of data across sever-

Proceedings of the Eighth International Conference
on Very Large Data Bases 314 Mexico City, September, 1982

al files. The efficiency of relating files by
operations such as Join, Intersect, Union, etc.,
can often determine the overall efficiency of a
system for database applications. In MICRONET,
the control computer initializes all the control
lines and sends the command to all the data pro-
cessors specifying what are the two relations to
be Joined, Intersected, or Union-ed and which
one of the two relations (i.e., the relation
with fewer tuples) to be broadcast over the net-
work. All the data processors including the con-
trol computer which have the segments of the
smaller of the two relations will compete for the
network bus and interrupt the other computers to
broadcast a block of tuples to all the proces-
sors. All the processors will then simultanious-
ly process the local segments of the large re-
lation against the received block of tuples.
This process continues until all the blocks of
the smaller relation have been broadcast and
processed in the network. Figure 6 illustrates
the global Join operation with three computers
in the network as an example of this type of
algorithms. This method of transferring tuples
in blocks for processing this type of operations
against distributed relational segments is not
new. It has been used for the Join operation in
the early version of MICRONET [SU78] and in
DIRECT [DEW79]. However, in our system, the
hardware is tailored to support the software
algorithms. For this category of operations, a
number of control lines, i.e., the five global
lines (GAO-GA4) and their associated local lines
(LO-L4), are used to reduce the amount of mes-
sa8e transfers among processors and to speed up
the synchronization of subprocesses required in
the operations,

To illustrate the use of these control lines,
we shall use the global Join as an example. For
the Join operation, all five global lines (GAO-
GA4) and their associated local lines (LO-L4)
are used. LO, when set, indicates the control
status of the processor. Ll indicates that the
received block of tuples of the smaller rela-
tion (say relation A) has been Joined with the
local segment of the large relation (relation B).
L2 signals that either the processor does not
have a segment of the A relation in its local
memory or the entire segment has already been
transferred. L3 signals that the processor does
not have a segment of the B relation. L4 indi-
cates that the last block of relation A tuples
has been broadcast and processed by all the pro-
cessors. It is worthwhile here to state again
that the setting of all the local lines will
automatically cause the setting of the corres-
ponding global lines. Since only one local line
is set to indicate that some processor is in con-
trol of the bus and is processing the macrocom-
mand, GAO is always zero. GAl, when set, signals
that the Join of the received tuple block of re-
lation A with relation B has been completed by
all the processors. GA2 indicates that all pro-
cessors have transferred their segments of rela-
tion A. (At this point, the last segment trans-

Proceedings of the Eighth International Conference

ferred still needs to be merged.) When GA2 is
set and the processor has completed the Join of
the last tuple received, its L4 will be set.
GA3 is not used in this operation since L3s are
used by the processors for checking local con-
ditions about relation B. GA4, when set, indi-
cates that the last processor has processed the
last block of tuples received and therefore the
global Join operation is completed.

The flowchart shown in Figure 7 illustrates
the subprocesses of the global Join operation.
It also shows how the local and global control
lines are used during the Join operation. By
setting'the local lines and sensing the global
lines, operations in various processors can
easily be synchronized. The intensive message
broadcasts and acknowledgements which are com-
monly seen in implementing these algorithms in
the existing distributed systems are eliminated.
This is important because the performance analy-
sis of this Join algorithm [BR080] shows that
the execution time of these kinds of algorithms
is primarily I/O bound when the relations are
small and becomes network transmission bound
when the relation sizes and the network sizes
increase.

An alternate approach for performing the
Join operation in MICRONET is to sort both the
A and B relations locally on all the processors
concurrently. Each processor then sends the
lowest and highest key values and the number of
elements in its sort array to the control com-
puter. The control computer determines the
range of the key values whose corresponding A
and B tuples need to be collected in a particu-
lar processor and broadcasts that data to that
processor. Then, while performing the global
sorting operation on B (the larger relation)
using the key broadcasting algorithm described
in section 4.3.1, the computer which has the
lowest key value sends the block of B tuples in
the global sorting order to the particular pro-
cessor which has been determined earlier to re-
ceive that range of tuples. At the end of the
global sorting operation, each processor has the
tuples that are in the global sorting order and
that fall in the assigned range of tuples to
that processor. Each processor then sends its
A tuples to the processor which has the corres-
ponding range of B tuples. After all the pro-
cessors complete transferring the A tuples, all
the processors merge their segments of A and B
relations simultaneously.

The advantages of this approach are 1) local
sorting of both relations are performed concur-
rently on all the processors, 2) global sorting
of the larger (B) relation is performed by modi-
fying the sorting algorithm proposed in this
paper which proves to be faster than the other
methods for global sorting, and 3) the result
of the Join operation is distributed on all the
processors in the global sorting order which is
important for subsequent processing of the re-

. sulting relation. However, when either both the
relations are small or very different in size,

on Very Large Data Bases 315 Mexico City, September, 1982

the extra time for sorting may be large compared
to the simple transfer and search operations in
the nested loop method, and thus the first method
may be more advantageous in such situations.

in distributed processing and distributed data-
base management areas.

We can utilize the key broadcasting algorithm
(section 4.3.1) for eliminating the duplicate
tuples in a global relation also. Elimination of
duplicates results as a by-product of the sort-
ing algorithm because the situation where a set
of duplicate records is distributed over the net-
work can be easily identified by all the proces-
sors. Therefore, all except one processor re-
frain from transferring the corresponding dupli-
cate tuples to the control computer, thus elimin-
ating the duplicates automatically. Therefore,
the execution time for the elimination of dupli-
cates in MICRONET is almost the same as that of
global sorting.

References --~~

[BAN751 Banerjee, J. and Hsiao, D. K., "The Use
of a Database Machine for Supporting
Relational Databases," Proc. of the 5th
Annual Workshop on Computer Architec-
Lure for Non-numeric Processing, Syra-
cuse, N.Y., August 1978.

[BAN791 Banerjee, J. and Hsiao, D. K., "DBC--A
Database Computer for Very Large Data-
bases," IEEE Transactions on Computers,
Vol. C-28, No. 6, June 1979.

[BOR~OI
5. Conclusion

In this paper, we have presented the hard-
ware and software architectures of MICRONET and
the distributed algorithms for four categories
of database operations. We described the hard-
ware facilities available in MICRONET for sup-
porting these software algorithms. We have also
given the performance improvements we can
achieve by using these new approaches (both in
hardware and software) in solving the common
problems in database management. Several fea-
tures of MICRONET which are suitable for data-
base applications should be stressed. First,
the system is highly flexible. As a database
grows in size, additional microcomputers can be
easily added to the network by plugging the
interface cables to the backplanes of the micro-
computers. An organization can use any number
(22) of microcomputers to form a network system
to suit its needs. Second, the system is very
reliable because of its simple network structure
and its identical hardware (network interfaces
and microcomputers) and software. A failed
interface or microcomputer can be easily re-
placed by a spare, thus increasing the speed of
system recovery. Also, since data files are
addressed by their names rather than by the pro-
cessors in which they reside, the disk packs of
a failed system can be moved to another system
without affecting the computation results.
Third, the system is very efficient due to its
one-to-all broadcasting, its interprocessor
communication and synchronization using special-
purpose control lines and its parallel process-
ing capabilities. Lastly, perhaps the most
important feature, the system is extremely sim-
ple and inexpensive to implement, in contrast to
many other multiprocessor database machines.
The entire network interface for the present
three-node system was built at the cost of ap-
proximately $300. Since the network interfaces
for the computer are identical, a mass produc-
tion of these interfaces will drive the cost
very low. The simple network also provides an
excellent environment for conducting research

Boral, H., et. al., "Parallel Algor-
ithms for the Execution of Relational
Database Operations," Internal Report
#402, Computer Sciences Department,
University of Wisconsin, Oct. 1980.

[B~080] Brownsmith, J. D. and Su, S. Y. W.,
"Performance Analysis of the Equi-Join
Operation in the MICRONET Computer Sys-
tem," Proceedings of the ICCC '80, 1980.

[DEW791 DeWitt, David J., "DIRECT--A Multipro-
cessor Organization for Supporting Re-
lational Database Management Systems,"
IEEE Transactions on Computers, Vol.
C-28, No. 6, June 1979.

[EPS80] Epstein, R. and Hawthorn, P., "Design
Decisions for the Intelligent Database
Machine," =,1980.

[FOS81] Foster, C. C., "A Two Rail Algorithm
for Finding an Extremum," Private
Communication.

[GAR80] Gardarin, G., "An Introduction to
SABRE--A Multiprocessor Database Com-
puter," SIRIUS, BIR-I-005, Publications
SABRE, August 1980.

[GEN81] Genduso, T. B., "An Analytical Model of
the MICRONET-Distributed Database Man-
agement System," Masters Thesis, Depart-
ment of Electrical Engineering, Univer-
sity of Florida, March 1981.

[HsI~~] Hsiao, D. K., "Database Computers,"
Advances in Computers, Academic Press,
Vol. 19, June 1980, pp. l-64.

[HS181] Hsiao, D. K., "The Laboratory for Data-
base Systems Research at the Ohio State
University," Bulletin of the IEEE Com-
puter Society Technical Committee on
Database Engineering, Vol. 4, No. 2,
Dec. 1981, pp. 14-19.

Proceedings of the Eighth International Conference
on Very Large Data Bases 316 Mexico City, September, 1982

[HSI80a]

[KNU73]

[KUN76]

[LEE781

[LIP771

[MAD751

[MAW811

[NTC80]

[NIC81]

[PRE77]

[SAH76]

[SMI79]

[S0N81]

Hsiao, D. K. ;nd Menon, J., "Parallel
Record-Sorting Methods for Hardware
Realization " Technical Report, The Ohio
State University (OSU-CISRC-TR-80-7),
July 1980.

Knuth, D. E., The Art of Computer Pro-
gramming: Vcl. III, Sorting and Search- -
ing, Addison-Wesley, 1973.

Kung, H. T., "Synchronized and Asyn-
chronous Parallel Algorithms for Multi-
processors,n Algorithms and Complexity,
New Directions and Recent Results, .I. F.
Traud, ed., Academic Press, 1976.

Lee, C. J., "A Hardware and Software
Design of a !$icrocomputer Network for
Relational Databases," Masters Thesis,
Department of Electrical Engineering,
University of Florida, Dec. 1978.

Lipovski, G. J. and Tripathi, A., "A
Reconfigurable Varistructure Array
Processor," Proc. of International Con-
ference on Parallel Processing, Aug. .___.
1977.

Madnik, S. E., "INFLOPLEX--Hierarchical
Decomposition of a Large Information
Management S-/stem Using a Microprocessor
Complex," Proc. 1975 NCC, Vol. 44, AFIPS
Press, Montvale, N.J., pp. 581-586.

ilawkowa, M., "Parallel Sort and Join for
High Speed DBM Operations," Technical
Report 81-01, Dept. of 1.S. Faculty of
Science, University of Tokyo, 1981.

Nickens, D. O., Genduso, T. B., and Su,
s. Y. .w., "The Architecture and Hardware
Implementation of a Prototype MICRONET,"
Proc. of Fifth International Conference
on Local Computer Networks, Oct. 1980.

Nickens, D. O., "Hardware and Software
Development of Prototype MICRONET,"
Masters Thesis, Department of Electrical
Engineering, University of Florida,
March 1981.

Preparata, I!. P., "Parallelism in Sort-
ing," Proc. of First International Con-
ference on Parallel Processing, 1977.

Sahni, S. and Horowitz, E., Fundamentals
of Data Structures, Computer Science
Press, Inc., 1976.

Smith, D. C. P. and Smith, J. M., "Rela-
tional Database Machines," Computer,
March 1979.

Song, S. W., "Survey and Taxonomy of
Database Machines," Bulletin of the

[SU78] Su, S. Y. W., et al., "MICRONET--A
Microcomputer Network System for Manag-
ing Distributed Relational Databases,"
Proc. of Fourth International Confer-
ence on Very Large Data Bases, Berlin,
Germany, Sept. 1978.

[SU791 Su, S. Y. W., et al., "The Architectur-
al Features and Implementation Tech-
niques of the Multicell CASSM," IEEE
Transactions on Computers, Vol. C-28,
No. 6, June 1979.

[SU82a] Su, S. Y. W. and Mikkilineni, K. P.,
"MICRONET's Architectural Support for
Statistical Aggregations," Extended
Abstract, Proceedings of the First LBL
Workshop on Statistical Database Manage-
ment, Dec. 2-4, 1981, published March
1982.

[SU82b] Su, S. Y. W. and Mikkilineni, K. P.,
"Sorting Algorithms for Common-bus
Local Networks," CIS Technical Report
i/8182-4, University of Florida, sub-
mitted to TODS, 1982.

[VAL75] Valient, L. G., "Parallelism in Compar-
ison Problems," SIAM J. Computing, Vol.
4, No. 3, Sept. 1975.

[VAL82] Valduriez, P. and Gardarin, G., "Multi-
processor Join Algorithm of Relations,"
to appear in the Proceedings of the
Second International Conference on
Databases: Improving Usability and
Responsiveness, Jerusalem, Israel,
June 1982.

[WAH80] Wah, B. W. and Yao, S. B., "DIALOG--A
Distributed Processor Organization for
Database Machines," IFIPS Press, Vol.
49, 1980.

IEEE Computer Society Technical Commit-
tee on Database Engineering, Vol. 4,
Dec. 1981, pp. 3-13.

Proceedings of the Eighth International Conference
on Very Large Data Bases 317 Mexico City, September, 1982

SPECIAL
FUNCTION

PROCESSOR
I I

3**3.’ 4’3

/ ..I6
\

.<32 a-32 32,’

I

NETWORK
INTERFACE

NETWORK
INTERFACE

-T-
25

--L
MICRO-COMPUTER

7
h I/O M El

T 25

MICRO-COMPUTER MICRO-COMPUTER

Figure 1. System Block Diagram

Proceedings of the Eighth International Conference
on Very Large Data Bases

318
Mexico City, September, 1982

DATA GAO.. GA4 SR RR GINTR GINTA BUSY RESET CLOCK

I WIRE-
AND

4 4

11 11

I.

I 1
COMMUNICATION
SYNCHRONIZATION

CIRCUIT

INTERRUPT
CIRCUIT

SENDER D

CIRCUIT Cl

INPUT AND

OUTPUT
I- I c BUFFERS c-

+4A AAAA

DECODER

I I I

ADDRESS W R I

Figure 2. Blodc Diagram of the Interfaaa

Proceedings of the Eighth International Conference
on Very Large Data Bases

319

r DATA

Mexico City, September, 1982

MSB = BIT 7

BIT 6

BIT 5

BIT 4

If BIT=l; LO is set
Ll is reset

LLKAL MAX IMUM

,&,

(64)10 = (10000000)

If BIT=O; LO is reset
Ll is set

)PROCESSORJ

(96) 1o = (11000000)

COMPARISON 1

PROCESSOR BIT
VALUE LO Ll

p1 1 1 0

p2 1 1 0

p3 1 1 0

1 0

1 GO 61 1

Result: All Processors (P1, P2, and

P3) proceed to test next bit.

COMPARISON 2

11 Resu’t

: P2 returns to local processing;

P1 and P3 proceed to test Bit 5.

CGMPARISON 3

11 Result: P1 and P3 proceed to test Bit 4.

CUMPARISON 4

p1 1 1 0

p2 X 1 1

P 0 0 1

0 0 Result: P3 returns to local processing;

GO 61 P1 has Global Maximum.

Figure3 AMethod for Finding Global Maximum/Minimum.

Proceedings of the Eighth International Conference
on Very Large Data Bases 320 Mexico City,September,1982

COMPUTER 1 COMPUTER 2 COMPUTER 3

u
Global
Work
Space

LJ
61 obal
Work
Space

u
61 obal
Work
Space

LRV = 10

1 10.35 J

FAIL-x

LRV = 30 LRV = 25 1 LRV = 25

L-J 30,35

SUCCESS-/

25
28
30
33
34
37
43

Sort Sort Sort
Array Array Array

10
13
15
18
20
23
30
35
40

Figure 4.1 Initial State of Global Sorting Operation.

25-x
28
30
33

i;
43

LRV = 25

I-J
25,35

SUCCESS-J

10-J
13-i
15-6
18-i
20-i
23-i

ii
40

SEND NPLES CORRESPONOING
TO 10. 13, 15. 18, 20, 23
TO CC AND SEND 30 TO ALL
NODES.

Figure 4.2 PASS 1 of Global Sorting Operation.

25-J
28-J
30-i
33

z’:
43

LJ 25,35

FAIL-x 30-x
35
40

Figure 4.3 PASS 2 of Global Sorting Operation.

Proceedings of the Eighth International Conference
on Very Large Data Bases 321

LRV = 10

1 lo,25 j

FAIL-x

FAIL-x

35
40
45
60

:z
70

35-x
40
45

5:
68
70

35-x
40

6”:

:z
70

Mexico City, September, 1982

--

2800 -

2400 -

2000 -

1800 -

1200 -

20K 40K 80K 80K 1OOK 120K 14OK

Number of Records in the Global File with Number of Processors = 50,
Interrupt Time = 100 us, Number of Records in a Page= 100, Record
Size = 250 bytes, Page Write Time = 15 ms, Network Bus Speed = 25 Mblsec

Figure.5. Execution Time vs. Size of Fi!o.

Prooeedings of the Eighth International Conference
on Very Large Data Bases 322 Mexico City, September, 1982

-

Global Join

A%

IAl (IBI

1

l-l PI
A cc 6 cc

1. DP, Transmits First Block

of its A RELATION to all

Other Machines for Exter-
nal Join.

A
OPl *SC

A DPl *BDPl

2. DP, Transmits its A RELA-

TION to all Other Machines

A
OP2 “Bee

3. DP, Transmits its Last Block

of A RELATION

A
DPl l BDPl

1 ,o 2

mm,

4. CC Transmits its A RELATION

and Waits for End of Global

Operation

A DP2 *BDPl

A DPl l sDP,

FIII cl 1

A
DP2 P2

A
DPl l BDPZ

A
DP2 *%w2

A DPI l =D,

Act *%c A cc l B DPl

5. End of Global Operation

Figure 6. Global Join Operation

Proceedings of the Eighth International Conference
on Very Large Data Bases 323

A CC*0 on

Mexico City, September, 1982

Global
Join

+
“Control ___)
Computer “ Broadcast 1

“epiua to Join ” Interrupt
Service Routine - “Data Processor”

Set/Reset
L(o)...L(~) accordingly

1 (No A1 O(Move A)

“Control
Computer” a , --lip (WI /

I Wait forG(4) *=I *,
mitted Block of A Tuples

.-_--_. _-...
Command with
Block of Tuples
to Others

Release Control

L(O)=1 : Control Computer Status

L(l)=l : Received Tuples Have Been Joined

L(2)=1: The Local Segment of A has
been Completely Transferred

L(3)=1: There is No Local Segment of B

L(4)=1: The Last Block of Global A Relation
has been Processed

Figure 7. The Global Join Operation

Proceedings of the Eighth International Conference
on Very Large Data Bases 324 Mexico City, September, 1982

