
ON THE ALGEBRAIC SPECIFICATION OF DATABASES

Walter Dosch* Gianfranco Mascari** Martin Wirsing*

* Institut fiir Informatik - Technische Universitzt **Istituto di Automatica - Universitd degli Studi
MUnchen - Arcisstrasse 21 - D-8000 Munich 2 di Roma - Via Eudossiana 18 - I-00185 Rome

Fed. Rep. of Germany Italy

ABSTRACT manticl data models which often is

For the conceptual level of database schemes a described can be completely specif

structured algebraic specification is presented. all algebraic types can be used to

Within a uniform framework it comprises database base schemes directly.

only
ied.
spec i

partially
But above
fy data-

abstractions, static and dynamic constraints, and
a functional programing language for queries and
updates. The specification is analysed w.r.t. syn-
tactic and semantic aspects. Then the behaviour
and the implementation of database specifications
are discussed. Furthermore, algebraic conditions
are presented that guarantee a sound specification
according to criteria evolved from database theory.

necessary
defini-

ine is a

For every specification technique it is
to develop criteria for a sound database
tion (/Casanova et al. Sl/). One guide1
syntactic and semantic analysis of database speci-
fication in order to check whether the class of ad-
mitted models Indeed meets the informal ideas in
mind.

0. INTRODUCTION

The algebraic specification technique offers a uni-
form framework for various subjects for which in
database theory different mathematical tools, e.g.
set theory, relations (/Codd 70/), logic (/Gallaire
81/), are used side-by-side. Many of the concepts
developed as part of this technique seem to ade-
quately meet the requirements of database spec-
ifications:

In the field of database specifications there is
a growing interest in rigorous formal specifica-
tions (/Bjbrner 80/, /Brodie, Zilles 81/, /Neu-
hold, Olnhoff 81/) which support a structured data-
base desian (/Ehrio. Fev 81/l. Such specifica-
tions may-essentiaiiy bi classified according to -
the techniques used:

In constructive approaches a database scheme is
specified by defining an abstract model,t&t is a
specific mathematical structure onto which the uni- -
verse of discourse is mapped.

In axiomatic approaches the behaviour is direct- _
ly specified by means of a logic theory without re-
sorting to a particular model. The abstract models
of a constructive approach then provide for a con-
crete implementation,

The algebraic specification technique which com-
bines tools from logic and universal algebra has
proved to be a powerful and flexible tool for the
formal definition of data structures (/Bauer, Wiiss- _
ner 82/) and programming language semantics. There-
fore the development of algebraic database speoi-
fioations(/Ehrig et al. 78/, /Paolini 81/) seems to
be quite promising.

The algebraic specification technique may be em-
ployed for both approaches: It can serve to define
specific abstract models (/Lockemann et al. 79/, _
/Hupbach 81/) . In this way the meaning of (se-

Proceedings of the Eighth International Conference
on Very Laqp Data Bases 370

The signature of an algebraic type specifies
a syntactic interface by naming the available
sorts, , for example attributes or entitiesAnd
the operations with their arities.

The axioms of an algebraic type, being arbi-
trary first order formulas, provide flexibility
in expressing static and dynamic constraints.

The use of partial functions captures finite
errors, which may be induced by constraints,
and infinite errors, that is the non-termination
of queries or updates.

In a hierarchy of algebraic specifications
the visible behaviour of the nonprimitive
parts Is described by mapping them into prim-
itive types.
By an encapsulation mechanism the representa-
tion of the objects and operations can be hid-
den from the user.

Algebraic specifications allow full parameter-
ization. In this way the specification of
database schemes gets possible with full gener-
ality.
Algebraic specification languages, like CLEAR
(/Burstall, Goguen 80/), and ASL (/Wirsing
82/j, give precise semantics ta flexible mani-

Mexico City, September, 1982

pulations with theories. For example,the spec-
ification of a large database scheme (/Albano,
et al. 81/, /Hammer, Berkowitz 80/, /Ehrig et
al. 78/) can be decomposed into parts of man-
ageable complexity and, vice-versa, theories
for small parts, like views of different users,
may be put together to get an overall specifi-
cation.

The paper is organized as follows: Section 1 con-
tains a short overview on some basic notions of
algebraic specifications. In section 2 external
and conceptual database schemes are defined and re-
lated to each other by an abstract domain equation.

,In section 3 a conceptual database scheme is spec-
ified by a hierarchy of algebraic types using al-
gebraically defined database abstractions. In
section 4 a syntactic analysis of the specification
leads to a classification of query and update op-
erations as well as static and dynamic constraints.
Section 5 to 7 provide tools for a semantic ana-
lysis: In section 5 criteria for the existence of
Armstrong models are presented. In section 6 the
behaviour of databases is formalized and the ex-
istence of behaviour models is discussed. In sec-
tion 7 the implementation of database schemes is
defined and some characteristic implementation
steps are outlined. In section 8 a functional
programing language for updates and queries is
introduced. Finally in section 9 a notion of re-
cursion complete language for updates and queries
is algebraically defined, its equivalence to the
"extended completeness ' of Khandra, Hare1 80/ is
outlined and the recursion completeness of the
functional programning language (over set-like
data structures) is shown.

This completes the aim of the paper to provide an
abstract programming language model for database
schemes. Several examples accompany the presenta-
tion. In the notation we largely follow the wide
spectrum language CIP-L (/Bauer et al. 81/).

1. BASIC DEFINITIONS

Below we summarize some basic notions of algebraic
specifications which extend the wellknown theory
to partial algebras. For a more detailed treat-
ment see for example /Wirsing et al. 80/ and /Wir-
sing 82/.

Readers .interested in an informal survey of
this paper may skip this section. I __. -- -.

1.1 SIGNATURES

A signature IX EI 6, F> comprises a set S of
sorts and a Set F Of operation symbols to-

or, both defined and equal t$ = ti E A,.

A tvsx : P iff for all a E A, : A h P[a/xl.

1.5 ALGEBRAIC TYPES

gether with their arlties of S* x S. The uni- An algebraic type T * 4, E> consists Of a Sig-
on of signatures di,Fi> means <S, U S2, F, u F2>. nature f and a (countable) set E of closed r-
A pair ax, B> forms a signature morphism formulas, called axioms. Its semantics Mod(T)
0 : I;1 + & if a : Sl -, SO is a total mapping is the class of all x-algebras where all axioms
for sorts and B : Fq + Fa a family of mappings @E E. are satisfied and A /= true * $a&. A
for operation symbols compatible with a, For a consistent type , that is a e T with

S-indexed family X of variables Wp;, X) de-
notesthe set of all (finite) X-terms
the ground terms W(x) = W(z, @).

including

1.2 PARTIAL ALGEBRAS

In d (partial) X-algebra A = <(s A)sEs, (fA)&

with each sort s of S a carrier set A and
with each operation symbol f : six.. .xsk +'s E F

a (possibly partial) function

is associated.

fA:Aslx . . .xAsk -P A,

A is finitely generated if eve-
ry element of its carrier sets can be obtained by

the interpretation tA of a ground term tE W(f).
The term algebra W(Z, X) and the ground term
algebra W(z) are total finitely generated r-alge-
bras. For a signature morphism u : & + & and
a &-algebra Aa the o-restriction As/u is

the x,-algebra A1 with Ai = A2 fA' =

WA2 (s,f E c,) .
u(s) and

1.3 HOMOMORPHISMS, EXTREMAL ALGEBRAS

A family (rp, : A; + A;)scs of total mappings is

called (strong) I-homomorphism cp : A1 4 A2 be-
tween two t-algebras Al, A2 if (o preserves the
definedness (and undefinedness) of functions and
is compatible with them.

In a class C of r-algebras the isomorphism clas-
ses I resp. Z of (strongly) initial resp.
(strongly) terminal algebras are characterized by
the existence of (strong) homomorphisms v : I -) A
resp. cp:A+Z forall AE-C.

1.4 FORMULAS

x-formulas are all first-order formulas built from
the definedness predicate Ds(t) and the strong

equality t, =s tl as atomic formulas using'the

quantifiers v, 3 and the connectives A , v , -, ,
I, . The satisfaction A t= @ of a x-formula o
in a x-algebra A is defined as usual“where for
atomic formulas and allquantification

A I= DsW iff there exists an aEA,: tA =a

A t t, =s to iff tt and t$ are both undefined

Proceedings of the Eighth International Conference
on Very Large Data Bases 371 Mexico City, September, lW2

Mod(T) 8 0, is called monomorphic, if Mod(T)
comprises only isomorphic algebras,and polymor-
phic elSeWiSe. For a type T a I-formula @
is provable (T I- 0): ifal,m,o~~l~e~~ci~les,'~~~
E, valid
fy @ . A f:;;,:)'vs:f : e(x) where @ is quanti-
fier-free is called maximal if for all ground
terms t T
T c 7 O(t),

t D(t) implies T b o(t) or

1.6. HIERARCHICAL ALGEBRAIC TYPES

To structure the specification in a hierarchical
algebraic type T = <f, E, Tl> a primitive (sub-)
type T' = <I:', El, T% is designated consisting
Of a primitive signature X1 s 1 of primitive
sorts S' ES and primitive operations Fl E F,
a subset El E E of primitive axioms and a
(possibly empty) primitive subtype Ta.

The primitive terms W(9, X,') and the terms of
primitive sort form subsets of W(Z, X). In a
hierarchical type the non-primitive objects are
specified by their visible behaviour under out-
put operations, that is by operations leading
from a nonprimitive sort into a primitive sort.

The visible behaviour should be specified suffici-
ently precise, T is called weakly sufficiently
complete, if for all ground terms tc W(Z)
of primitive sort there exists a primitive term
p E W(Z~) with Tt D(t) *T I- t = p, and suffi-
ciently complete, if furthermore T c D(t) or
T ~9 D(t). A related model-oriented notion is :
A type T = <I, E, Tl> is hierarchy persistent
if for every model A 1 of the primitive type
T' there is a model A of T such that A/z,

is Al, and for every model B of T the reduct

e/P is a model of T' .

1.7 STRUCTURED ALGEBRAIC SPECIFICATIONS

In an algebraic specification language for the
manipulatian of algebraic types composed type
expressions can be built from signatures and sets
of axioms as atomic expressions using

- the quotient T : E of a type expression T
and a set E of axioms,

- the cum Tl+ Ta of two type expressions T',
T=,

- the restriction T/ of a type expression and
a signature morphism'a;'C' + C . If I' C_ C'
and u is the inclusion operation, we Write
T/e, insteadof T/d .

- the abstraction (PAR :T of a type expression
and a type variable b AR yielding a parameter-
ized type
type PAR 9

or type scheme with parameter

- the application (instantiation) T(ARG) of a
type scheme T to an argument type ARG,

- the constraint data(T) to finitely ener-
ated and minimal~efined models of B.

This kernel language can be extended by notational
variants like
riching a typ~~;r T$ I !ypt;; en-

type T' =<t u I', E IJ El:,. A type T is data-
enriched by <Z', El> if for every model A' of T1
the reduct A'lc is a finitely generated mini-

mally defined model of T .

The precondition notation

funct (s x : pre(x)) 2 f
- -1

in the signature of a type is an abbreviation
for the declaration

(. funct

and the axiom

prdx)

2,) sf

= false r) D(f(x)) = false .

2. EXTERNAL AND CONCEPTUAL LEVEL OF DATABASES

At the external level a database (scheme) may be
seen as a black box. The only way to talk about
the information contained in it is to put queries
to it. There are different (groups of) users each
interacting with the database using a specific set
of queries and updates. In this situation,both the
complete database DB and the view Vi of a user

may be described by hierarchical algebraic types.
For each user there is a signature ti naming the

available sorts and operations. From the conceptual
level DB an external view Vi is obtained by re-

stricting DB to xi ; conversely a database is

the sum of its views where certain interferences
among the views Vi are respected.

Definition A conceptual database scheme DB and
an external database scheme or view Vi .are

parameterited hierarchical algebraic types such that

(1) DB = (V, + . . . t Vn) : Interference(V,,...,V,)

(2) Vi = DB/,i for i = 1,2,...,n holds,

where xi = Sig(Vi) are signatures and

Interference(V1,...,V,) are c, u .., u c, - axioms.

This definition reflects two directions in the con-
ceptual design:

a) First the external view Vi and their interfer-

ences are specified separately and then inte-
grated into a conceptual database scheme OB.
Algebraically this means to solve the abstract
domain equation

(3) DB = (DB/r, t . . . t OS&.,) :

Interference(DB/ ,..., DB/
for the unknown type kriable DB. %

) (n r 1)

Proceedings of the Eighth International Conference
on Very Large Data Bates 372 Mexico City, September, 19S2

b) First the conceptual level DB is specified aggregation, generalization, and correspondence.
and then the different external views V. are
derived from it according to equation (1).

As it is well known from fixpoint theory of recur-
sive functions the domain equation (3) in gener-
al has a lot of solutions. When using the method
b) the specified conceptual scheme often contains
more detailed information than needed for the dif-
ferent external schemes, then DB is not a mini-
mal solution of equation (3). furthermore when
using database abstractions to construct a concept-
ual scheme, in general not a minimal solution of
(3) is obtained.

3.2.1 AGGREGATION

Definition An aggregqtion is the type scheme

a AGGREGATION = (OBJT,...,OBJn, u, PRE, c, E) :

data-enrich PROD(OBJ ,...,OBJn)/o : PRE & t, E
1

endoftype ,

where the type scheme PROD forms the Cartesian
product of its parameter types (/Bauer,kliissner>2/)

w PROD m (OBJ,, OBJ,) :

data-enrich OBJ 7' OBJ,, BOOL &

sort prod ,
3. SPECIFICATION OF THE CONCEPTUAL LEVEL

Below we specify the conceptual level of a
database scheme by defining a hierarchy of alge-
braic types for its components.

3.1 OBJECT TYPES

The conceptual database specification as well as
the views are modular composed (/Schiel et al. 82/)
of various subtypes such as several object types
OBJ,, OBJ, that define the data structures

of the data items.

In general the basic object types OBJi are not

monomorphic. Nevertheless the following require-
ments should be fulfilled:

Claim The hierarchical types OBJi for the basic

objects should be specified such that

1) the definedness predicate is model-independent,

2) they are hierarchy persistent,

3) for their semantics only finitely generated
models are regarded.

Condition 1) ensures that the definedness of
terms is model independent, 2) allows to imple-
ment the overall type by using implementations of
its primitive types, 3) ensures that every ob-
ject has a finite denotation and can be finitely
computed, i.e., there is "no junk" in the models.

3.2 DATABASE ABSTRACTIONS

In general the basic object types OBJi are them-

selves obtained in a hierarchical way based on
other primitive types. To abbreviate type schemes
frequently occurring in the construction of data-
base specifications database abstractions have
been introduced (/Hammer 76/, /Smith, Smith 77/,
/dos Santos et al. 80/, /Brodie 81/). They are
similar to generic mode constructors in programm-
ing languages (/Schmidt 80/). Below we specify

funct (ob& x,, obj, x, :

pre(x ,

funct (prod) ai seli ,

x,)) prod mk,

'

funct (ob.& a,) bool pre ,

pre(x,,..., X,)* seli(mk(x,,...,xn)) = Xi

endoftype

If the precondition pre is constant true,

PRE = ipre(x,, xn) = true 1

then mk is a total operation; in this case we
omit pre and PRE and write TPROD for PROD .

Example

A secretary may be characterized by the components
name, age (over 18) and typing speed. Furthermore
an operation to increase the age is provided.

E SECRETARY =:

data-enrich (seer, mksecr, sname, sage, speed,

isadult) l

PROD(NAME, AGE, TYPING-SPEED) :

isadult(n, a, s) = (a 2 18)

& funct (seer) seer incrage ,

incrage(mksecr(n, a, s)) = mksecr(n, a+l, s)

endoftype

Here the notation

(seer, mksecr, isadult)=

PROD(NAME, AGE, TYPING-SPEED)

abbreviates the signature morphism
by establishing the correspondence

u of PROD&

seer *J&, mksecr + mk, pre -, isadult .

Proceedings of the Eighth International Conference
on Very Large Data Bases 373 Mexico City, September, 9982

Similarly one may specify a type DIRECTOR con-
sisting of the component types NAME, AGE, and
TELEPHONE.

3.2.2 GENERALIZATION

Definition A generalization is the type scheme

type GENERALIZATION E(OBJ,,...,OBJ,,U, PRE, C, E):

data-enrich SUM(OBJ,,...,OBJ,)/d : PRE & L E

endoftype y
where the type scheme SUM defines the direct sum
(disjoint union) of itso;;rjmeters:
w SUM = (OBJ , l **, :

data,-enrich ;BJ
1

* **a, ~BJ,. BOOL &

sz,

fund (obji Xi: prei(Xi)) s mki ,

funct (sum) bool isi , m-
funct (sum s : m- isi(obji pri 9

funct (ai) bool prei ,

prei(xi) T [isi(mki(xi)) = true ,

iSj(mki(Xi)) = false , (i *j)

Pri(m+(xi)) = XJ, 1
endoftype

Example

The staff of a company consists of either secre-
taries with excellent typing speed or directors
older than 40 years. It additionally may have an
operation to access the name of the staff directly.

$y& STAFF = :

data-enrich (staff,

sstaff, issecr, seer, quicktype,

dstaff, isdir, dir, matureage) =

StJM(SECRETARY, DIRECTOR) :

quicktype - (speed(s) 2 300) ,

matureage = (dage(d) 2 40)

& funct (staff) name stname , ---
issecr(st) * stname(st) i sname(secr(st)) ,

isdir(st) * stname(st) = dname(dir(st))
endoftype

3.2.3 CORRESPONDENCE

Many (semantic) data models widely use sets but
nevertheless do not support the data structure set
explicitly. Sets as objects are required in the
conceptual modelling whenever sets have specific
properties exceeding the properties of their ele-
ments.

Definition A correspondence is the type scheme

e CORRESPONDENCE = (OBJ ,u, PRE, c, E) :

data-enrich FINSET(OBJ)/o : PRE 9f, E

endoftype ,

where the type scheme FINSET defines finite sets
of a member type OBJ (cf. /Wirsing et al. BO/) :

e FINSET = (OBJ) :

"data-enrich OBJ, BOOL &

funct finset emptyset , --
funct (finset s, obj x : --

preins(s, x)) finset insert ,

funct (finset s, obj x : --
predel(s, x)) finset delete ,

funct (finset) boo1 isempty , ---
funct (finset, obj) boo1 iselem , P--P
funct (finset s -- : -,isempty(s)) obj choose ,

funct (finset, obj) -- preins, predel ,

iselem(emptyset, x) = false ,

preins(s, y) I,

iselem(insert(s,y), x)= (eq(x,y) v iselem(s,x)),

predel(s, y) *

iselem(delete(s,y), x)= (-, eq(x,y) A iselem(s,x)),

isempty w)-, 3 obj x : iselem(s, x),

7 isempty - iselem(s, choose(s)) = true

endoftype

Here eq denotes an equality operation on.083.
Note that the result of the partial operation
choose ("Give me some element of the set") is
undefined for the empty set, uniquely determined
for sets with one element, and ambiguously for
sets with two or more elements.. Furthermore, de-
lete is specified as a constructor (cf. also sec-
tion 5).

Example

A secretary belongs to a set of candidates when
she submits to work and is no longer a candidate
when she withdraws. This has to'respect the fol-
lowing constraints: A secretary withdrawing (sub-
mitting) must (not) be a candidate.

* CANDIDATES f (SECRETARY) :

data (cands, emptycand,csubmit,cwithdraw,cisempty, --
iscand,cchoose, precsubmit, precwithdraw)

I FINSET(SECRETARY) :

precsubmit(c, s) = -, iscand(c, s) ,

precwithdraw(c, s) = iscand(c. s)

endoftype

Proceedings of the Eighth International Conference
on Very Large Date Bases

374 Mexico City, September, 1882

3.2.4 AN EXAMPLE: EMPLOYMENT AGENCY

In this section for the well-known example of an
employment agency (/Veloso et al. 81/) a conceptu-
al scheme is specified by a hierarchy of algebraic
types using database abstractions. It is based
on the primitive types SECRETARY and COMPANY
for secretaries and companies.

A secretary working for a company is an employee.
The following type assumes no constraints, that
is every secretary may work for every company.

e EMPLOYEE E (SECRETARY, COMPANY) :

(emJ&< .,. >, seer, camp)=

TPROD(SECRETARY, COMPANY)

endoftype

In the next step the set of employees is speci-
fied with the following constraints:

- A secretary cannot be hired by a company when
she is already working for any company,

- She only can be fired by a company when she is
working for this company.

e MPLOXEES = (EMPLOYEE) :

data (empls, emptyempls, ehire, efire, eisempty,

worksfor, echoose, preehire, preefire) =

FINSET(EMPLOYEEj :

preehire(e, <s, r >) =

(Vcomp r,: -rworksfor(e, <s,r,>)) ,

preefire(e, <s,r>) = worksfor(e,< s,r>))

endoftype

Then an employment agency consists of a set of
candidates and a set of employees respecting the
following integrity constraint :

(PRE) No secretary can simultaneously be a can-
didate and an employee.

Moreover there are the following constraints:

(PRES) A secretary submitting can neither be a
candidate nor be working for a company.

(PREH) A secretary can only be hired by a compa-
ny if she is a candidate and does not work for
any company.

(PREF) A secretary getting fired by a company
must work for this company,

m EMPUGENCY s (CANDIDATE, EMPLOYEE) :

data-enrich (a~, c.,. >, cands, empls, preag)=

PROD(CANDIDATES, EMPLOYEES) :

(PRE) preag(c, e)= V ~ecr s, s r :

[(iscand(c, s)* 7 worksfor(e,<s,r>))~

(worksfor(e, <s,r>)* 7 iscand(c, s))]

Proceedings of the Eighth International Conference WrE

& funct (3 a, s : presubmit(a, s))

ag submit, -
funct (a~, seer) boo1 presubmit , --
funct (3 a, empl e : prehire(a, e)) a~ hire,

funct (3 a, empl e : prefire(a, e)) 2 fire,

funct (a~, empl)

prw(c, e) -

(PRES) [presubmit(c c, e>, s) =

Vcompr : -, worksfor

(S) presubmit(<c, e>, s) I,

re, prefire,

(-I iscand(c,s) A

(e,< s, r>)J ,

submit(<c, e>, s)= < csubmit(c, s), e >,

(PREH) prehire(<c,e>, cs,r >) =(iscand(c,s) A

Vcomp r, : 7worksfor(e,<s,r,>)) ,

(HI prehire(<c,e>,<s,r>) * hire(<c,e>,<s,r>) =

<cwithdraw(c,s), ehire(e, <s,r>)>,

(PREF) prefire(<c,e>,<s,r>) = worksfor(e,<s,r>) ,

(F) prefire(<c,e>,<s,r>)- fire(cc,e>,<s,r>) =

e csubmit(c,s), efire(e, <s,r>)> I

endoftype

For the consistency proof it is necessary to check
that the update operations submit, hire, and
fire preserve the integrity constraint (PRE):

presubmit(<c,e>, s) I, preag(csubmit(c,s), e) ,

1 s

prehire(cc,e >,<s,r>) r, .,

preag(cwithdraw(c,s), ehire(e, cs,r.>)

prefire(<c,e>, <s,r>) I,

preag(csubmit(c,s), efire(e, <s,r>))

This can be proved u,;;ng the preconditions IPRE),
(PRES), (PREH),
the application of

(PREF). For example,
submit keeps the integrity

whereas csubmit may violate it. For the final
specification of the employment agency all updates
have to be hidden which possibly destroy the inte-
grity:

w EMPLOYMENT-AGENCY = (CANDIDATE, EMPLOYEE) :

EMPL-AGENCY(CANDIDATE; EMPLOYEE&

endoftype where

I: I sig(EMPL-AGENCY) '

I csubmit, cwithdraw, ehire, efire I

For this type requirements of /Veloso et al. 81/
are provable (as postconditions), for example:

(POSTS) a = submit(a1, s) * iscand(cands(a), s) A

vcompr: -,worksfor(empls(a),<s, r>)..

on Very Large Data Bases Mexico City, September, 1982

More complex operations like

funct (9, seer) boo1 works --

('Does a secretary work?') may be specified at
this level by an enrichment using descriptive
formulations like

Definition

An operation f E sig(OBJi) is called object op-

eration, and an operation f E I-DB is called
holding operation.

works(a,s) = 3comp r : worksfor(a, <s,r>)

or structural induction

works(<c, emptyempls>,s) = false ,

prWcs ehire(e,<s,,r>)) 4

works(<c, ehire(e, cs,,r>)>, sn) =

(eqsIsqt,s,l v works(<c,e>, So)),
preag(c, efire(e, <s,s r>)) -
works(<c, efire(e, <s,s r>)>, sz) 5

(-!eqs(s,, sn) A works(<c, e>, s,)),
Alternatively these operations may be detined in
the next level using a programing language, see
section 8.

These two definitions allow a two dimensional
classification of the database operations into
holding updates and holding queries as well as in
object updates and object queries.

Example

In the EMPLOYMENT-AGENCY there are the ob-
ject queries sname, sage, speed, the object
update incrage, the holding queries iscand
and worksfor, and holding updates submit,
hire, and fire.

This classification of the operations may also be
used to discriminate two kinds of constraints.

Definition

4. SYNTACTIC ANALYSIS

In this section algebraic specifications for data-
base schemes are analysed under syntactic aspects.

In a database specification DB a formula @ with
DB C o is called static constraint iff there
does not occur any operation f in 4, which is a
hclding update. Otherwise 0 is'called dynamic
constraint.

Example

The hierarchical structure of algebraic types in-
duces a syntactic classification of the operations
as well as of the axioms:

In the EMPLOYMENT-AGENCY the (provable) formula

mksecr(sname(s), sage(s), speed(s)) = s

as well as the axiom (PRE) are static constraints,
whereas the preconditions (PRES), (r'REH), (PREF)
and the postcondition (POSTS) are dynamic . . .

Definition

For a database specification DB=<I;E,OBJ,,...,OBJ,> constraints.
with primitive subtypes OBJi we call an opera-

In the following sections the specification for
database schemes is semantically analysed with
respect to notions evolved from database theory.
These notions are also related to algebraic
concepts.

tion symbol f of arity funct (s - -,’ l **, Sk) 2

query operation if the range 2 of f

primitive sort, that is 2 E \21 sig(OBJi
i=l

and update operation otherwise.

Example

is a

1 '

In the type SECRETARY sname, sage, speed, and
isadult are query operations, whereas mksecr
and incrage are update operations.

In the type EMPLOYMENT-AGENCY for example iscand
and worksfor are queries whereas hire, fire,
and submit are updates.

Now let D8 be a hierarchical algebraic type
specifying a (view of a) conceptual database
(scheme) which is based on the primitive object
types OBJ , OBJ,. Then the signature

1

&-DB = sig(DB) xdsI sig(OBJi)
=

contains all sorts and operation symbols of DB
without the sorts and operations of the primitive
object types.

1' es of

5. ARMSTRONG MODELS

In order to get an overview of the propert
a specification special models are studied

Definition

An algebra A is called Armstrong model (/Ma-
fica- kowsky 81/, /Fagin 82/) of a database speci

tion DB, if all first order formulas which
are provable in DB and which only contain
terms the definedness of which is provable, are
valid in A and no others.

The existence of Armstrong models is often accept-
ed as a criterium for a sound specification since
they help the database designer to see what he
has Implied by the axioms of his specification.
Thus~a major concern of research in database the-
ory is to characterize the class of formulas for
the description of data dependencies which allow
or guarantee Armstrong models. For algebraic

Proceedings of the Eighth International Conference
on Very Lerga Date Bass 376 Mexico City, September, 1982

types with partial functions there is the result:

Theorem

Let a database be specified by a consistent hier-
archical type DB = <x:, E, OBJ > where all axioms
in E have positive oonditional form

Vsx, ‘,. ~Xn : i=l A D(Pi) A Pi = qi *C 3

where C is an atomic formula p = q or D(p).

(1) DB has an Armstrong model, iff DB is
weakly sufficiently complete.

(2) Every Armstrong model is initial in DB.

(3) An Armstrong model is strongly initial in DB
if for all ground terms t E W(z) either
DB I= D(t) or DB k I D(t).

Proof

See /Wirsing et al. 80/. 0

For the database abstractions presented in section
3 the existence of Armstrong models is ensured
whenever the preconditions and the parameter types
behave well.

Proposition

For the database abstraction AGGREGATION (GENER-
ALIZATION; CORRESPONDENCE) there exist Armstrong
models, iff the operations pre (prei; preins,

predel, choose) specified are weakly sufficiently
complete and their parameter type(s) OBJ,,...,
OBJ, (OBJ

1
,**a, OBJ,; OBJ) allow an Armstrong

model.

9 !fcC Ooseis specified weakly sufficiently
complete, then CANDIDATES has an Armstrong mo-
del I, where for example
(*) csubmit(emptycand, s) +

csubmit(cwithdrwaw(csubmit(emptycand,s),s),s)

holds. More gegerally, Armstrong models of,
type FINSET (if .they exist) are.based on se1
quences where multiplicity and ordering of the se-
quence elements is relevant for the equality.
Also for implementing delete(s, x) the element x
must be appended to the sequence s with a marker
for bein

Yl
no longer present. Thus in I the can-

didate's istory is completely reflected.

Also the type EMPLOYMENT-AGENCY has a (strongly
initial) Armstrong model if cchoose and echoose
are specified sufficiently complete. Similar to
CANDIDATES in an Armstrong model of EMPLOYMENT,
AGENCY the equality between objects of sort 3
is determined by the sequence of updates submit,
hire, fire leading to them. Thus Armstrong mod-
els contain redundant information which cannot be
retrieved by queries.

In the partial algebra approach Armstrong models
are minimally defined and defined terms are inter-
preted as different as possible. Thus the exist-
ence of Armstrong models is not endangered when
adding inequalities such as (*) to a database
specification as long as it remains consistent.

6. BEHAVIOUR OF DATABASES

In a view point dual to Armstrong models a data-
base is significantly characterized by its beha-
viour, that is by all effects which are visible
in the primitive types. Thus a model of a data-
base specification is called a behaviour model
if two elements are distinguished in the model
only if they can be discriminated by queries.
Such models can be defined using the behaviour
view of a database which abstracts from the equa-
tions holding on its nonprimitive sorts.

For simplicity throughout section 6.1 and 6.2 let
DB = <X, E, OBJ> be a database specification with
exactly one nonprimitive sort db ET where the
primitive type OBJ contains o= sort obj.

Definition

The hhaviour view Beh(DB, V) of a database
scheme DB = cf, t, OBJ > w.r.t. a subsignature
V E t Is given by

Beh(DB, V) = ’ + DB/sig(OBJ) t OUT(V) : EQU(V)

where

OUT(V) = {funct obj to [tE W(V) of sort obj 1

EQWV = {t = to [t E W(V) of sort obj 1

Thus in a behaviour view of a database scheme
DB the axioms of the sort & are neglected and
all terms of W(V) of primitive sortg are
added as constants.

6.1 BEHAVIOUR MODELS

The identity of the nonprimitive parts of a data-
base specification may be completely determined by
their visible behaviour in the primitive object
type OBJ. On the term level, one gets a visible
behaviour of a nonprlmitive object by putting the
corresponding term into a context of a primitive
sort.

Definition

a) A X-algebra A of a database specifjcation
DB =<t, E, OBJ> is called fully abstract,
If. for all t, t'E W(r) of sort *

(1) A b D(t) iff there exists a context
c[x] E W(DB,lxl) of sort obj with
A k D(c[tl).

(2) A I= t * t' iff there exists a context
c[x] E W(DB,{x)) of sort obj with
A k c[tl $ c[t'].

Pvnzdings of the Eighth International Conference
bn Very Large Data Bases

377
Mexico City, September, lS62

For the database abstractions AGGREGATION and
GENERALIZATION Armstrong models and behaviour mod-
els coincide if the precondition operations pre
resp. Prei are sufficiently complete. In this

case, AGGREGATION and GENERALIZATION are par-
ameter monomorphic.

For the database abstraction CORRESPONDENCE all
behaviour models are isomorph ic if the operations
preins, predel, and choose are sufficiently
complete.

3) A fully abstract model of Beh(DB, 1:) is
called behaviour model of DB.

Proposition

a) If a database specification DB = <z, E, OBJ>
is sufficiently complete, then all behaviour
models of DB are isomorphic.

b) If furthermore all axioms of DB are of pos-
itive conditional form with maximal premihes
and the definedness predicate D is model in-
dependent in .DB, then the following is equi-
valent for an algebra A with signature of
Beh(DB, 1) :

(I) A/, is a strongly terminal model of DB .

(2) A is a strongly terminal model of Beh(DB, t)

(3) A is a behaviour model of DB .

corollarr

Example

The types SECRETARY and STAFF are parameter
monomorphic.

The type CANDIDATES has behaviour models satis-
fying (in contrast to Armstrong models) for exam-
ple the formula

csubmit(emptycand, s) =

csubmit(cwithdraw(csubmit(emptycand,s),s),s)

since its left and right hand side are not dis-
tinguishable by contexts of primitive sort.

6.2 DISTINCTION BY QUERIES

In a database specification the effects of update
operations are visible to a user only by the change
of results of queries. Thus internal states with
different behaviour should be distinguishable by
query operations only.

Definition

For a set Q of query operations a database spec-
ification OB = <x, E, OBJ > is called query dis-
tinctive, if any two states db, db' E W(X)
of sort 2 are distinguishable by queries, that
is

Beh(DB,x)/,, = DB'

where X' is the signature of

DB' = Beh(DB, c{&, objl, 9~).

-dings of the Eighth International Conference

For'database specifications that are sufficiently
complete and query distinctive, behaviour models
are completely characterized by queries.

Proposition

Let DB = <I:, E, OBJ > be a database specifica-
tion which is sufficiently complete and query di-
stinctive. A X-algebra A is a behaviour model
of DB iff for all db, db' E W(T) of sort 2

A + db * db' c) there exists a holding query q E c
with DB.t qfdb) 4 q(db')

A k D(db) * there exists a holding query q E c
with.DB I= D(q(db)) l

For the database abstractions of section 3 we get
in particular:

Proposition

AGGREGATION, GENERALIZATION, and CORRESPONDENCE
are query distinctive if the signature morphism
u does not forget any query operation.

Example

The type SECRETARY is query distinctive, since
two objects of sort seer are different whenever
they differ in at leamne component NAME, AGE,
or TYPING SPEED.

The distinction by queries is transitive with re-
spect to parameter passing in parameterized types:

Proposition

If the database scheme DB(PAR) is query distinc-
tive (w.r.t..its parameter type PAR) and ‘ARG is
query distinctive b.r.t.its primitive type OBJ),
then the database DB(ARG) is query distinctive
(wx. t. OBJ) .

Corollary

If a database specification DB is built only by
database abstractions then it is query distinctive
if no query operations are forgotten by the sig-
nature morphisms used.

Example EMPLOYMENT AGENCY is query distinctive.

Finally, all composed data structures which do not
allow to access all their components directly by
a single operation are, in general, not query dis-
tinctive.

Example

Let the type FILE with parameter OBJ spe-
cify .files using the updates emptyfile; rest3
put, and the query operations get, eof. Then
FILE is not query distinctive since files differ-
ing in the second, third, . . . element cannot be
distinguished by the queries get and eof.
Note that the procedure get of PASCAL corres-
ponds to the compositian get.rest'(see section 9):
PASCAL-files are not query distinctive.

0” very Large Date Bares Mexico City, September; l@M

6.3 KEYS

In a database specification DB=<t,E,OBJ ,.., ,OBJ,>
with various primitive types OBJi the &eries
leading to a distinguished primitive type OBJi
may be sufficient to discriminate the nonprimityve
objects:

Definition

A primitive type of a database specification
DB =

OBJib
<I, E, OBJ, , . . . , OBJ, > is called key if

DB is query distinctive w.nt.all operations with
range in a sort of OBJio.

Example

Let secretaries be uniquely distinguishable by
their names. Then NAME may serve as key since

SECRETARY'sig(SECRETARY)+sage, speed,isadultl

is query distinctive, whereas

SECRETARY/ sig(SECRETARY)9snamel

will, in general, not be query distinctive.

7. IMPLEMENTATION AND BEHAVIOUR EQUIVALENCE

OF DATABASES

At the beginning of a database design there stands
the requirement analysis formalized as external or
conceptual scheme. The conceptual scheme then is
the starting point for a joint development towards
an internal scheme. This development can be done
for example by a stepwise refinement technique
(cf. /Ehrig, Fey 81/) or by a series of transfor-
mation steps meliorating coherently algorithms ano
data structures (cf. /Bauer, WUssner 82/). The
correctness of such refinement or transformation
steps can be expressed and formalized by the no-
tion of implementation. Each subsequent specifi-
cation is an implementation of the previous one.
The algebraic definition of an implementation does
not depend on the structure of the specified data-
base but only takes its behaviour into account
(cf. /Ausiello et al. 80/).

Definition

A database specification DB = < E,g E , OiJ > As
called an Implementation 0; DB,

1
= .<z 3, E.: OBJ?>

via a signature morphism

K: OUTa -, OUT
1

if 0 + Mod(Beh(DB,,Z,)/, c., Mod(Beh(DB2,x2)/OUT)
a

where OUTi e Sig(OBJi) U-OUT(xi)

(see also section 6) .

oa, and DB are called behaviourally equiva-
lent if the! implement each other.

Mings of the Eighth International Conference
odhwy Large Data Bases

Informally DB, implements DB, if the visible
parts of the models of DB agree (after renaming)
with the visible parts of iodels of DB,. There-
fore the semantics of queries is not affected by
an implementation whereas the semantics of updates,
in general, is.

When building hierarchies of data abstractions com-
posite objects often share common components. In
an implementation step these components are sepa-
rated. : The sum of two products with common
subtypes can be implemented by the product of the
comnon subtypes and the sum of the other components.

Proposition.

Let OBJ, s PROD,(OBJ, OBJ;) and

OBJos PRODb(OBJ, OBJ;) .

Then SUM(OBJ OBJ,)
PROD(OBJ,SUM’1iBJ;

is implemented by

morphism
OBJA)) via the signature

K induce; by

KW,(mka(xs Y,)) = Wx, mk;(y 1)

K (mk2(mkb(X, Y2)) = mW .,;(yl))

Of course the'implementation is more economic
since the ob'-component occurs only once in the
product. ti owever, as can be easily seen, both
types are behaviourally equivalent.

Example

The type STAFF can be implemented by

PROD(NAME, AGE, SUM(TYPINGSPEED, TELEPHONE)) .

A quite different implementation step usually is
applied to the set-like database abstraction
CORRESPONDENCE. After introducing a key, tables
(specified by the type scheme GREX below) may
be used to implement the correspondence.

Definition An association is a type scheme

w ASSOCIATION = (KEY, OBJ, Q, PRE,Z, E) :

data-enrich GREX(KEY, OBJ)/o : PRE & Z, E

endoftype where

E GREX = (KEY, OBJ) :
data-enrich KEY, OBJ, BOOL &

funct grex init ,

funct (E g, kc-y k, obj x :

preput(g, k, x)) ~rex put ,

funct (,m g, & k : isin(g, k)) obj get ,

funct (~g,ks k : predel(g,k)) grew cancel ,

funct (grex, &) bool isin, predel ,

funct (grex, &, a) bool preput ,

Mexico City, September, dSS2

isin(&n& 1) = false ,

preput(g, k, x) -

isin(put(g,k,x), l)= (eqk(k,l) v isin(g,l)),

isin(put(g,k,x), 1) *get(put(g,k,x), 1) =

if eqk(k,l) then x else get(g,l) fi ,

predel(cancel(pz, kX)t 1)) -

cancel(put(g, k, x), 1) =

if eqk(k, 1) then if isin(g, 1) --
then cancel(g, 1)

fi -
else put(cancel(g,l),k,x) fi

endoftype

Proposition

Let OBJ s PROD(KEY, OBJI) such that for all
& k, finset s there exists at most one

o E ob"
Ed

with iselem(s, <k, o>). Then
CORR ONDENCE(KEY, OBJ) can be implemented by
ASSOClATION(KEY, OBJ) via the signature
morphism K induced by

K(insert(g, x)) = put(lc(g), sel,(x), %)

K(delete(g, x)) = cancel(r(g), sel,(x))

K(iselem(g, x)) = isin(K(g), sel,(x))

and some particular operations getsome and isinit
for w(choose) and K(iSempty).

The particular choice of getsome such as "get an
object with minimal key" often implies that COR-
RESPONDENCE and ASSOCIATION are not behaviour-
ally equivalent.

Example

The type CANDIDATES can be implemented by the
following type

* CANDIDATES' 1 (NAME, SECRETARY) :

data-enrich (cand', einit', csubmit', cget',

cwithdraw', iscand', precwithdraw', precsubmit')

l GREX(NAME, SECRETARY)

& precsubmit'(g, i, x) = 7 iscand'(g,i) ,

precwithdraw'(g, i) = iscand'*(g, i)

& funct (cand') boo1 cisinit --m
funct (cand'c: -isin

. . .

epdoftype

via the morphism-induced

K(cSUbl’dt(g, x)) = csubm t’(K(g), sname(x)r x),

K(iscand(g, x)) = iscand'(ic(g), sname(x)) .

Proceedings of the Eighth International Conference
on Verv Large Data Bases 380

8. AN ABSTRACT PROGRAMMING LANGUAGE MODEL

To express and perform complex database oderations
a database language is needed. The queried and
updates of the database scheme serve as its prim-
itive operations. Below we define a schematic im-
plementation of a conceptual-database scheme by a
simple but adequate programming language. This
completes an aim of this paper to propos
stract programming language as a x

an ab-
sema tic data-

base model. The programming language should be a
scheme language :'its semantics should-be completely'
defined relative to an arbitrary database scheme
providing the primitive operation symbols. The
axioms for the programing language model are sim-
ple translations from the axioms of the database
specificationenriched by the axioms of the pro-
graming language constructs.

As an example we define a functional language
(/cf. Buneman, Frankel BO/), in the FP-style of
Backus to obtain recursion complete query and up-
date languages.

Throughout this section for simplicity let DB =
<Z, E, OBJ >be a database specification with exact-
ly one nonprimitive sort db and one primitive
type OBJ with primitive sort pr .

8.1 THE BASIC DATABASE LANGUAGE

The basic database language B-DB-L is based on
the types DB for the database specification and
SEQU(OBJ) specifying sequences of objects. It
comprises the sorts query_ and + for query
resp. update operations.

e B-DBI = (DB, OBJ) :

data-enrich DB(OBJ), SEQU(OSJ) &

sort query, Icpd

Then the database scheme DB is "lifted" by the
signature mapping a : sig(DB)+ sig(B-DBI)
which relates sorts

a(db) =I&

a(obj) = query

a&r) =guery

and function symbols

a(funCt(s,, . ..) &J 2 f) = funct a(z) T .

Depending on its range s, a function symbol f
yields an object 'f eitTier of sort uer or
II d.
P

v Remembering the syntactic class1 lcation
n section 4 we thus get by definition of a the

following correspondence:

holding query f of-DB c, funct query 7

object query f of OBJ w funct query If

holding update f of DB *

object update f of OBJ - funct query f

Mexico City; September, 1982

Example

In B-DBL(CANDIDATES, SECRETARY) the operations
csubmit, cwithdraw, iscand, and precsubmit
of the database CANDIDATES are translated into

funct upd csubml't, cwithdraw

funct query iscand, precsubmit .

8.2 A FUNCTIONAL DATABASE LANGUAGE

The basic database language is enriched by the ,an-
guage constructs z and axioms E describing a
functional programming language.

E DB-L = (DB, OBJ, ID) :

data (NAT + ID t CONFIGURATION(DB, OBJ)j+

enrich B-DB-L by z, E

endoftype

Functional orosrams are constructed usinq the con-
ditional if .-then else fi the fu&tional
compositioii- .Qy a tu6le'c&tructor [.,.I
with corresponding selector functions se1 and
(possibly recursive) function definitions recv
and function calls call. For this purpose a type
ID of identifiers is assumed. Thus for v E
{query, updl the signature 1 comprises

funct (query, 1, v) v if , then . else . fi ,

funct (I, 1') upd -0. -(updz, VT

funct (query, query) query .0., [.,.I ,

funct (nat) query se1 , --
funct (id, v) v recv , - -
funct (id) v call . ---

In the signature above function symbols with dif-
ferent arities are overloaded; for example there
are actually four compositions

funct

funct

funct

funct

(query, upd) upd .o. ,

(upd, query) upd .Q. ,

(upd,llJgupd.o.,

(query, query) query .o. ,

three of which yield updates; they may change
the state of DB. Note that (recursive) defini-
tions of queries resp. updates have to be dis-
criminated.

To define the semantics let a eonfiguration con-
sist of a database scheme and a sequence of input/
output data:

type CONFIGURATION = (DB, OBJ) :

db, io) = TPROD(DB, SEQU(OBJ))

endoftype

The following axioms of the semantic function

funct (1, conf) conf apply -- v E iwry, upd)

taken as left to right term rewrite rules describe
an innermost (call-by-value) text substitution
machine. The auxiliary function subst denotes
the usual substitution, that is subst(x, f, g)
replaces all free occurrences of call(x) in f
by g ; its straightforward definition by struc-
tural induction is omitted.

apply(pdb,<o,,...,ok>>)=< f(db,o,,...,ok),c=

for holding updates funct(db,obj ,...,c&&)g f, -em,

apply(fj<db,<o,,...,~~>>)= <db$f(db,o,,...,ok)>>

for holding queries funct(db,obj ,...,objk)04Ji,+If ---,

app'ly(T,~b,<o,,...,ok>,)= <db,<f(O ,,..., Ok) >>

for object operations funct(obj,,...,ob&)obj,,I f

io(apply(c,a)) = <true> M

apply(if c then v, * v, c, P) = apply(v,, 71)

io(apply(c,s)) = <false > r,

apply(if c then v, * va fi,n) = apply(vl,n), -

jsk*

apply(sel(j),<db,<o,,...,ok>>) =<db,<oj>> ,

atvly([q, 9 q21d 1 =
<db(r), io(apply(q,,=))a io(apply(qz,*))> 9

apply(v, 0 v2, 71) = wly(v, , awly(v,~ r 1) s

apply(recupd(f, v), ") =

apply(subst(f, v, recupd(f, v)), fl) 9

lT
2

= apply(subst(f, v, recquery(f, v)), v,) -

apply(recquery(f, v), *,) = <db(n,), io($)>

For brevity the axioms for context conditions like

j>k*

D(apply(sel(j), <db,< 0, ,..., ok>>)) = false

have been omitted. These axioms also specify
that basic operations can only be applied accord-
ing to their arity.

The functional database language has the follow-
ing semantic properties:

Theorem

The type DB L is weakly sufficiently Complete
and admits minimally defined behaviour models.

Proof See /Bray, Wirsing 801. a

Note that the minimally defined models correspond
to least fixed points and provide a mathematical

Proceedings of the Eighth International Conference
on Very Large Data Bases 381 Mexico City, September, 1982

semantics for D&L. The following example shows
some properties of these models.

Example

In DB-L E DB-L(CANDIDATES, SECRETARY,ID) the fol-
lowing equations hold (cf. section 3.2.3):

apply(precsubmit, a) = apply(not 0 iscana, 7~)

apply(precwithdraw, V) = apply(iscand, 71)

The operation apply is the only operation in
DB-L with range in the primitive type CDNFIGU-
RATION; therefore all contexts of primitive sort
for functional programs have the form
apply(c [xl,r). An induction on the minimally

defined models of DB-.L shows that precsubmit

and ndt 0 m as well as precwithdraw and

m are not distinguishable by contexts of
primitive sort. Thus

precsubmit = m om

precwithdraw = m

holds in all minimally defined behaviour models
M of DBI. Furthermore nonterminating queries
or updates are undefined, for example

M I= D(recquery(x, call(x))) = false .

Note that a database specification is implement-
ed by its database language.

Proposition

For every database specification DB' the type
DB-L(DB1) is an implementation of DB1 via the
signature morphism K, for example induced by

K(f(db,o,,..., ok)) = io(apply(T, <db,(o,,...,ok>>)

for all holding queries f of DB .

The following example shows how to use the funct-
ional database language.

Example

In DB-L e DB-L(EMPLOYEES, EMPLOYEE, ID) the query
works (cf. section 3.2.4) can be expressed by

recquery(w, body) ,

where

else call(w)oefireosecroeEhoose

fi
fi

body 'if eisempty

then false

else if eq 0 [sel(l), GZFoeS 1 --
then true

Then in DBJ it is provable that

apply(recquery(w, body),<db,< s>>) =

<db, <works(db, s)>> .

where works is the operation specified in sec-
tion 3.2.4.

Proposition

The application of recquery does not change the
state of the database, that is

DB 1 apply(recquery(f,q), <dbt, i,>) = <dbz, i2>

e db,= db .

From the full databaie languages an update language
and a query language can be derived.

Definition

For a database language DB,L=DB-L(DB,ID,SEQU(OBJ))
a query language QQL may be given by

w Q-L =

[data-enrich DB-L & (v E (query, updl)

funct (v , conf) seq(obj) qappfy , -_-
qwply(v , 71) = io(apply(v , n))l/my

endoftype

where

m = (recquery(f, v)l fE g x v E W(DB-L)1

U~Efunct (db, conf) sequ(obj) qapply 1 . --- -m

An update-language UPD-L may be given by

a UPD-L =

[data-enrich DB-L by -
funct (v , __ _ -- conf) db updapply ,(v E (query, updl)

updapply(v , r) = db(apply(v , n))l/mr
endoftype

where

m = sig(DBL) u {updapply 1~ Capply 1 .

Thus programs of the query
the state of the database,
the update language do.

language do not change
whereas programs of

9. RECURSION COMPLETENESS

It has been advocated (/Chandra, Hare1 80/) that

have full computational power, i.e. that every
the language to manipulate the database should

partial recursive function can be computed.

Proceedings of the Eighth International Conference
on Very Large Data Bases

382 Mexico City, September, 1982

Definition

A sig(DB L)-algebra A is called recursion
complete, - if there exists a surjective recursive
mapping a :lN xlN + Adb x Aobj such that for eve-

ry partial recursive fxctioii-f :lN xIN +lN xlN
there exists v E W(DB) of sort uery or update
such that A + apply(v, a(n, m)) % = a
that is the diagram

n, m)),

wdyW
Adb ' Ases(obj) - dAdJ ' &(obj)

i

a a

f
IN x IN -

, T
IN xlN

commutes. A is called query resp. update re-
cursion complete, if analogously for every par-
tial recursive f :IN x IN *IN there exists
q E W(DB) of sort query such that

A k qapply(q, a(n, m)) = a(f(n, m))
resp. an u EW(DB) -of sort .upd such that

A I= updapply(u, a(n, m)) = a(f(n, m))

holds.

Then for every database DB', DB L(DB1) is called
query resp. update recursion &plete if all
minimally defined behaviour models of DB L(DB1)
are query resp. update recursion compTete.

Proposition

DB-L(FINSET) is query and update recursion com-
plete.

DB-L is weakly sufficiently complete. Therefore
the semantic operation apply - and thus also
vwly - is a partial recursive function in every
minimally defined model of Q L(FINSET). Converse-
ly the recursion completenes3 implies that every
partial recursive relation can be simulated using
rawly by

qapply(q) : ob& X... x obj, + {a(O), a(l)1 .

Both properties together show that Q L(FINSET)
is complete in the sense of /Chandra,%arel 80/.

Thus our notion of recursion completeness gener-
alizes the completeness of Chandra, Hare1 ; it
also generalizes their "extended completeness"

since FINSET is parameterized with arbitrary ob-
ject types.

10. CONCLUDING REMARKS

Algebraic types seem to be an interesting tool for
the specification and analysis of database schemes.
Such a specification may be considered as a step-
wise development process where requirement analy-
sis, external, conceptual, and internal schemes
mark significant levels:

The transition from the requirement analysis to an
external scheme can be seen as a refinement pro-
cess where in each step the requirements are pre-
cized. The conceptual scheme is a solution of an
"abstract domain equation" where the views of the
external scheme have to be integrated. Then a
joint development of data structures and algorithms
leads to an internal scheme. In this step, for
example keys are introduced and recursion can be
removed.

The formal correctness of these transformations
can be uniformly defined by an algebraic notion
of implementation and thus algebraic methods can
be used to support the specification of databases.

On the other hand for a sound database specifica-
tion at each level it is necessary to analyse the
properties of the algebraic types. Such an ana-
lysis may comprise the structure and behaviour of
admissible models, the completeness of the speci-
fication, the complexity of the operations and the
redundancy of information. This gives a guideline
for the further development and a feedback with
the informal ideas in mind.

When working with and reasoning about database
specification a specification language seems to be
needed to express flexibly various operations with
algebraic types. But it would be very uneconomic
(and to difficult for non-experts) to write down
arbitrarily complex axiom systems. Therefore com-
plementary to a specification language elaborated
database abstractions may build the "skeleton" of
a database-specification for which standard solu-
tions and high level implementations are available.

ACKNOWLEDGEMENT

We gratefully acknowledge valuable discussions with
Prof. G. Ausiello, C. Batini, Prof. F.L. Bauer,
M. Brodie, Prof. E. Neuhold, and A. Pettorossi.
Thanks go to R. Hyerle for reading a draft.

This research has been partially sponsored by the Sonderforschungsbereich 49, Programmiertechnik,
Mtinchen, and the Consiglio Nazionale delle Ricerche, Roma.

Proceedings of the Eighth International Conference
on Very Large Data Bases 383 Mexico City, September, 1982

REFERENCES

IALBANO et.al. 81/ /CASANOVA et al. 81/
A, Albano, M.E. Occhiuto, R. Orsini: GALILEO:,
A conceptual language for database applica-
tions. A preliminary definition. CNR-PFI-DATAID
Report No 13, November 1981

/AUSIELLO et al. 80/

M.A. Casanova, J.M.V. de Castilho, A.L. Fur-
tado: Properties of conceptual and external
database schemes. Technical Report DBlD8103,
Depart.
(1981)

Infor$tica, Rio de Janeiro, Brasil

G. Ausiello, C. Batini, M. Moscarini: Concep-
tual relations between databases transformed
under join and projection, In: P. Dembinski
(ed.): 1Dth Conf. on Mathematical Foundations
of Computer Science. LNCS 88 (1980)

/CHANDRA, HAREL 8Dj

/BAUER, WUSSNER 82/

A.K. Chandra, D. Harel:. Computable queries
for relational data bases, Journal'of Compu-
ter and System Sciences 2l, 156-178 (1980).

/CODD 701

F.L. Bauer, H. Wdssner: Algorithmic langljage
and program development, Berlin-Heidelberg-New
York: Springer (1982)

E.F. Codd: A relational model of data for
large shared data banks, Comm. of the ACM
l&6, 377-387 (1970)

/EHRIGj.,FEY 81/
/BAUER et al. 81/

F.L. Bauer, M. Broy, W. Dosch, R. Gnatz,' F.
Geiselbrechtinger, W. Hesse, 8. Krieg-Bruckner,
A. Laut, T,A, Matzner, B, Mijller, H. Partsch,
P. Peooer. K. Samelson, M. Wirsing, H. Wdssner:
Repor't'on a wide spectrum language for program
specification'and development. Report TUM-
18104, Institut filr Informatik, Technische
Universittit Munchen (1981)

/BJBRNER 801
D. Bjdrner' Formalization of Data Base Models.
In: D. Bjdrner (ed.): Proc. Advanced Course
on Abstract Software Specifications.
LNCS g (1980)

/BRODIE 81/
M.L. Brodie: Association: A data base abstrac-
tlon for semantic modclling. In P.P. Chen
(ed.): Entity-Relationship Approach to Infor-
mation Modelling and Analysis, ER Institute,
Los Angeles, Oct. 1981, p. 583-6n8.

/BRODIE, ZILLES Sll
M.L. Brodie, A.N. Zilles (eds.): Proc. Work-

: shop on Data Abstraction,'Data-Bases and Con-
ceptual Modelling. SIGPLAN Notices 16 : 1
(1981)

/BROY, WIRSING 80/
M. Broy, M. Wirsing: Algebraic definition of
a functional programming language and its se-
mantic models. Report TUM-18008, Institut
ftir Informatik, Technische Universit4t MUnchen,
1980. Also in RAIRO (to appear)

/BUNEMANN, FRANKEL 80/
0-P. Bunemann, R.E. Frankel: FQL - a functlo-
nal wry language. Proc. ACM ~IGMOD, May
1979

/BURSTALL, GOGUEN 80/
R.M. Burstall, J;A. Goguen: The semantics of
CLEAR: a specification language. In D. Bjdrner
(ed.): Proc, Advanced Course on Abstract Soft.
ware Specification. LNCS 86 (1980)

H. Ehrig, W. Fey:,Methodology for the speci-
fication of software systems: from formal
requirements to algebraic design specifica-
tions. In W. Brauer (ed.): Proc. 11th GI-
Jahrestagung, MUnchen.InformatikdFachberichte
50, Springer-Verlag (1981)

/EHRIG et al. 78/
Hf. Ehrig, H.-J. Kreowski, H. Weber: Algebraic
specification schemes for data base systems.
Proc,. 4th Int. Conference on Ver Large Data,
Bases, Berlin West (October 1978 !

/FAGIN 821
R. fagtn: Armstrong Catabases. Proc. 7th IBM
Symposium on Mathematical Foundations of Com-
puter Science,‘Japan (May 1982)

/GALLAIRE 81/
H.,Gallaire: Impacts of loclic on data bases.
Proc. 7th Int. Conf. on Very Large Data Bases,
Cannes, France (September 1981)

/HAMMER 76/
M.M. Hamner: Data abstractions for data bases;

.Proc. Conf. on Data: Abstraction, Definition
and Structure. ACM FDT 8 (2)

/HAMMER, BERKOWITZ 80/
M. Hammer, 8. Berrtowitz: DIAL: A programming
language for data intensive applications,
SIGMOD 1980

/HAMMER, McLEOD 751
'M;fl1 Hammer, '0.J. McLeod: Semantic Integrity
in a relational database system. Proc, 1st
Int. Conf. on Very Large Data Bases; Framing-
ham, Massachusetts (Sept. 1975)

[HUPBACH 811
U:Hupbach: Madelling data bases by abstract
data types. 4th Int. Datenbank Seminar, Schwei
rin, GDR (August 1981)

/LOCKEMANN et al. 79/
P.C. Lockemann, H.C. Mayr, W.H. Weil, W.H.
,Wohlleber: Data abstraction for data base
systems. ACM Transactions on Database Syitems,
$1, 60-75 (1979)

Proceedings of the Eighth International Conference
on Very Large Data Bases 384 Mexico City, September, 1982

/MAKOWSKY 81/
J.A. klakowsky: Characterizing data base de-
pendencies. In: S. Even, 0. Kariv (eds.):
Proc. 8th Int. Colloquium on Automata, Lan-
,gww and Programing. ~Ncs 115 (1981).

/NEUHOLD, OLNHOFF 81/
E.J. Neuhold, Th. Olnhoff: Building data base
management systems through formal specifica-
tions. In: J. Diaz, I. Ramos (eds.): Forma-
lization of programing concepts.
LNCS' 107(1981) -

/PAOLINI 81/
P. Paolini: Abstract data types and data bases.
In /Brodie, Zilles 81/

/dos SANTOS et al. 801
C.S. dos Cantos; E.J. Neuhold, A.L. Furtado:
A data type approach to the entity-relation-
ship model. In: P.P. Chen (ed.): Int. Conf.
of the Entity-Relationship Approach to Systems
Analysis and Design, North-Holland Amsterdam
1980, 103-119

/SCHIEL et al. 82/
W. Schiel. A.L. furtado, E.3, Neubold: Towards
multi-level and modular conceptual schema spe-
cifications. Report 2/82. Institut ftir Infor-
matik, UniversitKt Stuttgart

/SCHMIDT 80/
J.W. Schmidt: Data Type Concepts for Databases.
In: M. Atkinson (ed.): Data Design. -1nfotech
State of the Art Report, Series 8, No 4 (1980)

/SMITH, SMITH-77/
J.M. Smith, D.C.P. Smith: Database Abstrac-
tions: Aggregation and Generalization: ACM
t;a#ctions on Database Systems 2 :2

/VECDSO et al. 81/
P.A.S. Veloso, J.M.V. de Castilho, A.L. Furta-
do: Systematic derivation of complementary
specifications. Proc. 7th Int. Conference on
Very Large Data Bases, Cannes, France
(September 1981)

/WIRSING ?32/
M. Wlrsing: Structured Algebraic Specifications.
Proc. AFCET Symposium on Mathematics for-Corn-
puter Science, Paris,March 1982

/WIRSING et al. 80/
M. Wirsing. P. Pepper, H. Partsch, W. Dosch,
M. Broy: On hierarchies of abstract data types.
TUM-18007. Institut fUr Informatik, Technische
Universitat Miinchen. Also Acta Informatica (to
wwear1.

Proceedingsofthe Eighth International Conference
on Very Large Data Bases 385 Mexico Citv,September,1982

