
Query-By-Example: Operations on Piecewise Continuous Data
(Extended Abstract)

Ravi Krishnamurthy Stephen P. Morgan Moshe M. Zloof

IBM Thomas J. Watson Research Center, Yorktown Hts., NY 10598

Abstract

In this paper, we extend the conventional concept of a database
as a set of discrete relations to include a set of piecewise contin-
uous functions. We extend the features of Query-by-Example
to operations on this piecewise continuous data. Further, we
include the concept of iteration in the language, which enhances
its capabilities to that of a general programming language. These
extensions are accomplished without loss of the simplicity that is
usually attributed to Query-by-Example; furthermore, Query-
by-Example retains its table-like view of data over these new
piecewise continuous functions. We present formal notions of
well-formedness and correctness of Query-by-Example pro-
grams.

1. Introduction

Query languages. in general, support operations on discrete data,
i.e. relations, as opposed to piecewise continuous data, i.e. piece-
wise continuous functions. A relation is a finite set of tuples,
each representing a discrete relationship. A piecewise continu-
ous function is a finite set of continuous mathematical func-
tions, each representing a continuous relationship; any one such
function can be viewed as a (possibly infinite) set of tuples.

Coexistence of piecewise continuous and discrete data is a
natural phenomenon. For example, an experimenter (who has
gathered discrete data from an experiment) frequently requires
the capability of computing results from the collected data,
already defined mathematical functions, and other discrete data.
The coexistence of piecewise continuous and discrete data is
also a common occurrence in such other applications areas as
graphical databases, geographical databases, and financial and
business modelling, etc.

Traditional query languages do not allow this heterogeneity
of data; besides, they are incapable of expressing the complicat-
ed computations generally required for these applications. One
solution to this problem 1s to imbed query language statements
in a high-level programming language, and, in this way, achieve
coexistence of piecewise continuous and discrete data, and
increased computational capability. For ad hoc queries, written
perhaps by naive users. this is unreasonable.

We shall present, in this paper, extensions of Query-by-
Example which allow coexistence of piecewise continuous and
discrete data and which increase its expressive power. This
extended Query-by-Example retains its same user-friendly inter-
face, and in particular, its tabular view of data. In so doing, we
shall introduce new constructs. Explicitly derived columns, are
columns whose values are determined by a set of piecewise
continuous functions imbedded in a table as data. The substitu-
tion box is extended to accommodate iterative computation.
Besides the well-known base tables, (or base relations), a report
type table which holds piecewise continuous data is introduced.
The above extensions enable Query-by-Example to be like a
general programming language, which deals not only with dis-
crete data, but also with piecewise continuous data.

In Section 2 we review Query-by-Example and introduce
its new features. In Section 3 we discuss the properties of a
Query-by-Example program, and use those properties to formu-
late well-formedness and correctness criteria.

2. Query-by-Example and its New Features

In this section, we shall present a short review of Query-by-
Example, with particular emphasis on aspects which will be of
importance later on in the paper. We shall then present the
concept of a piecewise continuous database, along with the new
features of Query-by-Example which allow operations on piece-
wise continuous data, and which extend Query-by-Example’s
expressive power. For a more detailed review of Query-by-
Example, see [Zloof75] and [Zloof77].

2.1 Query-by-Example Review

Query-by-Example allows users to operate on two-dimensional
objects, including base tables, user created output tables, condi-
tion boxes, a command box, etc. A user enters various
commands, such as P., I., D., U. (which mean print, insert,
delete, and update, respectively), operators, such as +, >, #
(which have their usual mathematical meanings), constant
elements (data), and example elements (variables) into object
fields to define a query (program). By convention, a command
is a symbol terminated with a period, an operator is a mathe-
matical symbol, an example element is an underlined symbol,
and a constant element is a quoted or unquoted string of char-
acters.
r I

As an example, the query of Figure 1 means: Display the
names and departments of employees who earn more than
$10,000.

Example elements may be used to cross reference between
columns (perform joins), formulate conditions on data (perform
selections and restrictions), move data from one object to an-

305

other (perform mappings and projections), derive new table
columns, etc. Note that the same example element may achieve
different relational algebraic operations based on the context in
which it is used. The user has only to know about the concept
of an example element and he/she can learn new applications of
the same concept when necessary. One of the reasons for the
simplicity of Query-by-Example is due to this property. This
property is retained even in the proposed extensions. Some of
these canabilities are demonstrated below.

Figure 2.

Condition boxes are used to specify range conditions on
example elements. The query in Figure 2 illustrates the use of a
condition box with example elements: it means: Print the names
of the employees whose salary plus commissions exceed
$20,000, and who work in the same department as Lewis. The
former condition is specified in the condition box, while the
latter condition is specified by entering matching example ele-
ments DPT in both table rows to establish a join.

E”P COmmISsIoN

CQ!!

I
I I I

ABC NA”E COPImISsION DEPT , SAL EAIININOS

P. N&l KLEI’SAL !mLl zf!.b l cQ!l

Figurm 3.

A user created output table is a table whose data are de-
rived from the data in various base tables. The query in Figure
3 creates a user created output table ABC; it means: Copy the
data from the EMP base table into the ABC user created output
table through the example elements NAM, SAL, and COM;
in addition, calculate the values for the EARNINGS column
from the salary and commissions for each employee.

For a query to be valid, every example element appearing
in it must be bound ut leasr once, that is, every example ele-
ment must potential!y be able to be evaluated. In particular, the
following example element occurrences do not cause binding:
example elements in a condition box, example elements appear-
ing in user created output tables, and example elements appear-
ing with operators in base table fields. However, example ele-
ments appearing alone in base table fields are bound.

2.2 Piecewise Continuous Data

The current relational database literature deals almost exclusive-
ly with discrete relations, that is relations composed of a finite
set of tuples. Each tuple represents a discrete relationship. A
continuous relation is a relation whose data can be represented
by a mathematkal function, e.g. the exponentiation function,
EXPN(a,b) = a A piecewise continuous relation is a relation
whose data can be represented by a set of mathematical func-
tions defined over nonoverlapping domains, where each function
represents a continuous relationship. The absolute value func-
tion

ABS(n) =
n if n>O

_ n if ,,:o

is represented by two such functions.

A piecewise continuous database is a database composed of
piecewise continuous relations. It can be shown trivially that
the set of discrete relations is a subset of the set of piecewise
continuous relations, so we incur no loss of generality if, from
now on, when we speak of relations we mean piecewise continu-
ous relations.

Now that we have defined piecewise continuous relations,
let us step back and examine the question: Why are they impor-
tant? Well, for one thing, they allow us to represent some rela-
tionships which were previously difficult or impossible to repre-
sent (e.g. a class of infinite relations). More importantly, they
allow us to represent some relationships more naturally, within
the framework of relational database theory.

2.3 New Features

In this subsection, we introduce new features of Query-by-
Example which allow it to operate on piecewise continuous
data, and which extend its expressive power. In particular, we
introduce four new concepts into Query-by-Example: functions,
derived columns, report type tables, and a substitution box. Func-
tions and derived columns are used to define piecewise continu-
ous relations: report type tables are a special case of piecewise
continuous relations which contain no discrete data; a substitu-
tion box is used, among other things, to perform iteration on
piecewise continuous data.

2.3.1 Functions and Derived Columns

In Figure 3, a column EARNINGS was constructed in the user
created output table ABC by mathematical operations on data
copied from the base table EMP. In base tables, the keyword
FUNC allows the exp!icit construction of derived columns from
nonderived columns. A derived column is a column whose tuple
values are functionally computed from the tuple values of non-
derived columns in the same table.

EMP NA”E OEPT 1 SAL COm*SSTON * EARNIWOS

PUNC 1. 1BL+C&?!Ll

Figure 4.

In Figure 4, the expression in the first row of the EMP base
table explicitly defines the EARNINGS column as a function of
the SAL and COMMISSION column. The asterisk preceding
the column name EARNINGS specifies that this column is
derived from others.

After a table is defined and its FUNC expressions and
ranges are specified, data can be inserted into its nonderived
columns. From a user viewpoint, the table can then be queried
like any other base table. As an example, the query in Figure 5
means: Display the names and earnings of employees in the
TOY department.

’ EMP 1 NAP1E DEPT SAL COPll4~SSION * EAIN~N0.S

P. TOY 1 P.

Fi9ura 5.

I I

Query-by-Example wi!! display the EARNINGS data after
calculating it from the specified function (i.e., EARNINGS =
SAL + COMMISSION), although a user will have the percep-
tion that actual EARNINGS data were stored in the EMP table.

An example element used in a function-defining expression
of a derived column must be bound to nonderived columns in
the same table row. Furthermore. a user cannot insert, delete,
or update data in derived columns.

2.3.2 Report Type Tables

We now define a new object called the report type table, identi-
fied by the keyword REPORT preceding its table name. A

306

report type table can be viewed as a base table which cannot
contain discrete data. The difference between a report type
table and a user created output table is that a report type table
is a persistent object, that is it has a definition schema
(including a set of mathematical functions), while a user created
output has no definition schema at ah. A report type table can
be used as a spreadsheet, i.e. if a user enters data in nonder-
ived columns, Query-by-Example will display corresponding
computed values in derived columns.
I I

Figura 6.
I

Figure 6 is a query on a report type table. If the same
query were expressed in the EMP table rather than the RE-
PORT EMP table, its meaning would be: Find whether there is
a person in the database whose name is Henry, with a salary of
$10,000, and with $5,000 in commissions, and if there is such a
person, display his earnings. On the other hand, in the RE-
PORT EMP table it means: Calculate and display the EARN-
INGS of Henry from the data supplied.

2.3.3 Precedence Relationships

If an example element links a derived column of a base or re-
port type table to either a nonderived column of another base or
report type table. or to a column of a user created output table,
it imposes a precedence, i.e., the value of the example element
must first be calculated via the derived column’s function, then
copied to the nonderived column.

REPO9T E"P ?a"9 DEFT SIB. CO""I9SION * EAINlNO9

9PlITH 10000~ 5000 1 lBgl(

I
I I I I I 1

9EPOlT lNCO”E TM TAXABLE lHto”E * TAX

mati P.

F(yure 7.

I I

For example, the query in Figure 7 imposes such a precedence
on the order of execution of a query. In this case, Smith’s
EARNINGS are calculated first, and then serves as input to
REPORT INCOME TAX, which in turn calculates and prints
his TAX.

In the general case of multiple occurrences of example
elements in derived and nonderived columns, ambiguous pro-
grams may be specified (e.g. a cyclic set of precedences on
example elements). In Section 3 we analyze this and related
problems and give well-formedness and correctness criteria for
programs.

2.3.4 The Substitution Box

The substitution box may be used to bind an example element
to a specific value or to a sequence of values. For example, the
expression 5 = (1, 2, 6) appearing in a substitution box means:
& assumes the values of 1. 2, and 6, respectively. (This is
different from a similar expression in a condition box which
would impose a condition of 1 or 2 or 6 to the variable X.)
Multiple example elements may also appear in substitution box
expressions. The expression (X,Y) = ((1,2), (3,4), (5,6)) means
that X and Y must be bou& to the given values at (he same
rime,-formin~three distinct tuples.

The right hand side of a substitution box expression is an
ordered list. Query-by-Example allows this list to be expressed
in list-builder notation; in essence, a user can use the substitu-

tion box to build a do-while loop. For example, the expression
x = (1000, x+500, 5~20000) is equivalent to the PL/I
expression:

DO X = 1000 REPEAT (X + 500) WHILE (X C 20000);.

The values which a substitution box expression may bind to
a set of example elements need not be statically determinable.
An example of dynamically determined example element binding
appears in Figure 8.

L’“’

Since a substitution box expression is no more than an
ordered list, we view it as a form of a table. Binding sequential
values from a list to a set of example elements is equivalent to
binding database tuples to those example elements.

3. Well-formedness and Correctness Criteria

In this section we present the well-formedness and correctness
criteria for Query-by-Example programs. Unlike most other
languages, programs in Query-by-Example do not specify any
explicit order of execution. The new features pose a distinct
possibility that a user may specify an ambiguous program (i.e., a
program that can be interpreted in more than one way), or a
meaningless program (i.e. a program that cannot be interpreted
in any way). In Query-by-Example on discrete data, ordering
of tables is unnecessary because of the nature of the relational
operations. When we move to continuous data, two tables are
implicitly ordered, as in Figure 7, if the same example element
occurs in a derived column of one table and a nonderived col-
umn of the other. Consequently, a user may inadvertently con-
struct a program implying a self-contradictory ordering require-
ment. To assure meaningfulness and unambiguity, well-
formedness and correctness criteria are proposed, respectively.

Intuitively, a program that is well-formed assures that every
nonderived column gets a value. This is achieved by requiring
each nonderived column to be either a constant or a bound
example element, and that no contradicting precedence const-
raints be implied. Thus, the well-formedness property assures
that a program has a meaning.

The motivation for correctness criteria is to avoid ambigui-
ty; i.e., the criteria should ensure the uniqueness of the meaning
of a program. We define the meaning(s) of a program by equiv-
alent sequentially ordered program(s). Unambiguity is assured
by guaranteeing the uniqueness of an equivalent sequential
program. This, we show, can be guaranteed by requiring from
the user that every two tables that have the same example ele-
ment in a derived column must be ordered by implied prece-
dence constraints.

In this section we view a program as a set of tables; as
mentioned earlier, a substitution box can be viewed as a table,
and the conditions in a condition box can be mapped to corre-
sponding example elements in the tables. We also assume that
all tables are report type, since they introduce precedence const-
raints. The more general case where both report type tables
and base tables occur in a program is discussed in [KMZ83]. In
the first part of this section we define a model of a program;
using this model we state, in the latter part of this section, the
well-formedness and correctness criteria for a program.

307

3.1 Model of a Program

A program d = (Ti, i=1,2,...n) is viewed as a finite set of
tables defined over a finite set of example elements, 8 = {ei.
i= 1.2,... kl, where each table includes associated conditions.
Note that a program does not specify any particular ordering of
execution as happens in a traditional program. Associated with
each table T,, are two subsets of 8, its readset, R(Ti), and
writeset, W(Ti). A table’s readset consists of all the example
elements in its nonderived columns, and its writeset consists of
the example elements in the derived columns. Intuitively, each
table reads the elements of its readset, carries out some compu-
tation on them and writes into the elements of the writeset.

Because of the lack of explicit ordering information on the
tables, some tables may be unordered; consequently, we use
parallel program schemata theory [Keller731 to define the mean-
ing of a program on such partially ordered tables. This has
been formally presented in [KMZ83]. Here we adopt a less
formal approach. A parallel program schema G (or a schema)
for a program B is a directed graph representing the prece-
dence constraints on the tables of the program. This schema G
=(V,E) is constructed as follows

V = Set of tables of the program;
E = l(TivTj) I W(Ti) n R(Tj) # 63

Intuitively, the table Ti should precede T. if Ti writes a
value for an example element which is read by T. We use this
parallel schema model to derive the properties of c program.

3.2 The Criteria

Using the model of a program (i.e. a schema) discussed in the
previous section we define well-formedness and correctness
criteria for Query-by-Example programs.

3.2.1 Well-formedness Criterion

In the description of Query-by-Example, we defined a report
type table to be a function that maps a set of nonderived col-
umns to derived columns. This tacitly assumes that a proper
value is given for every nonderived column. This is assured by
the following criterion: A program is said to be well-formed if
every entry in a nonderived column is either a constant element
or a bound example element, and the program’s corresponding
schema is acyclic. The restriction on columns guarantees that a
value is always obtainable for a column; the acyclicity ensures
that no cyclic definition of the nonderived values is specified.
Thus, the well-formedness criterion guarantees that every table
gets a value for every nonderived column which participates in
deriving another column.

3.2.2. Compile-time Correctness Criterion

One of the problems with a parallel program is that race condi-
tions may be inadvertently specified by a user. We address this
with the correctness criteria. A well-formed program is
compile-time correct if the corresponding schema G satisfies the
following property: every pair of tables, Ti and Tj, that conflict,
are totally ordered in G; where Ti and Tj IS said to conflict iff

~~~~~~~~~~~~1~~~~~~~~~~~~~1~~~~~~~~~~~~~1 f+ 
This criterion guarantees that the meaning of a program is uni- 
que. A user perceives the program as a total ordering of tables 
(that is consistent with the partial order specified by G) repre- 

t This perception may be due to one of many reasons; for 
instance, the user may view the program as a reflection of 
how he/she would execute the program on a piece of paper. 
We are only interested in the existence of that total ordering, 
irrespective of whether the user is cognizant of this fact. The 
reader may also note that if this existence is not assumed it 
is not clear how to give a unique meaning to a user’s pro- 
gram. 

senting a sequential program+. On the other hand, there may be 
more than one total ordering corresponding to to a partial order 
given in G. The above correctness criterion guarantees that all 
total ordering that corresponds to G produce the same result. 
This has been shown in [KMZ83] and a similar result was for- 
mally proved in [Kris82]. Therefore. irrespective of which 
ordering is chosen as the meaning of that program by the sys- 
tem, the result produced is the same as that expected by the 
user. 

This correctness criterion can be easily checked algorithmi- 
cally. The algorithm must guarantee that every pair of conflict- 
ing tables must be ordered. It can be argued from the definition 
of G that any read-write conflict between two tables will always 
be ordered. Thus, lack of ordering (i.e., violation of the cor- 
rectness criterion), may arise only for two tables writing into 
the same example element. This property can be easily checked. 
Further, this constraint can be easily explained to a user. 

3.2.3. Run-time Correctness Criterion 

Let us consider an example in which tables T, and T,, both 
write into Z, but for any one value of Y (which is nonderived 
in both tab&), only one of them derives a value for Z. This, 
let us say, is because the conditions on Y, in the two tabies, are 
mutually exclusive. But the compile-t&e correctness criterion 
will disallow this program. To enable a user to run such pro- 
grams we present a new correctness criterion. A well-formed 
program is run-time correct if during the execution of the pro- 
gram all unordered conflicting tables produce values in a mutu- 
ally exclusive fashion. This criterion formalizes the notion of a 
run-time check traditionally done by the user in his program. 
The execution carries out this criterion by including an appro- 
priate check for every pair of such conflicting tables. 

It is easy to see that run-time correctness criterion has the 
same effect as the compile-time criterion, but is less restrictive. 
This advantage is not without cost. Assuring compile-time cor- 
rectness avoids the run-time overhead of checking, which will be 
significant for some programs. 

4. Conclusion 

We have extended the conventional concept of a database as a 
set of discrete relations to include a set of-piecewise continuous 
functions. We have extended the features of Query-by-Example 
to operations on this piecewise continuous data.- Further, we 
have included the concept of iteration in the language, which 
enhances its capabilities to that of a general programming lan- 
guage. All of these extensions have been done without loss of 
the simplicity that is usually attributed to Query-by-Example. 
We have also presented formal notions of well-formedness and 
correctness of programs in this language. 

References 

Keller73 

KMZ83 

Kris82 

Zloof75 

Zloof77 

R.M.Keller, “Parallel program schemata and maxi- 
mal parallelism: Part 1: Fundamental results,” Jour- 
nal z&X 20, No.4, 696-710 (1973). 
R.Krishnamurthy, S.P.Morgan, M.M.Zloof. “Query- 
by-Example: Operations on piecewise continuous 
data,” (Research report in preparation.) 
R.Krishnamurthy, Concurrency Control and Transac- 
tion Processing in a Highly Parallel Database 
Machine, Ph.D. Dissertation, Department of Com- 
puter Science, University of Texas, Austin Texas 
(1982). 
M.M.Zloof, “Query-by-Example,” AFIPS Confer- 
ence Proceedings, National Computer Conference 
44, 431-438 (1975). 
M.M.Zloof, “Query-by-Example: A data base 
language,” IBM Systems Journal 16, No. 4, 324- 
343 (1977). 

308 


