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Abstract 

In this paper, we extend the conventional concept of a database 
as a set of discrete relations to include a set of piecewise contin- 
uous functions. We extend the features of Query-by-Example 
to operations on this piecewise continuous data. Further, we 
include the concept of iteration in the language, which enhances 
its capabilities to that of a general programming language. These 
extensions are accomplished without loss of the simplicity that is 
usually attributed to Query-by-Example; furthermore, Query- 
by-Example retains its table-like view of data over these new 
piecewise continuous functions. We present formal notions of 
well-formedness and correctness of Query-by-Example pro- 
grams. 

1. Introduction 

Query languages. in general, support operations on discrete data, 
i.e. relations, as opposed to piecewise continuous data, i.e. piece- 
wise continuous functions. A relation is a finite set of tuples, 
each representing a discrete relationship. A piecewise continu- 
ous function is a finite set of continuous mathematical func- 
tions, each representing a continuous relationship; any one such 
function can be viewed as a (possibly infinite) set of tuples. 

Coexistence of piecewise continuous and discrete data is a 
natural phenomenon. For example, an experimenter (who has 
gathered discrete data from an experiment) frequently requires 
the capability of computing results from the collected data, 
already defined mathematical functions, and other discrete data. 
The coexistence of piecewise continuous and discrete data is 
also a common occurrence in such other applications areas as 
graphical databases, geographical databases, and financial and 
business modelling, etc. 

Traditional query languages do not allow this heterogeneity 
of data; besides, they are incapable of expressing the complicat- 
ed computations generally required for these applications. One 
solution to this problem 1s to imbed query language statements 
in a high-level programming language, and, in this way, achieve 
coexistence of piecewise continuous and discrete data, and 
increased computational capability. For ad hoc queries, written 
perhaps by naive users. this is unreasonable. 

We shall present, in this paper, extensions of Query-by- 
Example which allow coexistence of piecewise continuous and 
discrete data and which increase its expressive power. This 
extended Query-by-Example retains its same user-friendly inter- 
face, and in particular, its tabular view of data. In so doing, we 
shall introduce new constructs. Explicitly derived columns, are 
columns whose values are determined by a set of piecewise 
continuous functions imbedded in a table as data. The substitu- 
tion box is extended to accommodate iterative computation. 
Besides the well-known base tables, (or base relations), a report 
type table which holds piecewise continuous data is introduced. 
The above extensions enable Query-by-Example to be like a 
general programming language, which deals not only with dis- 
crete data, but also with piecewise continuous data. 

In Section 2 we review Query-by-Example and introduce 
its new features. In Section 3 we discuss the properties of a 
Query-by-Example program, and use those properties to formu- 
late well-formedness and correctness criteria. 

2. Query-by-Example and its New Features 

In this section, we shall present a short review of Query-by- 
Example, with particular emphasis on aspects which will be of 
importance later on in the paper. We shall then present the 
concept of a piecewise continuous database, along with the new 
features of Query-by-Example which allow operations on piece- 
wise continuous data, and which extend Query-by-Example’s 
expressive power. For a more detailed review of Query-by- 
Example, see [Zloof75] and [Zloof77]. 

2.1 Query-by-Example Review 

Query-by-Example allows users to operate on two-dimensional 
objects, including base tables, user created output tables, condi- 
tion boxes, a command box, etc. A user enters various 
commands, such as P., I., D., U. (which mean print, insert, 
delete, and update, respectively), operators, such as +, >, # 
(which have their usual mathematical meanings), constant 
elements (data), and example elements (variables) into object 
fields to define a query (program). By convention, a command 
is a symbol terminated with a period, an operator is a mathe- 
matical symbol, an example element is an underlined symbol, 
and a constant element is a quoted or unquoted string of char- 
acters. 
r I 

As an example, the query of Figure 1 means: Display the 
names and departments of employees who earn more than 
$10,000. 

Example elements may be used to cross reference between 
columns (perform joins), formulate conditions on data (perform 
selections and restrictions), move data from one object to an- 
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other (perform mappings and projections), derive new table 
columns, etc. Note that the same example element may achieve 
different relational algebraic operations based on the context in 
which it is used. The user has only to know about the concept 
of an example element and he/she can learn new applications of 
the same concept when necessary. One of the reasons for the 
simplicity of Query-by-Example is due to this property. This 
property is retained even in the proposed extensions. Some of 
these canabilities are demonstrated below. 

Figure 2. 

Condition boxes are used to specify range conditions on 
example elements. The query in Figure 2 illustrates the use of a 
condition box with example elements: it means: Print the names 
of the employees whose salary plus commissions exceed 
$20,000, and who work in the same department as Lewis. The 
former condition is specified in the condition box, while the 
latter condition is specified by entering matching example ele- 
ments DPT in both table rows to establish a join. 

E”P COmmISsIoN 

CQ!! 

I 
I I I 

ABC NA”E COPImISsION DEPT , SAL EAIININOS 

P. N&l KLEI’SAL !mLl zf!.b l cQ!l 

Figurm 3. 

A user created output table is a table whose data are de- 
rived from the data in various base tables. The query in Figure 
3 creates a user created output table ABC; it means: Copy the 
data from the EMP base table into the ABC user created output 
table through the example elements NAM, SAL, and COM; 
in addition, calculate the values for the EARNINGS column 
from the salary and commissions for each employee. 

For a query to be valid, every example element appearing 
in it must be bound ut leasr once, that is, every example ele- 
ment must potential!y be able to be evaluated. In particular, the 
following example element occurrences do not cause binding: 
example elements in a condition box, example elements appear- 
ing in user created output tables, and example elements appear- 
ing with operators in base table fields. However, example ele- 
ments appearing alone in base table fields are bound. 

2.2 Piecewise Continuous Data 

The current relational database literature deals almost exclusive- 
ly with discrete relations, that is relations composed of a finite 
set of tuples. Each tuple represents a discrete relationship. A 
continuous relation is a relation whose data can be represented 
by a mathematkal function, e.g. the exponentiation function, 
EXPN(a,b) = a A piecewise continuous relation is a relation 
whose data can be represented by a set of mathematical func- 
tions defined over nonoverlapping domains, where each function 
represents a continuous relationship. The absolute value func- 
tion 

ABS(n) = 
n if n>O 

_ n if ,,:o 

is represented by two such functions. 

A piecewise continuous database is a database composed of 
piecewise continuous relations. It can be shown trivially that 
the set of discrete relations is a subset of the set of piecewise 
continuous relations, so we incur no loss of generality if, from 
now on, when we speak of relations we mean piecewise continu- 
ous relations. 

Now that we have defined piecewise continuous relations, 
let us step back and examine the question: Why are they impor- 
tant? Well, for one thing, they allow us to represent some rela- 
tionships which were previously difficult or impossible to repre- 
sent (e.g. a class of infinite relations). More importantly, they 
allow us to represent some relationships more naturally, within 
the framework of relational database theory. 

2.3 New Features 

In this subsection, we introduce new features of Query-by- 
Example which allow it to operate on piecewise continuous 
data, and which extend its expressive power. In particular, we 
introduce four new concepts into Query-by-Example: functions, 
derived columns, report type tables, and a substitution box. Func- 
tions and derived columns are used to define piecewise continu- 
ous relations: report type tables are a special case of piecewise 
continuous relations which contain no discrete data; a substitu- 
tion box is used, among other things, to perform iteration on 
piecewise continuous data. 

2.3.1 Functions and Derived Columns 

In Figure 3, a column EARNINGS was constructed in the user 
created output table ABC by mathematical operations on data 
copied from the base table EMP. In base tables, the keyword 
FUNC allows the exp!icit construction of derived columns from 
nonderived columns. A derived column is a column whose tuple 
values are functionally computed from the tuple values of non- 
derived columns in the same table. 

EMP NA”E OEPT 1 SAL COm*SSTON * EARNIWOS 

PUNC 1. 1BL+C&?!Ll 

Figure 4. 

In Figure 4, the expression in the first row of the EMP base 
table explicitly defines the EARNINGS column as a function of 
the SAL and COMMISSION column. The asterisk preceding 
the column name EARNINGS specifies that this column is 
derived from others. 

After a table is defined and its FUNC expressions and 
ranges are specified, data can be inserted into its nonderived 
columns. From a user viewpoint, the table can then be queried 
like any other base table. As an example, the query in Figure 5 
means: Display the names and earnings of employees in the 
TOY department. 

’ EMP 1 NAP1E DEPT SAL COPll4~SSION * EAIN~N0.S 

P. TOY 1 P. 

Fi9ura 5. 

I I 

Query-by-Example wi!! display the EARNINGS data after 
calculating it from the specified function (i.e., EARNINGS = 
SAL + COMMISSION), although a user will have the percep- 
tion that actual EARNINGS data were stored in the EMP table. 

An example element used in a function-defining expression 
of a derived column must be bound to nonderived columns in 
the same table row. Furthermore. a user cannot insert, delete, 
or update data in derived columns. 

2.3.2 Report Type Tables 

We now define a new object called the report type table, identi- 
fied by the keyword REPORT preceding its table name. A 
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report type table can be viewed as a base table which cannot 
contain discrete data. The difference between a report type 
table and a user created output table is that a report type table 
is a persistent object, that is it has a definition schema 
(including a set of mathematical functions), while a user created 
output has no definition schema at ah. A report type table can 
be used as a spreadsheet, i.e. if a user enters data in nonder- 
ived columns, Query-by-Example will display corresponding 
computed values in derived columns. 
I I 

Figura 6. 
I 

Figure 6 is a query on a report type table. If the same 
query were expressed in the EMP table rather than the RE- 
PORT EMP table, its meaning would be: Find whether there is 
a person in the database whose name is Henry, with a salary of 
$10,000, and with $5,000 in commissions, and if there is such a 
person, display his earnings. On the other hand, in the RE- 
PORT EMP table it means: Calculate and display the EARN- 
INGS of Henry from the data supplied. 

2.3.3 Precedence Relationships 

If an example element links a derived column of a base or re- 
port type table to either a nonderived column of another base or 
report type table. or to a column of a user created output table, 
it imposes a precedence, i.e., the value of the example element 
must first be calculated via the derived column’s function, then 
copied to the nonderived column. 

REPO9T E"P ?a"9 DEFT SIB. CO""I9SION * EAINlNO9 

9PlITH 10000~ 5000 1 lBgl( 

I 
I I I I I 1 

9EPOlT lNCO”E TM TAXABLE lHto”E * TAX 

mati P. 

F(yure 7. 

I I 

For example, the query in Figure 7 imposes such a precedence 
on the order of execution of a query. In this case, Smith’s 
EARNINGS are calculated first, and then serves as input to 
REPORT INCOME TAX, which in turn calculates and prints 
his TAX. 

In the general case of multiple occurrences of example 
elements in derived and nonderived columns, ambiguous pro- 
grams may be specified (e.g. a cyclic set of precedences on 
example elements). In Section 3 we analyze this and related 
problems and give well-formedness and correctness criteria for 
programs. 

2.3.4 The Substitution Box 

The substitution box may be used to bind an example element 
to a specific value or to a sequence of values. For example, the 
expression 5 = (1, 2, 6) appearing in a substitution box means: 
& assumes the values of 1. 2, and 6, respectively. (This is 
different from a similar expression in a condition box which 
would impose a condition of 1 or 2 or 6 to the variable X.) 
Multiple example elements may also appear in substitution box 
expressions. The expression (X,Y) = (( 1,2), (3,4), (5,6)) means 
that X and Y must be bou& to the given values at (he same 
rime,-formin~three distinct tuples. 

The right hand side of a substitution box expression is an 
ordered list. Query-by-Example allows this list to be expressed 
in list-builder notation; in essence, a user can use the substitu- 

tion box to build a do-while loop. For example, the expression 
x = (1000, x+500, . . . . 5~20000) is equivalent to the PL/I 
expression: 

DO X = 1000 REPEAT (X + 500) WHILE (X C 20000);. 

The values which a substitution box expression may bind to 
a set of example elements need not be statically determinable. 
An example of dynamically determined example element binding 
appears in Figure 8. 

L’“’ 

Since a substitution box expression is no more than an 
ordered list, we view it as a form of a table. Binding sequential 
values from a list to a set of example elements is equivalent to 
binding database tuples to those example elements. 

3. Well-formedness and Correctness Criteria 

In this section we present the well-formedness and correctness 
criteria for Query-by-Example programs. Unlike most other 
languages, programs in Query-by-Example do not specify any 
explicit order of execution. The new features pose a distinct 
possibility that a user may specify an ambiguous program (i.e., a 
program that can be interpreted in more than one way), or a 
meaningless program (i.e. a program that cannot be interpreted 
in any way). In Query-by-Example on discrete data, ordering 
of tables is unnecessary because of the nature of the relational 
operations. When we move to continuous data, two tables are 
implicitly ordered, as in Figure 7, if the same example element 
occurs in a derived column of one table and a nonderived col- 
umn of the other. Consequently, a user may inadvertently con- 
struct a program implying a self-contradictory ordering require- 
ment. To assure meaningfulness and unambiguity, well- 
formedness and correctness criteria are proposed, respectively. 

Intuitively, a program that is well-formed assures that every 
nonderived column gets a value. This is achieved by requiring 
each nonderived column to be either a constant or a bound 
example element, and that no contradicting precedence const- 
raints be implied. Thus, the well-formedness property assures 
that a program has a meaning. 

The motivation for correctness criteria is to avoid ambigui- 
ty; i.e., the criteria should ensure the uniqueness of the meaning 
of a program. We define the meaning(s) of a program by equiv- 
alent sequentially ordered program(s). Unambiguity is assured 
by guaranteeing the uniqueness of an equivalent sequential 
program. This, we show, can be guaranteed by requiring from 
the user that every two tables that have the same example ele- 
ment in a derived column must be ordered by implied prece- 
dence constraints. 

In this section we view a program as a set of tables; as 
mentioned earlier, a substitution box can be viewed as a table, 
and the conditions in a condition box can be mapped to corre- 
sponding example elements in the tables. We also assume that 
all tables are report type, since they introduce precedence const- 
raints. The more general case where both report type tables 
and base tables occur in a program is discussed in [KMZ83]. In 
the first part of this section we define a model of a program; 
using this model we state, in the latter part of this section, the 
well-formedness and correctness criteria for a program. 
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3.1 Model of a Program 

A program d = (Ti, i=1,2,...n ) is viewed as a finite set of 
tables defined over a finite set of example elements, 8 = {ei. 
i= 1.2,... kl, where each table includes associated conditions. 
Note that a program does not specify any particular ordering of 
execution as happens in a traditional program. Associated with 
each table T,, are two subsets of 8, its readset, R(Ti), and 
writeset, W(Ti). A table’s readset consists of all the example 
elements in its nonderived columns, and its writeset consists of 
the example elements in the derived columns. Intuitively, each 
table reads the elements of its readset, carries out some compu- 
tation on them and writes into the elements of the writeset. 

Because of the lack of explicit ordering information on the 
tables, some tables may be unordered; consequently, we use 
parallel program schemata theory [Keller731 to define the mean- 
ing of a program on such partially ordered tables. This has 
been formally presented in [KMZ83]. Here we adopt a less 
formal approach. A parallel program schema G (or a schema) 
for a program B is a directed graph representing the prece- 
dence constraints on the tables of the program. This schema G 
=(V,E) is constructed as follows 

V = Set of tables of the program; 
E = l(TivTj) I W(Ti) n R(Tj) # 63 

Intuitively, the table Ti should precede T. if Ti writes a 
value for an example element which is read by T. We use this 
parallel schema model to derive the properties of c program. 

3.2 The Criteria 

Using the model of a program (i.e. a schema) discussed in the 
previous section we define well-formedness and correctness 
criteria for Query-by-Example programs. 

3.2.1 Well-formedness Criterion 

In the description of Query-by-Example, we defined a report 
type table to be a function that maps a set of nonderived col- 
umns to derived columns. This tacitly assumes that a proper 
value is given for every nonderived column. This is assured by 
the following criterion: A program is said to be well-formed if 
every entry in a nonderived column is either a constant element 
or a bound example element, and the program’s corresponding 
schema is acyclic. The restriction on columns guarantees that a 
value is always obtainable for a column; the acyclicity ensures 
that no cyclic definition of the nonderived values is specified. 
Thus, the well-formedness criterion guarantees that every table 
gets a value for every nonderived column which participates in 
deriving another column. 

3.2.2. Compile-time Correctness Criterion 

One of the problems with a parallel program is that race condi- 
tions may be inadvertently specified by a user. We address this 
with the correctness criteria. A well-formed program is 
compile-time correct if the corresponding schema G satisfies the 
following property: every pair of tables, Ti and Tj, that conflict, 
are totally ordered in G; where Ti and Tj IS said to conflict iff 

~~~~~~~~~~~~1~~~~~~~~~~~~~1~~~~~~~~~~~~~1 f+ 
This criterion guarantees that the meaning of a program is uni- 
que. A user perceives the program as a total ordering of tables 
(that is consistent with the partial order specified by G) repre- 

t This perception may be due to one of many reasons; for 
instance, the user may view the program as a reflection of 
how he/she would execute the program on a piece of paper. 
We are only interested in the existence of that total ordering, 
irrespective of whether the user is cognizant of this fact. The 
reader may also note that if this existence is not assumed it 
is not clear how to give a unique meaning to a user’s pro- 
gram. 

senting a sequential program+. On the other hand, there may be 
more than one total ordering corresponding to to a partial order 
given in G. The above correctness criterion guarantees that all 
total ordering that corresponds to G produce the same result. 
This has been shown in [KMZ83] and a similar result was for- 
mally proved in [Kris82]. Therefore. irrespective of which 
ordering is chosen as the meaning of that program by the sys- 
tem, the result produced is the same as that expected by the 
user. 

This correctness criterion can be easily checked algorithmi- 
cally. The algorithm must guarantee that every pair of conflict- 
ing tables must be ordered. It can be argued from the definition 
of G that any read-write conflict between two tables will always 
be ordered. Thus, lack of ordering (i.e., violation of the cor- 
rectness criterion), may arise only for two tables writing into 
the same example element. This property can be easily checked. 
Further, this constraint can be easily explained to a user. 

3.2.3. Run-time Correctness Criterion 

Let us consider an example in which tables T, and T,, both 
write into Z, but for any one value of Y (which is nonderived 
in both tab&), only one of them derives a value for Z. This, 
let us say, is because the conditions on Y, in the two tabies, are 
mutually exclusive. But the compile-t&e correctness criterion 
will disallow this program. To enable a user to run such pro- 
grams we present a new correctness criterion. A well-formed 
program is run-time correct if during the execution of the pro- 
gram all unordered conflicting tables produce values in a mutu- 
ally exclusive fashion. This criterion formalizes the notion of a 
run-time check traditionally done by the user in his program. 
The execution carries out this criterion by including an appro- 
priate check for every pair of such conflicting tables. 

It is easy to see that run-time correctness criterion has the 
same effect as the compile-time criterion, but is less restrictive. 
This advantage is not without cost. Assuring compile-time cor- 
rectness avoids the run-time overhead of checking, which will be 
significant for some programs. 

4. Conclusion 

We have extended the conventional concept of a database as a 
set of discrete relations to include a set of-piecewise continuous 
functions. We have extended the features of Query-by-Example 
to operations on this piecewise continuous data.- Further, we 
have included the concept of iteration in the language, which 
enhances its capabilities to that of a general programming lan- 
guage. All of these extensions have been done without loss of 
the simplicity that is usually attributed to Query-by-Example. 
We have also presented formal notions of well-formedness and 
correctness of programs in this language. 
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