
A Personal Data Manager’

Peter Lyngbaek
Dennis McLeod

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0782

Abstract 1. Introduction

The Personal Data Manager (PDM) is a simple
database system for personal computers. PDM is
intended to provide personal information management
capabilities for the large class of personal computer
users who are not computer experts, and who have no
programming experience. PDM simply attempts to
make a personal computer serve as an extension of its
user’s memory. PDM is based on a simple conceptual
database model that includes high-level semantic
modeling constructs, such as objects, object kinds
(types), attributes, and object frames. A prescriptive
user interface allows the contents of the database and
the structure on the information in the database to be
changed dynamically. A working kind is a run-time
collection of database objects defined via the user-
interface; working kinds can be interactively restricted
and expanded and made part of the permanent
database. This paper discusses the design of the
Personal Data Manager, including the conceptual
information model, the user interface, and a prototype
implementation.

The past several years have seen a dramatic
proliferation of personal computers, and anticipated
future technological advances will continue to increase
their power and reduce their cost. These flexible tools
are improving the a,ccessibility of computing resources
for end-users who are not computer experts, and who
may have little or no programming experience. While
personal computers support a wide variety of specific
applications, perhaps one of the most exciting and far-
reaching potential uses of a personal computer is a
general-purpose information manager and a tool for
information sharing/communication.

The class of potential end-users of a personal
information manager is mostly dominated by the large
number of ‘home computer” users who are by no
means computer experts, and who have little or no
programming experience. Typical end-users may use an
information system to manage personal data from a
wide variety of applications, such as a phone directory,
a calendar, an entertainment guide, a recipe file, a wine
list, an index of vacation slides, etc. Novice end-users,
however, may successfully utilize an information system
only if it provides a simple and easily understandable
interface that supports database communication and
interaction in a straightforward manner. Potential end-
users of a personal data manager also include
professionals and engineers who have needs for
capabilities to manage office information and design
data.

‘This research was supported, in part, by the Danish Natural
Science Research Council under grant 11-4132, a grant from the
IBM Corporation, and by the Joint Services Electronics Program
through the Air Force Office of Scientific Research under contract
F49620-81-C-0070.

Permission to copy without fee all or part of this material Lc gmnted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its

In contradistinction to the principles and mechanisms
of current production and research prototype database
systems, a personal information management

.
environment is best described by the following

date appear, and notice is given that copying is by penniesion of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requlrrs a fee
and/or special permission from the Endowment.

characteristics:

l The structural framework for information
classification and logical access must be

Proceedings of tlje Tenth International
Conference on Very Large Data Saws.

highly dynamic as the structure of the
Singapore, August, 1994

14

stored information may change over the
lifetime of the database.

l The amount of structural information (e.g.,
kinds of data, kinds of inter-relationships,
etc.) is large relative to the size of the
database.

l The end-user is familiar with the application
environment, but is not assumed to have
expertise in databases or programming. In
consequence, the end-user must serve as
designer, accessor, and evolver of
information, and is thus “the only” expert.

l Data of different modalities and varying
length must be accommodated.

l The amount of information is relatively
small.

This paper describes research on the Personal Data
Manager (PDM), a simple database system for personal
computers that allows novice end-users to directly
define, classify, interrelate, and manipulate a universe
of information objects. PDM is intended to make a
personal computer serve as an extension of its user’s
memory. The critical research subtopics here are: a
simple, but semantically expressive conceptual
information model; an approach to information
communication with the user (user interface); and a
strategy for efficient information storage and access,
which does not require external database design
expertise.

The PDM conceptual information model includes a
simple set of modeling constructs: objects, types,
attributes, and object frames. A prescriptive user
int.erfacc, closely coupled to the conceptual information
model through the notion of a working kind, allows
novice end-users to dynamically change the contents
and structure of their databases. An experimental
prototype implementation of the Personal Data
Manager is currently underway.

The remainder of this paper is structured as follows.
Section 2 cont,ains a brief overview of related research.
The Personal Data Manager conceptual model is
defined in Section 3. Section 4 contains an example
database application, to motivate the description of the
PDEL1 operations and user interface given in Section 5.
The prototype implementation is described in Section 6.
Finally, Section 7 describes conclusions and future
research directions.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

2. Background
During the last several years, the popularity of

personal computing has experienced a tremendous
growth. Almost daily new personal computers and
software products for personal use are introduced.
Notably, database and information management
systems for micro computers are among the most
popular products in any computer store. More than
forty database products alone [Wells 841 run on the
IBM Personal Computer (IBM PC) and compatible
computer systems.

Current database systems available for personal data
management on inexpensive micro-computers organize
data as files of fixed-format records. For example,
systems such as dBASEII [Ashton-Tate 811 are baaed
on record-oriented database models. Such record-
oriented database systems have limited flexibility [Kent
791 in that once the record format is set up by a
(possibly unexperienced) user, it is very difficult to alter
the structure of the database. In addition, these data
managers introduce a number of troublesome
limitations, such as the maximum number of data fields
per record and their fixed sizes.

The Personal Data Manager is based on a semantic
database model. Semantic database models [Abrial
74, Chen 76, Smith 77, Hammer 81, Shipman 81, King
82a] and similar models for knowledge representation in
Artificial Intelligence [Roussopoulos 75, Mylopoulos 801
introduce a semantically rich set of structuring
primitives that support abstractions such as object
types (for object classification), supertypes/subtypes
(for generalization and specialization), and attributes
(for inter-object mappings). Even though semantic
database models in general are simpler and easier to
understand than conventional database models (the
network, hierarchical, and relational model), most
current research approaches are relatively complicated.

The PDM user interface draws most directly on recent
work in browsing-oriented database user interfaces
[Cattell 80, Herot 80, Stonebraker 82, Wong 821. The

interface must be simple so that it can be understood
by a novice user and allow that user to utilize the
manipulation primitives of the data manager. Moreover,
incremental learning of more complex features of the
model must be supported. The approach taken here is
based in part on experience gained with a prescriptive
conceptual design and evolution methodology devised
for databases defined with the event database model
[King 82b]. Furt.her experience was gained in an

experimental user interface for the database model SDM
111 ammer 811, called a transaction specification

Singapore, August, 1984

15

advisor (TSA). The purpose of TSA is to guide an end-
user in understanding the content and structure of a
database, and formulating a transaction on that
database [McLeod 821. As such, the TSA provides
prescriptive guidance to the user in browsing a database
and querying it.

Although semantic database models have been
considered the state-of-the-art in data model research
for a number of years, only a few complete
implementations have appeared. The most significant
are the ADAPLEX implementation effort [Chan 821
underway at the Computer Corporation of America,
and the Relationship-Entity-Datum Data Model [Cattell
831 implemented at the Xerox Palo Alto Research
Center (PARC). The PDM prototype is an attempt to
implement a semantic data model in a micro-computer
environment characterized by limited resources (main
memory and disk space).

3. The PDM Conceptual Model
The user views a PDM database as a collection of

objects. Objects correspond to concepts, entities, or
things with an associated meaning about which
information is to be recorded. Examples include
persons, friends, addresses, checks, recipes, and
appointments. Each object is represented in the
database as an atomic string of characters. The
character strings are either user-defined or system-
defined; they are displayable and serve as external
object references. When referring to an object by its
character string representation, a quoted string is used
throughout this paper, e.g., “$455.75’, ‘Mann’s
Chinese Theatre”, and “(213) 743-2745”.

An object kind (object type) is a named collection of
database objects that share common properties. The
name of a kind must be unique with respect to other
kind names. Kinds are organized as a forest of trees,
consisting of basic kinds and specialized kinds. A basic
kind is a root node containing all the objects in the
tree. A specialized kind is a subkind of a basic kind or
another specialized kind; it contains a subset of the
objects in its superkind. Objeot kinds are defined during
database setup, and the user can dynamically define
new basic kinds and specialized kinds. A specialized
kind is specified by identifying existing kinds, and
refining them in a stepwise manner to define a new
kind, thereby identifying a collection of objects
presumably sharing some common properties. This
*snapshot” of objects is bound at the time it is created
by the user.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Objects must be unique within a kind tree. This
means that there can only be one object with a given
character string representation in each basic kind.
However, it is not necessary to require all objects in a
database to have unique character string
representations. Objects in different kind trees can
correspond to different concepts or entities; however,
this does not prevent them from being represented
identically with respect to names. For example, the
basic kinds Persons and Movies may both contain an
object “Gandhi”; here, it is clear from the context if
“Gandhi” is a person or a movie.

New objects can be created at any level in the kind
tree. When an object is created as being of a certain
kind, the object assumes all superkinds of that kind.
However, the user must explicitly specify which other
subkinds include the object. The object cannot
automatically assume the correct set of subkinds, since
subkinds are defined as snapshots rather than by
predicates that are evaluated for the new object.

Each kind has an associated collection of attributes,
which indicate the common aspects of the objects of
that kind. An attribute has a name that is unique with
respect to other attributes of the same kind. At any
given time, each object of a kind has a (possibly null)
value for its attributes, taken from the value kind; the
vaIzle of an attribute can be single-valued or multi-
valued. In effect, an attribute is a mapping from an
object kind to its value kind. Attributes are inherited
down the kind tree, so that attributes defined on a basic
kind are defined on all the kinds in the tree. Each
attribute has an inverse attribute called the inverse.
The inverse of an attribute A from object kind Kl to
value kind K2 is an attribute denoted by inv(A) from
object kind K2 to value kind Kl. An inverse attribute
may optionally be given a user-defined name.

An object frame is a specification of the scope of the
objects of a certain kind. It is used as an interface for
input and output of objects of that kind, and can also
be used as a unit of object protection, sharing,
saving/restoring, etc. When used for object creation
and update (input), the object frame specifies which
object attribute values must be supplied. When used for
object display (output), an object frame specifies which
attribute values to display, and the format of the
display. Not only attributes of the kind for which the
frame is being defined may be specified, but also
attributes of attribute values of that kind can be
specified. In other words, it is possible to specify
attributes at an arbitrary level of nesting. Object
frames are uniquely named and any number of object

Singapore, August, 1984

16

frames may be defined for an object kind; different
frames may be provided for different purposes. Each
object kind has a default object frame that specifies
every attribute of the kind.

At the PDM user interface, a distinction is made
between permanent kinds, a single working kind, and
temporary kinds. Permanent kinds are stored
permanently in long-term memory; they survive from
one user session to another. The working kind is similar
to .a program variable that contains a set of objects.
The contents of the working kind can be examined and
changed via the user interface as described below. The
working kind is always associated with a single
permanent kind, called the associated kind, which is its
immediate superkind in the kind tree. The working
kind is said to be bound to its associated kind. The
working kind may be made a permanent subkind of its
associated superkind. This feature allows a ‘user to
dynamically alter the structure of a database. A
temporary kind is a named instance of the working
kind. At the time of creation, the temporary kind is
bound to the associated kind of the working kind.
Temporary kinds and the working kind inherit all the
attributes of their associated kinds.

PDM provides a number of “built-in” predefined basic
kinds called simple kinds. This includes names, which
are string of varying length, places, dates, time,
telephone numbers, money, etc. Simple kinds are
treated as any other basic kinds, in that objects may be
added to and removed from a simple kind, and
specialized kinds may be defined. Simple kinds do not
have any predefined attributes.

4. An Example Personal Database
To illustrate the operation of the Personal Data

Manager, an example is provided here to show how the
capabilities of the system can be used to define, use,
and modify a database. The following section contains
a detailed description of the individual PDM operations.

Consider a personal database the purpose of which is
to keep track of data on persons and entertainment.
To establish such a database, the user might first create
a basic kind of objects called PERSONS. Then, to
specify what kinds of information are to be recorded for
each PERSON object, three attributes might be
defined, which specify the Name, Address, and City in
which the PERSON resides. When defining these three
att,ributes, the user would specify the value kinds of the
attributes, which would be PERSON NAMES,
ADDRESSES, and CITIES, respectively; in this way,
the specific nature of the relationship between a

Proceedings of the Tenth International

Conference on Very Large Data Bases.

PERSON and his or her name and address would be
specified. Next, several PERSON objects might be
created, specifying values for their attributes.

In a similar way, the user might create an
ENTERTAINMENT kind, which is intended to include
information about films and restaurants. The data that
might be recorded about each variety of entertainment
could include the Name of the establishment and its
Telephone Number. Further, the user might then
specify two specialized kinds of entertainment, by
defining two specialized kinds, namely
RESTAURANTS and THEATRES. These two kinds of
entertainment are distinguished because each has
distinct associated attributes. RESTAURANTS may
have an associated list of Specialties (with values from
FOOD SPECIALTIES), while THEATRES might have
a Current Film Title, a Price, and a list of Showtimes.
Objects corresponding to restaurants and theatres can
now be created.

Now suppose that it is desired to rate the restaurants
according to the opinions of PERSONS, say using a
one-to-five star rating scale. To do this, the user simply
creates a new kind that could be called RESTAURANT
RATINGS, which has the attributes Rater (a
PERSON), Restaurant Rated (a RESTAURANT), and
a Rating (whose value is from FIVE STAR SCALE).
Ratings of restaurants by individual persons can then
be entered.

Suppose now the user wants to distinguish among the
kinds of PERSONS he/she knows, namely FRIENJX
and BUSINESS ASSOCIATES. To do this, the objects
of the kind PERSONS are first assigned to the working
kind and then refined to include only those PERSONS
who are FRIENDS. The working kind can now be
made permanent, with the name FRIENDS. The user
might next create a new attribute of FRIENDS, Home
Telephone, which is specific to FRIENDS as opposed to
PERSONS in general. Similarly, BUSINESS
ASSOCIATES could be created as a specialized kind of
PERSONS, with the attribute Business Phone. Note
that the same PERSON object can be both a FRIEND
and a BUSINESS ASSOCIATE.

Figure 4-l shows the object kinds and attributes that
have been defined in the example up to this point.
Specifically, the following basic kinds have been
defined: PERSONS, ENTERTAINMENT,
RESTAURANT RATINGS, FOOD SPECIALTIES,
FIVE STAR SCALE. The kind FIVE STAR SCALE
will contain the following five objects: I*‘, l ***,
****II

kinds ’

m**trrq and r*t***u. The following specialized
have been defined: RESTAURANTS,

Singapore, August, 1984

17

kind PERSONS
attributes

Name: PERSON NAMES,
Address: ADDRESSES,
City: CITIES;

kind FRIENDS
superkind PERSONS
attributes Home Phone: TELEPHONE NUMBERS;

~~IxJ BUSINESS ASSOCIATES
superkind PERSONS
attributes Business Phone: TELEPHONE NUMBERS;

kind ENTERTAINMENT
attributes

Name: NAMES,
Telephone Number: TELEPHONE NUMBERS;

kind RESTAURANTS
Grkind ENTERTAINMENT
attributes Specialties: FOOD SPECIALTIES;

kind FOOD SPECIALTIES

kind THEATRES
superkind ENTERTAINMENT
attributes

Current Film Title: NAMES,
Price: MONEY,
Showtimes: TIMES;

kind RESTAURANT RATINGS
attributes

Rater: PERSONS,
Restaurant Rated: RESTAURANTS,
Rating: FIVE STAR SCALE;

jci& FIVE STAR SCALE

working kind to contain only those friends with the
name ‘Yoke Hibi’. In order to find the restaurant
ratings for which Yoko Hibi is the rater, the inverse of
the attribute Rater is applied to the object(s) in the
working kind. Then all Yoko Hibi’s restaurant ratings
are restricted to include only those with rating “****.
or l *****m . Now the attribute Restaurant Rated is
applied to the objects in the working kind. This returns
all the restaurants that the friend Yoko Hibi rated with
four or five stars. To finish the query, the restaurants
must be restricted to include only those with specialty
‘sushi’; and the attribute Name of each qualifying
object is then applied. Now the working kind contains
the names of the Sushi restaurants that the friend Yoko
Hibi gave a four or five star rating. In order to see the
result of the query the objects of the working kind must
be printed.

Note that the working kind in the above example
moves from FRIENDS to RESTAURANT RATINGS to
RESTAURANTS to NAMES, and how it is restricted in
each step by a predicate on one of the attributes.
However, there are of course several alternative query
formulations, e.g., the working kind might be initialized
to RESTAURANTS first, and then restricted to Sushi
restaurants, etc.

5. The PDM User Interface
The capabilities provided for the end-users to

manipulate a PDM database can be categorized as
follows:

1. Operations for working kind manipulation
are used for retrieving objects from the
database into the working kind.

2. Operations for object manipulation are used
for creating new objects and manipulating
the objects in the working kind.

Figure 4-l: The Structure of the Example Database The PDM operations support a user-friendly interface
that employs prescriptive guidance and layered

THEATRES, FRIENDS, and BUSINESS
ASSOCIATES. The pre-defined simple kinds
ADDRESSES, CITIES, NAMES, MONEY, PERSON
NAMES, TELEPHONE NUMBERS, and TIMES have
been used as value kinds.

functionality to assist novice users in utilizing features
of the system with which they are not familiar. For
example, if a non-existing entity (object, kind, attribute,
or frame) is referenced during database creation or
modification, the user has the option of creating a new
entity or specifying an existing entity.

The user is now ready to request information from the
database. Suppose the user wants to know the names

For the purpose of this paper a straightforward line-
oriented user interface is utilized to demonstrate the

of all the Sushi restaurants to which a friend Yoko Hibi functionality of the PDM operations. The actual
gave a four or five star rating. A natural way to find
the desired information would be to assign the objects

interface prototype will however make extensive use of

of FRIENDS to the working kind, and then restrict the
graphics capabilities and pointing devices. The PDM

Ptocwdlngs of the Tenth Intomationrl
.operations are detailed below.

SIngap&, August, 1994
Conference on Vary Large Data 6ases.

18

Expand

6.1. Operations for Working Kind Manipulation
The operations for working kind manipulation allow a

user to interactively specify the objects contained in the
working kind. Those objects are the target for the
object manipulation operations described in the next
section. As mentioned before, the working kind is
always bound to a permanent kind (the associated
kind). The working kind contains a subset of the objects
of its associated kind, and the attributes of the
associated kind are inherited by the working kind. The
user interface includes the following operations for
working kind manipulation:

Initialize The working kind may be initialized
by specifying an associated object
kind and an initial set of objects. The
working kind can be initialized to the
empty set, to a set of explicitly
enumerated objects, to a set of
objects that satisfy a certain
constraint, or to the set of all objects
of a specified kind.

The working kind may be expanded
with a set of objects (the expanding
set). The union of the working kind
and the expanding set will be the new
value of the working kind. The
expanding set is a subset of a
permanent kind, and is either a set of
explicitly enumerated objects, a set of
objects that satisfy a certain
constraint, or the set of all objects of
a specified kind. The expansion
causes the working kind to be bound
to the closest common superkind of
the associated kind and the
permanent kind of the expanding set.

Restrict The working kind may be restricted
by a set of objects (the restricting
set). The intersection of the working
kind and the restricting set will be
the new value of the working kind.
The restricting set is a subset of a
permanent kind, and is either a set of
explicitly enumerated objects, a set of
objects that satisfy a certain
constraint, or the set of all objects of
a specified kind. When the working
kind is restricted, its associated kind
remains the same.

proceedings of the Tenth International
Conference on Very Large Data Bases.

Remove A set of objects may be removed.
from the working kind. The set
difference between the working kind
and the set of removed objects will be
the new value of the working kind.
The set of removed objects is a subset
of a permanent kind, and is either a
set of explicitly enumerated objects, a
set of objects that satisfy a certain
constraint, or a set of all objects of a
specified kind. When objects are
removed from the working kind, its
associated kind remains the same.

Map The working kind may be mapped to
the value set of one of its attributes.
The set of objects in the value kind
of the mapping attribute that are
values of objects in the working kind
will be the new value of the working
kind. The mapping operation causes
the working kind to be bound to the
value kind of the mapping attribute.

Name The working kind may be named,
which causes a temporary kind to be
created as a subkind of the associated
kind. The name of the temporary
kind must be unique with respect to
the names of other kinds, permanent
as well as temporary. The temporary
kind is a snapshot of the working
kind at the time it is created. The
naming operation does not change
the content of the working kind.

Display Context The context of the working kind may
be displayed. In this way, it is
possible to examine the position of
the working kind in the kind
hierarchy and to determine which
attributes and object frames are
defined.

Figure 5-1 illustrates the use of the working kind
manipulation operations. First, the working kind is
initialized to contain the three objects “Georg”,
“Hamideh’, and ‘Victor”, and the set is made a
temporary kind by the name FRIENDS. Then the
working kind is expanded to contain all the objects of
PERSONS except ‘Linda’ and ‘John”. Now the
working kind is restricted to contain only those objects
representing persons living in Los Angeles and that set
is made a temporary kind by the name BUSINESS

Singapore, August, 1994

19

ASSOCIATES. The intersection of FRIENDS and
BUSINESS ASSOCIATES is then created. Finally, the
context is displayed.

The operations described above, allow a user to select
any subset of the objects in a PDM database.
Temporary kinds are useful for database browsing.
Suppose that the content of the working kind, at a
given point in time, reflects a situation a user might
want to reestablish at some future time. By naming the
working kind, the user can later initialize the working
kind to contain the objects of the temporary kind and
thus restore the previous content.

>initialize
associated kind: PERSONS
type of initialization: enumerate
members: Georg, Hamideh, Victor

>name
temporary kind: FRIENDS

>expand
type of expansion: kind
expanding kind: PERSONS

)remove
type 0 f removal: enumerate
objects to be removed: Linda, John

Xestrict
type of restriction: predicate
restricting predicate: City = Los Angeles

>name
temporary kind: BUSINESS ASSOCIATES

>initialize
associated kind: PERSONS
type of initialization: kind
initializing kind:‘FRIENDS

>restrict
type of restriction: kind
restricting kind: BUSINESS ASSOCIATES

>name
temporary kind: FRIENDS AND ASSOCIATES

>display context
the associated kind is PERSONS
the temporary subkinds are

FRIENDS
BUSINESS ASSOCIATES
FRIENDS AND ASSOCIATES

the attributes are
Name: NAMES
Address: ADDRESSES
City: CITIES

the object frame is Name
>

Figure 5-l: Examples of Working Kind Manipulation
Proceedings o? the Tenth International
Conference on Very Large Data Bases.

20

Restore

Delete

Modify

5.2. Operations for Object Manipulation
The PDM operations for object manipulation allow a

user to modify the content of a database. The
operations, in general, operates on the entire set of
objects of the working kind. The user interface includes
the following object manipulation operations:

Create A new object may be created as a
permanent member of the associated
kind. The character string
representation of the object and its
attribute values are specified. If an
object frame is specified, attribute
values must be supplied as specified
by the frame. The new object will
also be included in the working kind,
and it may be specified to be a
member of other kinds in the kind
hierarchy.

New objects may be loaded into a
PDM database from an external file.
The corresponding object kind, an
object frame, and the file containing
the object values must be specified.

The objects contained in the working
kind may be deleted from the
associated kind and all its subkinds.
The superkind of the associated kind,
however, is not affected. If the
associated kind is a basic kind, the
objects are deleted entirely from the
database. The attribute values of the
objects being deleted are also deleted
if they are of a simple kind and not
in the value set of any other
attributes.

The character string representation
of the objects contained in the
working kind may be modified. If an
object frame is specified, the values
of the attributes in the frame may
also be modified.

Display The objects in the working kind
together with their attribute values
may be displayed. If no object frame
is explicitly specified, the values of all
the attributes are output, otherwise
attribute values are output as
specified by the object frame.

Singapore, August, 1994 ‘

Print

Save

Add

The objects in the working kind
together with their attribute values
may be printed. Attribute values are
printed as described for the Display
operation.

The objects in the working kidd
together with their attribute values
may be output to an external file.
Attribute values are output as
described for the Display operation.

The objects in the working kind may
either be added to a an existing
subkind of the associated kind or
assigned as the initial value of a new
permanent subkind created by the
Add operation. If an existing subkind
is specified, the union of that subkind
and the working kind will be the new
value of the specified subkind.

The operations illustrated in Figure 5-2 are based on
the full schema of the Example Personal Database
shown in Figure 41. First, the object “Pelican’s Catch’
is created as a member of RESTAURANTS. The food
specialty .oyster’ is created on-the-fly as a member of
FOOD SPECL4LTIES. The restaurant Yagura Ichiban
is then created as the object “Yoke’s favourite”. Next,
all the restaurants ratings of Norm Freeman are deleted
from the database. Finally, the PERSONS “John’ and
“Linda” are added to the specialized kind BUSINESS
ASSOCIATES and then made a permanent subkind by
the name GOLF PARTNERS.

The operations described above provides a browsing
oriented user interface tightly coupled to the PDM
information model through the notion of a working kind
and temporary kinds. It is easy to restructure a PDM
database. The operations for working kind
manipulation together with the Add and Delete
operations allow a user to move objects up and down
t.he kind hierarchies. The Save and Restore operations
provide a way to communicate objects from one PDM
database to another and allow external programs to
produce and consume PDM objects.

6. Meta-Data as PDM Objects
A very important aspect of .a personal information

management system is the support provided for defining
and modifying the structure of the data in the database.
Novice end-users cannot be expected to define the
“right” database structure at their first attempts.
Therefore, it should be as simple to modify meta-data

Proceedings of the Tenth International
Conference on Very Large Data Bases.

>initialize
associated kind: RESTAURANTS
type of initialization:

Xreate
object frame: default
member of RESTAURANTS: Pelican’s Catch

Name: Pelican’s Catch
Telephone Number: 450-2983
Specialties: oyster
is oyster a new object? yes

>create
object frame: default
member of RESTAURANTS: Yoko’s favourite

Name: Yagura Ichiban
Telephone Number: 623-4141
Specialties: sushi, tempura

>initialize
associated kind: RESTAURANT RATINGS
type o j initialization: kind
kind name: RESTAURANT RATINGS

>restrict
type of restriction: predicate
restricting predicate: Rater.Name = Al Jones

>delete
>initialize

associated kind: PERSONS
type of initialization: enumerate
members: John, Linda

>add
subkind of PERSONS: BUSINESS ASSOCIATES

>add
subkind of PERSONS: GOLF PARTNERS
is GOLF PARTNERS a new permanent kind: yes

>

Figure 5-2: Examples of Object Manipulation

(that is, the data describing the structure of the
database) as it is to modify the data in the database.

PDM supports meta-data manipulation simply by
treating meta-data as PDM objects. The meta-data is
described in the database by a number of kinds, so
called meta kinds, which are manipulated as ordinary
object kinds. That way, all the operations introduced in
the previous section may be applied to meta-data. A
PDhi database contains the following meta kinds:

l KINDS contains all the object kinds defined
in the database. KINDS has a number of
subkinds describing basic kinds, specialized
kinds, and simple kinds.

Singapore, August. 1 gg4

!I

l ATTRIBUTES contains all the attributes
defined on the object kinds in the database.

l FRAMES contains all the object frames
defined for the objects in the database.

Figure 6-l shows how the meta kind ATTRIBUTES is
defined. ATTRIBUTES has a number of meta
attributes. These meta attributes describes the
properties of the user-defined attributes. A user-defined
attribute is described by the object kind on which the
attribute is defined, its value kind, its attribute type
(single-valued, multi-lralued, etc..), and its inverse
attribute.

meta kind ATTRIBUTES --
meta attributes
Domain: KINDS,

Value kind: KINDS,
Type: ATTRIBUTE TYPE,
Inverse: ATTRIBUTES;

Figure fkl: The Meta Kind ATTRIBUTES

The meta kinds are created and manipulated as
ordinary kinds. For instance, a new attribute may be
added to an object kind K simply by adding a value to
the meta attribute Attributes of K. The new attribute
may be added by using the modify operation. This
suggests that the PDM operations are generic. For
example, the create operation may be used to create a
person, a kind of persons, a property of persons, etc.
Figure 6-2 shows how the object kind RESTAURANTS
is created. First, the working kind is bound to the meta
kind KINDS. That way, the create operation will create
a new object kind. The new member of KINDS is
called RESTAURANTS. Its superkind is

>initialize
associated kind: KINDS

type of initialization:
>create

new member: RESTAURANTS
Superkind: ENTERTAINMENT
Attributes: Specialties

Value kind: FOOD SPECIALTIES
Type: multi-valued
Inverse: Specialty of

Attributes:
Frames:

>

Figure 6-2: Creation of a New Object Kind

Proceedings ot the Tenth tntematbnal
Conference on Very Large Data Bases.

ENTERTAINMENT, and it has a multi-valued
attribute Specialties with value kind FOOD
SPECIALTIES and the inverse Specialty of. No object
frame is defined for the kind RESTAURANTS.

7. The PDM Prototype Implementation
A prototype implementation of the Personal Data

Manager has been designed for the IBM PC, and is
currently under development. The PDM is being
implemented in IBM Personal Computer Pascal [IBM
811 running in the environment of the IBM Personal
Comput,er Disk Operating System (DOS) [IBM 821. The
prototype requires a minimum of 128K bytes of main
memory. Like ot6er micro computers, the IBM PC is
limited by its small main memory and relatively slow
access to data stored on its floppy disks. In
consequence, a major aspect of the design philosophy is
to compact main memory and speed up access to the
disk.

Each object in a PDM database is internally
distinguished by a unique object key that serves as a
handle on the object. Natural numbers have been
chosen as object keys; they are simple to generate and
allow object kinds (sets of objects) to be represented as
bit vectors, a representation that under certain
circumstances is very efficient in terms of storage space.
Object kinds and attributes are also internally
distinguished by unique keys (kind keys and attribute
keys) that are natural numbers.

The PDM prototype implementation maintains four
categories of data structures:

1. representation of individual objects,

2. representation of attribute values,

3. representation of kinds (collections) of
objects,

4. representation of kind hierarchies and
attributes (meta-data).

All objects in a PDM database are stored in an Object
B-tree indexed on the objects character string
representation. The leaf nodes associate the character
strings with the keys of the objects they represent.
Notice that objects in different basic kinds may have
the same character string representation. For example,
the object ‘Gandhi” of the kind Persons may have the
object key 743, and the object “Gandhi’ of the kind
Movies may have the object key 1244. In that case, the
Object B-tree associates the character string “Gandhi’

Singapore, August, 1984

with the set (743, 1244). The Object B-tree is stored
on the disk and the first levels of the tree are also
mainta.ined in the main memory, thereby limiting the
number of disk accesses required to find a given object.
Note that every database object is stored symbolically
in the Object B-tree. At the physical level, no
distinction is made between objects of different kinds
such as integers, reals, and booleans that typically are
stored in an encoded representation. Thus, the number
n 1984’ is stored as the four characters
‘1” .g” “8”,“4* and not as an integer in a single
me;ory ‘word.

The prototype must also support the mapping from
object keys to their corresponding character string
representations. A table indexed on object keys
contains pointers to the leaf nodes of the object B-tree.
For example, if the object “(213) 452-1031’ has the
object key 2486, then the array element with index
2486 contains a pointer to the string ‘(213) 452-1031”
in the object B-tree. The table is maintained in main
memory. Thus, given an object key, a reference to the
corresponding object can be obtairred by just a single
table lookup, and the object itself can be obtained by
just a single disk access.

The attribute values of individual objects are also
stored in a B-tree. The Attribute B-tree is indexed on a
combined object key and attribute key. The data are all
the object keys of the objects in the corresponding
attribute value. Suppose, for example, that an object
with the object key 345 has a multi-valued attribute
with the attribute key 465 and that the values of the
att.ribute includes three objects with the object keys
9823, 5409, and 3339. In that case, the Attribute B-tree
would map the combined key 3451465 to the set (9823,
5409, 3339). Notice that inverses are explicitly stored in
the Attribute B-tree. In the above example, the
combined key 9823:465 would be mapped to {345}, and
so would the combined keys 5409:465 and 33391465.
The Attribute B-tree is stored on the disk. Like the
Object B-tree the first levels of the Attribute B-tree are
maintained in main memory in order to reduce access
time.

An object. bit map stored on disk and (partially)
maintained in main memory records which objects
belong to which kinds. Each kind defined in the
database has an associated bit vector t,hat records all
the objects of the kind. Bit x of bit vector y is on (1) if
the object with object key x is a member of the kind
with kind key, otherwise bit x is off (0). One bit vector
at, a time can be loaded into main memory As new
objects are cteated, the bit vectors are extended. Notice
how si;:,lple the working kind or a temporary kind is
represented by a bit vector.

Proceedings of the Tenth International

Conference on Very Large Data gases.
23

Typically, a kind only contains a small percentage of
the total number of objects in a database. The
corresponding bit vector therefore has a high
percentage of off bits. A technique for compressing the
bit vectors utilizes this fact to save storage space for the
bit vectors. Each bit vector has a corresponding index
vector. Bit i of the index vector is on if any of the bits
(i-l)*C+l to i*C in the bit vector is on. Thus, a single
bit of the index map indicates if a group of C bits of the
bit vector are all off. The compression is achieved by
not storing the groups of C bits that are all off. The
optimal value of the constant C depends on the relative
frequency of off bits in the bit vector.

The last set of data structures is used to represent
meta-data. Object kinds are represented as a tree.
Each node contains the name of a kind, the kind key
(pointer to the bit vector), pointers to the superkind
and the subkinds, and a list of attribute keys. The
attributes are represented in a table. Each entry
describes an attribute by its name, attribute key, and
the key of its value kind. Both the kind tree and the
attribute table are maintained in main memory during
run-time.

8. Conclusions and Future Directions
This paper has described the Personal Data Manager,

a simple database system for novice end-users. First, the
PDM conceptual information model was described.
Then, an example database application was used to
motivate a description of the PDM operations. Finally,
a PDM prototype implementation was discussed.

The Personal Data Manager (PDM) is an approach to
storing and retrieving data on a personal computer.
PDM is not a record manager. Rather, it provides a
simple view of data, in terms of information objects,
kinds of objects, and attributes of objects. Objects can
be directly related to one another; this eliminates the
need for storing multiple copies of data and allocating
storage for data that is not yet in the database.
Contrary to current record-oriented database systems
for personal computers, the Personal Data Manager
does not limit the size or number of objects, as long as
the host computer has memory capacity to store them.
The PDM conceptual information model is a binary
data model [Abrial 74, Bracchi 761. Therefore, n-ary
relationships (for arbitrary values of n greater than 2)
cannot be modeled directly. However, any n-ary
relationship can easily be modeled by introducing an
artificial relationship object as described in [Lyngbaek
841.

Singapore, August, 1994

The Personal Data Manager is intended to be easy to
use; integrated help facilities and guidance to teach the
user are provided by a user-interface that is closely
coupled to the conceptual information model through
the notion of a working kind. The structure of the
information in a PDM database can be changed
dynamically as new kinds and patterns of data become
important; in PDM it is just as easy to add a new
attribute as it as to add a new attribute value. The
Personal Data Manager has been designed primarily for
small personal computers. However, the ideas and
techniques of PDM are also applicable to larger
computer systems.

Analysis, testing, and extensions of the research
described in this paper are currently under study. In
particular, the PDM prototype, that at the time of this
writing is being implemented, will be used to further
assess the adequacy and completeness of the model and
its operations. In its present form, the Personal Data
Manager does not support format control. Furthermore,
at the user interface, a distinction is made between
meta-data and ordinary data. This distinction can be
avoided by introducing the meta-kinds KINDS,
ATTRIBUTES, and FRAMES. By treating meta-data
as PDM objects, a user may query and create meta-data
and ordinary data in a uniform manner. For example, a
new object kind is created as a member of KINDS with
(meta) attributes Superkind, Attributes, and Frames.
Both format control and a completely uniform
representation of meta-data and ordinary data
integrated with the concept of the working kind have
been planned. It is also intended that the PDM
operations will be embedded into a programming
language. This will allow end-users to write application
programs that may access a PDM database. In order to
manage such application programs, it should be possible
to store them as information objects in the database.

Finally, a distributed version of the Personal Data
Manager has been planned. A network of PDMs will be
based on the ideas and results described in [Lyngbaek
831. The goal is a personal information management
environment that allows users of highly autonomous
databases to communicate with each other, access
remote information objects, and in a controlled manner
share information objects. It is also intended that the
distributed PDM will serve as an access port to large
database systems by providing them with PDM
interfaces.

References

[Abrial 741 Abrial, J. R.
Data Semantics.
In Klimbie, J. W. and Koffman, K. L.

(editors), Data Base Management,
pages l-59. North-Holland,

Amsterdam, 1974.

[Ashton-Tate 811 dBASE II Assembly Language
Relational Database Mu&gement
System User Manual
Ashton-Tate, Los Angeles, Ca., 1981.

[Bracchi 761 Bracchi, G., Paolini, P., and Pelagatti,
G.
Binary Logical Associations in Data

Modelling.
In Proc. IFIP TC-2 Working

Conference on Modelling in Data
Base Management Systems, pages
125-148. 1976.

[Cattell SO] Cattell, R. G. G.
An Entity-Based Database User

Interface.
In Proceedings of the ACM SIGMOD

International Conference on the
Management of Data. Santa
Monica, Ca., May, 1980.

[Cattell 831 Cattell, R. G. G.
Design and. Implementation of a

Relationship-Entity-Dutum Data
Model.

Technical Report CSL 83-4, Xerox
Corporation, Palo Alto Research
Center, May, 1983.

(Chan 821 Chan, A., Danberg, S., Fox, S., Lin,
W., Nori, A., and Ries, D.
Storage and Access Structures to

In
Support a Semantic Data Model.

Proceedings of the Eighth
International Conference on Very
Large Data Buses, pages 122-130.
Mexico City, Mexico, September,
1982.

[Chen 761 Chen, P. P.
The Entity-Relationship Model:

Toward a Unified View of Data.
ACM Transactions on Database

Systems 1:9-36, 1976.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Slngapore, August, 1984

24

[Hammer 811

[Herot 80) Herot, C. F.
Spatial Management of Data.
ACM Transactions on Database

Systems 5:493-513, 1980.

[IBM 811 Pascal Compiler
First Edition edition;International

Business Machines Corporation,
Boca Raton, Fl., 1981.

[IBM 821 Disk Operating System
Second Edition edition, International

Business Machines Corporation,
Boca Raton, Fl., 1982.

[Kent 791 Kent, W.
Limitations of record-oriented

information models.
ACM Transaction8 on Database

Systems 4:107-131, 1979.

[King 82a) King, R.

[King 82b]

[Lyngbaek 831

[Lyngbaek 841

Hammer, M. and McLeod, D.
Database Description with SDM: A

Semantic Database Model.
ACM Transactions on Database

Systems 6(3):351-386, September,
1981.

A Unified Model and Methodology for
Lqical Database Design and
Evolution.

PhD thesis, University of Southern
California, May, 1982.

King, R. and McLeod, D.
The Event Database Specification

Model.
In Proceeding8 of International

Conference on Improving
Database Usability and
Responsiveness, pages 299-322.
Jerusalem, Israel, June, 1982.

Lyngbaek, P. and McLeod, D.
An Approach to Object Sharing in

Distributed Database Systems.
In Proceeding8 of the Ninth

In temational Conference on Very
Large Data Bases. Florence, Italy,
October, 1983.

Lyngbaek, P. and McLeod, D.
Object Management in Distributed

Office Information Systems.
USC Technical Report TR-84301,

University of Southern California,
Los Angeles, Ca., February, 1984.

Procoedlnge of the Tenth Intematlonrl
Confennce on Vary Lerga Deta SSOOS.

25

[McLeod 82) McLeod, D.
A Database Transaction Specification

Met.hodology for End-Users.
Information Systems 7(3):253-264,

1982.

[Mylopoulos 801 Mylopoulos, J. and Wong, H. K. T.
Some features of the TAXIS data

model.
In Proceeding8 of the Sixth

International Conference on Very
Large Data BUSe8, pages 399-410.
1980.

[Roussopoulos 751
Roussopolous, N. and Mylopoulos, J.
Using semantic networks for data base

management.
In Proceedings of the First

In tema tional Conference on Very
L.arge Data BUSe8, pages 144172.
1975.

[Shipman 811 Shipman, D.
The Functional Data Model and the

Data Language DAPLEX.
ACM Transactions on Database

Systems 2(3):140-173, March, 1981.

[Smith 771 Smith, J. M. and Smith, D. C. P.
Database Abstractions: Aggregation

and Generalization.
ACM Transactions on Database

Systems 2(2):105-133, June, 1977.

[Stonebraker 821 Stonebraker, M. and Kalash, J.
TIMBER: A Sophisticated Relation

Browser.
In Proceeding8 of the Eighth

In tema tional Conference on Very
Large Data Bases, pages l-10.
Mexico City, Mexico, Sept. 8-10,
1982.

[Wells 841 Wells, R. P., Rochowansky, S., and
Mellin, M. F. (editors).
The Book of IBM Software 1984.
The Book Company, Los Angeles, Ca.,

1984.
ISBN O-912993-02-2.

[Wang 821 ‘Wong, H. K. T. and Kuo, I.
GUIDE: Graphical User Interface for

In
Database-Exploration.
Proceedings of the Eighth
International Conference on Very
L,arge Data Bases, pages 22-32.
Mexico City, Mexico, September,
1982.

Slngapon, August, 1984

