
Bwaluating m.ltiplesereerDBlQiingeneralpurpose aperatixqsystemenvironmnts

Theo Harder
Peter Peinl

Dept. of Computer Sciences, Univ. of Kaiserslautern, West Germany

Abstract

Several concepts and problems in the
integration of a database management system
(DBMS) into a general purpose operating system
are investigated. In particular, isolation and
access control, the cooperation between
application and DBMS processes as well as the
synchronization of multiple DBMS processes are
discussed. Basic solutions for the
partitioning of DBMS functions to operating
system processes are examined and two multiple
server DBMS solutions are evaluated by a
detailed simulation model. Quantitative re-
sults concerning the performance characte-
ristics of those solutions, are presented, in
particular for the overall throughput, process
switching overhead and the influence of
certain hiqh traffic locks within the DBMS.

1. Introduction

Special database operating sys terns are
generally not available [Gr78]. Therefore,
database management systems (DBEIS) have to be
integrated in an environment offered by
general-purpose operating systems (OS). DB&
typically run on top of the OS as normal
application processes using the standard
services available from theOS such as basic
file access methods, process management,
virtual memory, communication facilities, etc.
which are not tailored to the specific needs
of a DBMS. Application programs are also
executed as normal processes (API. Some of the
problems are discussed in detail in [St81,
I-%79, TM82].
Since processes are typically designed to run
one application program in full isolation by
virtually providing a single user machine (in
timesharing mode), they often offer only
unsuitable or insufficient means for the case
where user processes have to closely cooperate
with each other. This property, however,
characterizes the situation where a number of
application processes has to communicate with
the DBMS thereby requesting and exchanging
data. On the other hand, the DBMS itself can
be embodied for performance reasons by
multiple DR processes (servers) which have to

Proceedings of the Tenth International
Conference on Very Large Data Bases.

manipulate the DB data in a synchronized
manner.
For this given situation, a number of
necessary requirements and useful properties
of embedding a DBMS in anOS environment are
discussed. Some process structures for DBMS
integration are proposed. These solutions are
based on available hardware and OS archi-
tectures which are not originally designed for
efficiently supporting the cooperation of DBMS
and application programs. Two different
multiple server solutions are investigated in
detail. A simulation model is described and
numerical results are presented for a number
of characteristic performance criteria.

2. Problem 0f‘DBlE integration

Isolationadaccess control
Usually the basic protection concept realized
by OS and hardware primitives provides strict
separation of processes often achieved by
means of virtual address spaces. Such a
spatial separation prevents any kind of
interference. From an OS point of view, the
process (execution domain) is considered to be
the unit of scheduling and the unit of
protection. This concept, however, does not
permit the straightforward solution to run the
DBMS as a subroutine of the AP (inlinked
solution) which is the most efficient control
structure for cooperation. Since the access
rights of a program - controlled by the OS -
are associated with the address space
(protection unit) in which the program is
executed and not with the particular program
itself, the AP could act as the DBMS and
directly manipulate the database (Trojan horse
problem). Furthermore, other ways to circum-
vent protection mechanisms would be possible,
e.g. the AP could forge the access control -in-
formation of the DBMS and then use normal DB
calls to get the desired information. As long
as an OS does not allow to establish different
adjusted protection domains with controlled
transfer of access rights within one execution
domain, the DBMS cannot guarantee any given
access control policy. Therefore, strict
isolation of AP and DBMS is a prerequisite to
enforce a distinct access control policy like
least priviledge principle.

Singapore, August, 1984

129

Cmperation betveen processes
While usually providing strict
processes, OS generally do not

isolation of
support the

direct cooperation of concurrent processes in
different execution domains. As a consequence,
communication has to be carried out via the OS
by primitives like SIGNAL and WAIT. It is a
well known fact that interprocess communi-
cation (IPC) is very expensive [Ha79]; a
process switch typically requries several
thousand instructions (- 5000).
Each DB-call issued by AP synchronously
implies at least two process switches. This is
particularly bad if the requested DBMS service
is short. For example, in CODASYL systems a
great share of the executed DBMS services
consists of very short operations like FETCH
NEXT, IF MEMBER etc. with only a few hundred
or less instructions. In these situations more
than 90% of the total path length is due to
process switching. Hence, process switches
should be avoided as far as possible, e.g. by
more powerful D&operations or by suitable
structures for AP-DBMS cooperation.
Another aspect is important for efficient
process cooperation. If there is no common
storage area available for AP and DBMS,
parameters and results of each D&call have to
be exchanged via special areas of the OS. Such
a MOVE mode requires to copy the transferred
data twice in each direction. The use of
common areas in main (virtual) memory would
greatly facilitate the exchange of data
(LOCATE mode).
Ideally, it should be possible for each Api to
share a variable length area with the DBMS for
private data exchange. Since sharing of
variable length items between address spaces
is usually not supported by the hardware,
shared use of storage has to take place in
units of pages (or units of multiple pages).
It seems to be sufficient for isolation and
fast data exchange to allocate a separate page
for each pair APi-DBMS.
The possiblity to allocate shared areas
(segments) for families of processes allows
for a greater flexibility when the DBMS is
embedded in anOS environment. D&functions
can be distributed among processes or several
activations (instantiations) of the DBMS code
in different processes can be employed to run
the given workload.Despite of a conceivable
increase in parallelism, we have not con-
sidered a judicious distribution of function
because of the tremendous IPC overhead ex-
pected. The latter idea, however, deserves
further attention.
By using shared segments multiple DBMS
activations can be installed in different
address spaces as independent processes (as
seen from the OS). Shared segments are
necessary to hold global DBMS data including
- the system buffer (SB)
- the input queue (server queue)
- the log buffer

- free placement information, central
administration tables, control blocks for
locks and transactions and their related
queue structures.

The latter structures are called global system
tables (GST).The DBMS code itself can be put
into a shared segment and executed in a
reentrant manner by each of the DBMS processes
saving storage space and enhancing sub-
stantially locality of reference which is par-
ticularly important in a paging environment.

syrchronization of mltiple DBI6 processes
Scheduling of processes by the OS is pre-
emptive, since they are considered to be
independent, Hence, operations on the global
DBMS data can be interrupted at arbitrary
times. Therefore, access to these data has to
be synchronized to avoid lost updates and in-
consistent reads.
How can synchronization of independent
processes on common data be achieved? The use
of OS services (SVC for lock requests) is
ruled out for performance reason. Access to
these global resources is characterized by
high frequency of synchronization events and
relatively short lock duration. Therefore,
synchronization has to be performed directly
between the participating processes by
appropriate protocols and by observing a given
discipline. Usually, machine instructions like
TS (Test and Set) or CS (Compare and Swap)
[IBM831 can be used to implement semaphores
and corresponding queue structures [GW79].
Hence, access to a global resource can be
protected by a critical section as follows:
- if the resource is free, lockand unlock is

cheap and straigthforward (- 10 instr.)
- if a locked resource is found, the re-

questing process has to wait either by busy
wait (spin lock) or by interrupt wait
(suspend lock).

In the multiprocessor case busy wait is
considered to be the most economic solution
[BL79] because probability is high that a
process on another processor keeps the lock
and releases it soon. On the other hand,
increased access to the shared memory which
stores the lock may slow down the progress of
parallel processes because of high memory
contention. In a uniprocessor system it is
usually recommended to apply interrupt wait
because otherwise the rest of the time slit
is consumed by an active IDLE-operation (>lO 5
instr.). The waiting process has to be
activated by a SIGNAL of the process freeing
the resource. Hence, this situation causes two
process switches.
Global DBMS tables are charaterized by very
high traffic; hence, they are called hot spot
data [B179]. For example, the lock for the
system buffer is typically set by a process
once per 1000 instructions and is held for
about 50 instructions (high traffic lock).
After 1000 instructions it is requested again

Singapore, August, 1984 Proceedings of the Tenth International
Conterence on Very Large Data Bases.

130

with high probability by the same process.
When a DBMS process holding a high traffic
lock is preempted because of page wait or time
slice runout, there is the danger of
establishing a convoy in front of the re-
source. This happens because all subsequent
processes will probably run against the high
traffic loch enqueue and then voluntarily go
to sleep. When the owner 0 of the resource
finally continues, he will soon release the
resource thereby locking it for the first
process P in the queue (FIFO). After sig-
nailing P and continuiq normal processing, 0
willsconbumpagainstthelockset forP with
high probability. According to the given
protocolOenqueues (at the end of the queue)
and goes to sleep. When the resource is
assigned in a FIFO-manner, then a stable
quasi-deadlock arises, A propcsal to break up
the convoy is given in [Bl79].

3.AllocatiatofDBF6pcocewB
In the previous section we have discussed the
main issues of DBMS integration, the basic
concepts and problems of which have also been
discussed in [St81]. Now we are going to
investigate conceivable process structures
thereby assuming that the introduced concepts
of isolation, cocperation and synchronization
between processes are available.

Sirqle~serwerDBLG
Only one process is assigned to the DBMS as
illustrated in Fig. l.The areas DAi are used
to directly exchange parameters and data
between APi and DBMS. The OS code (system
memory) is part of every virtual address space
and is protected by hardware primitives.OS
functions are exclusively called via SVcCs.
Communication between APi and DBMS is
performed by the resp primitives of the OS.

g-

APl

OS

-7
n

ui

0s

Fig. 1: Allocation of n application processes
to asingle DB&Sserver

The single server solution has a number of
advantages like simple communication
structure, no global DBMS data, no critical
sections, etc. However, it also incorporates
some inherent complexities and flaws. In order
to prevent synchronous I/O of the DBMS
process, some kind of multi-threading must be
implemented. Whenever the server initiates an
I/Chequest, the context of the current thread
has to be saved and DBMS processing has to

Proooadlngr of the Tenth lntomatlonrl
Confonnco on Wry Large Data BNI1.

resume with another request in a parallel
thread. Hence, asynchronous I/O generates more
complex DB& code and introduces two levels of
scheduling - in the OS and in the DBMS. Even
in this improved solution the entire DB-
related activity is often temporarily
suspended by page faults or other synchronous
wait conditions, since there is only one
serverprocess.
Because of the uneven load characteristics of
the various processes high priority resource
allocation for the server must be mandatory.
But even if the server could almost per-
manently execute user requests, DBFS proces-
sing is limited by the capacity of a single
CPU. A single server solution cannot take
advantage of tightly coupled multiprocessors
and is therefore not competitive in such
widely used environments.

ha.ltipleserveroBes
As discussed in section 2 multiple processes
can be allocated for performing DBMS
processing. The distribution of D&requests to
different processes requires shared segments
for global DBMS data and the respective access
synchronization. A page fault in a server
process does not necessarily interrupt DBMS
services, when other servers are ready for
execution. Although multi-threading is
conceivable in each of the servers# the
simpler solution with single-threading and
synchronous I/o seems to be acceptable. Here,
scheduling is entirely left to the OS - its
original and natural location - thereby
resulting in a substantial simplification of
the DBMS code. A server completely executes a
DBrequestbefore it fetches the next one from
the server queue or goes to sleep in case of
an emptyqueue.Onlywhen a request has to be
delayed due tolocksonDBobjects, theserver
switches to a subsequent request before
finishing the current one, which can be
accomplished by a rather simple server
protocol. This is necessary because of the
long duration which would significantly reduce
the availability of server processes to do
useful work. Moreover, situations could occur,
where all servers were blocked because of long
lock waits although there is no transaction
deadlock. In any case, different processors in
a multiprocessor environment can support DBMS
processing simultaneously.
A first, very simple approach could allocate a
private server to each AP. With n APs this
kind of symmetric process allocation would
consume 2n processes. Since there is a
synchronous calling structure between each
pair APi-DBMS(i) and since processes are
expensive objects, this solution does not
exploit all resources in an optimal way,
A more realistic solution allocates m servers
for n AP processes (n> m). As shown in Fig.
2, a special monitor process is employed to
distribute the requested services to the

-g&w@, August, 1984

131

servers. An APi puts his request into the
monitor queue, signals this event to the
monitor and goes to sleep. When active, the
monitor supplies the servers with incoming
user requests in the server queue and
activates a sleeping server when necessary. It
is expected that the monitor - when activated
- can distribute several requests at a time. A
server picks up requests from the server queue
as long as the queue is not empty. This kind
of communication is assumed to reduce the
overall process switching costs.

Fig. 2: mltiple DBI% servers With monitor

A symmetric return of a D-all would imply up
to 4 process switches. Fortunately, the return
path could be shortened. Since the caller is
known to the particular server, it can be
signalled by the server and the results can be
passed back directly. Hence, each D&call
causes up to 3 process switches in this
multiple server/monitor solution.

-- -_

Ui

u c6

Fig. 3: mltiple DBMS servers without monitor

The following approach promises an improvement
of the process switching overhead. The idea of
representing the monitor by a separate process
is rejected. Instead, its functions are either
integrated in the OS requiring modifications
of the OS code with all its disadvantages or
in each of the AP% using a special connecticKl
module linked automatically to the application
programs. The resulting multiple server
solution is shown in Fig. 3. Obviously, the
overhead of each DEcall is limited to 2
process switches.
Both multiple server solutions are further
investigated in the next sections by means of
a simulation model to determine process
switching overhead, response times, convoy
problems on high traffic locks, etc. The
results of the symmetric 2n solution can be
estimated as an upper bound of the n+m-
solution.

4.Thesirrlationxxkl

To evaluate both multiple server DBMS
solutions and in particular to assess the
costs induced by the selected embedding
strategy, a comrehensive simulation model has
been implemented. A high level programming
language was employed in this task, since the
available general purpcse simulation languages
like GPSS did not provide suitable primitives,
especially to express the synchronization
mechanisms needed to represent DBMS-AP
interaction in an easy and adequate manner.
The subsequent explanation of the simulation
model follows a conceptual subdivision into
three major components. Each of them embodies
several important aspects underlying the in-
vestigation Firstly, a relatively coarse ab-
straction of the DBMS and AP internal proces-
sing with special regard to the usage pattern
of OS primitives is put into specific AP and
DBMS models. Secondly, the wayAPOs transfer
their requests to the DBMS and receive the
associated answers, is demonstrated by the
communication structure model, and thirdly the
basic OS primitives utilized in a DBMS imple-
mentation on top of a general purpose OS are
incorporated into the OS submodel.

!rkAPadDBmsmdels
The structure of the AP and DBMS internal
processing model is closely determined by the
main purposes of the overall simulation
approach. The investigation focusses primarily
on the interactions among AP, DBEls, and OS and
their related costs, especially in terms of
process switches. Additionally, the impact of
high traffic locks on the total system's
performance is to be analyzed and thus has to
be reflected in the DBMS model.
Therefore, only coarse models fortheAP and
DBMS internal activities were designed, mainly
incorporating the sources of OS requests
within AP and DBMS and comprising the mani-
pulation of high traffic locks within the
DBMS.This led to a solution, where everyac-
tive component in the system is regarded as a
cyclic process which repeatedly executes a se
quence of actions until the simulation run is
completed.
The AP model, illustrated by Fig. 4a, is very
simple. From the OS point of view, each AP
performs a certain number of machine
instructions, which finally result in a
request for DBW service (execution of a DML-
statement). The request is then forwarded via
OS primitives to the DBMS described by the
communication structure model. In the meantime
the AP synchronously waits for the results
provided by the DBMS. After reactivation and
receipt of the results, the AP continues by
analyzing the data returned and starting the
next cycle. It is assumed thatanAP is never
suspended for other reasons by the OS; in
particular, an AP does not initiate private

Singapore, August, 1984 Proceedings of the Tenth International
Conterence on Very Large Data Bases.

132

I/O-requests. The only parameter characte-
rizing the AP in this model is the number of
machine instructions necessary to execute a DML statement in the underlying application
environment. This value certainly depends on
several factors like the type of application,
the functional capabilities of the DML, the
data model, etc. For the sake of simplicity
this parameter was set to a fixed quantum in
all simulation runs.
One of the two variants of multiple server
DBMS analyzed herein employs a so-called
monitor process to forward DB requests
received from an AP to the servers. Again,
the structure of this process is very simple,
as can be seen by Fig. 4b. The only action
performed by the monitor is the selection of a
free DBMS server and the assignment of an DML
statement. Every time, the DB monitor is
activated, it distributes all the statements
found in the monitor queue and then synchre
nously waits for the next signal. Again, wai-
ting implies a process switch (see discussion
of the communication structure model). The DB
monitor, similar to the AP model, is characte-
rized by the number of instructions to analyze
and transmit a DML-statement.

I I

b)

Fig. 4: Wels for AP, monitor and server

The most complex model is that of the DBMS
server. Therefore it will be explained in two
levels of abstraction graphically illustrated
by Figs. 4c and 5. Fig. 4c shows the server as
a cyclic process which repeatedly answers DML-
requests. A DML-statement is executed in a
number of steps. Each of them represents the
processing of a database page. The DB is
assumed to be organized into fixed size pages
residing on external memory. Starting with the
DML-statement, the server dynamically
transforms requests to higher level data
objects like tuples into a number of accesses
to the pages containing the data which
represent those objects on external storage.
Depending on the type of statement and the
available access paths, one or more pages will
be inspected until the requested data have
been located. In order to simulate a variety
of different requests without explicitly
modelling DB% internal storage structures the
number of pages touched per DML-statement was

Proceeding8 of the Tenth International
Conference on Very Large Data Bases.

taken from a random distribution as another
simulation parameter.
Fig. 5 shows a more detailed specification of
the activities involved in page processing. At
first, theDBm server has to ensure that the
appropriate locks for the pages to be accessed
are acquired. In reality, this is done by
examination and perhaps subsequent manipu-
lation of DB% global data structures. In the
simulation model, again, the &cision whether
or not a page is locked is made according to a
random distribution, since the details of lock
management are of no interest for this in-
vestigation. If a locked page is found, the
DML-statement has to be suspended until the
lock is released. Since no explicit locking
information is maintained, this problem is
also solved by taking the suspension perids
duration from a random distribution. In the
model, the DBMS server is not deactivated in
this situation. Instead, it continues with
another DMGstatement, if possible. Although
there are no data structures to represent
locking information, their fictive manipula-
tion under the protection of a high traffic
lock (lock latch) is included in the server
model. Since there are additional latches, the
discussion of their management is deferred
until all of them have been introduced.
In reality, after the server has aoguired the
lock, the page itself has tobe fixed in main
memory to analyze its contents. Ihis implies
an I/O operation if the page does not yet
reside in the system buffer. Similar to the
approach chosen for lock management, no
control structures are maintained for the

Fig. 5: Detailed structure of a Duels server
Singapore, August, 1994

system buffer and the decision, whether or not
an I/O is necessary is made due to a random
distribution. Again, the high traffic lock
(buffer latch) protecting control structures
for the system buffer is modelled explicitly.
After having fixed the page in main memory,
the server can analyze its contents. Only the
duration of this step is of interest in the
simulation and has been selected as a model
parameter. Two more high traffic locks are
acquired and released before the processing of
the page is completed.
The manipulation of high traffic locks has
been modelled in detail and is depicted in
Fig. 6. In the simulation model, the state of
each latch is maintained and checked whenever
a server process wants to enter the respective
critical section. In case the latch is free
the server acquires it, executes a number of
machine instructions to manipulate the global
data structures and finally releases the
latch.Otherwise, the current server process
tries to acquire the latch held by another
server process. According to the OS model,
this situation can only occur when the time
slice of the latter process has run out within
the critical section protected by the resp.
latch.Therefore, the current process has to
wait anyhow until the owner of the latch
regains control of the CPU. In the simulation
model, the currentserverprocess is delayed
for a period of time taken from a random
distribution.

Fig. 6: Control flm on a latch

The -ication structure model
In the previous section the process models for
DBmonitor, DBMS, and AP were introduced and
the locations of control transfer and DB
requests were identified. Now, the commu-
nication structure model describes in detail,
how aDMGstatement is passed from the AP to
the DBMS server and back to the AP and when
process switches are mandatory or can be
avoided. The first variant examined utilizes a
so-called DB monitor to dispatch DML.-statement
to the DBMS servers and is illustrated by Fig.
7, where n AP's generate the workload for m
DBMS servers. The sequence of events in
processing a DML-statement is the following.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Fig. 7: Communication model for the
monitor/server structure

At first, therequest is generated in APiand
inserted into the monitorqueue.Thereafter,
APi is suspended until the DML-statement has
been completed by the DBMS. Whenever the
monitor queue was empty at the time the AP
inserted its request, the monitor is sig-
nalled, after reactivation by OS scheduling it
will eventually dispatch the request. Whereas
each single DB-call causes a process switch
for the AP, the monitor queue may be emptied
(G n requests) during a single monitor acti-
vation. When removing a statement from the
monitor queue, it at first controls the state
of the servers. If any of them is waiting for
a DB-call, it is signalled by the monitor and
assigned the statement. On the other hand, if
all servers are currently executing a DML-
statement, the monitor inserts the request
into the server queue, because whenever a
server completes a DML-statement, the server
queue is checked for additional work, thus
saving unnecessary process deactivations.
After signalling the APi, a server immediately
starts processing the next DML-statement found
in the server queue. Only if the queue is
empty deactivation takes place.
The second variant investigated works without
monitor. Principally, the functions of this
process have been integrated into the AP's,
namely selection of a free server or
alternatively the insertion into the server
queue, in order to further reduce the number
of process switches.

TheO6rodel
The OS model simulates a general purpose time
sharing system on a uni-processor, the gross
structure of which is shown in Fig. 8. The CPU
capacity is distributed based on time slices
(TS) in order to grant a fair share of that
resource to each process. The processes
mentioned so far are the only ones running on
the computer system.As can be seen from Fig.
8, the OS keeps track of the processes
involved by holding them in one of the four
queues. Those ready for execution are gathered
in the CPU queue, which is managed in FIFO
order. The remaining three queues contain the
blocked processes. The I/O queue is entered by
servers performing an I/O request to fetch a

Singapore, August, 1984

134

DB page into the system buffer. The synchro-
nization queue comprises processes waiting for
a signal operation issued by another process,
i.e. @s awaiting the servers’ answer, idle
servers, etc. Finally, the delay queue is re-
served for servers having voluntarily relin-
quished control of the CPU because they have
encountered a locked latch. The server is kept

~rFtlyl.-l./
Fig. 8: Structure of the OS model

in this queue until the &lay period computed
frcm a random distribution has expired. It is
important to note that leaving one of the
latter three queues does not automatically
imply the acquisition of the CPU, since its
queue is processed in FIFO order. The last
transition in Fig. 8 to be discussed
represents CPU preemption due to TS runout.
7.b running process is inserted at the tail of
the CPU queue and gets its TS refreshed. The
length of the TS is measured by the number of
machine instructions a process is allowed to
execute before being preempted from the CPU.
This is due to the design decision to chose
machine instructions as the unit for the
simulation clock. Consequently, real times
like I/o duration have to be transformed using
the processor speed specified in MIPS.
To gain a better insight into the dynamics of
the sirmlation system the process management,
in particular the TS management is outlined in
the following. All the processes are given
equal priorities and are modelled as a
collection of one or nore action blocks which
account for a certain amount of machine
instructions. According to the process model
the action blocks pertaining to the running
process are executed thereby decrementiq the
Ts and incrementing the simulation clock until
either the process is blocked or the TS runs
out. In the latter case, the next action
block’s identification is saved and the
process is appended to the CPU queue. The AP
model consists of a single action block as
well as the monitor model. The server model
comprises 6 blocks four of which represent the
critical sections, Each time the DBMS is
preempted within such a block the resp latch
has to be marked locked. The remaining blocks
simulate the page specific computation and the
software costs imposed by I/o processing. Two

Proceedlngr ot the Tenth International
Conference on Voty Large Data Bases.

more reasons exist to advance the simulation
clock. Contrary to the above case, however,
none of the processes is charged with the
associated costs.
Firstly, the simulation clock is incremented
to bridge processor idle periods, when all the
processes are in the blocked state. Secondly,
whenever a process leaves the CPU or an idle
period is terminated process switching costs
occur.

5.Silrlationresultsand interpretation

As can be seen from the discussion in the
previous section, the complexity of the
simulation model is considerable. Fig. 9 is
intended to give a comprehensive overview and
a systematic classification of the full
spectrum of parameters involved. !lhe values of
the parameters kept constant over all
simulation runs are listed in parentheses
below the parameter name. Besides processor
speed and the probabilities the parameter
values have been specified in terms of machine
instructions. where recessary, real times have
been transformed based on the pmsor speed
of 1 MIPS. Parameters with blank value field
have been varied in the simulation. The values
for the DB related factors are derived from
extensive DBMS measurements [EBPS81]. The DBEls
under investigation was of the CODASYL type
with a rich variety of storage structures to
support rapid data retrieval and manipulation.
OS specific factors reflect the situation in
the measurement environment and were the
standard values provided by the vendor. The
number of instructions per DML-statement and
per page, to our experience, are typical for a
CODASYL interface. Nevertheless, we do not
expect principal changes in the basic values,
even if these parameters were doubled.

Variation of the mdber of AP's
The first series of simulation runs was per-
formed with a constant number of three servers
and in the average 3.5 I/bs per DML-statement
(pIo=0.35). The number of AP*s (H AP) ranged
from 3 to 11. Figs. 10 to 14’summarize the re-
sults obtained. VAlU is used as an abbre-
viation for the multiple server solution with
DB monitor, VAE2 for the solution without.
Fig. 10 gives the total throughput in terms of
DML-statements in a run of 1 hour of SimUla-

tion time. As expected VAX? performs better
than VARl in all comparable situations. After
drastic increases from 3 to 6 Ap’s the system
approaches a saturation state. The symmetric
assignment of AP’s to servers (2n solution)
leads to the worst results in performance.
Fig. 11 tabulates the average number of ser-
vers (# S) already processing a DML-statement
whenever an AP produces another request. The
closer this value approaches the total number
of servers allocated, the more often a request

Sln9apore, Augwt, 1994

135

VAR 1 VAR 2 :: AP VAR 1 VAR 2

38 229 39 309
46 469 48 lG1
52 063 54 734
57 070 58 870
59 359 61 OS5
60 358 61 963
60 665 62 363
60 950 62 575
60 S66 62 500

(104-2.10‘) IO-B.l& 10.01~

Fig. 9: Overview of the sinulation model parameters

3 1.20 1.23
4 1.79 1.84
5 2.27 2.35
6 2.61 2.67
7 2.81 2.a6
0 2.92 2.94
9 2.97 2.96

10 2.SB 2.99
11 2.s9 2.99

#AP VAR 1

3 6.512
4 6.284
5 5.966

I-
6 5.699
7 5.520
8 5.438
9 5.397

10 5.379
11 5.373

VAR 2

5.556
5.342
5.061
4.830
4.687
4.619
4.587
4.577
4.573

Fig. 10: Throughput Fig. 11: Average parallelism Fig. 12: Average number of process
of servers switches per DML-statmnt

will be transferred via the server queue, thus
avoiding a process switch. The symmetric
assignment of servers to ws cannot benefit
at all from that optimization in the
communication structure because DML-statements
are always sent directly to the server.This
is illustrated by Fig. 12, too, which displays
the average number of process switches
incurred in processing a single DML statement.
With the lowest number of Ap's the monitor
variant almost exactly needs one process
switch more. The slight reduction of this
difference with a rising number of Ap's is due
to multiple DB requests being dispatched
during a single activation of the monitor.
In Fig. 12 the average number of process
switches in a configuration with 3 servers and
11 AFs is about 4.5 for VAX?. Since roughly
3.5 of these are caused by buffer I/O and
another process swit& is performed after the
AP sends its DML statement, the transfer is
accomplished in most cases via the server
queue.
Fig. 13 tabulates the average length of the
time interval between removing a statement
from the server queue and signalling the Ap
its completion. It is obvious that those

Proceedings of the Tenth Internatlonal

conference on Very Large Data Bases.

values are almost constant. However, Fig. 14
indicates that the response times, which
include the waiting period for a server, rises
with the number of es. Moreover, the values
for VARl are slightly but consistently higher
than those for VAR2. This results from the
fact, that one additional process consumes its
share of CPU resources in VARl, sometimes
deferring the execution of a server which
would not have been the case in VAFQ. This is
consistent with the observation that the
throughput virtually remains constant with
more than 7 AP's. Looking at the processor
utilization reveals that even though the
throughput is stagnating, aboutonethird of
the simulation the processor idles. This
observation gives rise to the supposition that
the number of servers does not suffice to
effectively service the AP-s, because the
servers perform too much I/O. In order to
corroborate that supposition several simula-
tion runs with 2 and 4 servers and VARl were
executed.Theoverall throughput is depicted
in Fig. 15. Obviously, the introduction of the
fourth server boosted throughput from about
60.000 to 70.000 DML statements for 8 fls and
reduced the idle periods to 10% for more than

Slngapore, August, 1994

136

l#AP t VARI 1 VARt 1

3 0.1646 0.1636
4 0.1702 0.1679
5 0.1730 0.1705
6 0.1750 0.1717
7 0.17to 0.1722
e 0.1765 0.1724
9 0.1771 0.1725

10 0.1766 0.1723
11 0.17GD 0.1728

I#= I VAR 1 I VAR 2 [

3
4
5
t
7
8

1:
11

0.2751 0.2676
0.3010 0.2906
0.3289 0.3191
0.36~ 0.3560
0.4i20 0.4006
0.4642 0.4527
0.5208 0.5072
0.5772 0.5629
0.6361 0.6211

Fig. 13: Average semr time Fig. 14: Average response time Fig. 15: Throughput

28 870
35 623
39 956
42 345
43 294
43 554
43 607

36 229
46 469
52 OG3
57 070
59 359
GO 358
to l%;s
6D 950
60 9CG

I -

47 407
55 803
62 577
67 495
70 565
72 163
73 195
73 24'1

10 ws. Now, the elimination of the third
server process showed drastically reduced
throughput to about 43.000 and yielded idle
periods of about half theprocessortime for
more than 6 Ap's.

The quantitative results of the previous
section showed the number of servers to
considerably affect the overall performance.
Another lesson taught were the detrimental
effects of high I/o frequencies combined with
asmallnumberofserverprocess es. Very often
all servers waited for I/O completion while
the processor stood idle. Therefore, the
number of servers was varied from 1 to 8
whereas the number of Ap's was fixed at 8.
These configurations were simulated with 3.5
and 1.0 I/O operations per DML statement
(~~~"0.35 and pI =O.l).
The results are ? abulated in Fig.16 in terms
of throughput.

beyond a certain number of servers can be
explained as follows. When the number of
servers is small in comparison to that of the
Ap's, each DML statement is transferred via
the server queue, but frequentlyallservers
are blocked because of an I/O request. Such
idle periods canbeexploited by introducing
additional servers. However, only a limited
number of servers will be able to utilize the
entire CPU capacity. Adding further servers
only iv the mmberof process switches
at the expense of useful processor capacity,
since more and more statements are transferred
directly from AP to server (explicit
signallirrg). NW, Fig. 17 displays the average
number of process switches per DMGstatement
These values include process switches
triggered byI/Orequests. As can be seen this
value steadily rises with the number of
servers. At the first glance, this fact might
look somewhat puzzling but it is quite
consistent with what has been said in
connection with Fig. 16. When there is a

VAR 1 VAR 2 VAR 1 VAR 2

#S 3.5 IO 1 IO 3.5 IO 1 10 IIS 3.5 IO 1 IO 3.5 IO 1 IO

f 23 43 266 679 111 70 593 921 23 44 347 139 11e 71 555 040 1 5.361 2.620 4.536 2.070
2

60 358 124
5.399 2.836 4.569

3 834 61 963 135
2.232

160 3 5.438 3.139 4.619 2.496
4 70 577 124 745 74 016 135 898 4 5.586 3.410 4.770 2.749
5 73 762 122 466 76 754 135 155 5 5.858 3.574 5.039
6 73 12.3 120 sm

2.928
78 628 131 600 6 6.130 3.646 5.334 3.017

7 71 356 120 652 77 327 130 616 7 6.265 3.Gt2 5.524 3.043
8 72 222 120 769 77 063 131 026 B 6.323 3.664 5.561 3:046

Fig. 16: Throughput Fig. 17: Average nunber of process
switchesperwstatement

Interestingly for each variant and I/O single server almost all requests are
frequency, the values in thebeginning inprove dispatched via the server queue. The more
drastically, then gradually and finally after servers the system contains the higher beccmes
a maximum has been reached decrease. In the probability of an additional process
general, the maximum is reached with a greater switch for assigning the request a,lt as long
number of servers for the monitor solution and as processor capacity is wasted by idle
the greater I/O frequency.Not surprisingly, periods anyhaw, these process switches do not
throughput is clearly improved when the I/O diminish the total amount of useful work
rate is smaller, since every saved I/O performed. When the CPU is saturated
eliminates the associated computation costs additional process switches reduce the overall
and a process switch.The performance losses throughput. Figs. 18a and 18b graphically

Pmceodingr of the Tenth Intomdond slngrpon, August, 1904
-OilVOYLUfpD6t6B68OO.

137

12345678 12345678

Fig. 18: Distribution of processor tims

illustrate the relative share of the CPU time
spent for server, monitor and AP processing
combined, the idle times, and process
switching overhead, which surprisingly can
reach 65% of the total capacity.
Though the total number of process switches
per D-statement is about 2.5 less when only
1 I/O is issued per statement, the relative
share of prccess switching overhead does not
change significantly. However, throughput
increases substantially. Idle periods, which
occur when all the servers synchronously wait
for I/O completion, are reduced much faster
with rising number of servers, when only 1 I/O
is required per DML-statement. This is
reasonable, since here servers have much
longer page processing periods before the next
I/O request is performed, thus reducing the
probability that all servers wait for I/O
completion at the same time.

Influenazoflatcbsyn~iration
An important aspect of server synchronization
is the influence of the frequency of latch
requests and the length of critical sections
(lock duration) on performance. In particular,
the probability of server preemption when
owning a latch should be investigated.
Therefore, a number of simulation runs were
dedicated to answer these questions. In all
simulations the number of servers were varied
from l-8 keeping # AP=8 constant. The
probability of physical I/O during page access
was pIo=0.35.
A throughput test was performed with different
lengths of critical sections (lock duration:
30 and 60 instr.). Fig. 19 shows the overall
effect with known characteristics. Longer
critical sections increase the risk of
"blocking" time slice runout which, in turn,
enhances the waiting times of servers in front
of a latch which directly diminish throughput.
VAR2 in superior toVARl by up to 7.5%.Using
the shorter critical section a gain of up to
2% can be expected.
We are now going to evaluate more thoroughly
the effects of latches. Since only the server
model is involved with latch requests, both
variants of server structures are assumed to
produce uniform results concerning the pre-

Procsedlngs ot the Tenth International
Conference on Very Large Dats Bases.

#S

Throughput Throughput
60 30

VARl VARZ VARl VARZ

1 23 238 23 312 23 266 23 347

2 43 397 43 892 43 679 ‘44 139

3 59 441 61 161 60 358 61 963

4 60 981 72 450 70 577 74 016

5 72 201 ‘77 021 73 762 78 754

6 71 713 76 982 73 128 70 623

7 71 051 7s 577 72 356 77 327

0 70 842 75 436 72 222 77 063

Fig. 19 Throughput

emption problem. Indeed, all numerical results
delivered were very similar. Therefore, we
will limit their presentation to VARl.
The distribution of preemption in the various
code sections (latch (critical sections), I/O
processing, page processing) is shown in Fig.
20. Of courseI the number of all preemptions
is strongly dependent on the time slice
length. With fixed time slices, the
probability of preemption increases with the
length of the resp. code section. Having
latches with 30 instructions, latch preemption
varies between 7% and 8.5%.
The sum of the waiting times in front of
latches grows with increasing number of
servers. Because latches are used more often,
the probability of preemption is augmented. On
the other hand, a preempted server has to
spent more time in CPU queue applying for a
new time slice before it can free the latch.
Fig. 21 shows a summary of critical (section)
preemptions and waiting servers. The average
number of waiting servers, however, is not
very critical; in particular, long convoys
could not be observed. This is mainly due to
the convoy resolution applied according to
[B179], that is, as soon as growing queue was
detected all waiting servers were signalled
(violating the FIFO principle). Nevertheless,
the percentage of waiting servers shows that
about 20-30% of the servers are blocked in the
average.
It can be argued that these results do
strongly depend on the activity pattern of the
servers. Therefore, the probability of
physical I/O was reduced topIO=O.l, that is,
a DML-statement requires page fetch in the
average. Due to the reduced I/O-activity more
DML-statements could be processed increasing
latch use and preemption. Fig. 22 and 23 are
comparable to Fig. 20 and 21. Latch preempticn
now ranges from 13% to 14%. Since less servers
are waiting for I/O, the CPU queue should be
longer, thus enhancing the waiting time for
the preempted server. This is indicated by the
characteristic values in Fig. 23 for 2-4
servers. Due to the I/O-reduction this range
of servers achieved c&mum throughput; that
is, the servers are most active. For higher
server numbers, IDLE-time increases thereby

Singapore, August, 1984

138

Vat- 1

critical waiting
preemptions servers

% servers ~~~:‘i;,~~*
waiting servers/latch

I total
number of

preemptions
holding a processing processing
latch I/O a page

#S

140 0 I 0.00 0.00
240 52 21.66 0.21
382 152 19.89 0.39
418 331 26.39 0.79
416 494 29.60 1.18
443 675 30.47 1.52
416 692 27.72 1.66
360 644 24.42 1.69

1 724
3 259
4 515
5 260
5 522
5 473
5 416
5 406

Fig. 21: Critical preemptions (pIO=0.35j Fig. 20: Distribution of preenptions (pIC=0.35)

Var 1

‘m

I Var 1
total
number of
preemptions

3 067
4 865
5 420
5 416
5 316
5 253
5 236
5 245

US

411 0
678 205
719 491
709 714
670 a15
697 901
724 912
719 a82

411 13.40
678 13.93
719 13.26
709 13.09
670 12.60
697 13.26
724 13.82
719 13.72

I I

5
6
7
a

Fig. 22: Nunber of preemptions (pIO=O.l) Fig. 23: Critical preemptions (pIO=O.l)

reducing preemption conflicts. Again, critical
preemptions do not impede the overall behavior
dramatically.

6.Conclusiorrs

consumed a huge share of the CPU resources
(about 50%). This underscores the penality
paid because of inadequate OS support which
necessitates the partitioning of DBMS and AP
to separate processes.
Since communication costs remain high even in
the optimal configuration, the expressive
power of a DBMS interface is also quite
important for the communication structure
chosen. A non-procedural interface needs
generally less D&calls than a navigational
interface. To be specific, to run a given
application (parts explosion, bill of
material) with a relational and a CODASYG
system, we needed 2.2 times more DB-calls for
the KXXSYL-system (10356 vs. 22996 DB-calls).
To save I/O related process switches
multithread solutions within server processes
have to be introduced. This kind of saving
seems to be much more promising in appli-
cations with high I/O frequencies. Of course,
another improvement is the availability of
large database buffers.
These arguments indicate that better ways of
communication support should be found. Ring
protection or other novel OS isolation
features [PR83] are prime candidates. Their
saving potentional is the number of
communication-related process switches inve-
stigated in this paper.

The structure of the various simulation pro-
cesses closely models real DBMS operation
under a general purpose OS. This could be
confirmed b extensive DBMS measurement
experience EHRS~~]. Results of this project f
permit at least a partial validation of our
simulations. Therefore, the following
conclusions can be drawn.
The experimental results have shown the
superiority of the multiple server solution
without monitor over that with monitor.
Depending on quantitative relation between
servers and AP's 0.7 to 1.0 process switches
were saved per DML-statement. The multiple
server DBM3 without monitor needed between one
and two process switches to process a single
DML-statement. The introduction of the server
queue to asynchronously transfer requests
without OS interaction turned out to be
especially helpful, since in the optimum
servepAP relation only slightly more than a
single process switch was used per DML-
statement. The formation of convoys or waiting
times due to critical preemption turned out to
be no severe problem. This was partially
achieved by the chosen resolution strategy
[Bl79].
However, process switching overhead in general

Promsdings of the Tenth Intematlonal Singapore, August, 1994

139

The authors wish to thank the referees for
their constructive criticisms which help& to
improve the final version of the paper. Weare
also indebted to Karin mgel, who did the bulk
of programming the simulation model, and to
Dr. Andreas Reuter for numerous clarifying
discussions on the subject of the paper.

B179

EHRS81

Gr78

m79

w79

IB!JB~

PI@3

St81

Tf'B2

Blasgen, M. et al.: The Convoy
Phenomenon, in: ACM Cperating Systems
Review, Vol. 13, No. 2, 1979, pp. 20-
25
Effelsberg, W., HBrder, T., Reuter,
A Schultze-Bohl, J.: Performance
A;(alysis and Prediction of the
DatabaseSystemUDS, Technical Report
41/81, University Kaiserslautern,
1981 (in German)
Gray, J.N.: Notes on Data Base
Gperating Systems, in: Lecture Notes
in Computer Science 60, Advanced
Course on Operating Systems,
Springer-Verlag Berlin, 1978, pp.
393-481
Gray, J.N., Watson, V.: A Shared
Segment and Interprocess Communica-
tion Facility for VM/370, IBM Re-
search Report RI2450, San Jose, 1979.
Harder, T.: Embedding a Database
System in an Operating System
Environment, in: Datenbanktechno-
logie, Berichte German Chapter of the
ACM2, B.G.Teubner, Stuttgart, 1979,
pp. 9-24 (in German)
IBM Corp.: System/370 Principles of
Gperation, order no. GA22-7000
Peinl, P., Reuter, A.: Synchronizing
Multiple Database Processes in a
Tightly Coupled Multiprocessor Envi-
ronment, in: ACM Operating Systems
Review, Vol. 17, No. 1, Jan. 1983,
pp.30-37
Stonebraker, M.: Operating System
Support for Database Management, in:
CACM, Vol. 24, No. 7, July 1981, pp.
412-418
Tanenbaum, A.S., Mullender, S.J.:
Operating System Requirements for
Distributed Data Base Systems, in:
Distributed Data Bases, H.J.
Schneider (ed.), North Holland, 1982,
m 105-114

Proceeding, of the Tenth Intematlonrl
Conferenw on Very Lerge Data Base&

140

