
Bwaluating m.ltiplesereerDBlQiingeneralpurpose aperatixqsystemenvironmnts 

Theo Harder 
Peter Peinl 

Dept. of Computer Sciences, Univ. of Kaiserslautern, West Germany 

Abstract 

Several concepts and problems in the 
integration of a database management system 
(DBMS) into a general purpose operating system 
are investigated. In particular, isolation and 
access control, the cooperation between 
application and DBMS processes as well as the 
synchronization of multiple DBMS processes are 
discussed. Basic solutions for the 
partitioning of DBMS functions to operating 
system processes are examined and two multiple 
server DBMS solutions are evaluated by a 
detailed simulation model. Quantitative re- 
sults concerning the performance characte- 
ristics of those solutions, are presented, in 
particular for the overall throughput, process 
switching overhead and the influence of 
certain hiqh traffic locks within the DBMS. 

1. Introduction 

Special database operating sys terns are 
generally not available [Gr78]. Therefore, 
database management systems (DBEIS) have to be 
integrated in an environment offered by 
general-purpose operating systems (OS). DB& 
typically run on top of the OS as normal 
application processes using the standard 
services available from theOS such as basic 
file access methods, process management, 
virtual memory, communication facilities, etc. 
which are not tailored to the specific needs 
of a DBMS. Application programs are also 
executed as normal processes (API. Some of the 
problems are discussed in detail in [St81, 
I-%79, TM82]. 
Since processes are typically designed to run 
one application program in full isolation by 
virtually providing a single user machine (in 
timesharing mode), they often offer only 
unsuitable or insufficient means for the case 
where user processes have to closely cooperate 
with each other. This property, however, 
characterizes the situation where a number of 
application processes has to communicate with 
the DBMS thereby requesting and exchanging 
data. On the other hand, the DBMS itself can 
be embodied for performance reasons by 
multiple DR processes (servers) which have to 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

manipulate the DB data in a synchronized 
manner. 
For this given situation, a number of 
necessary requirements and useful properties 
of embedding a DBMS in anOS environment are 
discussed. Some process structures for DBMS 
integration are proposed. These solutions are 
based on available hardware and OS archi- 
tectures which are not originally designed for 
efficiently supporting the cooperation of DBMS 
and application programs. Two different 
multiple server solutions are investigated in 
detail. A simulation model is described and 
numerical results are presented for a number 
of characteristic performance criteria. 

2. Problem 0f‘DBlE integration 

Isolationadaccess control 
Usually the basic protection concept realized 
by OS and hardware primitives provides strict 
separation of processes often achieved by 
means of virtual address spaces. Such a 
spatial separation prevents any kind of 
interference. From an OS point of view, the 
process (execution domain) is considered to be 
the unit of scheduling and the unit of 
protection. This concept, however, does not 
permit the straightforward solution to run the 
DBMS as a subroutine of the AP (inlinked 
solution) which is the most efficient control 
structure for cooperation. Since the access 
rights of a program - controlled by the OS - 
are associated with the address space 
(protection unit) in which the program is 
executed and not with the particular program 
itself, the AP could act as the DBMS and 
directly manipulate the database (Trojan horse 
problem). Furthermore, other ways to circum- 
vent protection mechanisms would be possible, 
e.g. the AP could forge the access control -in- 
formation of the DBMS and then use normal DB 
calls to get the desired information. As long 
as an OS does not allow to establish different 
adjusted protection domains with controlled 
transfer of access rights within one execution 
domain, the DBMS cannot guarantee any given 
access control policy. Therefore, strict 
isolation of AP and DBMS is a prerequisite to 
enforce a distinct access control policy like 
least priviledge principle. 
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Cmperation betveen processes 
While usually providing strict 
processes, OS generally do not 

isolation of 
support the 

direct cooperation of concurrent processes in 
different execution domains. As a consequence, 
communication has to be carried out via the OS 
by primitives like SIGNAL and WAIT. It is a 
well known fact that interprocess communi- 
cation (IPC) is very expensive [Ha79]; a 
process switch typically requries several 
thousand instructions (- 5000). 
Each DB-call issued by AP synchronously 
implies at least two process switches. This is 
particularly bad if the requested DBMS service 
is short. For example, in CODASYL systems a 
great share of the executed DBMS services 
consists of very short operations like FETCH 
NEXT, IF MEMBER etc. with only a few hundred 
or less instructions. In these situations more 
than 90% of the total path length is due to 
process switching. Hence, process switches 
should be avoided as far as possible, e.g. by 
more powerful D&operations or by suitable 
structures for AP-DBMS cooperation. 
Another aspect is important for efficient 
process cooperation. If there is no common 
storage area available for AP and DBMS, 
parameters and results of each D&call have to 
be exchanged via special areas of the OS. Such 
a MOVE mode requires to copy the transferred 
data twice in each direction. The use of 
common areas in main (virtual) memory would 
greatly facilitate the exchange of data 
(LOCATE mode). 
Ideally, it should be possible for each Api to 
share a variable length area with the DBMS for 
private data exchange. Since sharing of 
variable length items between address spaces 
is usually not supported by the hardware, 
shared use of storage has to take place in 
units of pages (or units of multiple pages). 
It seems to be sufficient for isolation and 
fast data exchange to allocate a separate page 
for each pair APi-DBMS. 
The possiblity to allocate shared areas 
(segments) for families of processes allows 
for a greater flexibility when the DBMS is 
embedded in anOS environment. D&functions 
can be distributed among processes or several 
activations (instantiations) of the DBMS code 
in different processes can be employed to run 
the given workload.Despite of a conceivable 
increase in parallelism, we have not con- 
sidered a judicious distribution of function 
because of the tremendous IPC overhead ex- 
pected. The latter idea, however, deserves 
further attention. 
By using shared segments multiple DBMS 
activations can be installed in different 
address spaces as independent processes (as 
seen from the OS). Shared segments are 
necessary to hold global DBMS data including 
- the system buffer (SB) 
- the input queue (server queue) 
- the log buffer 

- free placement information, central 
administration tables, control blocks for 
locks and transactions and their related 
queue structures. 

The latter structures are called global system 
tables (GST).The DBMS code itself can be put 
into a shared segment and executed in a 
reentrant manner by each of the DBMS processes 
saving storage space and enhancing sub- 
stantially locality of reference which is par- 
ticularly important in a paging environment. 

syrchronization of mltiple DBI6 processes 
Scheduling of processes by the OS is pre- 
emptive, since they are considered to be 
independent, Hence, operations on the global 
DBMS data can be interrupted at arbitrary 
times. Therefore, access to these data has to 
be synchronized to avoid lost updates and in- 
consistent reads. 
How can synchronization of independent 
processes on common data be achieved? The use 
of OS services (SVC for lock requests) is 
ruled out for performance reason. Access to 
these global resources is characterized by 
high frequency of synchronization events and 
relatively short lock duration. Therefore, 
synchronization has to be performed directly 
between the participating processes by 
appropriate protocols and by observing a given 
discipline. Usually, machine instructions like 
TS (Test and Set) or CS (Compare and Swap) 
[IBM831 can be used to implement semaphores 
and corresponding queue structures [GW79]. 
Hence, access to a global resource can be 
protected by a critical section as follows: 
- if the resource is free, lockand unlock is 

cheap and straigthforward (- 10 instr.) 
- if a locked resource is found, the re- 

questing process has to wait either by busy 
wait (spin lock) or by interrupt wait 
(suspend lock). 

In the multiprocessor case busy wait is 
considered to be the most economic solution 
[BL79] because probability is high that a 
process on another processor keeps the lock 
and releases it soon. On the other hand, 
increased access to the shared memory which 
stores the lock may slow down the progress of 
parallel processes because of high memory 
contention. In a uniprocessor system it is 
usually recommended to apply interrupt wait 
because otherwise the rest of the time slit 
is consumed by an active IDLE-operation (>lO 5 
instr.). The waiting process has to be 
activated by a SIGNAL of the process freeing 
the resource. Hence, this situation causes two 
process switches. 
Global DBMS tables are charaterized by very 
high traffic; hence, they are called hot spot 
data [B179]. For example, the lock for the 
system buffer is typically set by a process 
once per 1000 instructions and is held for 
about 50 instructions (high traffic lock). 
After 1000 instructions it is requested again 

Singapore, August, 1984 Proceedings of the Tenth International 
Conterence on Very Large Data Bases. 

130 



with high probability by the same process. 
When a DBMS process holding a high traffic 
lock is preempted because of page wait or time 
slice runout, there is the danger of 
establishing a convoy in front of the re- 
source. This happens because all subsequent 
processes will probably run against the high 
traffic loch enqueue and then voluntarily go 
to sleep. When the owner 0 of the resource 
finally continues, he will soon release the 
resource thereby locking it for the first 
process P in the queue (FIFO). After sig- 
nailing P and continuiq normal processing, 0 
willsconbumpagainstthelockset forP with 
high probability. According to the given 
protocolOenqueues (at the end of the queue) 
and goes to sleep. When the resource is 
assigned in a FIFO-manner, then a stable 
quasi-deadlock arises, A propcsal to break up 
the convoy is given in [Bl79]. 

3.AllocatiatofDBF6pcocewB 
In the previous section we have discussed the 
main issues of DBMS integration, the basic 
concepts and problems of which have also been 
discussed in [St81]. Now we are going to 
investigate conceivable process structures 
thereby assuming that the introduced concepts 
of isolation, cocperation and synchronization 
between processes are available. 

Sirqle~serwerDBLG 
Only one process is assigned to the DBMS as 
illustrated in Fig. l.The areas DAi are used 
to directly exchange parameters and data 
between APi and DBMS. The OS code (system 
memory) is part of every virtual address space 
and is protected by hardware primitives.OS 
functions are exclusively called via SVcCs. 
Communication between APi and DBMS is 
performed by the resp primitives of the OS. 

g- 

APl 

OS 

-7 
n 

ui 

0s 

Fig. 1: Allocation of n application processes 
to asingle DB&Sserver 

The single server solution has a number of 
advantages like simple communication 
structure, no global DBMS data, no critical 
sections, etc. However, it also incorporates 
some inherent complexities and flaws. In order 
to prevent synchronous I/O of the DBMS 
process, some kind of multi-threading must be 
implemented. Whenever the server initiates an 
I/Chequest, the context of the current thread 
has to be saved and DBMS processing has to 
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resume with another request in a parallel 
thread. Hence, asynchronous I/O generates more 
complex DB& code and introduces two levels of 
scheduling - in the OS and in the DBMS. Even 
in this improved solution the entire DB- 
related activity is often temporarily 
suspended by page faults or other synchronous 
wait conditions, since there is only one 
serverprocess. 
Because of the uneven load characteristics of 
the various processes high priority resource 
allocation for the server must be mandatory. 
But even if the server could almost per- 
manently execute user requests, DBFS proces- 
sing is limited by the capacity of a single 
CPU. A single server solution cannot take 
advantage of tightly coupled multiprocessors 
and is therefore not competitive in such 
widely used environments. 

ha.ltipleserveroBes 
As discussed in section 2 multiple processes 
can be allocated for performing DBMS 
processing. The distribution of D&requests to 
different processes requires shared segments 
for global DBMS data and the respective access 
synchronization. A page fault in a server 
process does not necessarily interrupt DBMS 
services, when other servers are ready for 
execution. Although multi-threading is 
conceivable in each of the servers# the 
simpler solution with single-threading and 
synchronous I/o seems to be acceptable. Here, 
scheduling is entirely left to the OS - its 
original and natural location - thereby 
resulting in a substantial simplification of 
the DBMS code. A server completely executes a 
DBrequestbefore it fetches the next one from 
the server queue or goes to sleep in case of 
an emptyqueue.Onlywhen a request has to be 
delayed due tolocksonDBobjects, theserver 
switches to a subsequent request before 
finishing the current one, which can be 
accomplished by a rather simple server 
protocol. This is necessary because of the 
long duration which would significantly reduce 
the availability of server processes to do 
useful work. Moreover, situations could occur, 
where all servers were blocked because of long 
lock waits although there is no transaction 
deadlock. In any case, different processors in 
a multiprocessor environment can support DBMS 
processing simultaneously. 
A first, very simple approach could allocate a 
private server to each AP. With n APs this 
kind of symmetric process allocation would 
consume 2n processes. Since there is a 
synchronous calling structure between each 
pair APi-DBMS(i) and since processes are 
expensive objects, this solution does not 
exploit all resources in an optimal way, 
A more realistic solution allocates m servers 
for n AP processes (n> m). As shown in Fig. 
2, a special monitor process is employed to 
distribute the requested services to the 
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servers. An APi puts his request into the 
monitor queue, signals this event to the 
monitor and goes to sleep. When active, the 
monitor supplies the servers with incoming 
user requests in the server queue and 
activates a sleeping server when necessary. It 
is expected that the monitor - when activated 
- can distribute several requests at a time. A 
server picks up requests from the server queue 
as long as the queue is not empty. This kind 
of communication is assumed to reduce the 
overall process switching costs. 

Fig. 2: mltiple DBI% servers With monitor 

A symmetric return of a D-all would imply up 
to 4 process switches. Fortunately, the return 
path could be shortened. Since the caller is 
known to the particular server, it can be 
signalled by the server and the results can be 
passed back directly. Hence, each D&call 
causes up to 3 process switches in this 
multiple server/monitor solution. 

-- -_ 

Ui 
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Fig. 3: mltiple DBMS servers without monitor 

The following approach promises an improvement 
of the process switching overhead. The idea of 
representing the monitor by a separate process 
is rejected. Instead, its functions are either 
integrated in the OS requiring modifications 
of the OS code with all its disadvantages or 
in each of the AP% using a special connecticKl 
module linked automatically to the application 
programs. The resulting multiple server 
solution is shown in Fig. 3. Obviously, the 
overhead of each DEcall is limited to 2 
process switches. 
Both multiple server solutions are further 
investigated in the next sections by means of 
a simulation model to determine process 
switching overhead, response times, convoy 
problems on high traffic locks, etc. The 
results of the symmetric 2n solution can be 
estimated as an upper bound of the n+m- 
solution. 

4.Thesirrlationxxkl 

To evaluate both multiple server DBMS 
solutions and in particular to assess the 
costs induced by the selected embedding 
strategy, a comrehensive simulation model has 
been implemented. A high level programming 
language was employed in this task, since the 
available general purpcse simulation languages 
like GPSS did not provide suitable primitives, 
especially to express the synchronization 
mechanisms needed to represent DBMS-AP 
interaction in an easy and adequate manner. 
The subsequent explanation of the simulation 
model follows a conceptual subdivision into 
three major components. Each of them embodies 
several important aspects underlying the in- 
vestigation Firstly, a relatively coarse ab- 
straction of the DBMS and AP internal proces- 
sing with special regard to the usage pattern 
of OS primitives is put into specific AP and 
DBMS models. Secondly, the wayAPOs transfer 
their requests to the DBMS and receive the 
associated answers, is demonstrated by the 
communication structure model, and thirdly the 
basic OS primitives utilized in a DBMS imple- 
mentation on top of a general purpose OS are 
incorporated into the OS submodel. 

!rkAPadDBmsmdels 
The structure of the AP and DBMS internal 
processing model is closely determined by the 
main purposes of the overall simulation 
approach. The investigation focusses primarily 
on the interactions among AP, DBEls, and OS and 
their related costs, especially in terms of 
process switches. Additionally, the impact of 
high traffic locks on the total system's 
performance is to be analyzed and thus has to 
be reflected in the DBMS model. 
Therefore, only coarse models fortheAP and 
DBMS internal activities were designed, mainly 
incorporating the sources of OS requests 
within AP and DBMS and comprising the mani- 
pulation of high traffic locks within the 
DBMS.This led to a solution, where everyac- 
tive component in the system is regarded as a 
cyclic process which repeatedly executes a se 
quence of actions until the simulation run is 
completed. 
The AP model, illustrated by Fig. 4a, is very 
simple. From the OS point of view, each AP 
performs a certain number of machine 
instructions, which finally result in a 
request for DBW service (execution of a DML- 
statement). The request is then forwarded via 
OS primitives to the DBMS described by the 
communication structure model. In the meantime 
the AP synchronously waits for the results 
provided by the DBMS. After reactivation and 
receipt of the results, the AP continues by 
analyzing the data returned and starting the 
next cycle. It is assumed thatanAP is never 
suspended for other reasons by the OS; in 
particular, an AP does not initiate private 
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I/O-requests. The only parameter characte- 
rizing the AP in this model is the number of 
machine instructions necessary to execute a DML statement in the underlying application 
environment. This value certainly depends on 
several factors like the type of application, 
the functional capabilities of the DML, the 
data model, etc. For the sake of simplicity 
this parameter was set to a fixed quantum in 
all simulation runs. 
One of the two variants of multiple server 
DBMS analyzed herein employs a so-called 
monitor process to forward DB requests 
received from an AP to the servers. Again, 
the structure of this process is very simple, 
as can be seen by Fig. 4b. The only action 
performed by the monitor is the selection of a 
free DBMS server and the assignment of an DML 
statement. Every time, the DB monitor is 
activated, it distributes all the statements 
found in the monitor queue and then synchre 
nously waits for the next signal. Again, wai- 
ting implies a process switch (see discussion 
of the communication structure model). The DB 
monitor, similar to the AP model, is characte- 
rized by the number of instructions to analyze 
and transmit a DML-statement. 

I I 

b) 

Fig. 4: Wels for AP, monitor and server 

The most complex model is that of the DBMS 
server. Therefore it will be explained in two 
levels of abstraction graphically illustrated 
by Figs. 4c and 5. Fig. 4c shows the server as 
a cyclic process which repeatedly answers DML- 
requests. A DML-statement is executed in a 
number of steps. Each of them represents the 
processing of a database page. The DB is 
assumed to be organized into fixed size pages 
residing on external memory. Starting with the 
DML-statement, the server dynamically 
transforms requests to higher level data 
objects like tuples into a number of accesses 
to the pages containing the data which 
represent those objects on external storage. 
Depending on the type of statement and the 
available access paths, one or more pages will 
be inspected until the requested data have 
been located. In order to simulate a variety 
of different requests without explicitly 
modelling DB% internal storage structures the 
number of pages touched per DML-statement was 
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taken from a random distribution as another 
simulation parameter. 
Fig. 5 shows a more detailed specification of 
the activities involved in page processing. At 
first, theDBm server has to ensure that the 
appropriate locks for the pages to be accessed 
are acquired. In reality, this is done by 
examination and perhaps subsequent manipu- 
lation of DB% global data structures. In the 
simulation model, again, the &cision whether 
or not a page is locked is made according to a 
random distribution, since the details of lock 
management are of no interest for this in- 
vestigation. If a locked page is found, the 
DML-statement has to be suspended until the 
lock is released. Since no explicit locking 
information is maintained, this problem is 
also solved by taking the suspension perids 
duration from a random distribution. In the 
model, the DBMS server is not deactivated in 
this situation. Instead, it continues with 
another DMGstatement, if possible. Although 
there are no data structures to represent 
locking information, their fictive manipula- 
tion under the protection of a high traffic 
lock (lock latch) is included in the server 
model. Since there are additional latches, the 
discussion of their management is deferred 
until all of them have been introduced. 
In reality, after the server has aoguired the 
lock, the page itself has tobe fixed in main 
memory to analyze its contents. Ihis implies 
an I/O operation if the page does not yet 
reside in the system buffer. Similar to the 
approach chosen for lock management, no 
control structures are maintained for the 

Fig. 5: Detailed structure of a Duels server 
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system buffer and the decision, whether or not 
an I/O is necessary is made due to a random 
distribution. Again, the high traffic lock 
(buffer latch) protecting control structures 
for the system buffer is modelled explicitly. 
After having fixed the page in main memory, 
the server can analyze its contents. Only the 
duration of this step is of interest in the 
simulation and has been selected as a model 
parameter. Two more high traffic locks are 
acquired and released before the processing of 
the page is completed. 
The manipulation of high traffic locks has 
been modelled in detail and is depicted in 
Fig. 6. In the simulation model, the state of 
each latch is maintained and checked whenever 
a server process wants to enter the respective 
critical section. In case the latch is free 
the server acquires it, executes a number of 
machine instructions to manipulate the global 
data structures and finally releases the 
latch.Otherwise, the current server process 
tries to acquire the latch held by another 
server process. According to the OS model, 
this situation can only occur when the time 
slice of the latter process has run out within 
the critical section protected by the resp. 
latch.Therefore, the current process has to 
wait anyhow until the owner of the latch 
regains control of the CPU. In the simulation 
model, the currentserverprocess is delayed 
for a period of time taken from a random 
distribution. 

Fig. 6: Control flm on a latch 

The -ication structure model 
In the previous section the process models for 
DBmonitor, DBMS, and AP were introduced and 
the locations of control transfer and DB 
requests were identified. Now, the commu- 
nication structure model describes in detail, 
how aDMGstatement is passed from the AP to 
the DBMS server and back to the AP and when 
process switches are mandatory or can be 
avoided. The first variant examined utilizes a 
so-called DB monitor to dispatch DML.-statement 
to the DBMS servers and is illustrated by Fig. 
7, where n AP's generate the workload for m 
DBMS servers. The sequence of events in 
processing a DML-statement is the following. 
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Fig. 7: Communication model for the 
monitor/server structure 

At first, therequest is generated in APiand 
inserted into the monitorqueue.Thereafter, 
APi is suspended until the DML-statement has 
been completed by the DBMS. Whenever the 
monitor queue was empty at the time the AP 
inserted its request, the monitor is sig- 
nalled, after reactivation by OS scheduling it 
will eventually dispatch the request. Whereas 
each single DB-call causes a process switch 
for the AP, the monitor queue may be emptied 
(G n requests) during a single monitor acti- 
vation. When removing a statement from the 
monitor queue, it at first controls the state 
of the servers. If any of them is waiting for 
a DB-call, it is signalled by the monitor and 
assigned the statement. On the other hand, if 
all servers are currently executing a DML- 
statement, the monitor inserts the request 
into the server queue, because whenever a 
server completes a DML-statement, the server 
queue is checked for additional work, thus 
saving unnecessary process deactivations. 
After signalling the APi, a server immediately 
starts processing the next DML-statement found 
in the server queue. Only if the queue is 
empty deactivation takes place. 
The second variant investigated works without 
monitor. Principally, the functions of this 
process have been integrated into the AP's, 
namely selection of a free server or 
alternatively the insertion into the server 
queue, in order to further reduce the number 
of process switches. 

TheO6rodel 
The OS model simulates a general purpose time 
sharing system on a uni-processor, the gross 
structure of which is shown in Fig. 8. The CPU 
capacity is distributed based on time slices 
(TS) in order to grant a fair share of that 
resource to each process. The processes 
mentioned so far are the only ones running on 
the computer system.As can be seen from Fig. 
8, the OS keeps track of the processes 
involved by holding them in one of the four 
queues. Those ready for execution are gathered 
in the CPU queue, which is managed in FIFO 
order. The remaining three queues contain the 
blocked processes. The I/O queue is entered by 
servers performing an I/O request to fetch a 
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DB page into the system buffer. The synchro- 
nization queue comprises processes waiting for 
a signal operation issued by another process, 
i.e. @s awaiting the servers’ answer, idle 
servers, etc. Finally, the delay queue is re- 
served for servers having voluntarily relin- 
quished control of the CPU because they have 
encountered a locked latch. The server is kept 

~rFtlyl.-l./ 
Fig. 8: Structure of the OS model 

in this queue until the &lay period computed 
frcm a random distribution has expired. It is 
important to note that leaving one of the 
latter three queues does not automatically 
imply the acquisition of the CPU, since its 
queue is processed in FIFO order. The last 
transition in Fig. 8 to be discussed 
represents CPU preemption due to TS runout. 
7.b running process is inserted at the tail of 
the CPU queue and gets its TS refreshed. The 
length of the TS is measured by the number of 
machine instructions a process is allowed to 
execute before being preempted from the CPU. 
This is due to the design decision to chose 
machine instructions as the unit for the 
simulation clock. Consequently, real times 
like I/o duration have to be transformed using 
the processor speed specified in MIPS. 
To gain a better insight into the dynamics of 
the sirmlation system the process management, 
in particular the TS management is outlined in 
the following. All the processes are given 
equal priorities and are modelled as a 
collection of one or nore action blocks which 
account for a certain amount of machine 
instructions. According to the process model 
the action blocks pertaining to the running 
process are executed thereby decrementiq the 
Ts and incrementing the simulation clock until 
either the process is blocked or the TS runs 
out. In the latter case, the next action 
block’s identification is saved and the 
process is appended to the CPU queue. The AP 
model consists of a single action block as 
well as the monitor model. The server model 
comprises 6 blocks four of which represent the 
critical sections, Each time the DBMS is 
preempted within such a block the resp latch 
has to be marked locked. The remaining blocks 
simulate the page specific computation and the 
software costs imposed by I/o processing. Two 
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more reasons exist to advance the simulation 
clock. Contrary to the above case, however, 
none of the processes is charged with the 
associated costs. 
Firstly, the simulation clock is incremented 
to bridge processor idle periods, when all the 
processes are in the blocked state. Secondly, 
whenever a process leaves the CPU or an idle 
period is terminated process switching costs 
occur. 

5.Silrlationresultsand interpretation 

As can be seen from the discussion in the 
previous section, the complexity of the 
simulation model is considerable. Fig. 9 is 
intended to give a comprehensive overview and 
a systematic classification of the full 
spectrum of parameters involved. !lhe values of 
the parameters kept constant over all 
simulation runs are listed in parentheses 
below the parameter name. Besides processor 
speed and the probabilities the parameter 
values have been specified in terms of machine 
instructions. where recessary, real times have 
been transformed based on the pmsor speed 
of 1 MIPS. Parameters with blank value field 
have been varied in the simulation. The values 
for the DB related factors are derived from 
extensive DBMS measurements [EBPS81]. The DBEls 
under investigation was of the CODASYL type 
with a rich variety of storage structures to 
support rapid data retrieval and manipulation. 
OS specific factors reflect the situation in 
the measurement environment and were the 
standard values provided by the vendor. The 
number of instructions per DML-statement and 
per page, to our experience, are typical for a 
CODASYL interface. Nevertheless, we do not 
expect principal changes in the basic values, 
even if these parameters were doubled. 

Variation of the mdber of AP's 
The first series of simulation runs was per- 
formed with a constant number of three servers 
and in the average 3.5 I/bs per DML-statement 
(pIo=0.35). The number of AP*s (H AP) ranged 
from 3 to 11. Figs. 10 to 14’summarize the re- 
sults obtained. VAlU is used as an abbre- 
viation for the multiple server solution with 
DB monitor, VAE2 for the solution without. 
Fig. 10 gives the total throughput in terms of 
DML-statements in a run of 1 hour of SimUla- 

tion time. As expected VAX? performs better 
than VARl in all comparable situations. After 
drastic increases from 3 to 6 Ap’s the system 
approaches a saturation state. The symmetric 
assignment of AP’s to servers (2n solution) 
leads to the worst results in performance. 
Fig. 11 tabulates the average number of ser- 
vers (# S) already processing a DML-statement 
whenever an AP produces another request. The 
closer this value approaches the total number 
of servers allocated, the more often a request 
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VAR 1 VAR 2 :: AP VAR 1 VAR 2 

38 229 39 309 
46 469 48 lG1 
52 063 54 734 
57 070 58 870 
59 359 61 OS5 
60 358 61 963 
60 665 62 363 
60 950 62 575 
60 S66 62 500 

(104-2.10‘) IO-B.l& 10.01~ 

Fig. 9: Overview of the sinulation model parameters 

3 1.20 1.23 
4 1.79 1.84 
5 2.27 2.35 
6 2.61 2.67 
7 2.81 2.a6 
0 2.92 2.94 
9 2.97 2.96 

10 2.SB 2.99 
11 2.s9 2.99 

#AP VAR 1 

3 6.512 
4 6.284 
5 5.966 

I- 
6 5.699 
7 5.520 
8 5.438 
9 5.397 

10 5.379 
11 5.373 

VAR 2 

5.556 
5.342 
5.061 
4.830 
4.687 
4.619 
4.587 
4.577 
4.573 

Fig. 10: Throughput Fig. 11: Average parallelism Fig. 12: Average number of process 
of servers switches per DML-statmnt 

will be transferred via the server queue, thus 
avoiding a process switch. The symmetric 
assignment of servers to ws cannot benefit 
at all from that optimization in the 
communication structure because DML-statements 
are always sent directly to the server.This 
is illustrated by Fig. 12, too, which displays 
the average number of process switches 
incurred in processing a single DML statement. 
With the lowest number of Ap's the monitor 
variant almost exactly needs one process 
switch more. The slight reduction of this 
difference with a rising number of Ap's is due 
to multiple DB requests being dispatched 
during a single activation of the monitor. 
In Fig. 12 the average number of process 
switches in a configuration with 3 servers and 
11 AFs is about 4.5 for VAX?. Since roughly 
3.5 of these are caused by buffer I/O and 
another process swit& is performed after the 
AP sends its DML statement, the transfer is 
accomplished in most cases via the server 
queue. 
Fig. 13 tabulates the average length of the 
time interval between removing a statement 
from the server queue and signalling the Ap 
its completion. It is obvious that those 
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values are almost constant. However, Fig. 14 
indicates that the response times, which 
include the waiting period for a server, rises 
with the number of es. Moreover, the values 
for VARl are slightly but consistently higher 
than those for VAR2. This results from the 
fact, that one additional process consumes its 
share of CPU resources in VARl, sometimes 
deferring the execution of a server which 
would not have been the case in VAFQ. This is 
consistent with the observation that the 
throughput virtually remains constant with 
more than 7 AP's. Looking at the processor 
utilization reveals that even though the 
throughput is stagnating, aboutonethird of 
the simulation the processor idles. This 
observation gives rise to the supposition that 
the number of servers does not suffice to 
effectively service the AP-s, because the 
servers perform too much I/O. In order to 
corroborate that supposition several simula- 
tion runs with 2 and 4 servers and VARl were 
executed.Theoverall throughput is depicted 
in Fig. 15. Obviously, the introduction of the 
fourth server boosted throughput from about 
60.000 to 70.000 DML statements for 8 fls and 
reduced the idle periods to 10% for more than 
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l#AP t VARI 1 VARt 1 

3 0.1646 0.1636 
4 0.1702 0.1679 
5 0.1730 0.1705 
6 0.1750 0.1717 
7 0.17to 0.1722 
e 0.1765 0.1724 
9 0.1771 0.1725 

10 0.1766 0.1723 
11 0.17GD 0.1728 

I#= I VAR 1 I VAR 2 [ 

3 
4 
5 
t 
7 
8 

1: 
11 

0.2751 0.2676 
0.3010 0.2906 
0.3289 0.3191 
0.36~ 0.3560 
0.4i20 0.4006 
0.4642 0.4527 
0.5208 0.5072 
0.5772 0.5629 
0.6361 0.6211 

Fig. 13: Average semr time Fig. 14: Average response time Fig. 15: Throughput 

28 870 
35 623 
39 956 
42 345 
43 294 
43 554 
43 607 

36 229 
46 469 
52 OG3 
57 070 
59 359 
GO 358 
to l%;s 
6D 950 
60 9CG 

I - 

47 407 
55 803 
62 577 
67 495 
70 565 
72 163 
73 195 
73 24'1 

10 ws. Now, the elimination of the third 
server process showed drastically reduced 
throughput to about 43.000 and yielded idle 
periods of about half theprocessortime for 
more than 6 Ap's. 

The quantitative results of the previous 
section showed the number of servers to 
considerably affect the overall performance. 
Another lesson taught were the detrimental 
effects of high I/o frequencies combined with 
asmallnumberofserverprocess es. Very often 
all servers waited for I/O completion while 
the processor stood idle. Therefore, the 
number of servers was varied from 1 to 8 
whereas the number of Ap's was fixed at 8. 
These configurations were simulated with 3.5 
and 1.0 I/O operations per DML statement 
(~~~"0.35 and pI =O.l). 
The results are ? abulated in Fig.16 in terms 
of throughput. 

beyond a certain number of servers can be 
explained as follows. When the number of 
servers is small in comparison to that of the 
Ap's, each DML statement is transferred via 
the server queue, but frequentlyallservers 
are blocked because of an I/O request. Such 
idle periods canbeexploited by introducing 
additional servers. However, only a limited 
number of servers will be able to utilize the 
entire CPU capacity. Adding further servers 
only iv the mmberof process switches 
at the expense of useful processor capacity, 
since more and more statements are transferred 
directly from AP to server (explicit 
signallirrg). NW, Fig. 17 displays the average 
number of process switches per DMGstatement 
These values include process switches 
triggered byI/Orequests. As can be seen this 
value steadily rises with the number of 
servers. At the first glance, this fact might 
look somewhat puzzling but it is quite 
consistent with what has been said in 
connection with Fig. 16. When there is a 

VAR 1 VAR 2 VAR 1 VAR 2 

#S 3.5 IO 1 IO 3.5 IO 1 10 IIS 3.5 IO 1 IO 3.5 IO 1 IO 

f 23 43 266 679 111 70 593 921 23 44 347 139 11e 71 555 040 1 5.361 2.620 4.536 2.070 
2 

60 358 124 
5.399 2.836 4.569 

3 834 61 963 135 
2.232 

160 3 5.438 3.139 4.619 2.496 
4 70 577 124 745 74 016 135 898 4 5.586 3.410 4.770 2.749 
5 73 762 122 466 76 754 135 155 5 5.858 3.574 5.039 
6 73 12.3 120 sm 

2.928 
78 628 131 600 6 6.130 3.646 5.334 3.017 

7 71 356 120 652 77 327 130 616 7 6.265 3.Gt2 5.524 3.043 
8 72 222 120 769 77 063 131 026 B 6.323 3.664 5.561 3:046 

Fig. 16: Throughput Fig. 17: Average nunber of process 
switchesperwstatement 

Interestingly for each variant and I/O single server almost all requests are 
frequency, the values in thebeginning inprove dispatched via the server queue. The more 
drastically, then gradually and finally after servers the system contains the higher beccmes 
a maximum has been reached decrease. In the probability of an additional process 
general, the maximum is reached with a greater switch for assigning the request a,lt as long 
number of servers for the monitor solution and as processor capacity is wasted by idle 
the greater I/O frequency.Not surprisingly, periods anyhaw, these process switches do not 
throughput is clearly improved when the I/O diminish the total amount of useful work 
rate is smaller, since every saved I/O performed. When the CPU is saturated 
eliminates the associated computation costs additional process switches reduce the overall 
and a process switch.The performance losses throughput. Figs. 18a and 18b graphically 
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12345678 12345678 

Fig. 18: Distribution of processor tims 

illustrate the relative share of the CPU time 
spent for server, monitor and AP processing 
combined, the idle times, and process 
switching overhead, which surprisingly can 
reach 65% of the total capacity. 
Though the total number of process switches 
per D-statement is about 2.5 less when only 
1 I/O is issued per statement, the relative 
share of prccess switching overhead does not 
change significantly. However, throughput 
increases substantially. Idle periods, which 
occur when all the servers synchronously wait 
for I/O completion, are reduced much faster 
with rising number of servers, when only 1 I/O 
is required per DML-statement. This is 
reasonable, since here servers have much 
longer page processing periods before the next 
I/O request is performed, thus reducing the 
probability that all servers wait for I/O 
completion at the same time. 

Influenazoflatcbsyn~iration 
An important aspect of server synchronization 
is the influence of the frequency of latch 
requests and the length of critical sections 
(lock duration) on performance. In particular, 
the probability of server preemption when 
owning a latch should be investigated. 
Therefore, a number of simulation runs were 
dedicated to answer these questions. In all 
simulations the number of servers were varied 
from l-8 keeping # AP=8 constant. The 
probability of physical I/O during page access 
was pIo=0.35. 
A throughput test was performed with different 
lengths of critical sections (lock duration: 
30 and 60 instr.). Fig. 19 shows the overall 
effect with known characteristics. Longer 
critical sections increase the risk of 
"blocking" time slice runout which, in turn, 
enhances the waiting times of servers in front 
of a latch which directly diminish throughput. 
VAR2 in superior toVARl by up to 7.5%.Using 
the shorter critical section a gain of up to 
2% can be expected. 
We are now going to evaluate more thoroughly 
the effects of latches. Since only the server 
model is involved with latch requests, both 
variants of server structures are assumed to 
produce uniform results concerning the pre- 
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#S 

Throughput Throughput 
60 30 

VARl VARZ VARl VARZ 

1 23 238 23 312 23 266 23 347 

2 43 397 43 892 43 679 ‘44 139 

3 59 441 61 161 60 358 61 963 

4 60 981 72 450 70 577 74 016 

5 72 201 ‘77 021 73 762 78 754 

6 71 713 76 982 73 128 70 623 

7 71 051 7s 577 72 356 77 327 

0 70 842 75 436 72 222 77 063 

Fig. 19 Throughput 

emption problem. Indeed, all numerical results 
delivered were very similar. Therefore, we 
will limit their presentation to VARl. 
The distribution of preemption in the various 
code sections (latch (critical sections), I/O 
processing, page processing) is shown in Fig. 
20. Of courseI the number of all preemptions 
is strongly dependent on the time slice 
length. With fixed time slices, the 
probability of preemption increases with the 
length of the resp. code section. Having 
latches with 30 instructions, latch preemption 
varies between 7% and 8.5%. 
The sum of the waiting times in front of 
latches grows with increasing number of 
servers. Because latches are used more often, 
the probability of preemption is augmented. On 
the other hand, a preempted server has to 
spent more time in CPU queue applying for a 
new time slice before it can free the latch. 
Fig. 21 shows a summary of critical (section) 
preemptions and waiting servers. The average 
number of waiting servers, however, is not 
very critical; in particular, long convoys 
could not be observed. This is mainly due to 
the convoy resolution applied according to 
[B179], that is, as soon as growing queue was 
detected all waiting servers were signalled 
(violating the FIFO principle). Nevertheless, 
the percentage of waiting servers shows that 
about 20-30% of the servers are blocked in the 
average. 
It can be argued that these results do 
strongly depend on the activity pattern of the 
servers. Therefore, the probability of 
physical I/O was reduced topIO=O.l, that is, 
a DML-statement requires page fetch in the 
average. Due to the reduced I/O-activity more 
DML-statements could be processed increasing 
latch use and preemption. Fig. 22 and 23 are 
comparable to Fig. 20 and 21. Latch preempticn 
now ranges from 13% to 14%. Since less servers 
are waiting for I/O, the CPU queue should be 
longer, thus enhancing the waiting time for 
the preempted server. This is indicated by the 
characteristic values in Fig. 23 for 2-4 
servers. Due to the I/O-reduction this range 
of servers achieved c&mum throughput; that 
is, the servers are most active. For higher 
server numbers, IDLE-time increases thereby 
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Vat- 1 

critical waiting 
preemptions servers 

% servers ~~~:‘i;,~~* 
waiting servers/latch 

I total 
number of 

preemptions 
holding a processing processing 
latch I/O a page 

#S 

140 0 I 0.00 0.00 
240 52 21.66 0.21 
382 152 19.89 0.39 
418 331 26.39 0.79 
416 494 29.60 1.18 
443 675 30.47 1.52 
416 692 27.72 1.66 
360 644 24.42 1.69 

1 724 
3 259 
4 515 
5 260 
5 522 
5 473 
5 416 
5 406 

Fig. 21: Critical preemptions (pIO=0.35j Fig. 20: Distribution of preenptions (pIC=0.35) 

Var 1 

‘m 

I Var 1 
total 
number of 
preemptions 

3 067 
4 865 
5 420 
5 416 
5 316 
5 253 
5 236 
5 245 

US 

411 0 
678 205 
719 491 
709 714 
670 a15 
697 901 
724 912 
719 a82 

411 13.40 
678 13.93 
719 13.26 
709 13.09 
670 12.60 
697 13.26 
724 13.82 
719 13.72 

I I 

5 
6 
7 
a 

Fig. 22: Nunber of preemptions (pIO=O.l) Fig. 23: Critical preemptions (pIO=O.l) 

reducing preemption conflicts. Again, critical 
preemptions do not impede the overall behavior 
dramatically. 

6.Conclusiorrs 

consumed a huge share of the CPU resources 
(about 50%). This underscores the penality 
paid because of inadequate OS support which 
necessitates the partitioning of DBMS and AP 
to separate processes. 
Since communication costs remain high even in 
the optimal configuration, the expressive 
power of a DBMS interface is also quite 
important for the communication structure 
chosen. A non-procedural interface needs 
generally less D&calls than a navigational 
interface. To be specific, to run a given 
application (parts explosion, bill of 
material) with a relational and a CODASYG 
system, we needed 2.2 times more DB-calls for 
the KXXSYL-system (10356 vs. 22996 DB-calls). 
To save I/O related process switches 
multithread solutions within server processes 
have to be introduced. This kind of saving 
seems to be much more promising in appli- 
cations with high I/O frequencies. Of course, 
another improvement is the availability of 
large database buffers. 
These arguments indicate that better ways of 
communication support should be found. Ring 
protection or other novel OS isolation 
features [PR83] are prime candidates. Their 
saving potentional is the number of 
communication-related process switches inve- 
stigated in this paper. 

The structure of the various simulation pro- 
cesses closely models real DBMS operation 
under a general purpose OS. This could be 
confirmed b extensive DBMS measurement 
experience EHRS~~]. Results of this project f 
permit at least a partial validation of our 
simulations. Therefore, the following 
conclusions can be drawn. 
The experimental results have shown the 
superiority of the multiple server solution 
without monitor over that with monitor. 
Depending on quantitative relation between 
servers and AP's 0.7 to 1.0 process switches 
were saved per DML-statement. The multiple 
server DBM3 without monitor needed between one 
and two process switches to process a single 
DML-statement. The introduction of the server 
queue to asynchronously transfer requests 
without OS interaction turned out to be 
especially helpful, since in the optimum 
servepAP relation only slightly more than a 
single process switch was used per DML- 
statement. The formation of convoys or waiting 
times due to critical preemption turned out to 
be no severe problem. This was partially 
achieved by the chosen resolution strategy 
[Bl79]. 
However, process switching overhead in general 
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