
CONSTRAINT EQUATIONS:
Declarative Expression of Constraints

With Automatic Enforcement

Matthew Morgenstern

University of Southern California’
Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 99292

Abstract
Constraint Equations provide a concise declarative language
for expressing semantic constraints that require consistency
among several relations. Each constraint is independently
specified in application based terms and provides a natural
extension to the limited semantics captured by typical
schemata. Automatic constraint enforcement is accomplished
by compilation of the Equations into executable routines,
according to the algorithms presented here. A prototype
system has shown the viability of this approach. The Equations
are more natural and perspicuous than the predicate calculus
formulas into which they may be translated. The equivalent of
both existential and universal quantifiers are expressible
directly in Constraint Equations. Algebraic rules for symbolic
manipulation of these Equations allow derivation of new
Equations and their logical consequences from existing
Equations.

1. Int reduction
The integrity and consistency of a database require that a
variety of implicit and explicit constraints be maintained among
the data. Schema declarations provide a limited set of
constraints which supplement the actual data. One may
determine from different schemata, for example, the relations
which connect attributes or entities, the keys of a relation, or
the allowed multiplicity for attributes.

‘This research was supported by the Defense Advanced Research Projects
Agency (DARPA) contract MDA-903-81-C-0335. Views and conclusions
contained in this paper are those of the author and should not be interpreted
as representing the official opinion or policy of DARPA or the U.S.
Government.

Permiwion to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright not&e and the tit& of the publication and its
date appear, and notice & given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requirrs a fee
and/or spa&l permission from the Endowment.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

Various data models incorporate certain constraints (eg.
existence dependency, uniqueness, etc.) while other
constraints are more difficult, or impossible, to represent in the
schema. Data models differ with respect to their coverage of
these constraints and the defaults they assume. Typically,
constraints are embedded in the declaration of the keys of a
relation, or in the parent and child segments of a one to many
relationship, for example. By making these constraints and
dependencies explicit and separable, the perceived differences
between these data models may be reduced [MorgensternSl].

Consistency constraints often arise from logical

interdependence among several relations, yet such constraints
usually go unexpressed due to the absence of a language for
representing them in a useful form. While Join Dependencies
[Ullman82] could capture a limited class of interrelational
constraints, they have been inconvenient for use in
applications.

Accurate modelling of an application requires constraints not
captured by typical schemata -- such semantic constraints too
often are implicit in the protocol of use rather than being
explicit. Constraint Equations (CEs) address these issues by
providing a declarative representation for inter-relational
constraints. CEs easily represent, for example, the application-
based constraint that the phone which is to receive messages
for a manager is a consequence of who is the assistant for the
project run by that manager.

There are several ways in which constraints can arise in
databases. They may express application dependent rules for
consistency between separately stored data and relationships,
thereby helping to define the behavior of the system as the
database changes. Rules for derived data also are a form of
constraint between the resultant data and the components on
which it depends. Whether or not there is a distinction
between consistency rules and derived data is largely a matter
of which data is stored and one’s viewpoint.

Views also involve constraints, since the selection and possible
transformation of the underlying data establishes constraints
between the base data and the information presented in the
view. In the future, “active databases” should provide

Singapore, August, 1994

191

enhanced user interaction and more responsive interfaces,
including capabilities for incremental browsing and for
interaction directly with the data presented in views
(Morgenstern831.

These capabilities will require that the constraints defining the
view be enforceable in both directions wherever possible: in
order to support updates to the view directly [Dayal78], and for
dynamic maintenance of the view as the underlying data
changes and/or as the view definition is modified by the user.
Furthermore, transformations from one data model to another
can be seen as constraints which define and enforce the
mappings between multiple representations [MorgensternSl].
The different types of constraints may warrant different
implementations for efficiency, though the underlying concepts
are similar.

1 .l. EXAMPLE and BACKGROUND
Constraint Equations (CEs) provide a concise declarative
language for expressing invariant relationships which must
hold among specified data objects and component
relationships. This is preferable to writing procedural code to
express and enforce the constraints. Furthermore, the
declarative Constraint Equations have an executable
interpretation, and can be compiled directly into routines for
automatic maintenance of the Constraints. This case of
automated generation of programs from constraint
specifications has been demonstrated in the prototype
implementation.

The declarative nature of Constraint Equations together with
their executable interpretation have an analogy with algebraic
equations. For example, the equation X = Y + Z is a
declarative statement of an equivalence between the
expressions on either side. If this is to be treated as a
constraint which is to be maintained by the system, then there
is an executable interpretation which may be thought of as two
condition-action rules: (1) if Y and/or Z change, then revise the
value of X accordingly, and (2) if X changes, select between the
alternatives of disallowing the change, revising Y, or Z, or both.

The following example of a Constraint Equation specifies that
the Projects of a Manager are to be the same as the set of
Projects which his/her Employees work on.

MANAGER.PROJECT == MANAGER.EMPLOYEE.PROJECT

Here the dot ‘I. ” may be thought of as standing in for the
relationship between the entities (objects) appearing on either
side of it. In general, the dot allows a form of ellipsis in which
the attribute or entity name may be omitted.

The CE may be read from left to right as “the Manager‘s
Projects are the same as the Manager’s Employee’s Projects.”
Since MANAGER begins the path of associations on both sides
of the CE, it serves as the Anchor or common binding for both
paths. The CE is to hold for each instance of Manager in the

Procwdlngs 01 the Tenth International
Contrrrnce on Vety Large Data Bases.

database.

Each side of the CE describes a sequence of relations from the
Anchor on the left to the Target object on the right of the path.
There will be a set of one or more Target instances associated
with one Anchor instance by these relationships. This CE says
that the sets of Projects that arise from both sides must be
equal, and that this must be true for each Manager.

Constraint Equations express semantics of an application
modularly and in a concise form which is indicative of their
meaning. The modularity is two-fold: additional CEs can be
added incrementally in any order, and each such Equation is
specified non-procedurally with respect to a local context of
relevant data objects and relationships. That CEs represent an
important class of semantics is evidenced by their contribution
in extending KL-ONE, a semantic network used for knowledge
representation in artificial intelligence research
[Morgenstern&l].

One of the earliest approaches for augmenting schema
descriptions with additional semantics were the database
procedures of the CODASYL network database
[Wiederhold77]. These provided a means of executing
procedures to derive data or perform other actions. The Query
by Example relational system has triggers which can be used to
invoke integrity rules [Zloof82]. Other efforts have provided
additional primitives in the data model representation
[Hammer&McLeod81], utilized semantic nets and/or attached
procedures, or a combination of these (see the TAX!S system
in [Mylopoulos80]). Recent extensions to the INGRES
database system use a QUEL-like syntax for expressing rules
[Stonebaker83]. A rule is selected when it syntactically
matches a user query, which is then modified by the rule. Also
relevant are studies of constraint-based systems, including
[Borning79], [GoldsteinBO], [SridharanEK)], [Stefik8D], and
[Sussman80].

The Constraint Equation facility has been implemented in
prototype form utilizing the Information Management system
[Balzer83, Morgenstern831 as the initial testbed. Non-trivial
hand written code for constraint maintenance has been
replaced by routines which were automatically generated from
the CEs. In the future, a transportable Constraint Equation
package may be provided for use in other selected host
environments which support database triggers.

Constraint Equations are defined in sections 2 and 3, together
with their translation into predicate calculus. A symbolic
algebra for manipulating CEs is presented in section 4, while
section 5 describes the update semantics and the algorithms
for constraint enforcement. Section 6 shows the further
expressiveness of CEs, including existential and universal
quantifiers, alternative update semantics, and cardinality based
comparators in lieu of set equality in the CE.

Slngapom, August, 1984

2. Constraint Specification
and Connection Paths

Each side of a Constraint Equation is a Path Expression, which
is an abbreviated representation for a sequence of data objects
and relationships from the schema for the application. The
elided components are determined by comparing the
abbreviated path with the database schema.

Here we utilize an Entity based schema for our examples,
though the approach also is applicable to other data models.
An Entity has a designated type. Its attributes may be single or
multi-valued, and may refer to literal values or to other typed
entities. For now we assume that attributes are binary
relationships, though the methods extend to nary relations.
Consider the following partial Entity schema, where the
indicated attributes of Manager are the only ones directly
relating it to an Employee and to a Project. (The -->> symbol
denotes a multi-valued attribute.)

MANAGER Entity
OVERSEES -->> PROJECT
MANAGES -->> EMPLOYEE

EMPLOYEE Entity
WORKSON -->> PROJECT

The translation of the above Constraint Equation from
abbreviated Path Expressions into the fully expanded
Connection Paths is shown here:

MANAGER.PROJECT == MANAGER. EMPLOYEE. PROJECT

[(MANAGER) OVERSEES (PROJECT)] ==

[(MANAGER) MANAGES (EMPLOYEE) WORKSON (PROJECT)]

Each Path Expression is translated from its abbreviated form by
determining whether each of its explicit components is the
name of an entity type or the name of a relation, and in the
process filling in the possibly omitted entity or
relation/attribute name. Elision of a longer sequence of entity
and relation names could be allowed when there is no
ambiguity. The fully expanded sequence of associations from
the Source to the Target is called a Connection Path. The
leftmost component of the Path Expression must be an entity
type, which represents the Source of the path. When the
translation is completed it must end on the right with an entity
type, which is the Target. The CE is considered ill.formed if
there is ambiguity in the translation.

In general, a simple Connection Pafh is a sequence of the form:

[(EO) Rl (El) R2 . . . RN (EN)] ,

where Ei denotes an entity (object) type, and Ri denotes a
(binary) relationship/attribute from Eiml to Ei. (Entities are
shown in parentheses when there may be ambiguity between
the names of entities and relationships.)

A Connection Path defines a derived relation Rep in terms of a
sequence of Joins over relations Ri. For each pair of relations

Proceedings of the Tenth lntematlonal

Conference on Very Large Data Bases.
293

Ri and Ri + , shown above, the natural join is taken with respect
to their common domain (EiP. The result is projected onto the
domains EO and En, which are the Source and Target domains,
respectively, of the Connection P,ath. For a Constraint
Equation, in which both sides begin on the left with the same
domain EO, we refer to EO as the Anchor, since it anchors the
CE with acommon binding for both paths.

When a set of instances is provided for domain EO (or En) of
the derived relation Rep, the Connection Path defines the
selection of tuples from Rep based on these instances, and
their projection onto the other domain -- thus providing a
mapping from one set of instances to a related set of instances.
In particular, for an instance of the Anchor EO, the Connection
Path provides a mapping to a set of Target instances, En.

A composition of Paths is itself a new Connection Path.
Pairwise composition corresponds to the natural join over the
Target domain of the left path and the Source domain of the
right path. Thus a Connection Path, or composition of

subpaths, can be used wherever a relation is used in a
Constraint Equation.

3. Formal Interpretation of Constraint
Equations

Constraint Equations can be viewed as a compact shorthand
for a class of predicate calculus constraints that are useful for
database applications.

Consider first the following general Connection Path. Each
relation may be viewed as a binary predicate, such as
Rl (EO, El). The overall Path represents a derived relation, and
is expressed in predicate calculus with set notation following
the equality:

[(EO) Rl (El) R2 ,.. Rn (En)] =

((EO, En) j 3El,E2 ,..., E,-,

[Rl(E0 El) A R2(El E2) A.. .A Rn(EnsI En)] }

All entities other than the Source and Target are existentially
quantified along the Path. A Constraint Equation consists of
two such Paths, Consider the following CE expressed in
abbreviated form and then expanded into the full Connection
Paths:

EO.El == EO.E2.E3

[(EO) Rl (El)] q = [(EO) R2 (E2) R3 (E3)]

Expressing the equality of the two Connection Paths in terms of
predicate calculus yields:

{ (EO El) j Rl(E0 El) } =

{ (EO E3) j 3 E2 (R2(EO E2) A R3(E2 E3)) }

An alternative formulation emphasizes the fact that a CE may
be thought of as being implicitly iterated over the instances of
the Anchor EO. This viewpoint is valuable for understanding

Singapore, August, lgE4

Constraint Equations, and is utilized later when expressing the
Path Quantifiers.

VEO { El 1 Rl(E0 El) }

= { E3 1 3 E2 (R2(EO E2) A R3(E2 E3)) }

Here, each EO instance serves both sides as a common binding
for the Anchor. And each side defines a mapping to a set of
Target instances -- the Target sets for the left and right sides
being {El} and {E3}. The CE constrains these two sets to be
equal for any such Anchor instance. The equality comparison
can be replaced by a super&/subset comparison,
discussed further in section 6.

The equality based CE also may be expressed without
notation as:

VEO,El [Rl(E0 El) <==>

3E2 (R2(EO E2) A R3(E2 El)))

as

set

4. Symbolic Transformation of Constraint
Equations

An algebra for symbolic manipulation of these Constraint
Equations enables the derivation of new related Equations from
one or more existing Equations. This makes possible symbolic
analysis of the consequences of constraints, as well as the
derivation of alternative representations. Selected theorems
are presented here with summaries of the proofs.

Consider Connection subpaths (or Path subexpressions) Pl,
P2, P3, and P4 such that P3 may be composed on the right of
Pl, and P4 may be composed on the left of Pl. The first
theorem shows that composition preserves the Constraint
Equation.

THEOREM %l: Composition for Constraint Equations

Given Constraint Equation

PI == p2

Then
PI P3 == P2 P3
and

composition on the right

P4 Pi += P4 P2 composition on the left.

Proof: The first derived expression above follows from the fatt
that each tuple in the derived relation for subpath Pl has a
corresponding tuple in P2, and vice versa. Thus the same
tuples from P3 will be selected on both sides of the CE based
on the join with either Pl or P2. A similar argument confirms
the second result.
I

The substitution of one Constraint Equation into another
preserves the set equality of the original CE:

THEOREM #2: Substitution

Given Constraint Equations

Proceedlnge ot tha Tenth Intematlonal
Contmnca on Vwy Large Data Sour.

Pi == P2 P3 P4 and
P3 == P6

Then
Pi == P2 PS P4

Proof: For CE P3 == PS compose P2 on its left, and
compose P4 on the right, yielding P2 P3 P4 == P2 P5 P4 ,
The theorem follows.
8

The next two theorems lead to the result for transposing a path
component from one side of the CE to the other (Theorem 5).

Path P j with Source Xi and Target X j is written
[(Xi) P j (X j) 3. Its path inverse, denoted P j -’ , is written

WW W’ (Xi)], which is just the set
{(Xj Xi)(Pj(Xi Xj)} .

THEOREM #a: Path Inverse

For subpaths Pl and P2

(PI P2)’ == P2-’ Pl”

Proof: Givensubpaths[(EO) Pl (El)Jand
[(El) P2 (EP)J,then (Pl P2)” =
((E2 EO) 13El Pl(E0 El) A PP(E1 E2)) =
((E2 EO) 13 El P2’‘(E2 El) h Pl”(E1 EO)] },
which is just (P2- 1 Pi-‘)
8

The notation, Pl I p2 expresses the restriction of subpath Pl
to those tuples for which the Target values are also Source
instances of P2. This serves to exclude dangling tuples of Pl
relative to P2 on the right. It is essentially the same as the
semijoin [Ullman82] of Pl relative to P2 -. no ambiguity arises
here even if both the Source and Target of Pl have the same
name, such as for a Manages relation from Employees to
Employees. p1 IPt may be expressed as the set
{(X Y) 132 [Pl(X Y)AP2(Y Z)]}. Similarlyp,IP1 ,
denotes restricting the tuples of Pl to those for which the
Source is also a Target instance of P3 .- ie. excluding dangling
tuples of Pl relative to P3 on the left. The following shows the
result of composing a subpath with its inverse.

THEOREM #4 : Path Cycle

Given subpaths Pl, P2, and P3, such that
(Pl P2) and (P3 Pl) are valid compositions, then

Pi (P2 P2”) > Pi IPL

(P3-’ P3) Pl > pslPl

Proof: The set {(EC’ El’)1 3E1,EZ
[Pl(EO El) A P2(El E2) A P2-‘(E2 El’)])
represents the left side of the first expression. Choosing El’ as
the value for El, produces the following subset
((EO E1’))3E2[Pl(EO El’)APZ(El’ E2)]}, which is
the right side of the first assertion.

Slngrpon, Auglmt, 1964

294

If PZ-’ is single valued, then > will reduce to set equality. Also,
if P2 represents a required relationship for Target entities of
Pl, then the first restriction on Pl is automatically satisfied.
The second expression is proved in the same manner, and the
1 reduces to set equality if P3 is single valued.
I

A path component Pi may be transposed from one side of a CE
to the other side. This changes the set equality to set cover,
and dangling tuples must be excluded from the result,

THEOREM #5: Transposition

Given the Constraint Equation

Pl == P2 P3 P4 .

Then each of the following are true:

Pl P4‘l 2 p2 P3 Ip4 Transposition on right

Pz-* Pl 1 p*lP3 P4 Transposition on left

Pl P4“ P3-’ 1 P2 1 (p3 r4) Multipleon right

P3-’ P2-’ Pl > (P2 r3) 1 P4 Multipleon left

Proof: Use the first part of Theorem 4 with Pl there replaced
by (P2 P3), and P2 replaced by P4, to get
(P2 P3) P4 P4-’ 2 (P2 P3) 1 p4 . Composing P4-’ on
the right of thegiven CE Pl == P2 P3 P4 and comparing
these derived CEs proves the first assertion. Note that if P4-1
is single.valued, then > will reduce to set equality.

For the second assertion, compose P2.’ on the left of the CE
given above. Use the second part of Theorem 4, with P3 there
as P2, and Pl there as (P3 P4). The superset will reduce to set
equality if P2 is single-valued. The third and fourth parts follow
from parts 1 and 2 respectively, by renaming subpaths and
applying Theorem 3.

I

4.1. Example
As a brief example of the use of these algebraic operations,
consider again the Constraint Equation where Employees Work
on Projects, and Managers Oversee those Projects:

MANAGER.PROJECT == MANAGER.EMPLOYEE.PROJECT

[(MANAGER) OVERSEES (PROJECT)] q =

[(MANAGER) MANAGES (EMPLOYEE) WORKSON (PROJECT)]

We use the first assertion from Theorem 5 for transpcsing on
the right to obtain:

[(Manager)OVERSEES(Project)

WORKSON-’ (Employee)]

> [(Manager) MANAGES (Employee)jwoRKs,,,,]

In this CE the Manager-to-Employee association via Projects
yields a superset of the Employees MANAGEd by that Manager
_. when restricted to those Employees who directly Workon

Proceedings of the Tenth International

Conference on Very Large Data Bases.
295

some Project. (Alternatively stated, for some manager Fred,
the set of Employees who work on Projects which Fred
oversees is a superset of those Employees Fred Manages
directly -- where this set considers only Employees directly
working on Projects.)

This transformation of the original CE makes two
consequences more apparent. The 1 comparator highfights
the fact that if several Employees work on a Project, then not all
of them need report to the same Manager. If only one
Employee works directly on a Project, then > becomes set
equality. And the restriction on Employee highlights the fact
that the Manager also may manage other Employees who do
not directly work on an existing Project, such as secretaries.

This algebra for Constraint Equations, part of which is
presented here, provides a useful means of analyzing the
consequences of constraints, reasoning about the application
domain, and deriving related Constraint Equations.

5. Update Semantics and
Automatic Constraint Enforcement

When changes occur to the database, one or more Constraint
Equations may be affected. The constraints are automatically
enforced with respect to these changes. In some cases, the
constraint may require rejection of the initial database change.
Usually, however, the constraint may be satisfied by making
consequential changes which depend upon the initial change.

The Constraint Equation specifications are used by the CE
Compiler to automatically generate programs which enforce
the constraints. The executable interpretation for a CE is
reasonably intuitive, and is detailed in the algorithms below.
The enforcement routine will make the compensating changes
needed to satisfy the constraint(s) foflowing an initial database
change. The normal response for enforcing a CE may be
modified for special cases by annotating the CE, as discussed
later.

The database system implementation provides triggers or
demons which are activated when changes occur to specified
relationships [Goldman82]. The CE Compiler attaches the
enforcement routines it generates to database triggers for each
of the relation types that are involved in the Constraint
Equation, Thus when an insertion, deletion, or update occurs
to any instance of these relations, this enforcement routine is
automatically invoked to take the appropriate action.

5.1. Changes to an Entity

When an entity (object) instance is created, deleted, or
updated, changes occur to relationships which involve that
entity. In particular, creation of an entity places it into a system
table or relation. If the entity type has required attributes, then
these must be defined with the creation of the entity instance.
For deletion of an entity, all attributes and relationships
involving this entity instance are deleted also. Updating an

Singapore, August, 1994

entity actually involves updating the attributes/relations of the
entity.

Constraint Equations are activated by changes to relationships
and attributes, Thus creation, deletion, or updating of an entity

would invoke a CE by virtue of changes to attributes and
relationships for that entity instance.

5.2. Changes to an Attribute Relationship
A change to a relationship on one side of a CE usually may be
compensated for by a change to the other side of the CE, so as
to reestablish satisfaction of the constraint. If there is more
than one relation on the other side of the CE, then the one to
change must be designated to remove ambiguity. Notationally
this is indicated by the ” ! ” symbol to the left of or in place of an
attribute or relation name (the ” ! ” is used in lieu of the dot
‘I. ‘I), The designated relation can be thought of as a weak
bond. since it is more readily modified in response to an initial
change to the other side of the CE.

As an example, consider the constraint that an Employee’s
Phone’s Backup (the extension which takes messages when
the phone is busy or does not answer) is the same as the
Employee’s Project’s Secretary’s Phone. This may be
expressed in a CE as:

EMPLOYEE. PHONE ! BACKUP ==

EMPLOYEE.PROJECT.SECRETARY.PHONE

The designation of weak bond on the left indicates that if any of
the associations on the right changes (eg. a Project’s
Secretary) then the Backup extension for the Employee’s
Phone is changed. The absence of a weak bond on the right
indicates that a change directly to the relations on the left is not
allowed if it would cause a violation of the constraint. For
example, the Employee’s Phone could be changed to any other
Phone having the same Backup without violating the
constraint. Alternative update semantics are specifiable by

annotations, as discussed below.

The update semantics are reasonably intuitive when
relationships are single valued. If an Employee changes to a
different Project, and all the remaining relationships (except
the changed relation and the weak bond relation) are single
valued, then the Secretary’s Phone is clearly defined, and the
change of Backup extension for the Employee’s Phone is
simple.

The potentially multi.valued relationship between Employees
and Projects can give rise to a set of changes in other cases. If
the Secretary’s Phone is changed, then the Backup extension
must be changed for the Phones of the (potentially) several
Employees on the associated Project(s) (ie. on Projects served
by that Secretary, and limited to those Phones having the old
Backup number). Also, a change affecting one CE can result in
a compensating change which activates other CEs .. thus an
initial change can create a wave of propagation through
several interconnected constraints [Morgenstern53].

ProceedInga of the Tenth lnternatlonal
Conference on Very Large Data Bases. 296

As another example, consider the CE presented earlier where a
Manager oversees those Projects which are worked on by
his/her Employees:

MANAGER ! PROJECT == MANAGER ! EMPLOYEE .PROJECT

The weak bond on each side indicates that Pro@% stay with
the Employee if there are any other changes. Thus if a
Manager adds a Project, then he adds the Employee(s) who
already work on that Project (rather than having his existing
employees take on that project).

5.3. Algorithms

The rest of this section presents the details of algorithms for
automatic enforcement of Constraint Equations of the type
considered so far, and may be skipped on a first reading. The
CE takes the following form, where Pi are subpaths and Rj are
relations:

Anchor . PI . RO . P2 . L-Target ==

Anchor . P3 ! Rw . P4 . R-Target

Both sides may be expanded into the following Connection
Paths. The right side is reexpressed as the composition of
three subpaths for convenience.

[(Anchor) Pl (Xl) RO (X2) P2 (L-Target)]

== [(Anchor) P3 (X3) !Rw (X4) P4 (R-Target) J

== [(Anchor) P3 (X3)] [(X3) !Rw (X4)]

[(X4) P4 (R-Target)]

The relation Rw is designated as the weak bond by the ” ! ”
symbol (or by annotations considered in a iater section). A
compensating change may be made to Rw when’an initial
change occurs to the relationships on the other side of the CE.

Absence of a weak bond designation would require rejection of
all changes to the other side, unless such a change continued
to satisfy the invariant. An initial change also may be rejected
when other factors prevent reestablishment of the constraint,
as indicated in the algorithms (eg. violation of cardinality
restrictions).

Consider an initial change (insertion, deletion, or update) to an
instance of the RO relation, for a pair of Xl and X2 object
instances. The side containing RO (shown on left) is treated as
independent and the other side as dependent. (If an Anchor or
Target instance participates directly in the changed

relationship, then subpaths Pl Xl and/or X2 P2 are not
needed below.)

Four steps are common to insertion, deletion, and update:

w 1

62)

Locate Anchor instances on the independent side: The
subpath [(Anchor) Pl (Xl)] is used from right to
left to locate instances of the Anchor associated with
the instance of the Xl object.

Locate Target instances on the independent side: The
subpath [(X2) P2 (L-Target) J is used to locate
instances of the left Target (L-Target) associated with
the instance of the X2 object. If either steps Sl or S2
yield a null set, then no further processing is required,
as no complete path connecting an Anchor to a Target
instance on the independent side was affected by the
change.

Singapore, August, 1984

G3)

64)

Locate Left Bond objects (X3) on the dependent side:
For one instance of the Anchor (from step 1) use the
left subpath [(Anchor) P3 (X3)] to locate the set
of associated instances of X3.

Locate Right Bond objects (X4) on the dependent side:
Traverse the right subpath [(X4) P4 (R-Target)]
from right to left from each instance of the Target to a
set of X4, and take the union of these X4 sets.

Alqorithm # 1: Insertion

Insertion of a new RO relationship between an instance of Xl
and an instance of X2:

For each Anchor instance associated with the change (from
step Sl). there is to be a connection on the dependent side to
each potentially new Target instance (from step S2). If such a
connection does not already exist, find the sets of Left (X3) and
Right Bond (X4) objects that could be involved (steps S3 and
S4) -- if either set is empty, create new associations according
to other specifications (or via user interaction) to make these
sets non-empty; or else disallow the original change to RO.

For each pair of X3 and X4 instances, create a new Rw
relationship if one does not already exist. A user provided
predicate may restrict this cross product of X3 and X4
instances. (The predicate may request more information from
the user.) If Rw is required to be single-valued, then there must
be not more than one X4 instance related to each X3. For each
Anchor, at least one path must connect to each of the Target
instances in order for the change to RO to be accepted (needed
to maintain set equality). Repeat the above steps for each
Anchor instance.

Alqorithm # 2: Deletion

Deletion of an RO relationship between an instance of Xl and
an instance of X2:

For each Anchor instance associated with the change (from
step Sl), consider each newly disconnected Target instance
(from step S2) having no other connection(s) on the
independen? side, and for each remove the corresponding
connections at the Rw link on the other side: Find Left Bond
(X3) and Right Bond (X4) objects (steps S3 and S4), and delete
Rw relationships which relate instances from these two sets.
Naturally, a required relation/attribute should not be
designated as the weak bond. Those X3 involved in Rw
deletions are utilized in the Update algorithm, below. Repeat
for each Anchor instance.

Aloorithm #a: Update

Replacing an existing RO relationship between a pair of
instances xl and x2old (for object types Xl and X2), with a new
RO relationship between xl and x2new:

For each Anchor instance associated with the change (from
step Sl), use xl and x2old for Deletion, Algorithm #2. And for
the same Anchors use xl and x2new for Insertion, Algorithm
1 . . except that a non-empty set of X3 objects found during
Deletion are used instead of step S3 (so that the update
involves the same Left Bond (X3) objects). Repeat this process
for each Anchor instance.

6. Enhanced Expressive Power

Here we describe additional expressive power available with
Constraint Equations. In particular we show that the set
oriented semantics of CEs naturally admit the expression of
both the Universal and the Existential Quantifiers.

Proceedings of the Tenth International

Conference on Very Large Data Bases. 297

In addition, the default update semantics may be augmented by
annotations indicating that the choice of weak bond should be
conditional on which relation cha;rged. We provide

comparators between the two Connection Paths of the CE in
addition to set equality. And we allow the normal set operators
within Connection Paths. The relevant extensions to the
constraint enforcement algorithms are not detailed here.

6.1. PATH QUANTIFIERS

Existential Quantifiers are implicit in Constraint Equations, as
seen in the previous section on Formal Interpretation. All
intermediate entities along the Connection Path (other than the
Anchor and Target) have been existentially quantified for the

type of CEs shown above.

Existential Quantification corresponds to the natural
interpretation of each side of the CE as being the union of the
Target instances for an Anchor instance. These different

Target instances arise from the existence of different
sequences (paths) of intermediate relationships connecting
them with the Anchor. It is the union of these Target instances
for an Anchor that we find with the Connection Paths used so
far. This resultant mapping from Anchor instance to Target set
is one way of looking at the Connection Path. It may be seen
as a derived relation by taking the cross product of the Anchor
with its Target set.

The ability to express the Universal quantifier can be important,
It is needed for constraints such as: the Projects of a
Department are those Projects on which all the Employees of
that Department work. In other words, the Projects of a
Department are those which are common to every Employee of
that Department. This notion of commonness to all sets of
instances arising from a [possibly derived) association is
represented as a Path Intersection Quantifier ” fl/ ‘I. This
parallels the default interpretation of a Connection Path as
being a union of its Target sets, except that here we take the
intersection over the Target sets. This example may be
represented as:

DEPARTMENT.PROJECT q =

[DEPARTMENT. EMPLOYEE l-11 PROJECT J

The intersection here is over the sets of Projects that are arise
from each of the Employees of a Department. Each Employee
works on a set of Projects; the intersections of these sets yields
just those Projects that everyone works on in that Department.
The CE requires that this resulting set of common Projects is to
be equal to the set of Projects which the Department directs.

We expand this CE into a full Connection Path using the
previous partial entity schema together with the definition of
the Department entity:

DEPARTMENT entity
DIRECTS -->> PROJECT
EMPLOYS -->> EMPLOYEE

Singapore, August, 1994

[(DEPARTMENT) DIRECTS (PROJECT)] ==

[(DEPARTMENT) EMPLOYS (EMPLOYEE)

f-T/ (EMPLOYEE) WORKSON (PROJECT)]

Expressing this constraint in terms of sets, we have:

VDEPARTMENT
{ PROJECT j DIRECTS(DEPARTMENT PROJECT) }

; PROJECT j
3 EMPLOYEE (EMPLOYS(DEPARTMENT EMPLOYEE)) h

VEMPLOYEE(EMPLOYS(DEPARTMENT EMPLOYEE) =
WORKSON(EMPLOYEE PROJECT)) }

In the second set above, we require that at least one Employee
is employed by that Department, and that for a Project to be
included in the resulting set, every such Employee of the
Department Workson that Project. Note that the existence of
least one Employee in the Department is required here to
ensure that the predicate calculus Universal Quantifier does
not become satisfied for each and every Project just because
there are no Employees in that Department1 Such concerns
are taken care of by the semantics of the Path Intersection
quantifier.

More generally, a Path Intersection expression such as

[El . E2 f-l/ E3 . E4]

expands to a Connection subpath of the form

r (El) R2 (E2) n/ (E2) R3 (E3) R4 (E4) J .

This represents a derived relation between domains El and E4.
For an El instance, this path yields fhose E4 instances which
are common to every E2 -- ie. an E4 instance is related to an El
.by this path if this E4 is related to every E2 associated with this
El.

We may formally express this derived relation Rcp(E1, E4) by
the following set of pairs. The universal quantifier applies to
the entity E2 which immediately precedes the Path Intersection
symbol (n/) in the expressions above. The scope of the
universal quantifier is the immediately containing bracketed
path expression. The other intermediate objects along the path
(here E3) are existentially quantified as usual.

{ (El E4) j 3E2 (R2(El E2)) h

VE2 (R2(El E2) =
3 E3 (R3(E2 E3) h R4(E3 E4))) }

Since this represents a derived relation Rcp(E1, E4), the above
Path Intersection (the expression from El to E4) can be used
as part of a larger Path. Thus quantified expressions can be
nested within each other.

6.2. ANNOTATION OF A CONSTRAINT EQUATION
There are cases when the change to relations on one side Of
the CE warrants different responses than those presented

Procodlngr of the Tenth Intematlonal
Conforenca on Very Laqie Data Baaos.

earlier. The algorithms stated above presume that a change to
one side of a CE may be responded to by a change to the
designated weak bond relation on the other side. We can
extend the range of possible responses by additional
annotations associated with the CE.

These annotations take the form of condition-action rules
(production rules) which have proven valuable in knowledge-
based Expert systems work in the A.I. community [Hayes-
Roth631. Condition-action rules have the advantage of being
modular and easy to specify, yet a set of such rules can
express complex relationships and actions. For example, a
consistency constraint expressed as a condition-action rule
would state the change or combination of changes to the
database which serve as the condition for activating the rule.
And it would indicate the action to be taken -- typically an
expression of how to reinstate consistency. Other forms of
action might be to disallow the change, provide information to
the user, or invoke a more general procedure to execute an
arbitrary action. In fact, the Constraint Equation is directly
expressible as a set of such condition-action rules -- one for
each relation that may change in the Equation.

Here we use such rules to express exceptions to the primary
update rules embodied in the algorithms presented above. The
condition indicates the relation change which would activate
this exception rule, and optionally, the type(s) of change
(ins&on, deletion, update). The action or response may be of
eitii;nry complexity, but primarily is intended to indicate a
relt;ti?n of the CE to which the compensating change should
be l-r&de -- thus allowing the weak bond relation to be
conditional on which change occurred. In addition, if a
predicate is provided on the action side, it is taken as the filter
which limits the creation of new instances for the selected
weak bond relation in the Insertion algorithm above.

The following CE is similar to the one presented earlier, except
that here the semantics are that a change of Manager for an
Employee changes the Projects the Employee works on. The
additional rule overrides the base semantics of the weak bond
on the left of the CE. The rule below is invoked when the
relationship MANAGER.EMPLOYEE on the left is changed, and
the response is to treat the relation EMPLOYEE.PROJECT on
the right as the weak bond.

MANAGER ! PROJECT == MANAGER!EMPLOYEE.PROJECT
except
MANAGER.EMPLOYEE - EMPLOYEE.PROJECT

Another example is repeated below with a new response. Here
a change to a Project’s Secretary would cause the
compensating change to be made to the Phone of the old and
new Secretaries -- in order that the Backup number (and the
phone associated with the Project) stays the same:

EMPLOYEE. PHONE ! BACKUP ==
EMPLOYEE.PROJECT.SECRETARY.PHONE

except
PROJECT.SECRETARY - SECRETARY.PHONE

Singapore, August, 1994

6.3. COMPARATORS OF THE CONSTRAINT EQUATION
We first extend Connection Paths by including Set Union, Set
Intersection, and Set Difference as means of combining pairs
of Connection subpaths to produce a new Connection Path.

We require compatibility of the types for the Source domains of
each component path, and similarly for the Target domains, (In
principle this compatibility restriction could be lifted if we
consider the union of two different Source types, or Target
types, to be a new type.) Such extended Connection Paths
also serve to define a derived (binary) relation, just as for
simple Connection Paths.

In a Constraint Equation, the Path on each side gives rise to a
set of Target instances for an Anchor instance. So far we have
required these two sets to be equal. The natural extension is to
allow the subset comparators c and > between the two Target
sets.

We also may specify that the Target sets have elements in
common, or that the sets are disjoint. These are special cases
of the intersection Comparator -- which is denoted q m:n= .

Here m is the lower bound and n is the upper bound on the
number of elements common to the Target sets on both sides
of the CE . . where the restriction is to hold for each Anchor
instance. The upper bound defaults to the size (S) of the larger
(or equal size) Target set, and may be potentially different for
each Anchor instance. The lower bound defaults to the the
smaller of the upper bound or S. This is consistent with the
absence of bounds in the == symbol for set equality. Also,
q k=standsfor=k:k=.

Hence a constraint that the two Connection Paths, CPl and
CP2, have a non-null intersection for each Anchor instance, is
written CPl =I:= CP2 . The constraint that the Target sets be
disjoint is CPl =o= CP2 . The requirement that the

intersection of the Target sets has either 1 or 2 members is
written CPl =1:2= CP2. In summary, the following
comparators specify that for every Anchor instance, the two
sets of Target instances satisfy the indicated comparison:

== Set equality
E 2 Subset
q o= Disjoint sets
:I:= Intersection is non-null
=m: = Intersection has m or more members
‘k= intersection has exactly k members
zmLn= Intersection has between m and n members

7. Conclusion
Constraint Equations provide a concise declarative
representation for modularly expressing a variety of semantic
constraints in application based terms. CEs have a more
natural and perspicuous structure than the predicate calculus
formulas into which they may be translated. Yet both universal
and existential quantifiers are expressible conveniently in CEs,
as are criteria for disjointness, common elements, subset
relationship, and the typical set union, intersection, and
difference. Other extensions will include nary relations and

Proceedings of the Tenth International
Conference on Very Large Data Bases. 299

predicate restrictions on the paths.

Automatic constraint enforcement is provided in the prototype
implementation by compilation of a basic CE specification into
the equivalent of condition-action rules. The program which is
generated will perform the actions needed to reestablish
consistency -- this routine is attached to database triggers
which will be activated when the specified relation(s) are
changed. Since the activation of a Constraint Equation can
result in additional database changes, a chain of activations of
several Constraint Equations may arise. The set of such
activations defines the consequences of the initial change.
Strategies for such constraint propagation and for related
optimizations are discussed in [Morgenstern83].

An algebra- for symbolic manipulation of these Constraint
Equations enables the derivation of new Equations from
existing ones, and makes possible symbolic analysis of the
constraints and their consequences. The use of the CE
algebra to derive alternative representations may prove useful
in supporting multiple views and data models.

Acknowledgements
I would like to thank Don Cohen, Jack Mostow, and Neil
Goldman for their helpful comments and questions. The
predicate calculus formulation and proofs have benefited from
Don’s useful suggestions.

References
[Balzer83] Robert Balzer, David Dyer, Matthew Morgenstern,

Robert Neches, Specification-Based Computing
Environments, Proc. National Conf. on Artificial
Intelligence (AAAI-83) Washington, DC., August 1983,
pp.1 2-l 6.

[Borning79] Alan Borning, Thinglab - A Constraint-Oriented
Simulation Laboratory, Stanford Univ. report STAN-
CS-79-746, July 1979, Ph.D. thesis.

[Dayal78] U. Dayal & P.A. Bernstein, On The Updatability Of
Relational Views, Proc. 4th Very Large Data Base Conf.
West Berlin, Sept. 1978.

[Hammer&McLeod81] Michael Hammer, & Dennis McLeod,
Database Description with SDM: A Semantic Database
Model, ACM Trans. on Database Syst., v.6, no.3, Sept
1981, pp.351 -386.

[Goldman821 Neil M. Goldman, AP3 Reference Manual, June
1982, USC Information Sciences Institute, Marina del Rey,
CA.

[Goldstein801 I.P. Goldstein & D.G. Bobrow, Descriptions for a
Programming Environment, Proc. First Annual Conf. Nat’1
Assn for A.I. (AAAI-80), Stanford, CA, August 1980.

[Hayes-Roth831 Fredrick Hayes-Roth, Donald Waterman, &
Douglas Lenat, eds., Building Expert Systems, Addison-
Wesley Pubs., 1983.

[Morgenstern81] Matthew Morgenstern, A Unifying Approach
For Conceptual Schema To Support Multiple Data Models,
Second Int’l Conf. on Entity-Relationship Approach,
Washington, DC., October 1981, pp.281 -299.

Singapore, August, 1994

[Morgenstern83] Matthew Morgenstern, Active Databases As A
Paradigm For Enhanced Computing Environments, Ninth
Int’l Conf on Very Large Data Bases, Florence. Italy, Ott
1983, ~~84-42.

[Morgenstern84] Matthew Morgenstern, Constraint Equations:
A Concise Compilable Representation for Quantified
Constraints in Semanfic Networks, AAAI-84 National
Conference on Artificial Intelligence, Austin, Texas,
August 1984.

(Mylopoulos80] John Mylopoulos, Philip .A. Bernstein, & Harry
K.T. Wong, A Language Facility for Designing Database-
Intensive Applications, ACM Trans. on Database Syst., v.5,
no.2, June 1980, pp.185207.

[SridharanBO] N.S. Sridharan, Representational Facilifies of
AIMDS: A Sampling. Dept of Computer Science. Rutgers
Univ, New Brunswick, N.J., Report RUCBMTM-86, May
1980.

[StefikSO] Mark Stefik, Planning with Constraints (Molgen: Part
l)? Artificial Intelligence Journal, ~01.16, 1980,
pp.111.140.”

[Stonebraker83] Michael Stonebraker, et.al., Implementation of
Rules in Relational Dafa Base Systems, Univ. of California,
Berkeley, CA., Electronics Research Lab, Memo No.
UCBIERL 83110. June 13,1983,1Opp.

(SussmanSO] Gerald Jay Sussman and Guy Lewis Steele, Jr,
CONSTRAINTS -- A Language for Expressing Almosi-
Hierarchical Descriptions, Artificial Intelligence Journal,
v.14, 1980, pp.1 -39.

[Ullman82] Jeffrey D. Ullman, Principles Of Data Base Systems,
2nd ed., Computer Science Press, 1982,484~~.

[Wiederhold77] Gio Wiederhold, Database Design, McGraw
Hill, 1977.

[Zloof82] MM. Zloof, Office by-Example: A Business Language
that Unifies Dafa and Word Processing and Electronic
Mail, IBM Systems Jour., 21,3, 1982

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1994

