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Abstract 
Constraint Equations provide a concise declarative language 
for expressing semantic constraints that require consistency 
among several relations. Each constraint is independently 
specified in application based terms and provides a natural 
extension to the limited semantics captured by typical 
schemata. Automatic constraint enforcement is accomplished 
by compilation of the Equations into executable routines, 
according to the algorithms presented here. A prototype 
system has shown the viability of this approach. The Equations 
are more natural and perspicuous than the predicate calculus 
formulas into which they may be translated. The equivalent of 
both existential and universal quantifiers are expressible 
directly in Constraint Equations. Algebraic rules for symbolic 
manipulation of these Equations allow derivation of new 
Equations and their logical consequences from existing 
Equations. 

1. Int reduction 
The integrity and consistency of a database require that a 
variety of implicit and explicit constraints be maintained among 
the data. Schema declarations provide a limited set of 
constraints which supplement the actual data. One may 
determine from different schemata, for example, the relations 
which connect attributes or entities, the keys of a relation, or 
the allowed multiplicity for attributes. 
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Various data models incorporate certain constraints (eg. 
existence dependency, uniqueness, etc.) while other 
constraints are more difficult, or impossible, to represent in the 
schema. Data models differ with respect to their coverage of 
these constraints and the defaults they assume. Typically, 
constraints are embedded in the declaration of the keys of a 
relation, or in the parent and child segments of a one to many 
relationship, for example. By making these constraints and 
dependencies explicit and separable, the perceived differences 
between these data models may be reduced [MorgensternSl]. 

Consistency constraints often arise from logical 

interdependence among several relations, yet such constraints 
usually go unexpressed due to the absence of a language for 
representing them in a useful form. While Join Dependencies 
[Ullman82] could capture a limited class of interrelational 
constraints, they have been inconvenient for use in 
applications. 

Accurate modelling of an application requires constraints not 
captured by typical schemata -- such semantic constraints too 
often are implicit in the protocol of use rather than being 
explicit. Constraint Equations (CEs) address these issues by 
providing a declarative representation for inter-relational 
constraints. CEs easily represent, for example, the application- 
based constraint that the phone which is to receive messages 
for a manager is a consequence of who is the assistant for the 
project run by that manager. 

There are several ways in which constraints can arise in 
databases. They may express application dependent rules for 
consistency between separately stored data and relationships, 
thereby helping to define the behavior of the system as the 
database changes. Rules for derived data also are a form of 
constraint between the resultant data and the components on 
which it depends. Whether or not there is a distinction 
between consistency rules and derived data is largely a matter 
of which data is stored and one’s viewpoint. 

Views also involve constraints, since the selection and possible 
transformation of the underlying data establishes constraints 
between the base data and the information presented in the 
view. In the future, “active databases” should provide 
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enhanced user interaction and more responsive interfaces, 
including capabilities for incremental browsing and for 
interaction directly with the data presented in views 
(Morgenstern831. 

These capabilities will require that the constraints defining the 
view be enforceable in both directions wherever possible: in 
order to support updates to the view directly [Dayal78], and for 
dynamic maintenance of the view as the underlying data 
changes and/or as the view definition is modified by the user. 
Furthermore, transformations from one data model to another 
can be seen as constraints which define and enforce the 
mappings between multiple representations [MorgensternSl]. 
The different types of constraints may warrant different 
implementations for efficiency, though the underlying concepts 
are similar. 

1 .l. EXAMPLE and BACKGROUND 
Constraint Equations (CEs) provide a concise declarative 
language for expressing invariant relationships which must 
hold among specified data objects and component 
relationships. This is preferable to writing procedural code to 
express and enforce the constraints. Furthermore, the 
declarative Constraint Equations have an executable 
interpretation, and can be compiled directly into routines for 
automatic maintenance of the Constraints. This case of 
automated generation of programs from constraint 
specifications has been demonstrated in the prototype 
implementation. 

The declarative nature of Constraint Equations together with 
their executable interpretation have an analogy with algebraic 
equations. For example, the equation X = Y + Z is a 
declarative statement of an equivalence between the 
expressions on either side. If this is to be treated as a 
constraint which is to be maintained by the system, then there 
is an executable interpretation which may be thought of as two 
condition-action rules: (1) if Y and/or Z change, then revise the 
value of X accordingly, and (2) if X changes, select between the 
alternatives of disallowing the change, revising Y, or Z, or both. 

The following example of a Constraint Equation specifies that 
the Projects of a Manager are to be the same as the set of 
Projects which his/her Employees work on. 

MANAGER.PROJECT == MANAGER.EMPLOYEE.PROJECT 

Here the dot ‘I. ” may be thought of as standing in for the 
relationship between the entities (objects) appearing on either 
side of it. In general, the dot allows a form of ellipsis in which 
the attribute or entity name may be omitted. 

The CE may be read from left to right as “the Manager‘s 
Projects are the same as the Manager’s Employee’s Projects.” 
Since MANAGER begins the path of associations on both sides 
of the CE, it serves as the Anchor or common binding for both 
paths. The CE is to hold for each instance of Manager in the 
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database. 

Each side of the CE describes a sequence of relations from the 
Anchor on the left to the Target object on the right of the path. 
There will be a set of one or more Target instances associated 
with one Anchor instance by these relationships. This CE says 
that the sets of Projects that arise from both sides must be 
equal, and that this must be true for each Manager. 

Constraint Equations express semantics of an application 
modularly and in a concise form which is indicative of their 
meaning. The modularity is two-fold: additional CEs can be 
added incrementally in any order, and each such Equation is 
specified non-procedurally with respect to a local context of 
relevant data objects and relationships. That CEs represent an 
important class of semantics is evidenced by their contribution 
in extending KL-ONE, a semantic network used for knowledge 
representation in artificial intelligence research 
[Morgenstern&l]. 

One of the earliest approaches for augmenting schema 
descriptions with additional semantics were the database 
procedures of the CODASYL network database 
[Wiederhold77]. These provided a means of executing 
procedures to derive data or perform other actions. The Query 
by Example relational system has triggers which can be used to 
invoke integrity rules [Zloof82]. Other efforts have provided 
additional primitives in the data model representation 
[Hammer&McLeod81], utilized semantic nets and/or attached 
procedures, or a combination of these (see the TAX!S system 
in [Mylopoulos80]). Recent extensions to the INGRES 
database system use a QUEL-like syntax for expressing rules 
[Stonebaker83]. A rule is selected when it syntactically 
matches a user query, which is then modified by the rule. Also 
relevant are studies of constraint-based systems, including 
[Borning79], [GoldsteinBO], [SridharanEK)], [Stefik8D], and 
[Sussman80]. 

The Constraint Equation facility has been implemented in 
prototype form utilizing the Information Management system 
[Balzer83, Morgenstern831 as the initial testbed. Non-trivial 
hand written code for constraint maintenance has been 
replaced by routines which were automatically generated from 
the CEs. In the future, a transportable Constraint Equation 
package may be provided for use in other selected host 
environments which support database triggers. 

Constraint Equations are defined in sections 2 and 3, together 
with their translation into predicate calculus. A symbolic 
algebra for manipulating CEs is presented in section 4, while 
section 5 describes the update semantics and the algorithms 
for constraint enforcement. Section 6 shows the further 
expressiveness of CEs, including existential and universal 
quantifiers, alternative update semantics, and cardinality based 
comparators in lieu of set equality in the CE. 
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2. Constraint Specification 
and Connection Paths 

Each side of a Constraint Equation is a Path Expression, which 
is an abbreviated representation for a sequence of data objects 
and relationships from the schema for the application. The 
elided components are determined by comparing the 
abbreviated path with the database schema. 

Here we utilize an Entity based schema for our examples, 
though the approach also is applicable to other data models. 
An Entity has a designated type. Its attributes may be single or 
multi-valued, and may refer to literal values or to other typed 
entities. For now we assume that attributes are binary 
relationships, though the methods extend to nary relations. 
Consider the following partial Entity schema, where the 
indicated attributes of Manager are the only ones directly 
relating it to an Employee and to a Project. (The -->> symbol 
denotes a multi-valued attribute.) 

MANAGER Entity 
OVERSEES -->> PROJECT 
MANAGES -->> EMPLOYEE 

EMPLOYEE Entity 
WORKSON -->> PROJECT 

The translation of the above Constraint Equation from 
abbreviated Path Expressions into the fully expanded 
Connection Paths is shown here: 

MANAGER.PROJECT == MANAGER. EMPLOYEE. PROJECT 

[ (MANAGER) OVERSEES (PROJECT) ] == 

[(MANAGER) MANAGES (EMPLOYEE) WORKSON (PROJECT)] 

Each Path Expression is translated from its abbreviated form by 
determining whether each of its explicit components is the 
name of an entity type or the name of a relation, and in the 
process filling in the possibly omitted entity or 
relation/attribute name. Elision of a longer sequence of entity 
and relation names could be allowed when there is no 
ambiguity. The fully expanded sequence of associations from 
the Source to the Target is called a Connection Path. The 
leftmost component of the Path Expression must be an entity 
type, which represents the Source of the path. When the 
translation is completed it must end on the right with an entity 
type, which is the Target. The CE is considered ill.formed if 
there is ambiguity in the translation. 

In general, a simple Connection Pafh is a sequence of the form: 

[ (EO) Rl (El) R2 . . . RN (EN) ] , 

where Ei denotes an entity (object) type, and Ri denotes a 
(binary) relationship/attribute from Eiml to Ei. (Entities are 
shown in parentheses when there may be ambiguity between 
the names of entities and relationships.) 

A Connection Path defines a derived relation Rep in terms of a 
sequence of Joins over relations Ri. For each pair of relations 
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Ri and Ri + , shown above, the natural join is taken with respect 
to their common domain (EiP. The result is projected onto the 
domains EO and En, which are the Source and Target domains, 
respectively, of the Connection P,ath. For a Constraint 
Equation, in which both sides begin on the left with the same 
domain EO, we refer to EO as the Anchor, since it anchors the 
CE with acommon binding for both paths. 

When a set of instances is provided for domain EO (or En) of 
the derived relation Rep, the Connection Path defines the 
selection of tuples from Rep based on these instances, and 
their projection onto the other domain -- thus providing a 
mapping from one set of instances to a related set of instances. 
In particular, for an instance of the Anchor EO, the Connection 
Path provides a mapping to a set of Target instances, En. 

A composition of Paths is itself a new Connection Path. 
Pairwise composition corresponds to the natural join over the 
Target domain of the left path and the Source domain of the 
right path. Thus a Connection Path, or composition of 

subpaths, can be used wherever a relation is used in a 
Constraint Equation. 

3. Formal Interpretation of Constraint 
Equations 

Constraint Equations can be viewed as a compact shorthand 
for a class of predicate calculus constraints that are useful for 
database applications. 

Consider first the following general Connection Path. Each 
relation may be viewed as a binary predicate, such as 
Rl (EO, El). The overall Path represents a derived relation, and 
is expressed in predicate calculus with set notation following 
the equality: 

[ (EO) Rl (El) R2 ,.. Rn (En) ] = 

( (EO, En) j 3El,E2 ,..., E,-, 

[ Rl(E0 El) A R2(El E2) A.. .A Rn(EnsI En) ] } 

All entities other than the Source and Target are existentially 
quantified along the Path. A Constraint Equation consists of 
two such Paths, Consider the following CE expressed in 
abbreviated form and then expanded into the full Connection 
Paths: 

EO.El == EO.E2.E3 

[ (EO) Rl (El) ] q = [ (EO) R2 (E2) R3 (E3) ] 

Expressing the equality of the two Connection Paths in terms of 
predicate calculus yields: 

{ (EO El) j Rl(E0 El) } = 

{ (EO E3) j 3 E2 ( R2( EO E2) A R3(E2 E3) ) } 

An alternative formulation emphasizes the fact that a CE may 
be thought of as being implicitly iterated over the instances of 
the Anchor EO. This viewpoint is valuable for understanding 
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Constraint Equations, and is utilized later when expressing the 
Path Quantifiers. 

VEO { El 1 Rl(E0 El) } 

= { E3 1 3 E2 ( R2( EO E2) A R3(E2 E3) ) } 

Here, each EO instance serves both sides as a common binding 
for the Anchor. And each side defines a mapping to a set of 
Target instances -- the Target sets for the left and right sides 
being {El} and {E3}. The CE constrains these two sets to be 
equal for any such Anchor instance. The equality comparison 
can be replaced by a super&/subset comparison, 
discussed further in section 6. 

The equality based CE also may be expressed without 
notation as: 

VEO,El [ Rl(E0 El) <==> 

3E2 (R2(EO E2) A R3(E2 El) ) ) 

as 

set 

4. Symbolic Transformation of Constraint 
Equations 

An algebra for symbolic manipulation of these Constraint 
Equations enables the derivation of new related Equations from 
one or more existing Equations. This makes possible symbolic 
analysis of the consequences of constraints, as well as the 
derivation of alternative representations. Selected theorems 
are presented here with summaries of the proofs. 

Consider Connection subpaths (or Path subexpressions) Pl, 
P2, P3, and P4 such that P3 may be composed on the right of 
Pl, and P4 may be composed on the left of Pl. The first 
theorem shows that composition preserves the Constraint 
Equation. 

THEOREM %l: Composition for Constraint Equations 

Given Constraint Equation 

PI == p2 

Then 
PI P3 == P2 P3 
and 

composition on the right 

P4 Pi += P4 P2 composition on the left. 

Proof: The first derived expression above follows from the fatt 
that each tuple in the derived relation for subpath Pl has a 
corresponding tuple in P2, and vice versa. Thus the same 
tuples from P3 will be selected on both sides of the CE based 
on the join with either Pl or P2. A similar argument confirms 
the second result. 
I 

The substitution of one Constraint Equation into another 
preserves the set equality of the original CE: 

THEOREM #2: Substitution 

Given Constraint Equations 
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Pi == P2 P3 P4 and 
P3 == P6 

Then 
Pi == P2 PS P4 

Proof: For CE P3 == PS compose P2 on its left, and 
compose P4 on the right, yielding P2 P3 P4 == P2 P5 P4 , 
The theorem follows. 
8 

The next two theorems lead to the result for transposing a path 
component from one side of the CE to the other (Theorem 5). 

Path P j with Source Xi and Target X j is written 
[ ( Xi ) P j ( X j ) 3. Its path inverse, denoted P j -’ , is written 

WW W’ (Xi)], which is just the set 
{(Xj Xi)(Pj(Xi Xj)} . 

THEOREM #a: Path Inverse 

For subpaths Pl and P2 

(PI P2)’ == P2-’ Pl” 

Proof: Givensubpaths[(EO) Pl (El)Jand 
[(El) P2 (EP)J,then (Pl P2)” = 
((E2 EO) 13El Pl(E0 El) A PP(E1 E2)) = 
((E2 EO) 13 El P2’‘( E2 El) h Pl”(E1 EO)] }, 
which is just (P2- 1 Pi-‘) 
8 

The notation, Pl I p2 expresses the restriction of subpath Pl 
to those tuples for which the Target values are also Source 
instances of P2. This serves to exclude dangling tuples of Pl 
relative to P2 on the right. It is essentially the same as the 
semijoin [Ullman82] of Pl relative to P2 -. no ambiguity arises 
here even if both the Source and Target of Pl have the same 
name, such as for a Manages relation from Employees to 
Employees. p1 IPt may be expressed as the set 
{(X Y) 132 [Pl(X Y)AP2(Y Z)]}. Similarlyp,IP1 , 
denotes restricting the tuples of Pl to those for which the 
Source is also a Target instance of P3 .- ie. excluding dangling 
tuples of Pl relative to P3 on the left. The following shows the 
result of composing a subpath with its inverse. 

THEOREM #4 : Path Cycle 

Given subpaths Pl, P2, and P3, such that 
(Pl P2) and (P3 Pl) are valid compositions, then 

Pi (P2 P2”) > Pi IPL 

(P3-’ P3) Pl > pslPl 

Proof: The set {(EC’ El’)1 3E1,EZ 
[Pl(EO El) A P2(El E2) A P2-‘(E2 El’)]) 
represents the left side of the first expression. Choosing El’ as 
the value for El, produces the following subset 
((EO E1’))3E2[Pl(EO El’)APZ(El’ E2)]}, which is 
the right side of the first assertion. 
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If PZ-’ is single valued, then > will reduce to set equality. Also, 
if P2 represents a required relationship for Target entities of 
Pl, then the first restriction on Pl is automatically satisfied. 
The second expression is proved in the same manner, and the 
1 reduces to set equality if P3 is single valued. 
I 

A path component Pi may be transposed from one side of a CE 
to the other side. This changes the set equality to set cover, 
and dangling tuples must be excluded from the result, 

THEOREM #5: Transposition 

Given the Constraint Equation 

Pl == P2 P3 P4 . 

Then each of the following are true: 

Pl P4‘l 2 p2 P3 Ip4 Transposition on right 

Pz-* Pl 1 p*lP3 P4 Transposition on left 

Pl P4“ P3-’ 1 P2 1 (p3 r4) Multipleon right 

P3-’ P2-’ Pl > (P2 r3) 1 P4 Multipleon left 

Proof: Use the first part of Theorem 4 with Pl there replaced 
by (P2 P3), and P2 replaced by P4, to get 
(P2 P3) P4 P4-’ 2 (P2 P3) 1 p4 . Composing P4-’ on 
the right of thegiven CE Pl == P2 P3 P4 and comparing 
these derived CEs proves the first assertion. Note that if P4-1 
is single.valued, then > will reduce to set equality. 

For the second assertion, compose P2.’ on the left of the CE 
given above. Use the second part of Theorem 4, with P3 there 
as P2, and Pl there as (P3 P4). The superset will reduce to set 
equality if P2 is single-valued. The third and fourth parts follow 
from parts 1 and 2 respectively, by renaming subpaths and 
applying Theorem 3. 

I 

4.1. Example 
As a brief example of the use of these algebraic operations, 
consider again the Constraint Equation where Employees Work 
on Projects, and Managers Oversee those Projects: 

MANAGER.PROJECT == MANAGER.EMPLOYEE.PROJECT 

[ (MANAGER) OVERSEES (PROJECT) ] q = 

[(MANAGER) MANAGES (EMPLOYEE) WORKSON (PROJECT)] 

We use the first assertion from Theorem 5 for transpcsing on 
the right to obtain: 

[(Manager)OVERSEES(Project) 

WORKSON-’ (Employee) ] 

> [ (Manager) MANAGES (Employee)jwoRKs,,,, ] 

In this CE the Manager-to-Employee association via Projects 
yields a superset of the Employees MANAGEd by that Manager 
_. when restricted to those Employees who directly Workon 
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some Project. (Alternatively stated, for some manager Fred, 
the set of Employees who work on Projects which Fred 
oversees is a superset of those Employees Fred Manages 
directly -- where this set considers only Employees directly 
working on Projects.) 

This transformation of the original CE makes two 
consequences more apparent. The 1 comparator highfights 
the fact that if several Employees work on a Project, then not all 
of them need report to the same Manager. If only one 
Employee works directly on a Project, then > becomes set 
equality. And the restriction on Employee highlights the fact 
that the Manager also may manage other Employees who do 
not directly work on an existing Project, such as secretaries. 

This algebra for Constraint Equations, part of which is 
presented here, provides a useful means of analyzing the 
consequences of constraints, reasoning about the application 
domain, and deriving related Constraint Equations. 

5. Update Semantics and 
Automatic Constraint Enforcement 

When changes occur to the database, one or more Constraint 
Equations may be affected. The constraints are automatically 
enforced with respect to these changes. In some cases, the 
constraint may require rejection of the initial database change. 
Usually, however, the constraint may be satisfied by making 
consequential changes which depend upon the initial change. 

The Constraint Equation specifications are used by the CE 
Compiler to automatically generate programs which enforce 
the constraints. The executable interpretation for a CE is 
reasonably intuitive, and is detailed in the algorithms below. 
The enforcement routine will make the compensating changes 
needed to satisfy the constraint(s) foflowing an initial database 
change. The normal response for enforcing a CE may be 
modified for special cases by annotating the CE, as discussed 
later. 

The database system implementation provides triggers or 
demons which are activated when changes occur to specified 
relationships [Goldman82]. The CE Compiler attaches the 
enforcement routines it generates to database triggers for each 
of the relation types that are involved in the Constraint 
Equation, Thus when an insertion, deletion, or update occurs 
to any instance of these relations, this enforcement routine is 
automatically invoked to take the appropriate action. 

5.1. Changes to an Entity 

When an entity (object) instance is created, deleted, or 
updated, changes occur to relationships which involve that 
entity. In particular, creation of an entity places it into a system 
table or relation. If the entity type has required attributes, then 
these must be defined with the creation of the entity instance. 
For deletion of an entity, all attributes and relationships 
involving this entity instance are deleted also. Updating an 
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entity actually involves updating the attributes/relations of the 
entity. 

Constraint Equations are activated by changes to relationships 
and attributes, Thus creation, deletion, or updating of an entity 

would invoke a CE by virtue of changes to attributes and 
relationships for that entity instance. 

5.2. Changes to an Attribute Relationship 
A change to a relationship on one side of a CE usually may be 
compensated for by a change to the other side of the CE, so as 
to reestablish satisfaction of the constraint. If there is more 
than one relation on the other side of the CE, then the one to 
change must be designated to remove ambiguity. Notationally 
this is indicated by the ” ! ” symbol to the left of or in place of an 
attribute or relation name (the ” ! ” is used in lieu of the dot 
‘I. ‘I), The designated relation can be thought of as a weak 
bond. since it is more readily modified in response to an initial 
change to the other side of the CE. 

As an example, consider the constraint that an Employee’s 
Phone’s Backup (the extension which takes messages when 
the phone is busy or does not answer) is the same as the 
Employee’s Project’s Secretary’s Phone. This may be 
expressed in a CE as: 

EMPLOYEE. PHONE ! BACKUP == 

EMPLOYEE.PROJECT.SECRETARY.PHONE 

The designation of weak bond on the left indicates that if any of 
the associations on the right changes (eg. a Project’s 
Secretary) then the Backup extension for the Employee’s 
Phone is changed. The absence of a weak bond on the right 
indicates that a change directly to the relations on the left is not 
allowed if it would cause a violation of the constraint. For 
example, the Employee’s Phone could be changed to any other 
Phone having the same Backup without violating the 
constraint. Alternative update semantics are specifiable by 

annotations, as discussed below. 

The update semantics are reasonably intuitive when 
relationships are single valued. If an Employee changes to a 
different Project, and all the remaining relationships (except 
the changed relation and the weak bond relation) are single 
valued, then the Secretary’s Phone is clearly defined, and the 
change of Backup extension for the Employee’s Phone is 
simple. 

The potentially multi.valued relationship between Employees 
and Projects can give rise to a set of changes in other cases. If 
the Secretary’s Phone is changed, then the Backup extension 
must be changed for the Phones of the (potentially) several 
Employees on the associated Project(s) (ie. on Projects served 
by that Secretary, and limited to those Phones having the old 
Backup number). Also, a change affecting one CE can result in 
a compensating change which activates other CEs .. thus an 
initial change can create a wave of propagation through 
several interconnected constraints [Morgenstern53]. 
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As another example, consider the CE presented earlier where a 
Manager oversees those Projects which are worked on by 
his/her Employees: 

MANAGER ! PROJECT == MANAGER ! EMPLOYEE .PROJECT 

The weak bond on each side indicates that Pro@% stay with 
the Employee if there are any other changes. Thus if a 
Manager adds a Project, then he adds the Employee(s) who 
already work on that Project (rather than having his existing 
employees take on that project). 

5.3. Algorithms 

The rest of this section presents the details of algorithms for 
automatic enforcement of Constraint Equations of the type 
considered so far, and may be skipped on a first reading. The 
CE takes the following form, where Pi are subpaths and Rj are 
relations: 

Anchor . PI . RO . P2 . L-Target == 

Anchor . P3 ! Rw . P4 . R-Target 

Both sides may be expanded into the following Connection 
Paths. The right side is reexpressed as the composition of 
three subpaths for convenience. 

[ (Anchor) Pl (Xl) RO (X2) P2 (L-Target) ] 

== [ (Anchor) P3 (X3) !Rw (X4) P4 (R-Target) J 

== [ (Anchor) P3 (X3) ] [(X3) !Rw (X4)] 

[ (X4) P4 (R-Target) ] 

The relation Rw is designated as the weak bond by the ” ! ” 
symbol (or by annotations considered in a iater section). A 
compensating change may be made to Rw when’an initial 
change occurs to the relationships on the other side of the CE. 

Absence of a weak bond designation would require rejection of 
all changes to the other side, unless such a change continued 
to satisfy the invariant. An initial change also may be rejected 
when other factors prevent reestablishment of the constraint, 
as indicated in the algorithms (eg. violation of cardinality 
restrictions). 

Consider an initial change (insertion, deletion, or update) to an 
instance of the RO relation, for a pair of Xl and X2 object 
instances. The side containing RO (shown on left) is treated as 
independent and the other side as dependent. (If an Anchor or 
Target instance participates directly in the changed 

relationship, then subpaths Pl Xl and/or X2 P2 are not 
needed below.) 

Four steps are common to insertion, deletion, and update: 

w 1 

62) 

Locate Anchor instances on the independent side: The 
subpath [(Anchor) Pl (Xl)] is used from right to 
left to locate instances of the Anchor associated with 
the instance of the Xl object. 

Locate Target instances on the independent side: The 
subpath [(X2) P2 (L-Target) J is used to locate 
instances of the left Target (L-Target) associated with 
the instance of the X2 object. If either steps Sl or S2 
yield a null set, then no further processing is required, 
as no complete path connecting an Anchor to a Target 
instance on the independent side was affected by the 
change. 
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Locate Left Bond objects (X3) on the dependent side: 
For one instance of the Anchor (from step 1) use the 
left subpath [(Anchor) P3 (X3)] to locate the set 
of associated instances of X3. 

Locate Right Bond objects (X4) on the dependent side: 
Traverse the right subpath [(X4) P4 (R-Target)] 
from right to left from each instance of the Target to a 
set of X4, and take the union of these X4 sets. 

Alqorithm # 1: Insertion 

Insertion of a new RO relationship between an instance of Xl 
and an instance of X2: 

For each Anchor instance associated with the change (from 
step Sl). there is to be a connection on the dependent side to 
each potentially new Target instance (from step S2). If such a 
connection does not already exist, find the sets of Left (X3) and 
Right Bond (X4) objects that could be involved (steps S3 and 
S4) -- if either set is empty, create new associations according 
to other specifications (or via user interaction) to make these 
sets non-empty; or else disallow the original change to RO. 

For each pair of X3 and X4 instances, create a new Rw 
relationship if one does not already exist. A user provided 
predicate may restrict this cross product of X3 and X4 
instances. (The predicate may request more information from 
the user.) If Rw is required to be single-valued, then there must 
be not more than one X4 instance related to each X3. For each 
Anchor, at least one path must connect to each of the Target 
instances in order for the change to RO to be accepted (needed 
to maintain set equality). Repeat the above steps for each 
Anchor instance. 

Alqorithm # 2: Deletion 

Deletion of an RO relationship between an instance of Xl and 
an instance of X2: 

For each Anchor instance associated with the change (from 
step Sl), consider each newly disconnected Target instance 
(from step S2) having no other connection(s) on the 
independen? side, and for each remove the corresponding 
connections at the Rw link on the other side: Find Left Bond 
(X3) and Right Bond (X4) objects (steps S3 and S4), and delete 
Rw relationships which relate instances from these two sets. 
Naturally, a required relation/attribute should not be 
designated as the weak bond. Those X3 involved in Rw 
deletions are utilized in the Update algorithm, below. Repeat 
for each Anchor instance. 

Aloorithm #a: Update 

Replacing an existing RO relationship between a pair of 
instances xl and x2old (for object types Xl and X2), with a new 
RO relationship between xl and x2new: 

For each Anchor instance associated with the change (from 
step Sl), use xl and x2old for Deletion, Algorithm #2. And for 
the same Anchors use xl and x2new for Insertion, Algorithm 
# 1 . . except that a non-empty set of X3 objects found during 
Deletion are used instead of step S3 (so that the update 
involves the same Left Bond (X3) objects). Repeat this process 
for each Anchor instance. 

6. Enhanced Expressive Power 

Here we describe additional expressive power available with 
Constraint Equations. In particular we show that the set 
oriented semantics of CEs naturally admit the expression of 
both the Universal and the Existential Quantifiers. 
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In addition, the default update semantics may be augmented by 
annotations indicating that the choice of weak bond should be 
conditional on which relation cha;rged. We provide 

comparators between the two Connection Paths of the CE in 
addition to set equality. And we allow the normal set operators 
within Connection Paths. The relevant extensions to the 
constraint enforcement algorithms are not detailed here. 

6.1. PATH QUANTIFIERS 

Existential Quantifiers are implicit in Constraint Equations, as 
seen in the previous section on Formal Interpretation. All 
intermediate entities along the Connection Path (other than the 
Anchor and Target) have been existentially quantified for the 

type of CEs shown above. 

Existential Quantification corresponds to the natural 
interpretation of each side of the CE as being the union of the 
Target instances for an Anchor instance. These different 

Target instances arise from the existence of different 
sequences (paths) of intermediate relationships connecting 
them with the Anchor. It is the union of these Target instances 
for an Anchor that we find with the Connection Paths used so 
far. This resultant mapping from Anchor instance to Target set 
is one way of looking at the Connection Path. It may be seen 
as a derived relation by taking the cross product of the Anchor 
with its Target set. 

The ability to express the Universal quantifier can be important, 
It is needed for constraints such as: the Projects of a 
Department are those Projects on which all the Employees of 
that Department work. In other words, the Projects of a 
Department are those which are common to every Employee of 
that Department. This notion of commonness to all sets of 
instances arising from a [possibly derived) association is 
represented as a Path Intersection Quantifier ” fl/ ‘I. This 
parallels the default interpretation of a Connection Path as 
being a union of its Target sets, except that here we take the 
intersection over the Target sets. This example may be 
represented as: 

DEPARTMENT.PROJECT q = 

[DEPARTMENT. EMPLOYEE l-11 PROJECT J 

The intersection here is over the sets of Projects that are arise 
from each of the Employees of a Department. Each Employee 
works on a set of Projects; the intersections of these sets yields 
just those Projects that everyone works on in that Department. 
The CE requires that this resulting set of common Projects is to 
be equal to the set of Projects which the Department directs. 

We expand this CE into a full Connection Path using the 
previous partial entity schema together with the definition of 
the Department entity: 

DEPARTMENT entity 
DIRECTS -->> PROJECT 
EMPLOYS -->> EMPLOYEE 
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[ (DEPARTMENT) DIRECTS (PROJECT) ] == 

[ (DEPARTMENT) EMPLOYS (EMPLOYEE) 

f-T/ (EMPLOYEE) WORKSON (PROJECT) ] 

Expressing this constraint in terms of sets, we have: 

VDEPARTMENT 
{ PROJECT j DIRECTS(DEPARTMENT PROJECT) } 

; PROJECT j 
3 EMPLOYEE ( EMPLOYS(DEPARTMENT EMPLOYEE) ) h 

VEMPLOYEE(EMPLOYS(DEPARTMENT EMPLOYEE) = 
WORKSON(EMPLOYEE PROJECT) ) } 

In the second set above, we require that at least one Employee 
is employed by that Department, and that for a Project to be 
included in the resulting set, every such Employee of the 
Department Workson that Project. Note that the existence of 
least one Employee in the Department is required here to 
ensure that the predicate calculus Universal Quantifier does 
not become satisfied for each and every Project just because 
there are no Employees in that Department1 Such concerns 
are taken care of by the semantics of the Path Intersection 
quantifier. 

More generally, a Path Intersection expression such as 

[ El . E2 f-l/ E3 . E4 ] 

expands to a Connection subpath of the form 

r (El) R2 (E2) n/ (E2) R3 (E3) R4 (E4) J . 

This represents a derived relation between domains El and E4. 
For an El instance, this path yields fhose E4 instances which 
are common to every E2 -- ie. an E4 instance is related to an El 
.by this path if this E4 is related to every E2 associated with this 
El. 

We may formally express this derived relation Rcp(E1, E4) by 
the following set of pairs. The universal quantifier applies to 
the entity E2 which immediately precedes the Path Intersection 
symbol ( n/ ) in the expressions above. The scope of the 
universal quantifier is the immediately containing bracketed 
path expression. The other intermediate objects along the path 
(here E3) are existentially quantified as usual. 

{ (El E4) j 3E2 ( R2(El E2) ) h 

VE2 ( R2(El E2) = 
3 E3 ( R3( E2 E3) h R4(E3 E4) )) } 

Since this represents a derived relation Rcp(E1, E4), the above 
Path Intersection (the expression from El to E4) can be used 
as part of a larger Path. Thus quantified expressions can be 
nested within each other. 

6.2. ANNOTATION OF A CONSTRAINT EQUATION 
There are cases when the change to relations on one side Of 
the CE warrants different responses than those presented 
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earlier. The algorithms stated above presume that a change to 
one side of a CE may be responded to by a change to the 
designated weak bond relation on the other side. We can 
extend the range of possible responses by additional 
annotations associated with the CE. 

These annotations take the form of condition-action rules 
(production rules) which have proven valuable in knowledge- 
based Expert systems work in the A.I. community [Hayes- 
Roth631. Condition-action rules have the advantage of being 
modular and easy to specify, yet a set of such rules can 
express complex relationships and actions. For example, a 
consistency constraint expressed as a condition-action rule 
would state the change or combination of changes to the 
database which serve as the condition for activating the rule. 
And it would indicate the action to be taken -- typically an 
expression of how to reinstate consistency. Other forms of 
action might be to disallow the change, provide information to 
the user, or invoke a more general procedure to execute an 
arbitrary action. In fact, the Constraint Equation is directly 
expressible as a set of such condition-action rules -- one for 
each relation that may change in the Equation. 

Here we use such rules to express exceptions to the primary 
update rules embodied in the algorithms presented above. The 
condition indicates the relation change which would activate 
this exception rule, and optionally, the type(s) of change 
(ins&on, deletion, update). The action or response may be of 
eitii;nry complexity, but primarily is intended to indicate a 
relt;ti?n of the CE to which the compensating change should 
be l-r&de -- thus allowing the weak bond relation to be 
conditional on which change occurred. In addition, if a 
predicate is provided on the action side, it is taken as the filter 
which limits the creation of new instances for the selected 
weak bond relation in the Insertion algorithm above. 

The following CE is similar to the one presented earlier, except 
that here the semantics are that a change of Manager for an 
Employee changes the Projects the Employee works on. The 
additional rule overrides the base semantics of the weak bond 
on the left of the CE. The rule below is invoked when the 
relationship MANAGER.EMPLOYEE on the left is changed, and 
the response is to treat the relation EMPLOYEE.PROJECT on 
the right as the weak bond. 

MANAGER ! PROJECT == MANAGER!EMPLOYEE.PROJECT 
except 
MANAGER.EMPLOYEE - EMPLOYEE.PROJECT 

Another example is repeated below with a new response. Here 
a change to a Project’s Secretary would cause the 
compensating change to be made to the Phone of the old and 
new Secretaries -- in order that the Backup number (and the 
phone associated with the Project) stays the same: 

EMPLOYEE. PHONE ! BACKUP == 
EMPLOYEE.PROJECT.SECRETARY.PHONE 

except 
PROJECT.SECRETARY - SECRETARY.PHONE 
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6.3. COMPARATORS OF THE CONSTRAINT EQUATION 
We first extend Connection Paths by including Set Union, Set 
Intersection, and Set Difference as means of combining pairs 
of Connection subpaths to produce a new Connection Path. 

We require compatibility of the types for the Source domains of 
each component path, and similarly for the Target domains, (In 
principle this compatibility restriction could be lifted if we 
consider the union of two different Source types, or Target 
types, to be a new type.) Such extended Connection Paths 
also serve to define a derived (binary) relation, just as for 
simple Connection Paths. 

In a Constraint Equation, the Path on each side gives rise to a 
set of Target instances for an Anchor instance. So far we have 
required these two sets to be equal. The natural extension is to 
allow the subset comparators c and > between the two Target 
sets. 

We also may specify that the Target sets have elements in 
common, or that the sets are disjoint. These are special cases 
of the intersection Comparator -- which is denoted q m:n= . 

Here m is the lower bound and n is the upper bound on the 
number of elements common to the Target sets on both sides 
of the CE . . where the restriction is to hold for each Anchor 
instance. The upper bound defaults to the size (S) of the larger 
(or equal size) Target set, and may be potentially different for 
each Anchor instance. The lower bound defaults to the the 
smaller of the upper bound or S. This is consistent with the 
absence of bounds in the == symbol for set equality. Also, 
q k=standsfor=k:k=. 

Hence a constraint that the two Connection Paths, CPl and 
CP2, have a non-null intersection for each Anchor instance, is 
written CPl =I:= CP2 . The constraint that the Target sets be 
disjoint is CPl =o= CP2 . The requirement that the 

intersection of the Target sets has either 1 or 2 members is 
written CPl =1:2= CP2. In summary, the following 
comparators specify that for every Anchor instance, the two 
sets of Target instances satisfy the indicated comparison: 

== Set equality 
E 2 Subset 
q o= Disjoint sets 
:I:= Intersection is non-null 
=m: = Intersection has m or more members 
‘k= intersection has exactly k members 
zmLn= Intersection has between m and n members 

7. Conclusion 
Constraint Equations provide a concise declarative 
representation for modularly expressing a variety of semantic 
constraints in application based terms. CEs have a more 
natural and perspicuous structure than the predicate calculus 
formulas into which they may be translated. Yet both universal 
and existential quantifiers are expressible conveniently in CEs, 
as are criteria for disjointness, common elements, subset 
relationship, and the typical set union, intersection, and 
difference. Other extensions will include nary relations and 
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predicate restrictions on the paths. 

Automatic constraint enforcement is provided in the prototype 
implementation by compilation of a basic CE specification into 
the equivalent of condition-action rules. The program which is 
generated will perform the actions needed to reestablish 
consistency -- this routine is attached to database triggers 
which will be activated when the specified relation(s) are 
changed. Since the activation of a Constraint Equation can 
result in additional database changes, a chain of activations of 
several Constraint Equations may arise. The set of such 
activations defines the consequences of the initial change. 
Strategies for such constraint propagation and for related 
optimizations are discussed in [Morgenstern83]. 

An algebra- for symbolic manipulation of these Constraint 
Equations enables the derivation of new Equations from 
existing ones, and makes possible symbolic analysis of the 
constraints and their consequences. The use of the CE 
algebra to derive alternative representations may prove useful 
in supporting multiple views and data models. 
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