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hBSI’Rtl(.;‘ : In older to specify dytxmi (‘ con- 
strc int?, we ~lrcsfnt * a siclplifjcd vel-sion of 
teopcltal lccic hasec! on the tenporal quarltjfjcrs 
“~l\:eys” cind “so~c~:.ine” as well as their bcuncieii 
ve: s ions “always. .unt.i 1” and “samet.ire. .hefore”. 
!!C rittor t::at , !n rlcst practical cases, the Iloun- 
ded tecpol a1 quar:tifiers can be oxpresscd by np- 
propri att fotm~!las \:i th unhcundcc: tenpor; I q”an- 
t ifiets. IJe t’t.cn use special kinds of tt*mpcltal 
fcdrr-ctlas as a language to specify c’pIiiItYiC con- 
striiints. The problerr. of enfcBrcir.g st1c.h CLIP- 
strzints is t!ler; reduced to the l~rot!e~ cf cn- 
fz,rcirg dynoslic,ally changing sets cf two 1,irds 
of static c.onstt-hints, called universal ant1 ex- 
istertial constrafnts. Vhilc unicel sal con- 
strziats can t:c cpforced strict];. ir principle, 
vic;l?t ion of rsi.stent;‘*l constraints cannot he 
detected in eac!~ case ft tl:c. cr\rlif.:;t ;:or:ent . Ile 
give a sufficjcnt criterion fcr detcctin:; vicl;- 
tier 0C e> ist0t icl c.onstraints. 

i. fl:‘;!:(!DlJ(‘?‘! (I:4 

It i5 \:jdel) recognized that t!re specificaticn 
aai enforcerlent of constraints for ciataboses is 
e.:.tten~l>- irlportilnt for the l’trt hct, devt~lopr.lent 
of database dcsipn and irlplementalion. In i.nfor- 
rat ictn noticl line, constrair4ts are u5ccl to cap- 
tulc the pecul;arities of reP1 world situations 
artI bebaviour by giving appropriate ~1~s. When 
runring ti:r datnhnse, these rules sbol Id be 
soclchow obeycci in order lo rec!uce the possitili- 
tjez fr,l incorrect data creeping !.n apd corrupt- 
ing tlla ir!tcBgrity cf ttle ctata. 

There arc- numerous papers addressing protlens of 

jntrgrity constrairts for 63tc7bases, and it is 
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virtually iq~o?sible to give ;i comprc.t:ersi\e 
SlirVty here appreciat.ing each relevant contribu- 
tion. For a treatnent of constrair ts ir. several 
2at.n nndcls and data slodelling approaches, the 
reader is referred to the reccrt textbool; ;‘I.:;? 
and its extensive biblicgzaplly. Plso, IS@?? con- 
tairs sane naterial on conpa?.jnp, conceptual in- 
formation nodell i.ng approaches. hlong the carli- 
est fundamental papers on constrilirt:: are i:Ii75, 
St75,To77 and Wc76. Spccinl sorts of consti~ints 
called dependencies play rl dominant role ip tc- 
lationcl database theory. Ttw reader is. referred 
to ?.;a&3 for a conprehenslve tr(:atnerlt of this 
subject. 

Recently, the prohlem of checl;irg 2nd non5torIt.g 
integrity on the basis cf constrtinis !las foun? 
r~olc and pore interest (CD~~~,F!)(:C~,N~~,~,~ISKC?). 
F;lrlier approaches have hren giver in St75 and 
To77. CBB(! consiclerc- . . the problem: of verifyir.g 
that transactior:s preserve const-lai:lts. Integri- 
my ctleckir:e, in Jeductive c?atabeses is treated ir: 
NY71’. 

Most of the material en conat.raints publjshed SP 
far is concerned with static constr:.ir~f.s, i.e. 
criteria to decide whet.!tel A ziver! specific data- 
bcse state is adrlissible, c!isr-egarc’ine its con- 
test between previous and iort-l,corlir::; states. Tile 
area of ?ynamic constraints, i.e. crjterir. for 
;:dmissihle state seciuer:ces, js barely touched. 
Sorle prelirlillary ideas are (:c*nt: irlcc’ in ISiV?. 
ftlso, l4Y71; and RiCl address thjs question, con- 
centrat ing on pairs cf before/after states. 

I\ new approach to dynarlic constraints using t.em- 
poral logic has been initiated by (.CFB?,C:Ff!?. ant1 
C>:S83. WC take up these ideas here. bIo!Iever, hy 
separating the protlem of specifyin and enfol- 
cirg dynaclic constraiI3ts frorl the problea. of src- 
cifying and verifyin:; trarSaCtjOns (X;hich \:e do 

not. ccnsic’er ir. this paper), MC restrict our- 
s..lves to a much simpler fc.rn of tenporal logjc 
incorpora t i ng only the temporal quantifiers 
“al.ways” and “somet ine” as we1 1 as thejr bounded 
versions “alr.~ays..untjl” and “sonetire..before”. 
The latter, however, can he expressed by the un- 
bounded versions ir; many cases of practical in- 
terest. cur approacil is similar, but not identi- 
cal, to that of Nanna and Pnueli to program logic 
(PIP81 ,Xa82). 
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Temporal logic is, in our opinion, a convenient 
tool for modelling dynamic database aspects. One 
of the problems widely discussed in this respect 
is the modelling of time in databases (An82, 
BADW82,Bu77,CW83). BADW82 gives a comprehensive 
overview of the role of time in information pro- 
cessing. In the temporal logic framework, time 
is modelled by considering state sequences. In 
particular, dynamic constraints determine admis- 
sible classes of state sequences in the same way 
as static constraints determine admissible class- 
es of states. Static constraints are, of course, 
special cases of dynamic constraints. 

Temporal logic must be based on a specific ap- 
proach to concepts for formulating database sche- 
mata. We follow the lines of GMS83 and adopt a 
functional approach to data modelling in the spi- 
rit of BF79 and Sh81. Accordingly, a schema con- 
sists of sorts of entities, functions taking 
arguments and delivering results of specified 
sorts, and constraints expressed in temporal lo- 
gic. It should be noted, however, that temporal 
logic is not bound to this approach to data mo- 
delling. It can be used with other approaches as 
well, e.g. relational ones as in CCF82 and CF82. 

In contrast to previous functional approaches, we 
distinguish between two syntactic levels, the da- 
ta level and the object level. The data level 
comprises specifications of basic data types like 
BOOL, INT, etc. The data level has a fixed inter- 
pretation that does not vary in time and is often 
the same for large classes of database schemata. 
The object level, on the other side, contains 
sorts like PERSON, PROJECT, etc. and functions on 
them whose interpretation varies in time, depen- 
dent on the database state. The object level will 
most probably be different for different database 
schemata. 

In the next section, we give a brief account of 
our version of temporal logic, based on our func- 
tional approach to data modelling. We define the 
syntax and semantics of temporal formulas inclu- 
ding the temporal quantifiers "always" and "some- 
time". It is well known (MP81) that these quanti- 
fiers enjoy the same nice duality principle as 
the classical quantifiers d and 3 . We then in- 
troduce the bounded versions "always...until" and 
"sometime...before". They again enjoy a corre- 
sponding duality principle. Essentially, we use 
formulas to denote points in time. The idea is 
that a formula denotes that state in a given 
state sequence where it first becomes true. AS 
formulas behaving especially well with respect to 
time, we define "monotonous" formulas that remain 
true if they once became true. We show that, with 
monotonous formulas as time bounds, the bounded 
versions of the temporal quantifiers can be ex- 
pressed by appropriate unbounded formulas. 

In the third section, we introduce special kinds 
of temporal formulas as a language to express dy- 
namic constraints. We then show how the problem 
of enforcing such dynamic constraints c In be re- 
duced to the problem of enforcin;; cd '1.11 .cally 
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chaugirig sets of two kinds of static constraints, 
called universal and existential constraints, re- 
spectively. While universal constraints can be 
enforced strictly in principle (there are, how- 
ever, considerable practical problems), existen- 
tial constraints present principle problems. Our 
approach to enforcing existential constraints is 
on the safe side in so far as they are certainly 
violated if they are reported to be so, but vio- 
lation cannot be detected in each case at the 
earliest moment. 

2. TEMPORAL LOGIC 

The syntax of a database schema is given by a 
collection of certain sorts and function names 
building the so-called schema signature. We sub- 
divide it into a data part denoting basic data 
types like BOOL, INT, etc. and into an object 
part denoting the specific database in the style 
of the functional data model. 

Formally, a schema signature x = <SD+So, GD+Bo> - 
consists of: 

- data sorts SD including BOOL 

- data functions RD between data sorts 

- object sorts So disjoint from SD 

- object functions R, between object and data 

sorts, i.e. each WCG o has a (formal) arity 

w : s x...xs 
1 --> s n 0 with siaSD+SO . 

The data part <S,,si,> may be fixed once, whereas 

the object part <S,,R,> must be declared expli- 

citly for any new schema. 

Example: As an example, we consider a simple da- 
tabase for the registration and deregistration of 
cars. A complete verbal description of the schema 
can be found in IS082; here, only self-explaining 
extracts are needed. The schema signature looks 
as follows: 

- data sorts: BOOL, INT, DATE, YEAR, . . . 
- data functions: year-of: DATE --> YEAR, . . . 
- object sorts: CAR, MANUF 
- object functions: 

produced: CAR --> BOOL 
manufacturer: CAR --> MANUF 
serial-no: CAR --> INT 

registered: CAR --> BOOL 
date-of-reg: CAR --> DATE 
deregistered: CAR --> BOOL 
date-of-dereg: CAR --> DATE 
reg-no: CAR --> INT 

destroyed: CAR --> BOOL 
date-of-destr: CAR --> DATE 

today: --> DATE 
*** 
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A schema signature may be interpreted by assign- 
ing certain sets to the sorts and appropriate 
functions on these sets to the function names; 
thus, a so-called schema instance is obtaines. 
The interpretation-of the data part by basic data 
types is assumed to be fixed. 

Let f: be a schema signature. A 

11 -state U = <pos,act> consists ---- 
- To each scS0, a set pas(s) of 

ues is assigned. 

x -instance or ---- 
of two mappings: 

"possible" val- 

- To each seS0, a set act(s)cpos(s) of Mactual" 

values choosen from the possible ones is as- 

signed. 

- Each function name w: six . ..Y sn --> sb < GO 

is mapped to an "actual" function 

act(u): act(s1) x . . . x act(sn) --> act(sO) . 

(Especially, each function name with target 
BOOL denotes an actual relation.) 

Such a state represents the contents of a data- 
base at a certain moment only, since the "actual" 
part may vary time-dependently. So the course of 
time in a database can be taken into account by 
observing sequences of states. Therefore, we will 
interpret a schema signature x by a Z-state se- 
quence C = <O-SC1 . . . > which denotesaT;;;- 

sibly infinite) sequence of X-instances Cri= 

<pos,acti> with the possible values implicitly 

given by a fixed mapping pos. 

In order to restrict interpretations of a data- 
base schema to "admissible" states and state se- 
quences only, some "constraints" are added to the 
schema signature x. E.g., in each state of our 
registration database, each car must be uniquely 
determined by its manufacturer and its serial-no. 
Also each car must be registered sometime after 
it has been produced; this condition must be re- 
flected within a sequence of database states. 

Such constraints will be expressed by temporal 
r-formulas defined as follows. 

An atomic z-formula is a boolean z-term or an -~___-- 
equation tl =t between z-terms tl,t2 of the same 2 

sort. A non%oral x-formula is constructed -- 
from atomic formulas by applying 

- boolean connectives fi ,V, =>, <=, 1 
- and quantifiers t/,3 over individual variables. 

A (temporal) z-formula is constructed from ato- 
mic formXaXyYp=Kg (iteratively) 

- boolean connectives and quantifiers as above 
- quantifiers x, 3 different from those above 
- and unary "temporal operators“ always and 

sometime . 

Such a formula is called closed if each occurring -- 
variable is bound by some quantifier. 
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We assume the reader to know how to interpret a 
nontemporal Z-formula CD in a z-state r with 
a given substitution roof actual values for free 
variables; let CrL yX denote that 9% , i.e. the 

result of substitution, becomes true in C. Of 
course, the quantifiers 7' ,z bind variables to 
set of actual values in a state (with sorts re- 
spected). 

Temporal formulas, however, are interpreted in 
r-state sequences. Here, possible values may be 
substituted for variables, too; the different 
quantifiers denote the two kinds of binding. For 
a given r-state sequence z = < TO frl . . . > and 

a substitution x of possible values for free 
variables, the validity C I= $& is inductively 
determined by the rules (T>-(vi> below. 

(i) An atomic formula JJ only has to hold in the 
first state of the sequence (T provided that 
all values substituted are actual values in 
that state: 

@- != +L iff: - 
all values occurring in '& exist in C7 0 
and 00 c -la, 

(ii) Boolean connectives are interpreted as usual. 

(iii)Quantifiers Y, 3 refer to all actual values 

(iv> 

(VI 

(vi) 

in the first state of c . 
E.g. take y a 'vx ;3' 7 

c-i= 
% 

iff: - 
for all actual values v in 7-O: 

o- k ‘3 ' - :x<x cv> 
where cC<x+v> substitutes x by v and agrees 
with 3~ elsewhere. 

In ? 3 Yx 2' , however, 211 possible - 
values are considered: 

o- b cpa iff: - 
for all possible values v: z k 'f<<xcv> 

( 3_ by analogy) 

For 4 t always 7' , +' must hold in any 

tail sequence of c starting at an arbitrary 
state: 

c- p yoc iff: 
- 
for 211 i=O,l,... _ CT1 b "4 

where c1 = <C. ir > . - i+l"' 

For 'p= : sometime C?' , :P' must hold in at ---- 
least one tail sequence of C : 

c- b $4 iff: - 
there exists i, i,>O, s.t. cl t 0;. - 

If the temporal operators are immediately applied 
to a nontemporal formula .3', rules (v> and (vi> 
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say that y ’ must hold in all states or in some 
state, respectively. By rule (i), an atomic for- 
mula yaC yields false in a state if the formula 
involves objects not existing there. The validity 
of a compound nontemporal formula results accord- 
ing to rules (ii> and (iii). 

For each schema signature ‘t and each sort s, we 
assume a standard predicate “exists” which is 
defined by the formula: 

t/x always exists(x) 
Thus this predicate specifies which possible val- 
ues v exist in the first state of a sequence ,Q , 
since we get by rule (i): 

E t= exists(v) iff v exists in Q 0 

We simply write “g by”, if a X-formula v is 
valid in z for all substitutions of possible 
values, and we write ” by “, if ‘4 is valid in 
all t-state sequences, assuming a fixed choice 
of possible values. These are purely semantical 
properties; we do not consider here syntactical 
deducibility of temporal formulas like it is 
known for nontemporal, i.e. first-order formulas 
(written ” by “1. An axiomatization of a differ- 
ent kind of temporal logic has been presented in 
Ma82. 

Obviously , the temporal operators are dual to 
each other under negation. 

Prop.: Let ‘Q be a r-formula. 

c 9 always ‘Q <=-> sometime 9 Y 
c 7 sometime y <=-> always q ‘Q 

For illustration, we list some formulas which 
ought to be valid for the car registration data- 
base as it develops dynamically. Let c,cl,c2 be 

variables of sort CAR, m of sort WANUF, and i of 
of sort INT. 

(1) always Vcl Vc2 

[ manuf (cl)9aanuf(c2) A 

serial-no(cl)pserial-no(c2) PI> cl-c2 1 

(2) always WC, WC2 

( registered(cl)Aregistered(c2) ) 

==> ( reg-no(cl)=reg-no(c2) ==> cl-c2 1 

(3) always Vc 
produced(c) ==> sometime registered(c) 

(4) always Vc Em [ manufacturer(c)% 
==> always (exists(c) I=.> manuf.(c+m) I 

(5) alwaye EC Ei [ serial-no(c)=i 
==> always (exists(c) ==> serial-no(c)=i) ] 

Since an argument of a temporal operator normally 
refers to an unbounded state sequence, it is dif- 
ficult to restrict that condition to a certain 
bounded part of the sequence. Typically a bound 
may be represented by the first occurrence of 
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some other condition \u, i.e. the first state !.n 
a sequence where y becomes true. Such situations 
have to be expressed in many applications. 

Therefore, two additional binary temporal opera- 
tors are introduced: 

always ‘p until v 
some t ime 

Y- 
before y 

As arguments, temporal X-formulas ~4 and v are 
allowed. The semantics of the operators for a X- 
state sequence ,Q and a substitution d is given 
as follows, where 

+yck) = min({jl~‘~yW] v{w]> 

denotes the first occurrence of y . 

(vii) _Q C (always y until y I*. iff: 

for all i, O(i< pF()&I : Ei b yoc 

(viii) C C (sometime y before y jar iff: 

there exists i,O$i<p,(~~), s.t. Q-~ b (pot 

These definitions do not im~lv that the condition 
does ever become true. 
specified additionally 
operators again behave 

Prop. : 

c v always ‘p until 1 -- 

If wanted, this must be 
by sometime y . The new 
dually. 

<=I> sometime lybefore v 

t i sometime y before y <I?> always ly until ‘y 

Now we are able to state for our example, omit- 
ting the “always r-prefix: 

(6) 

(7) 

(8) 

reg-no(c)+ 
==> always reg-no(c)=i until deregistered(c1 

destroyed(c) 
==> always 1 deregieteredcc) until 
year-of(today1 1 year-ofcdate-of-destr(c)) +3 

destroyed(c) 
==> sometime deregistered(c) before 
year-of(today1 >, year-ofcdate-of-destr(c11 +4 

Termination conditions (the “y” of the formulas 
above) in database specifications typically are 
given by arriving at some point of time; cf. (71, 
(8). Considering the irreversibility property of 
time we are especially interested in so-called 
monotonous conditions. 

A nontemporal r-formula y is called monotonous 
w.r.t. a t-state sequence 5 iff: 

E’ y ==> always yI 

Then the bounded temporal operators can be ex- 
plained by the original temporal operators. 

p.r Let y be monotonous wrt Q . Pro 

(a) E b always cQ until y <I=> always ‘pvy 

(b) r b sometime ‘9 before v 

<==> somet ime ‘9*-Y 
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Proof: 

(a) Let oc be an arbitrary substitution. The prop- 

osition is obvious in the case pcr(yti)= OQ ; 

otherwise let ,u:= /+(Y~) . 

'hc)" : For all i, O$i<p, we have zi I= yti. 

Since Fp'yoL , montonicity gives for all 

i+ : +y&. Thus, for all 120: 

qi b= (y-& . - 

"<M" : For all i, O<i<r, we already know: 

g t= (yvp>a . Since p is the minimal j 

s.t. uj q&s - even c1 C yti holds. - 

(b) By duality and (a), we conclude: 

sometime 'Q before y 

<==> l.always 9 'Q until y 
<E> 1 always 1'Qvy <==> sometime LQA "y 

**Jr 

These transformations may be applied to the exam- 
ple formulas (6)-(8), if the following conditions 
are guaranteed: (d of sort DATE) 

(9) deregisteredcc) ==> always deregisteredcc) 

(10) today 2 d ==> always today 2 d 

In the next section we will concentrate upon two 
special kinds of temporal formulas. Therefore, 
their semantics is given below. 

Remark: Let 'Q and y be nontemporal formulas 

with free variables xl,...,xn . Then it can be 

concluded from the general rules: 

(a) r I= always Wxl...Xn (y ==> always y ) - 
iff for all vl,...,vn (possible) and for 

all i=O,l,... with ti(xj):=vj (j=l,...,n): 

ui ' 'QW implies that for all k>i: Qk C ?a 

(b) E C alwaysvxl...~x, ( 'Q ==> sometime y ) 

iff for all vl,...,vn (possible) and for 

all i=O,l,... with ol(xj):=vj (j=l,...,n>: 

pi ~'4~ implies that there exists k, k)i, 

s.t.: ckt; ys 

3. DYNAMIC CONSTRAINTS 

In this section, we introduce special kinds of 
temporal formulas as a language to express dyna- 
mic constraints, and we show how the problem of 
enforcing such dynamic constraints can be re- 
duced to the problem of enforcing two dynamically 
changing sets of static constraints. 
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Let us first introduce a language which allows to 
express constraints. In this language a database 
specification <&C> consists of a signature and a 
set C of dynamic constraints. Each dynamic con- 
straint is a temporal Z-formula 

CQ ==> always v or 

Y ==> sometime y. 

where 'Q and 
Y 

are nontemporal formulas. 

A t-state sequence u is admissible wrt C if'each 
constraint in C is valid in all suffixes of _Q 
for all substitutions of possible values. So the 
above constraints may be understood as abbrevia- 
tions of formulas 

always Vx - -1 . . . rxn ( y ==> always p > or 

always t/xl . . . t/xn ( 'p ==> sometime 1 ) 

respectively, where xl,...,xn are free in the 

bracketed parts. A constraint of the form 

true ==> always y 

can be considered as a static constraint v . 

Example: We discuss some constraints for the car 
registration database that has partly been stu- 
died in the last section. The following rules 
shall be expressed by the constraints given be- 
low: After a car has been produced, it sometime 
must be registered before it is deregistered; 
once it is deregistered it cannot be registered 
again and a car cannot be registered and dere- 
gistered at the same time. 

(1) produced(c) ==> sometime registered (c) 
before deregisteredtc) 

(2) registered(c) ==> sometime deregisteredtc) 

(3) deregisteredtc) ==> always deregisteredtc) 

(4) produced(c) A registered(c) 
==> 'I deregisteredtc) 

(5) produced(c) A deregisteredcc) 
¶S> 7 registered(c) 

Due to the monotonicity in (3) the formula (1) 
is equivalent to : 

(1') produced(c) ==> 
sometime [registered(c)Alderegistered(c)l 

*** 

For databases, we feel that the above forms of 
dynamic constraints cover a wide range of appli- 
cations. This is analogous to Hoare's program 
logic where formulas for pre- and postconditions 
of programs are restricted to {y}P{y] with P 
a program and I+ ,y predicates over P. If mono- 
tonicity of formulas is guaranteed by the remain- 
ing specification even constraints involving the 
operators "always...until" or "sometime...before" 
can be modified to formulas of the above form 
(as explained in section 2). 

In order to reduce dynamic constraints to varying 
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sets of static constraints, we introduce an im- 
plementation language for constraints. In this 
guage constructs of the form 

on - ;co op 

will be used, where .S is a nontemporal formula 
(possibly with free variables) and op is an 
operation. The meaning of this is a kind of 
“trigger” activated when the value of the formula 
changes from false to true: if there is an sub- 
stitution ti to the free variables of 5 in the 
present database state such that ?V,becomes true 
and *>,,, was false in the previous state, then the 
operation opa will be executed. opoL means that 

the operation uses the substitution oc to bind the 
same free variables which occur in cp . In this 
sense the trigger “on ‘p do op” is parameterized 
wrt to all substitution’s CC- such that ‘qd. becomes 
true. We call a collection of on-do constructs of 
the above form an on-program . 

The operations op will manipulate two global 
variables Cu and Ce , which hold certain sets of 

nontemporal formulas where all free variables 
have been substituted by values of a database 
state. They represent the actual knowledge con- 
cerning the constraints. 

- Cu is the set of universal constram . 

A ‘+e Cu has to be valid in all future 

database states. 

- Ce is the set of existential constraints . 

It must be possible that each Y 6 Ce can 

become true in some future database state. 

Cu and Ce will change according to a given data- 

base state sequence <TO cl.. . >. Cu is a monoto- 

nous set in the sense that once a formula is in 

cu ’ then it w<ll always be. It may be, however, 

that a formula becomes redundant after inserting 

other formulas. For instance, 3lvy2 becomes ob- 

solete after insertingyl since it then can be 

deduced. Ce is increasing and decreasing over 

time. 

For a given set C of dynamic constraints the on- 
program induced by C is determined by the fol- 
lowing rules, where “insert” and “delete” are 
the corresponding operations on sets: 

(i) For each ‘f ==> always p in C take up: 

on ‘p * insert(Cu,y) 

(ii) Each constraint ‘Q ==> sometime y induces: 

0” y do c -I y then insert(Ce,y) 

0” ‘p & delete(Ce,y) 
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Exampla : Cou:i;&r again 
above. We demonstrate 

changing over time for 
of states. 

the car database from 
how Cu and Ce are 

a certain sequence of 

Let us start in a state where the car E has 
been produced but neither registered nor de- 
registered : 

C-*: produced(Z)=true registered(z)=false 
deregistered(E)=false 

{ produced(E) A registered(z) ==> 
-deregistered(Z) , 

produced(z)Aderegisterd(E) ==> 
-registered(Z) 1 

0 C- e { registered(Z) h YderegisteredG) 3 

- act. constraint (1’) - 

Now assume that car z has been registered: 

c : produced(E)rtrue registered(z)=true 1 
deregistered(z)=false 

1 c= U C!! 
1 C- e { deregistered(S) ) 

- act. constraint (2) - 

After E has been deregistered, the following 
state is obtained ; 

u : 2 produced(z)=true registered(z)=true 
deregistered(Z:)=true 

C 
2 
= 

U 
Ct u < deregistered(E) ] 

- act. constraint (3) - 

cf- 0 

Now car E must always be deregistered, and that 
means that it cannot be registered again. 
(Additionally, constraint (3) demands that z 
must remain in the database) . ** 

The admissibility of an actual database state 
will be checked in the following sense: If there 
is a universal constraint that is not valid in 
the actual state, then an exception condition is 
raised. Also, if an existential constraint con- 
tradicts to something deducible from the univer- 
sal constraints, an error message is produced. 

Of course, the latter test provides only suffi- 
cient condition8 but not necessary condition8 
for the existence of an admissible continuation 
for the present sequence of states. The condi- 
tion for the validity of the existential con- 
straints Ce can be expressed as: 

pee 3y,s.t. y Q t= CJ and UY’y and 

=\t 
is reachable from the actual state 

Here, Cz denote8 the set of universal constraints 

in the state Q 
Y’ 

If YY is deducible from (the 
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actual) Cu , this will hold in all future states 

due to the monotonicity of cu , i.e.: (ZY 'P C: 

and O--+ +y cannot become true in a future state 

5 ' 
whether or not c 

'r 
can be reached. 

To be a little more precise, Cu and Ce are 

characterized below for a given admissible state 
sequence <t0... Wn>. After Cu and Ce have been 

updated by the on-program according to the rules 
(i)-(ii) and an admissibility check in the above 
sense has been performed successfully, the fol- 
lowing invariant conditions hold for Cu and C : e 

w =u iff: 3 (Cq==> alway_s y> e C 

3 substitution rx for the free variables in 
w 

? i,<n s.t. Ci b= ya and 

for all k, i<k<n : Ok t '+& 

4*a' 'e iff: 3 'lf ==> sometime y> e C 

3 substitution Cr, for the free variables in 'p,~ 

>i<n s.t. Ci b % and 

for all k, i\ck$n : [ not(ck !="ts() ] 

and [ CC" I- 'y6( > does not hold ] 

This means that the dynamic "always" constraints 
are enforced strictly by enforcing the universal 
constraints in C u * The dynamic "sometime" con- 

straints are enforced as closely as is perhaps 
practically feasible: an existential constraint 

YkL c is considered violated if it contradicts 
e 

the current universal constraints and cannot be- 
come true any more for this reason. This does not 
mean, however, that yoc really can become true in 
a future state if it is not considered violated. 
It might be that the remaining specification al- 
ready excludes any admissible continuation in 
principle or that the next state transitions do 
so data-dependently. 

4. CONCLUSIONS 

The simplified temporal logic that we propose 
here for specifying dynamic constraints has the 
advantage of being "implementable" in the sense 
that dynamic constraints specified this way can 
be enforced along the lines indicated above. 
There are, of course, considerable practical 
difficulties in implementing integrity monitors 
with feasible efficiency. Enforcing what we 
called universal constraints has been investi- 
gated by some authors, e.g. CB80,CD83,FDC8l,Ni82, 
St75,To77, and WSK83. But still, practical solu- 
tions are either very restricted or very ineffi- 
cient. The problem of enforcing what we called 
existential constraints still is much harder. It 
seems to have been ignored up to now. Its solu- 
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tion requires a great amount of deduction in a 
logical system. So this problem contributes to 
the need for powerful deductive data bases. Per- 
haps, direct hardware support can help to a- 
chieve feasible solutions for this problem. 

On the theoretical side, it would be nice to have 
a strict criterion for violation of an existen- 
tial constraint at the earliest possible moment. 
The problem is to decide on the basis of a cur- 
rent state whether a formula can or cannot become 
true in some reachable future state. Such a cri- 
terion would have to take the set C of dynamic 
constraints itself into account, since these can 
give rise to new universal constraints in subse- 
quent states, possibly causing inconsistencies 
with the present existential constraints. More- 
over, the problem of reachability of states has 
to be taken into account, and this depends on 
the update operations available. 
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