SPECIFICATION, SEMANTICS, AND ENFORCEMENT OF DYNAMIC DATABASE CONSTRAINTS

H.-D.Ehrich, U.W.Lipeck, M.Gogolla

Institut fiir Informatik, Technische Universit#t Braunschweig
Postfach 3329, D-3300 Braunschweig, Fed.Rep.of Germany

ABSTRACT: In order to
strcinte, we present a
temporal lepgic based on

specify dynarnic con-
simplificd version of
the termporal quantifiers
"2lwevs" and "sorctime" as well as their bounded
veisions "alwavs..until” and "sometire..hefore".
Ve show that, in mest practical ceses, the boun-
ded tempural quarvtifiers can be cxpressed by ap-
propriate formuelas with unhcunded temporal quan-
tifiers. Ve thLen use specizl kinds of temporal
forrvlas as a language te specify dynamic con-
straints. The problerm of enforcing such con-
streints is thern reduced to the protlem cf en-
fercirg dyranmically changing sets cof two hirds
of static comstraints, called universel and ex-
istertial constraints. While wuniversal con-
streints can ke enforced strictly ir principle,
vicletion of existentie]l constraints cannot be
detectec ir cach case 2t the earliest nicnent. Ve
give a sufficicent criterion for detceting vicle-
tior of eristenticl constraints.,

1. IuTeRebuCTION

It is widely recognized that the specificaticn
anc¢ enforcement of constraints for databases is
extremely importent for the further developnent
of datahasce design and implementation. In infor-
raticen nodelling, constraints are used to cap-
ture the pecuvliarities cof real world situations
ard bebtaviour by giving eppropricte rules. When
runring the database, these rules shouvld be
somchow obeyed in order to reduce the possibili-
ties¢ for incorrect data creeping in ard corrupt-
ing the integrity of the data.

There are numerouvs papers cddressing protlems of
integrity constrairts for dataebases, and it is

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or 1o republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

301

virtually impossible to give & comprebersive
survey here appreciating each relevant contribu-
tion. For a treatment of constrairts irn several
data models and date modelling approaches, the
reader is referred to the recert textbook TLG2
and its cxtensive biblicgrapby. Also, IS0Y2 con-
tairs some material on comparing conceptuval in-
formation modelling approaches. Among the carli-
est fundamental papers on constrairts are DIHTS,
St75,T077 and We76. Special sorts of constreints
called dependencies play o dominant role in tre-
lational Jatabase theory, The reader ie referred
to Nab3 for a comprehensive trcatment of this
subject.

Recently, the problem of checlkirg and menitorirg
integrity on the basis ¢f constreints has found
rore and more interest (CD83,FDCGL,Ni&2,WSKE3),
Farlier approaches lLave been giver in S5t75 and
Te77. CB&C consicders the prebler of verifying
that transactions preserve constraints. Integri-
ty checking in deduvctive databases is treated in
NY7E.

Mcst of the material on constrairnts published sc
far is concerned with static constrzints, i.e.
criteria to decide whether a given specific data-
Lase state is admissible, disregarcding its con-
text between previcus and fortlcoming states. The
area of dynamic constraints, i.e. criteria for
admissible state sequences, is barely touched.
Some preliminary ideas are conteined in IS082
Also, BY7§6 and Rill address this question, con-
centrating on pairs cf before/after states.

A new approach to dynamic constraints using tem-
poral logic has been initiated by CCF82,CF82 and
GME83. We take up these iceas bere. Powever, by
separating the protlem of specifying and enfor-
cirg dynramic constraints frem the probler of spe-
cifying and verifying trarsactions (vhich we do
not ccnsicer in this paper), we restrict our-
s.ives to a much simpler form of temporal logic
incorporating only the temporal quantifiers
"always'" and "scmetime' as well as their bounded
versions "always..until" and "sometire..before".
The latter, however, capn be expressed by the un-
bounded versions in many cases of practical in-
terest. Cur approach is similar, but not identi-
cal, to that of Manna and Pnueli to program logic
(MP81,4a82).

Singapore, August, 1984

Temporal logic is, in our opinion, a convenient
tool for modelling dynamic database aspects. One
of the problems widely discussed in this respect
is the modelling of time in databases (An82,
BADW82,Bu77,CW83). BADW82 gives a comprehensive
overview of the role of time in information pro-
cessing. In the temporal logic framework, time
is modelled by considering state sequences. In
particular, dynamic constraints determine admis-
sible classes of state sequences in the same way
as static constraints determine admissible class-
es of states. Static constraints are, of course,
special cases of dynamic constraints.

Temporal logic must be based on a specific ap-
proach to concepts for formulating database sche-
mata. We follow the lines of GMS83 and adopt a
functional approach to data modelling in the spi-
rit of BF79 and Sh8l. Accordingly, a schema con-
sists of sorts of entities, functions taking
arguments and delivering results of specified
sorts, and constraints expressed in temporal lo-
gic. It should be noted, however, that temporal
logic is not bound to this approach to data mo-
delling. It can be used with other approaches as
well, e.g. relational ones as in CCF82 and CF82.

In contrast to previous functional approaches, we
distinguish between two syntactic levels, the da-
ta level and the object level. The data level
comprises specifications of basic data types like
BOOL, INT, etc. The data level has a fixed inter-
pretation that does not vary in time and is often
the same for large classes of database schemata.
The object level, on the other side, contains
sorts like PERSON, PROJECT, etc. and functioms on
them whose interpretation varies in time, depen-
dent on the database state. The object level will
most probably be different for different database
schemata.

In the next section, we give a brief account of
our version of temporal logic, based on our func-
tional approach to data modelling. We define the
syntax and semantics of temporal formulas inclu-
ding the temporal quantifiers "always" and "some-
time". It is well known (MP81) that these quanti-
fiers enjoy the same nice duality principle as
the classical quantifiers ¥V and 3 . We then in-
troduce the bounded versions "always...until” and
"sometime...before". They again enjoy a corre-
sponding duality principle. Essentially, we use
formulas to denote points in time. The idea is
that a formula denotes that state in a given
state sequence where it first becomes true. As
formulas behaving especially well with respect to
time, we define "monotonous" formulas that remain
true if they once became true. We show that, with
monotonous formulas as time bounds, the bounded
versions of the temporal quantifiers can be ex-
pressed by appropriate unbounded formulas.

In the third section, we introduce special kinds
of temporal formulas as a language to express dy-
namic constraints. We then show how th.e problem
of enforcing such dynamic constraints ¢an be re-
duced to the problem of enforcin; « nan .cally

Proceedings of the Tenth International
Conference on Very Large Data Bases.

302

chauging sets of two kinds of static constraints,
called universal and existential constraints, re-
spectively. While universal constraints can be
enforced strictly in principle (there are, how-
ever, considerable practical problems), existen-
tial constraints present principle problems. Our
approach to enforcing existential constraints is
on the safe side in so far as they are certainly
violated if they are reported to be so, but vio-
lation cannot be detected in each case at the
earliest moment.

2. TEMPORAL LOGIC

The syntax of a database schema is given by a
collection of certain sorts and function names
building the so-called schema signature. We sub-
divide it into a data part denoting basic data
types like BOOL, INT, etc. and into an object
part denoting the specific database in the style
of the functional data model.

= <8 +8

550 §_¢D+ QO>

Formally, a Schema signature b

consists of:

- data sorts S including BOOL

D
- data functions S?D between data sorts
- object sorts S0 disjoint from SD
- object functions 520 between object and data

sorts, i.e. each meS?o has a (formal) arity

-->s with s.e5 +S

W : s x.. 0 i€%p™°0

Y-
1 n

The data part <SD,S?D> may be fixed once, whereas
the object part <SO,§?O> must be declared expli-

citly for any new schema.

Example: As an example, we consider a simple da-
tabase for the registration and deregistration of
cars. A complete verbal description of the schema
can be found in IS082; here, only self-explaining
extracts are needed. The schema signature looks
as follows:

BOOL, INT, DATE, YEAR,
year-of: DATE --> YEAR,

- data sorts:
- data functions:

- object sorts: CAR, MANUF

- object functions:
produced: CAX --> BOOL
manufacturer: CAR --> MANUF
serial-no: CAR --> INT
registered: CAR --> BOOL
date-of-reg: CAR --> DATE
deregistered: CAR --> BOOL
date-of-dereg: CAR --> DATE
reg-no: CAR -=> INT
destroyed: CAR --> BOOL
date~of-destr: CAR --> DATE
today: -~> DATE

Jdekk

Singapore, August, 1984

A schema signature may be interpreted by assign-
ing certain sets to the sorts and appropriate
functions on these sets to the function names;
thus, a so-called schema instance is obtaines.
The interpretation of the data part by basic data
types is assumed to be fixed.

Let 2 be a schema signature. A I -instance or

z -state O = <pos,act> consists of two mappings:

- To each seS,, a set pos(s) of "possible" val-

0’
ues is assigned.

- To each seS_, a set act(s)spos(s) of "actual"

0’
values choosen from the possible ones is as-
signed.

- Each function name w: s,x ...xs8_=--> s; &

1 n 0 o
is mapped to an "actual" function
act(w): act(sl) X o.. X act(sn) --> act(so) .

(Especially, each function name with target
BOOL denotes an actual relation.)

Such a state represents the contents of a data-
base at a certain moment only, since the "actual"
part may vary time-dependently. So the course of
time in a database can be taken into account by
observing sequences of states. Therefore, we will
interpret a schema signature & by a & -state se-

quence < = <o—0<:r1 ... > which denotes a (pos-

sibly infinite) sequence of Z -instances (Ti=
<pos,acti> with the possible values implicitly

given by a fixed mapping pos.

In order to restrict interpretations of a data-
base schema to "admissible" states and state se-
quences only, some "constraints" are added to the
schema signature & . E.g., in each state of our
registration database, each car must be uniquely
determined by its manufacturer and its serial-no.
Also each car must be registered sometime after
it has been produced; this condition must be re-
flected within a sequence of database states.

Such constraints will be expressed by temporal
Z -formulas defined as follows.

An atomic & -formula is a boolean & -term or an

equation t,7t, between 2 -terms tysty of the same

sort. A nontemporal 2 -formula is constructed
from atomic formulas by applying

- boolean connectives ~,v, =>, {=, =

~ and quantifiers ¥, 3 over individual variables.

A (temporal) Z -formula 1is constructed from ato-
mic formulas by applying (iteratively)
- boolean connectives and quantifiers as above
- quantifiers !) 3 different from those above
- and unary "temporal operators' always and
sometime .

Such a formula is called closed if each occurring
variable is bound by some quantifier.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

303

We assume the reader to know how to interpret a
nontemporal Z-formula ¥ in a IZ-state ~ with
a given substitution < of actual values for free
variables; let OF P denote that o, , i.e. the

result of substitution, becomes true in & . Of
course, the quantifiers 7 , > bind variables to
set of actual values in a state (with sorts re-
spected).

Temporal formulas, however, are interpreted in
T -state sequences. Here, possible values may be
substituted for variables, too; the different
quantifiers denote the two kinds of binding. For
a given Z-state sequence T = < T9y +-+ > and

a substitution o« of possible values for free
variables, the validity ¢ ¥ Uy is inductively
determined by the rules (i)-(vi) below.

(i) An atomic formula o only has to hold in the
first state of the sequence T provided that
all values substituted are actual values in

that state:
T F P iff:

o

all values occurring in 3, exist in T 0
2

and g E ‘f’(x
(ii) Boolean connectives are interpreted as usual.

(iii)Quantifiers ¥, 3 refer to all actual values

in the first state of ¢ .
E.g. take 9 = Tx ' :
iff:

T F o
for all actual values v in C?O:

E !
i 8¢ S04
where o«<{xev> substitutes x by v and agrees

with = elsewhere.

(iv) In = 7x w' , however, all possible
values are considered:
c e Poo iff:
. . o o
for all possible values v: T F Py mvd
(3 by analogy)

(v) For y= always ?' R .{' must hold in any
tail sequence of & starting at an arbitrary
state:

c B Y, iff:
for all i=0,1,... g} = Q;
i .
=0, T, .. > .
where c Ci S
(vi) For \p = sometime @' , ' must hold in at

least one tail sequence of < :
o F Py iff:

there exists i, 120, s.t. =

oL

If the temporal operators are immediately applied
to a nontemporal formula =2', rules {(v) and (vi)

Singapore, August, 1984

say that ?' must hold in all states or in some
state, respectively. By rule (i), an atomic for-
mula y, yields false in a state if the formula
involves objects not existing there. The validity
of a compound nontemporal formula results accord-
ing to rules (ii) and (iii).

For each schema signature Z and each sort s, we
assume a standard predicate "exists" which is
defined by the formula:
always Vx exists(x)

Thus this predicate specifies which possible val-
ues v exist in the first state of a sequence O ,
since we get by rule (i): -

O exists(v) iff v exists in o,
We simply write "o =", if a Z-formula ¢ is
valid in 0 for all substitutions of possible
values, and we write " 'ﬂf", if ¢ is valid in
all Z -state sequences, assuming a fixed choice
of possible values. These are purely semantical
properties; we do not consider here syntactical
deducibility of temporal formulas like it is
known for nontemporal, i.e. first-~order formulas
(written " +¢"). An axiomatization of a differ-
ent kind of temporal logic has been presented in
Ma82.

Obviously, the temporal operators are dual to
each other under negation.
Prop.: Let be a &-formula.
= -~ always ¢ {==> gometime = ¢
® -~ sometime ¥ {==> always = ¥
For illustration, we list some formulas which

ought to be valid for the car registration data-
base as it develops dynamically. Let €4Cy1Cy be

variables of sort CAR, m of sort MANUF, and i of
of sort INT.

(1) always Vcl ch

[manuf(c1)=manuf(c2) A

serial-no(cl)ﬂserial-no(cz) ==> c,=c,]

(2) always Vcl ch

(régistered(cl)/\re_gistered(cz))

==> reg-no(cl)-reg-no(cz) ==> c;=c,)
(3) alvays Ve

produced(c) ==> gometime registered(c)

(4) always Ve ¥Ym [manufacturer(c)=m
==> always (exists(c) ==> manuf.(c)=m)]

(5) always Vc Vi [serial-no(c)=i
==> always (exists(c) ==> gerial-no(c)=i)]

Since an argument of a temporal operator normally
refers to an unbounded state sequence, it is dif-
ficult to restrict that condition to a certain
bounded part of the sequence. Typically a bound
may be represented by the first occurrence of

Proceedings of the Tenth International

Contference on Very Large Data Bases.
304

some other condition ' i.e. the first state in
a sequence where % becomes true. Such situations
have to be expressed in many applicatioms.

Therefore, two additional binary temporal opera-
tors are introduced:

always t until
sometime Y before ‘f

As arguments, temporal ¥ -formulas @ and Yy are
allowed. The semantics of the operators for a X -
state sequence O and a substitution o is given
as follows, where

Me(Ye) = min({3led k@ } u{e])
denotes the first occurrence of Y-
(vii) @ * (always until Yo iff:
for all i, 0gi< ,u!.(‘ht) : gi '
(viii) ¢ & (sometime P before ¥)“ iff:
there exists i,OSi(/Lz('\h,_), s.t. Qi - Yo

These definitions do not imply that the condition
does ever become true. If wanted, this must be .
specified additionally by sometime Y - The new
operators again behave dually.

Prop.:
k- always ¢ until ¥ <{==> sometime ufbefore ¥

" < gometime ¢ before ¥ {==> always wYuntil v

Now we are able to state for our example, omit-
ting the "always VY"-prefix:

(6) reg-no(c)=i
==> always reg-no(c)=i until deregistered(c)

(7) destroyed(c)
==> always - deregistered(c) until
year-of(today) 2 year-of(date-of-destr(c)) +3

(8) destroyed(e)
==> gometime deregistered(c) before
year-of(today)) year-of(date-of-destr(c)) +4

Termination conditions (the "~" of the formulas
above) in database specifications typically are
given by arriving at some point of time; cf. (7),
(8). Considering the irreversibility property of
time we are especially interested in so-called
monotonous conditions.

A nontemporal Z-formula is called monotonous
w.r.t. a Z-state sequence oo iff:

c = A 1 ==> always ¥
Then the bounded temporal operators can be ex-
plained by the original temporal operators.
Prop.: Let 4 be monotonmous wrt o .
(a) ¢ = always ¢ until ¥ <==> always Pvy
(b) o * sometime y before v

{==)> gometime YA Y

Singapore, August, 1984

Proof:
(a) Let « be an arbitrary substitution. The prop-
osition is obvious in the case m (Y,)= 0

otherwise let u:= /uc,(\r&) .

LN

ot my,.
Since g"‘# Yo » montonicity gives for all

For all i, 0$i</4, we have

i2p: g_’i E Yy - Thus, for all 120:
Ei E (L{v'\r)“ .

"W =="; For all i, 0Si<p, we already know:
g:i = (pvy), . Since m is the minimal j

s.t. zj "‘fou even g'l = 1.‘)“ holds.

(b) By duality and (a), we conclude:

sometime ¢ before Y

{==> = always ol until Y

==> =« always -»(fv‘\t {==> sometime LrA"'\f

*kk

These transformations may be applied to the exam-
ple formulas (6)-(8), if the following conditions
are guaranteed: (d of sort DATE)

(9) deregistered(c) ==> always deregistered(c)

(10) today 2 d ==> always today 2 d

In the next section we will concentrate upon two
special kinds of temporal formulas. Therefore,
their semantics is given below.

Remark: Let ¢ and ~y be nontemporal formulas

with free variables XyseoosX o Then it can be

concluded from the general rules:

(¢ ==> always ¥)
iff for all vy ,...,v_ (possible) and for

(a) & F always Vx;...Vx

all i=0,1,... with o(-(xj):=vj (j=l,...,n):
o, E QP implies that for all k2i: T E Yo,

(b) ¢ ¥ always V_'xl..._V_xn (P == sometime)

iff for all v,,...,v_ (possible) and for
1 n

all i=0,1,... with t>L(xj):=vj (j=1,...,n):

01 F*f“ implies that there exists k, ki,

s.t.: O-k':.‘fet

3. DYNAMIC CONSTRAINTS

In this section, we introduce special kinds of
temporal formulas as a language to express dyna-
mic constraints, and we show how the problem of
enforcing such dynamic constraints can be re-
duced to the problem of enforcing two dynamically
changing sets of static constraints.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Let us first introduce a language which allows to
express constraints. In this language a database
specification <Z,C> consists of a signature and a
set C of dynamic constraints. Each dynamic con-
straint is a temporal Z-formula

Y ==> always y or

b ==> sometime Y-

where ¥ and \r are nontemporal formulas.

A Z-state sequence o is admissible wrt C if each
constraint in C is valid in all suffixes of O
for all substitutions of possible values. So the

above constraints may be understood as abbrevia-
tions of formulas

always !;1 ces !ﬁn (¢ ==> alvays <y) or
alwvays Vx; ... ¥x ({ ==> sometime })

respectively, where XyseeesX are free in the
bracketed parts. A constraint of the form

true ==> always Wf

can be considered as a static constraint Yy -

Example: We discuss some constraints for the car
registration database that has partly beem stu-
died in the last section. The following rules
shall be expressed by the constraints given be-
low: After a car has been produced, it sometime
must be registered before it is deregistered;
once it is deregistered it cannot be registered
again and a car cannot be registered and dere-
gistered at the same time.

(1) produced(c) ==> sometime registered (c)
before deregistered(c)

(2) registered(c) ==> sometime deregistered(c)

(3) deregistered(c) ==> always deregistered(c)

(4) produced(c) A registered(c)
==> 4 deregistered(c)

(5) produced(c) A deregistered(c)
==> « registered(c)

Due to the monotonicity in (3) the formula (1)
is equivalent to :

(1') produced(c) ==>

sometime [registered(c)A-deregistered(c)]
S sk

For databases, we feel that the above forms of
dynamic constraints cover a wide range of appli-
cations. This is analogous to Hoare's program
logic where formulas for pre-~ and postconditions
of programs are restricted to {Y}P{y] with P

a program and ¢ , predicates over P. If mono-
tonicity of formulas is guaranteed by the remain-
ing specification even constraints involving the
operators "always...until" or "sometime...before"
can be modified to formulas of the above form
(as explained in section 2).

In order to reduce dynamic constraints to varying

Singapore, August, 1984

we introduce an im-
In this

sets of static constraints,
plementation language for constraints.
guage constructs of the form

on s do op

is a nontemporal formula
(possibly with free variables) and op is an
operation. The meaning of this is a kind of
"trigger" activated when the value of the formula
changes from false to true: if there is an sub-
stitution & to the free variables of ¢ in the
present database state such that ip, becomes true
and ‘s, was false in the previous state, then the
operation op, will be executed. op, means that

will be used, where .¢

the operation uses the substitution o to bind the
same free variables which occur in ¢. In this
sense the trigger "on ¢ do op" is parameterized
wrt to all substitutions o such that wy becomes
true. We call a collection of on-do constructs of
the above form an on-program .

The operations op will manipulate two global
variables Cu and Ce » which hold certain sets of

nontemporal formulas where all free variables
have been substituted by values of a database
state. They represent the actual knowledge con-
cerning the constraints.

- Cu is the set of universal constraints .

A'+€»Cu has to be valid in all future
database states.

- Ce is the set of existential constraints .

It must be possible that each % & Ce can

become true in some future database state.

Cu and Ce will change according to a given data-

base state sequence «7)61"‘>‘ Cu is a monoto-

nous set in the sense that once a formula is in

Cu y then it will always be. It may be, however,

that a formula becomes redundant after inserting

other formulas. For instance,‘}lvyb becomes ob-

solete after inserting'\f1 since it then can be

deduced. Ce is increasing and decreasing over

time.

For a given set C of dynamic constraints the on-
program induced by C 1is determined by the fol-
lowing rules, where "insert” and 'delete" are
the corresponding operations on sets:

(i) For each p ==> alvays y in C take up:
on do insert(Cu,'\T)
(ii) Each

constraint ? ==> gometime Yv induces:
on ¢ do if -7y then insert(Ce,\r)

on do delete(Ce,})

Proceedings of the Tenth International
Conference on Very Large Data Bases.

306

Exémgle: Cous:ler again the car database from
above. We demonstrate how Cu and Ce are

changing over time for a certain sequence of

of states.

Let us start in a state where the car ¢ has
been produced but neither registered nor de-
registered:

Co* produced(c)=true registered(c)=false
deregistered(Z)=false
cgﬂ { produced(2) A registered(c) ==>
~deregistered(c) ,
produced(S) A deregisterd(g) ==>
aregistered(c) }

c2= { registered(T) A ~deregistered(c) }

-

- acc. constraint (1') -

Now assume that car ¢ has been registered:

C,: produced(c)=true registered(g)=true
deregistered(C)=false

Clt CO

u u

C:- { deregistered(3) }

- acc. constraint (2) -

After ¢ has been deregistered, the following
state is obtained :

T, produced(c)=true registered(T)=true
deregistered(T)=true
C:- Ci v { deregistered(s) }
- acc. constraint (3) -
2= ¢
e

Now car € must always be deregistered, and that
means that it cannot be registered again.
(Additionally, constraint (3) demands that ¢
must remain in the database) . -
The admissibility of an actual database state
will be checked in the following sense: If there
is a universal constraint that is not valid in
the actual state, then an exception condition is
raised. Also, if an existential constraint con-
tradicts to something deducible from the univer-
sal constraints, an error message is produced.

Of course, the latter test provides only suffi-
cient conditions but not necessary conditionms
for the existence of an admissible continuation
for the present sequence of states. The condi-
tion for the validity of the existential con-
straints Ce can be expressed as:

Vyec, 30;1’8.1:. s 0 =y and

Gﬁv is reachable from the actual state

cY and
u

Here, 03 denotes the set of universal constraints

in the state ¢;,. If 1Yy is deducible from (the

Y
Singapore, August, 1984

actual) Cu , this will hold in all future states
due to the monotonicity of C“ s l.e.: C& R Cj
and 0; F'Y cannot become true in a future state

ORV’ whether or not c;* can be reached.

To be a little more precise, Cu and Ce are

characterized below for a given admissible state
sequence < Co e €h>' After Cu and Ce have been

updated by the on-program according to the rules
(i)-(ii) and an admissibility check in the above
sense has been performed successfully, the fol-
lowing invariant conditions hold for Cu and Ce:

Y € C, iff: 3 (@==> alwaz_g_‘\f)ec
2 substitution « for the free variables in Y’Y

3 in s.t. G} = ?« and

for all k, igk¢n : Gk E V&

Yo & C, iff: 3 (l{==> somet ime '\f) €cC

3 substitution ® for the free variables in Y,}
Qisn s.t. C“i = LP« and

for all k, igk¢n ¢ | not:((?'k F’\fo()]

and [(Cu - wY&) does mnot hold]

This means that the dynamic "always' constraints
are enforced strictly by enforcing the universal
constraints in C . The dynamic "sometime” con-

straints are enforced as closely as is perhaps
practically feasible: an existential comstraint
\h‘eCe is considered violated if it contradicts

the current universal constraints and cannot be-
come true any more for this reason. This does not
mean, however, that Yy, really can become true in
a future state if it is not considered violated.
It might be that the remaining specification al-
ready excludes any admissible continuation in
principle or that the next state transitions do
so data-dependently.

4. CONCLUSIONS

The simplified temporal logic that we propose
here for specifying dynamic constraints has the
advantage of being "implementable’ in the sense
that dynamic constraints specified this way can
be enforced along the lines indicated above.
There are, of course, considerable practical
difficulties in implementing integrity monitors
with feasible efficiency. Enforcing what we
called universal constraints has been investi-
gated by some authors, e.g. CB80,CD83,FDC81,Ni82,
St75,To77, and WSK83. But still, practical solu-
tions are either very restricted or very ineffi-
cient. The problem of enforcing what we called
existential constraints still is much harder. It
seems to have been ignored up to now. Its solu-

Proceedings of the Tenth International
Conference on Very Large Data Bases.

tion requires a great amount of deduction in a
logical system. So this problem contributes to
the need for powerful deductive data bases. Per-
haps, direct hardware support can help to a-
chieve feasible solutions for this problem.

On the theoretical side, it would be nice to have
a strict criterion for violation of an existen-
tial constraint at the earliest possible moment.
The problem is to decide on the basis of a cur-
rent state whether a formula can or cannot become
true in some reachable future state. Such a cri-
terion would have to take the set C of dynamic
constraints itself into account, since these can
give rise to new universal constraints in subse-
quent states, possibly causing inconsistencies
with the present existential constraints. More-
over, the problem of reachability of states has
to be taken into account, and this depends on

the update operations available.

REFERENCES

(An82) Anderson,T.L.: Modelling Time at the
Conceptual Level. In: Improving Database Usabi-
lity and Responsiveness, Proc. 2nd Int. Conf. on
Databases (P.Scheuermann,ed.), Academic Press,
New York 1982, 273-297

(BADWS2) Bolour,A./Anderson,L./Dekeyser,L./
Wong,H.: The Role of Time in Information Proces-=
sing. SIGMOD Record 12,3 (1982), 27-50

(BF79) Buneman,P./Frankel,R.E.: FQL - A Func-
tional Query Language. Proc. ACM SIGMOD Int.Conf.
on Management of Data 1979, 52-58

(Bu77) Bubenko,J.: The Temporal Dimension in
Information Modelling. In: Architecture and Mo-
dels in Data Base Management Systems (G.Nijssen,
ed.), North-Holland, Amsterdam 1977, 93-118

(CB80) Casanova,M.A./Bernstein,P.A.: A Formal
System for Reasoning about Programs Accessing a
Relational Database. ACM TOPLAS 2 (1980),386-414

(CCF82) Castilho,J.M.V./Casanova,M.A./Furtado,
A.L.: A Temporal Framework for Database Specifi-
cations. In: Proc. 8th Int. Conf. on Very Large
Data Bases, Mexico 1982

(CD83) Cremers,A.B./Domann,G.: AIM, An Integri-
ty Monitor for the Database System INGRES. Proc.
9th Int.Conf. on Very Large Data Bases (M.Schkol-
nick/C.Thanos,eds.), Florence 1983, 167-170

(CF82) Casanova,M.A./Furtado,A.L.: A Family of

Temporal Languages for the Description of Transi-
tion Constraints. In: Proc. Workshop on Logical

Bases for Data Bases, Toulouse 1982

(cw83) cClifford,J./Warren,D.S.: Formal Seman-~
tics for Time in Data Bases. ACM TODS 8 (1983),
214-254

(FDC81) Furtado,A.L./dosSantos,C.S./Castilho,

J.M.V.: Dynamic Modelling of a Simple Existence
Constraint. Inform. Syst.6 (1981), 73-80

Singapore, August, 1984

(GMS83) Golshani,F./Maibaum,T.S.E./Sadler,M.R.:
A Modal System of Algebras for Database Specifi-
cation and Query/Update Language Support. Proc.
9th Int. Conf. on Very Large Data Bases, Florence
1983, 331-339

(HM75) Hammer,M.M./McLeod,D.J.: Semantic Inte-
grity in a Relational Database System. Proc. Int.

Conf. on Very Large Data Bases, 1975, 25-47

(1s082) 1SO/TC97/SC5/WG3: Concepts and Termino-
logy for the Conceptual Schema and the Informa-
tion Base (J.J.van Griethuysen,ed.), IS0/TC97/
SC5/WG3-N695, 1982

(Ma83) Maier,D.: The Theory of Relational Data-
bases. Pitman, London 1983

(Ma82) Manna,Z.: Verification of Sequential
Programs: Temporal Axiomatization. In: Theore-
tical Foundations of Programming Methodology
(M.Broy/G.Schmidt,eds.), Reidel Publ.Co., Dor-
drecht 1982, 53-101

(MP81) Manna,Z./Pnueli,A.: Verification of Con-
current Programs: The Temporal Framework. 1In:
The Correctness Problem in Computer Science (R.S.
Boyer/J.S.Moore,eds.) Academic Press,London 1981,
215-273

(Ni82) Nicolas,J.M.: Logic for Improving Inte-
grity Checking in Relational Databases. Acta In-
formatica 18 (1982), 227-253

(NY78) Nicolas,J.M./Yazdanian,K.: Integrity

Checking in Deductive Databases. In: Logic and
Databases (H.Gallaire/J.M.Nicolas,eds.), Plenum
Press, New York 1978, 325-344

(Ri81) Richter,G.: Utilization of Data Access
and Manipulation in Conceptual Schema Defini-
tions. Inform. Syst. 6 (1981), 53-71

(RU71) Rescher,N./Urquhart,A.: Temporal Logic.
Springer, Berlin 1971

(sh8l) Shipman,D.W.: The Functional Data Model
and the Data Language DAPLEX. ACM TODS 6 (1981),
140-173

(St75) Stonebraker,M.: Implementation of Inte-
grity Constraints and Views by Query Modifica-
tion. Proc. ACM SIGMOD Int. Conf. on Management
of Data, San Jose 1975, 65-78

(TL82) Tsichritzis,D.C./Lochovsky,F.H,: Data
Models. Prentice Hall, Englewood Cliffs 1982

(To77) Todd,S.:Automatic Constraint Maintenance
and Updating Defined Relations. Proc. IFIP Con-
gress 77(B.Gilchrist,ed.), North-Holland, Amster-
dam 1977, 145-148

(We76) Weber,H.: A Semantic Model of Integrity
Constraints in a Relational Database. In: Model-
ling in Database Management Systems (G.Nijssen,
ed.), North-Holland, Amsterdam 1976, 269-292

(WSK83) Weber,W./Stucky,W./Karszt,J.: Integrity
Checking in Database Systems. Inform. Syst. 8
(1983), 125~136

Proceadings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1984

