
SPECIFICATION, SEMANTICS, AND ENFORCEMENT OF DYNAMIC DATABASE CONSTRAINTS

H.-D.Ehrich, U.W .L.ipeck, M.Gogolla

Institut fiir Informatik, Technische Universitgt Braunschweig
Postfach 3329, D-3300 Braunschweig, Fed.Rep.of Germany

hBSI’Rtl(.;‘ : In older to specify dytxmi (‘ con-
strc int?, we ~lrcsfnt * a siclplifjcd vel-sion of
teopcltal lccic hasec! on the tenporal quarltjfjcrs
“~l\:eys” cind “so~c~:.ine” as well as their bcuncieii
ve: s ions “always. .unt.i 1” and “samet.ire. .hefore”.
!!C rittor t::at , !n rlcst practical cases, the Iloun-
ded tecpol a1 quar:tifiers can be oxpresscd by np-
propri att fotm~!las \:i th unhcundcc: tenpor; I q”an-
t ifiets. IJe t’t.cn use special kinds of tt*mpcltal
fcdrr-ctlas as a language to specify c’pIiiItYiC con-
striiints. The problerr. of enfcBrcir.g st1c.h CLIP-
strzints is t!ler; reduced to the l~rot!e~ cf cn-
fz,rcirg dynoslic,ally changing sets cf two 1,irds
of static c.onstt-hints, called universal ant1 ex-
istertial constrafnts. Vhilc unicel sal con-
strziats can t:c cpforced strict];. ir principle,
vic;l?t ion of rsi.stent;‘*l constraints cannot he
detected in eac!~ case ft tl:c. cr\rlif.:;t ;:or:ent . Ile
give a sufficjcnt criterion fcr detcctin:; vicl;-
tier 0C e> ist0t icl c.onstraints.

i. fl:‘;!:(!DlJ(‘?‘! (I:4

It i5 \:jdel) recognized that t!re specificaticn
aai enforcerlent of constraints for ciataboses is
e.:.tten~l>- irlportilnt for the l’trt hct, devt~lopr.lent
of database dcsipn and irlplementalion. In i.nfor-
rat ictn noticl line, constrair4ts are u5ccl to cap-
tulc the pecul;arities of reP1 world situations
artI bebaviour by giving appropriate ~1~s. When
runring ti:r datnhnse, these rules sbol Id be
soclchow obeycci in order lo rec!uce the possitili-
tjez fr,l incorrect data creeping !.n apd corrupt-
ing tlla ir!tcBgrity cf ttle ctata.

There arc- numerous papers addressing protlens of

jntrgrity constrairts for 63tc7bases, and it is

Permission IO copy without fee all or parr of rhis maferial is granfed
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear. and notice is given that copying is by permission of the Very Large
Dota Base Endowment. To copy otherwise. or to republish. requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

virtually iq~o?sible to give ;i comprc.t:ersi\e
SlirVty here appreciat.ing each relevant contribu-
tion. For a treatnent of constrair ts ir. several
2at.n nndcls and data slodelling approaches, the
reader is referred to the reccrt textbool; ;‘I.:;?
and its extensive biblicgzaplly. Plso, IS@?? con-
tairs sane naterial on conpa?.jnp, conceptual in-
formation nodell i.ng approaches. hlong the carli-
est fundamental papers on constrilirt:: are i:Ii75,
St75,To77 and Wc76. Spccinl sorts of consti~ints
called dependencies play rl dominant role ip tc-
lationcl database theory. Ttw reader is. referred
to ?.;a&3 for a conprehenslve tr(:atnerlt of this
subject.

Recently, the prohlem of checl;irg 2nd non5torIt.g
integrity on the basis cf constrtinis !las foun?
r~olc and pore interest (CD~~~,F!)(:C~,N~~,~,~ISKC?).
F;lrlier approaches have hren giver in St75 and
To77. CBB(! consiclerc- . . the problem: of verifyir.g
that transactior:s preserve const-lai:lts. Integri-
my ctleckir:e, in Jeductive c?atabeses is treated ir:
NY71’.

Most of the material en conat.raints publjshed SP
far is concerned with static constr:.ir~f.s, i.e.
criteria to decide whet.!tel A ziver! specific data-
bcse state is adrlissible, c!isr-egarc’ine its con-
test between previous and iort-l,corlir::; states. Tile
area of ?ynamic constraints, i.e. crjterir. for
;:dmissihle state seciuer:ces, js barely touched.
Sorle prelirlillary ideas are (:c*nt: irlcc’ in ISiV?.
ftlso, l4Y71; and RiCl address thjs question, con-
centrat ing on pairs cf before/after states.

I\ new approach to dynarlic constraints using t.em-
poral logic has been initiated by (.CFB?,C:Ff!?. ant1
C>:S83. WC take up these ideas here. bIo!Iever, hy
separating the protlem of specifyin and enfol-
cirg dynaclic constraiI3ts frorl the problea. of src-
cifying and verifyin:; trarSaCtjOns (X;hich \:e do

not. ccnsic’er ir. this paper), MC restrict our-
s..lves to a much simpler fc.rn of tenporal logjc
incorpora t i ng only the temporal quantifiers
“al.ways” and “somet ine” as we1 1 as thejr bounded
versions “alr.~ays..untjl” and “sonetire..before”.
The latter, however, can he expressed by the un-
bounded versions ir; many cases of practical in-
terest. cur approacil is similar, but not identi-
cal, to that of Nanna and Pnueli to program logic
(PIP81 ,Xa82).

Singapore, August, 1984

301

Temporal logic is, in our opinion, a convenient
tool for modelling dynamic database aspects. One
of the problems widely discussed in this respect
is the modelling of time in databases (An82,
BADW82,Bu77,CW83). BADW82 gives a comprehensive
overview of the role of time in information pro-
cessing. In the temporal logic framework, time
is modelled by considering state sequences. In
particular, dynamic constraints determine admis-
sible classes of state sequences in the same way
as static constraints determine admissible class-
es of states. Static constraints are, of course,
special cases of dynamic constraints.

Temporal logic must be based on a specific ap-
proach to concepts for formulating database sche-
mata. We follow the lines of GMS83 and adopt a
functional approach to data modelling in the spi-
rit of BF79 and Sh81. Accordingly, a schema con-
sists of sorts of entities, functions taking
arguments and delivering results of specified
sorts, and constraints expressed in temporal lo-
gic. It should be noted, however, that temporal
logic is not bound to this approach to data mo-
delling. It can be used with other approaches as
well, e.g. relational ones as in CCF82 and CF82.

In contrast to previous functional approaches, we
distinguish between two syntactic levels, the da-
ta level and the object level. The data level
comprises specifications of basic data types like
BOOL, INT, etc. The data level has a fixed inter-
pretation that does not vary in time and is often
the same for large classes of database schemata.
The object level, on the other side, contains
sorts like PERSON, PROJECT, etc. and functions on
them whose interpretation varies in time, depen-
dent on the database state. The object level will
most probably be different for different database
schemata.

In the next section, we give a brief account of
our version of temporal logic, based on our func-
tional approach to data modelling. We define the
syntax and semantics of temporal formulas inclu-
ding the temporal quantifiers "always" and "some-
time". It is well known (MP81) that these quanti-
fiers enjoy the same nice duality principle as
the classical quantifiers d and 3 . We then in-
troduce the bounded versions "always...until" and
"sometime...before". They again enjoy a corre-
sponding duality principle. Essentially, we use
formulas to denote points in time. The idea is
that a formula denotes that state in a given
state sequence where it first becomes true. AS
formulas behaving especially well with respect to
time, we define "monotonous" formulas that remain
true if they once became true. We show that, with
monotonous formulas as time bounds, the bounded
versions of the temporal quantifiers can be ex-
pressed by appropriate unbounded formulas.

In the third section, we introduce special kinds
of temporal formulas as a language to express dy-
namic constraints. We then show how the problem
of enforcing such dynamic constraints c In be re-
duced to the problem of enforcin;; cd '1.11 .cally

Proceedings of the Tenth Internatlonal

Conference on Vety Large Data Bases.

chaugirig sets of two kinds of static constraints,
called universal and existential constraints, re-
spectively. While universal constraints can be
enforced strictly in principle (there are, how-
ever, considerable practical problems), existen-
tial constraints present principle problems. Our
approach to enforcing existential constraints is
on the safe side in so far as they are certainly
violated if they are reported to be so, but vio-
lation cannot be detected in each case at the
earliest moment.

2. TEMPORAL LOGIC

The syntax of a database schema is given by a
collection of certain sorts and function names
building the so-called schema signature. We sub-
divide it into a data part denoting basic data
types like BOOL, INT, etc. and into an object
part denoting the specific database in the style
of the functional data model.

Formally, a schema signature x = <SD+So, GD+Bo> -
consists of:

- data sorts SD including BOOL

- data functions RD between data sorts

- object sorts So disjoint from SD

- object functions R, between object and data

sorts, i.e. each WCG o has a (formal) arity

w : s x...xs
1 --> s n 0 with siaSD+SO .

The data part <S,,si,> may be fixed once, whereas

the object part <S,,R,> must be declared expli-

citly for any new schema.

Example: As an example, we consider a simple da-
tabase for the registration and deregistration of
cars. A complete verbal description of the schema
can be found in IS082; here, only self-explaining
extracts are needed. The schema signature looks
as follows:

- data sorts: BOOL, INT, DATE, YEAR, . . .
- data functions: year-of: DATE --> YEAR, . . .
- object sorts: CAR, MANUF
- object functions:

produced: CAR --> BOOL
manufacturer: CAR --> MANUF
serial-no: CAR --> INT

registered: CAR --> BOOL
date-of-reg: CAR --> DATE
deregistered: CAR --> BOOL
date-of-dereg: CAR --> DATE
reg-no: CAR --> INT

destroyed: CAR --> BOOL
date-of-destr: CAR --> DATE

today: --> DATE

Singapore, August, 1984

302

A schema signature may be interpreted by assign-
ing certain sets to the sorts and appropriate
functions on these sets to the function names;
thus, a so-called schema instance is obtaines.
The interpretation-of the data part by basic data
types is assumed to be fixed.

Let f: be a schema signature. A

11 -state U = <pos,act> consists ----
- To each scS0, a set pas(s) of

ues is assigned.

x -instance or ----
of two mappings:

"possible" val-

- To each seS0, a set act(s)cpos(s) of Mactual"

values choosen from the possible ones is as-

signed.

- Each function name w: six . ..Y sn --> sb < GO

is mapped to an "actual" function

act(u): act(s1) x . . . x act(sn) --> act(sO) .

(Especially, each function name with target
BOOL denotes an actual relation.)

Such a state represents the contents of a data-
base at a certain moment only, since the "actual"
part may vary time-dependently. So the course of
time in a database can be taken into account by
observing sequences of states. Therefore, we will
interpret a schema signature x by a Z-state se-
quence C = <O-SC1 . . . > which denotesaT;;;-

sibly infinite) sequence of X-instances Cri=

<pos,acti> with the possible values implicitly

given by a fixed mapping pos.

In order to restrict interpretations of a data-
base schema to "admissible" states and state se-
quences only, some "constraints" are added to the
schema signature x. E.g., in each state of our
registration database, each car must be uniquely
determined by its manufacturer and its serial-no.
Also each car must be registered sometime after
it has been produced; this condition must be re-
flected within a sequence of database states.

Such constraints will be expressed by temporal
r-formulas defined as follows.

An atomic z-formula is a boolean z-term or an -~___--
equation tl =t between z-terms tl,t2 of the same 2

sort. A non%oral x-formula is constructed --
from atomic formulas by applying

- boolean connectives fi ,V, =>, <=, 1
- and quantifiers t/,3 over individual variables.

A (temporal) z-formula is constructed from ato-
mic formXaXyYp=Kg (iteratively)

- boolean connectives and quantifiers as above
- quantifiers x, 3 different from those above
- and unary "temporal operators“ always and

sometime .

Such a formula is called closed if each occurring --
variable is bound by some quantifier.

Proceedings of the Tenth International

Conference on V&y Large Data Bases.
303

We assume the reader to know how to interpret a
nontemporal Z-formula CD in a z-state r with
a given substitution roof actual values for free
variables; let CrL yX denote that 9% , i.e. the

result of substitution, becomes true in C. Of
course, the quantifiers 7' ,z bind variables to
set of actual values in a state (with sorts re-
spected).

Temporal formulas, however, are interpreted in
r-state sequences. Here, possible values may be
substituted for variables, too; the different
quantifiers denote the two kinds of binding. For
a given r-state sequence z = < TO frl . . . > and

a substitution x of possible values for free
variables, the validity C I= $& is inductively
determined by the rules (T>-(vi> below.

(i) An atomic formula JJ only has to hold in the
first state of the sequence (T provided that
all values substituted are actual values in
that state:

@- != +L iff: -
all values occurring in '& exist in C7 0
and 00 c -la,

(ii) Boolean connectives are interpreted as usual.

(iii)Quantifiers Y, 3 refer to all actual values

(iv>

(VI

(vi)

in the first state of c .
E.g. take y a 'vx ;3' 7

c-i=
%

iff: -
for all actual values v in 7-O:

o- k ‘3 ' - :x<x cv>
where cC<x+v> substitutes x by v and agrees
with 3~ elsewhere.

In ? 3 Yx 2' , however, 211 possible -
values are considered:

o- b cpa iff: -
for all possible values v: z k 'f<<xcv>

(3_ by analogy)

For 4 t always 7' , +' must hold in any

tail sequence of c starting at an arbitrary
state:

c- p yoc iff:
-
for 211 i=O,l,... _ CT1 b "4

where c1 = <C. ir > . - i+l"'

For 'p= : sometime C?' , :P' must hold in at ----
least one tail sequence of C :

c- b $4 iff: -
there exists i, i,>O, s.t. cl t 0;. -

If the temporal operators are immediately applied
to a nontemporal formula .3', rules (v> and (vi>

Singapore, August, 1984

say that y ’ must hold in all states or in some
state, respectively. By rule (i), an atomic for-
mula yaC yields false in a state if the formula
involves objects not existing there. The validity
of a compound nontemporal formula results accord-
ing to rules (ii> and (iii).

For each schema signature ‘t and each sort s, we
assume a standard predicate “exists” which is
defined by the formula:

t/x always exists(x)
Thus this predicate specifies which possible val-
ues v exist in the first state of a sequence ,Q ,
since we get by rule (i):

E t= exists(v) iff v exists in Q 0

We simply write “g by”, if a X-formula v is
valid in z for all substitutions of possible
values, and we write ” by “, if ‘4 is valid in
all t-state sequences, assuming a fixed choice
of possible values. These are purely semantical
properties; we do not consider here syntactical
deducibility of temporal formulas like it is
known for nontemporal, i.e. first-order formulas
(written ” by “1. An axiomatization of a differ-
ent kind of temporal logic has been presented in
Ma82.

Obviously , the temporal operators are dual to
each other under negation.

Prop.: Let ‘Q be a r-formula.

c 9 always ‘Q <=-> sometime 9 Y
c 7 sometime y <=-> always q ‘Q

For illustration, we list some formulas which
ought to be valid for the car registration data-
base as it develops dynamically. Let c,cl,c2 be

variables of sort CAR, m of sort WANUF, and i of
of sort INT.

(1) always Vcl Vc2

[manuf (cl)9aanuf(c2) A

serial-no(cl)pserial-no(c2) PI> cl-c2 1

(2) always WC, WC2

(registered(cl)Aregistered(c2))

==> (reg-no(cl)=reg-no(c2) ==> cl-c2 1

(3) always Vc
produced(c) ==> sometime registered(c)

(4) always Vc Em [manufacturer(c)%
==> always (exists(c) I=.> manuf.(c+m) I

(5) alwaye EC Ei [serial-no(c)=i
==> always (exists(c) ==> serial-no(c)=i)]

Since an argument of a temporal operator normally
refers to an unbounded state sequence, it is dif-
ficult to restrict that condition to a certain
bounded part of the sequence. Typically a bound
may be represented by the first occurrence of

Procoadlngr ol tha Tenth lntrmatlonal
Conlormca on Vwy Large Data Sawa.

some other condition \u, i.e. the first state !.n
a sequence where y becomes true. Such situations
have to be expressed in many applications.

Therefore, two additional binary temporal opera-
tors are introduced:

always ‘p until v
some t ime

Y-
before y

As arguments, temporal X-formulas ~4 and v are
allowed. The semantics of the operators for a X-
state sequence ,Q and a substitution d is given
as follows, where

+yck) = min({jl~‘~yW] v{w]>

denotes the first occurrence of y .

(vii) _Q C (always y until y I*. iff:

for all i, O(i< pF()&I : Ei b yoc

(viii) C C (sometime y before y jar iff:

there exists i,O$i<p,(~~), s.t. Q-~ b (pot

These definitions do not im~lv that the condition
does ever become true.
specified additionally
operators again behave

Prop. :

c v always ‘p until 1 --

If wanted, this must be
by sometime y . The new
dually.

<=I> sometime lybefore v

t i sometime y before y <I?> always ly until ‘y

Now we are able to state for our example, omit-
ting the “always r-prefix:

(6)

(7)

(8)

reg-no(c)+
==> always reg-no(c)=i until deregistered(c1

destroyed(c)
==> always 1 deregieteredcc) until
year-of(today1 1 year-ofcdate-of-destr(c)) +3

destroyed(c)
==> sometime deregistered(c) before
year-of(today1 >, year-ofcdate-of-destr(c11 +4

Termination conditions (the “y” of the formulas
above) in database specifications typically are
given by arriving at some point of time; cf. (71,
(8). Considering the irreversibility property of
time we are especially interested in so-called
monotonous conditions.

A nontemporal r-formula y is called monotonous
w.r.t. a t-state sequence 5 iff:

E’ y ==> always yI

Then the bounded temporal operators can be ex-
plained by the original temporal operators.

p.r Let y be monotonous wrt Q . Pro

(a) E b always cQ until y <I=> always ‘pvy

(b) r b sometime ‘9 before v

<==> somet ime ‘9*-Y

Slngapon, Auguat, 1984

304

Proof:

(a) Let oc be an arbitrary substitution. The prop-

osition is obvious in the case pcr(yti)= OQ ;

otherwise let ,u:= /+(Y~) .

'hc)" : For all i, O$i<p, we have zi I= yti.

Since Fp'yoL , montonicity gives for all

i+ : +y&. Thus, for all 120:

qi b= (y-& . -

"<M" : For all i, O<i<r, we already know:

g t= (yvp>a . Since p is the minimal j

s.t. uj q&s - even c1 C yti holds. -

(b) By duality and (a), we conclude:

sometime 'Q before y

<==> l.always 9 'Q until y
<E> 1 always 1'Qvy <==> sometime LQA "y

**Jr

These transformations may be applied to the exam-
ple formulas (6)-(8), if the following conditions
are guaranteed: (d of sort DATE)

(9) deregisteredcc) ==> always deregisteredcc)

(10) today 2 d ==> always today 2 d

In the next section we will concentrate upon two
special kinds of temporal formulas. Therefore,
their semantics is given below.

Remark: Let 'Q and y be nontemporal formulas

with free variables xl,...,xn . Then it can be

concluded from the general rules:

(a) r I= always Wxl...Xn (y ==> always y) -
iff for all vl,...,vn (possible) and for

all i=O,l,... with ti(xj):=vj (j=l,...,n):

ui ' 'QW implies that for all k>i: Qk C ?a

(b) E C alwaysvxl...~x, ('Q ==> sometime y)

iff for all vl,...,vn (possible) and for

all i=O,l,... with ol(xj):=vj (j=l,...,n>:

pi ~'4~ implies that there exists k, k)i,

s.t.: ckt; ys

3. DYNAMIC CONSTRAINTS

In this section, we introduce special kinds of
temporal formulas as a language to express dyna-
mic constraints, and we show how the problem of
enforcing such dynamic constraints can be re-
duced to the problem of enforcing two dynamically
changing sets of static constraints.

ProcedIng at the Tenth International

Confermcs on Very Large Data Basea.
305

Let us first introduce a language which allows to
express constraints. In this language a database
specification <&C> consists of a signature and a
set C of dynamic constraints. Each dynamic con-
straint is a temporal Z-formula

CQ ==> always v or

Y ==> sometime y.

where 'Q and
Y

are nontemporal formulas.

A t-state sequence u is admissible wrt C if'each
constraint in C is valid in all suffixes of _Q
for all substitutions of possible values. So the
above constraints may be understood as abbrevia-
tions of formulas

always Vx - -1 . . . rxn (y ==> always p > or

always t/xl . . . t/xn ('p ==> sometime 1)

respectively, where xl,...,xn are free in the

bracketed parts. A constraint of the form

true ==> always y

can be considered as a static constraint v .

Example: We discuss some constraints for the car
registration database that has partly been stu-
died in the last section. The following rules
shall be expressed by the constraints given be-
low: After a car has been produced, it sometime
must be registered before it is deregistered;
once it is deregistered it cannot be registered
again and a car cannot be registered and dere-
gistered at the same time.

(1) produced(c) ==> sometime registered (c)
before deregisteredtc)

(2) registered(c) ==> sometime deregisteredtc)

(3) deregisteredtc) ==> always deregisteredtc)

(4) produced(c) A registered(c)
==> 'I deregisteredtc)

(5) produced(c) A deregisteredcc)
¶S> 7 registered(c)

Due to the monotonicity in (3) the formula (1)
is equivalent to :

(1') produced(c) ==>
sometime [registered(c)Alderegistered(c)l

For databases, we feel that the above forms of
dynamic constraints cover a wide range of appli-
cations. This is analogous to Hoare's program
logic where formulas for pre- and postconditions
of programs are restricted to {y}P{y] with P
a program and I+ ,y predicates over P. If mono-
tonicity of formulas is guaranteed by the remain-
ing specification even constraints involving the
operators "always...until" or "sometime...before"
can be modified to formulas of the above form
(as explained in section 2).

In order to reduce dynamic constraints to varying

Singapore, August, 1994

sets of static constraints, we introduce an im-
plementation language for constraints. In this
guage constructs of the form

on - ;co op

will be used, where .S is a nontemporal formula
(possibly with free variables) and op is an
operation. The meaning of this is a kind of
“trigger” activated when the value of the formula
changes from false to true: if there is an sub-
stitution ti to the free variables of 5 in the
present database state such that ?V,becomes true
and *>,,, was false in the previous state, then the
operation opa will be executed. opoL means that

the operation uses the substitution oc to bind the
same free variables which occur in cp . In this
sense the trigger “on ‘p do op” is parameterized
wrt to all substitution’s CC- such that ‘qd. becomes
true. We call a collection of on-do constructs of
the above form an on-program .

The operations op will manipulate two global
variables Cu and Ce , which hold certain sets of

nontemporal formulas where all free variables
have been substituted by values of a database
state. They represent the actual knowledge con-
cerning the constraints.

- Cu is the set of universal constram .

A ‘+e Cu has to be valid in all future

database states.

- Ce is the set of existential constraints .

It must be possible that each Y 6 Ce can

become true in some future database state.

Cu and Ce will change according to a given data-

base state sequence <TO cl.. . >. Cu is a monoto-

nous set in the sense that once a formula is in

cu ’ then it w<ll always be. It may be, however,

that a formula becomes redundant after inserting

other formulas. For instance, 3lvy2 becomes ob-

solete after insertingyl since it then can be

deduced. Ce is increasing and decreasing over

time.

For a given set C of dynamic constraints the on-
program induced by C is determined by the fol-
lowing rules, where “insert” and “delete” are
the corresponding operations on sets:

(i) For each ‘f ==> always p in C take up:

on ‘p * insert(Cu,y)

(ii) Each constraint ‘Q ==> sometime y induces:

0” y do c -I y then insert(Ce,y)

0” ‘p & delete(Ce,y)

Proceedings oi the Tenth Intemstional
Conference on Very Large Dste Bases.

Exampla : Cou:i;&r again
above. We demonstrate

changing over time for
of states.

the car database from
how Cu and Ce are

a certain sequence of

Let us start in a state where the car E has
been produced but neither registered nor de-
registered :

C-*: produced(Z)=true registered(z)=false
deregistered(E)=false

{ produced(E) A registered(z) ==>
-deregistered(Z) ,

produced(z)Aderegisterd(E) ==>
-registered(Z) 1

0 C- e { registered(Z) h YderegisteredG) 3

- act. constraint (1’) -

Now assume that car z has been registered:

c : produced(E)rtrue registered(z)=true 1
deregistered(z)=false

1 c= U C!!
1 C- e { deregistered(S))

- act. constraint (2) -

After E has been deregistered, the following
state is obtained ;

u : 2 produced(z)=true registered(z)=true
deregistered(Z:)=true

C
2
=

U
Ct u < deregistered(E)]

- act. constraint (3) -

cf- 0

Now car E must always be deregistered, and that
means that it cannot be registered again.
(Additionally, constraint (3) demands that z
must remain in the database) . **

The admissibility of an actual database state
will be checked in the following sense: If there
is a universal constraint that is not valid in
the actual state, then an exception condition is
raised. Also, if an existential constraint con-
tradicts to something deducible from the univer-
sal constraints, an error message is produced.

Of course, the latter test provides only suffi-
cient condition8 but not necessary condition8
for the existence of an admissible continuation
for the present sequence of states. The condi-
tion for the validity of the existential con-
straints Ce can be expressed as:

pee 3y,s.t. y Q t= CJ and UY’y and

=\t
is reachable from the actual state

Here, Cz denote8 the set of universal constraints

in the state Q
Y’

If YY is deducible from (the

Singapore, August, 1994

306

actual) Cu , this will hold in all future states

due to the monotonicity of cu , i.e.: (ZY 'P C:

and O--+ +y cannot become true in a future state

5 '
whether or not c

'r
can be reached.

To be a little more precise, Cu and Ce are

characterized below for a given admissible state
sequence <t0... Wn>. After Cu and Ce have been

updated by the on-program according to the rules
(i)-(ii) and an admissibility check in the above
sense has been performed successfully, the fol-
lowing invariant conditions hold for Cu and C : e

w =u iff: 3 (Cq==> alway_s y> e C

3 substitution rx for the free variables in
w

? i,<n s.t. Ci b= ya and

for all k, i<k<n : Ok t '+&

4*a' 'e iff: 3 'lf ==> sometime y> e C

3 substitution Cr, for the free variables in 'p,~

>i<n s.t. Ci b % and

for all k, i\ck$n : [not(ck !="ts()]

and [CC" I- 'y6(> does not hold]

This means that the dynamic "always" constraints
are enforced strictly by enforcing the universal
constraints in C u * The dynamic "sometime" con-

straints are enforced as closely as is perhaps
practically feasible: an existential constraint

YkL c is considered violated if it contradicts
e

the current universal constraints and cannot be-
come true any more for this reason. This does not
mean, however, that yoc really can become true in
a future state if it is not considered violated.
It might be that the remaining specification al-
ready excludes any admissible continuation in
principle or that the next state transitions do
so data-dependently.

4. CONCLUSIONS

The simplified temporal logic that we propose
here for specifying dynamic constraints has the
advantage of being "implementable" in the sense
that dynamic constraints specified this way can
be enforced along the lines indicated above.
There are, of course, considerable practical
difficulties in implementing integrity monitors
with feasible efficiency. Enforcing what we
called universal constraints has been investi-
gated by some authors, e.g. CB80,CD83,FDC8l,Ni82,
St75,To77, and WSK83. But still, practical solu-
tions are either very restricted or very ineffi-
cient. The problem of enforcing what we called
existential constraints still is much harder. It
seems to have been ignored up to now. Its solu-

Proceedings of the Tenth International

Conference on Very Large Data Bases.

tion requires a great amount of deduction in a
logical system. So this problem contributes to
the need for powerful deductive data bases. Per-
haps, direct hardware support can help to a-
chieve feasible solutions for this problem.

On the theoretical side, it would be nice to have
a strict criterion for violation of an existen-
tial constraint at the earliest possible moment.
The problem is to decide on the basis of a cur-
rent state whether a formula can or cannot become
true in some reachable future state. Such a cri-
terion would have to take the set C of dynamic
constraints itself into account, since these can
give rise to new universal constraints in subse-
quent states, possibly causing inconsistencies
with the present existential constraints. More-
over, the problem of reachability of states has
to be taken into account, and this depends on
the update operations available.

REFERENCES

(An821 Anderson,T.L.: Modelling Time at the
Conceptual Level. In: Improving Database Dsabi-
lity and Responsiveness, Proc. 2nd Int. Conf. on
Databases (P.Scheuermann,ed.), Academic Press,
New York 1982, 273-297

(BADW~~) Bolour,A./Anderson,L./Dekeyser,L./
Wong,H.: The Role of Time in Information Proces-
sing. SIGMOD Record 12,3 (19821, 27-50

(BF79) Buneman,P./Frankel,R.E.: FQL - A Func-
tional Query Language. Proc. ACM SIGMOD Int.Conf.
on Management of Data 1979, 52-58

(Bu77) Bubenko,J.: The Temporal Dimension in
Information Modelling. In: Architecture and Mo-
dels in Data Base Management Systems (G.Nijssen,
ed.), North-Holland, Amsterdam 1977, 93-118

(~~80) Casanova,M.A./Bernstein,P.A.: A Formal
System for Reasoning about Programs Accessing a
Relational Database. ACM TOPUS 2 (1980),386-414

(~~~821 Castilho,J.M.V./Casanova,M.A./Furtado,
A.L.: A Temporal Framework for Database Specifi-
cations. In: Proc. 8th Int. Conf. on Very Large
Data Bases, Mexico 1982

(~~83) Cremers,A.B./Domann,G.: AIM, An Integri-
ty Monitor for the Database System INGRES. Proc.
9th Int.Conf. on Very Large Data Bases (M.Schkol-
nick/C.Thanos,eds.), Florence 1983, 167-170

(~~82) Casanova,M.A./Furtado,A.L.: A Family of
Temporal Languages for the Description of Transi-
tion Constraints. In: Proc. Workshop on Logical
Bases for Data Bases, Toulouse 1982

(CW83) Clifford,J./Warren,D.S.: Formal Seman-
tics for Time in Data Bases. ACM TODS 8 (1983),
214-254

(FDC81) Furtado,A.L./dosSantos,C.S./Castilho,
J.M.V.: Dynamic Modelling of a Simple Existence
Constraint. Inform. syst.6 (1981), 73-80

Singapore, August, 1984

307

(m83) Golehani,F./Meibaum,T.S.R./Sadltr,M.R.r
A Modal System of Algebras for Database Specifi-
cation and Query/Update Language Support. Proc.
9th Int. Conf. on Very Large Data Bases, Florence
1983, 331-339

(HM75) Hammer,M.M./McLeod,D.J.: Semantic Inte-
grity in a Relational Database System. Proc. Int.
Conf. on Very Large Data Bases, 1975, 25-47

(IS0821 ISO/TC97/SC5/WG3: Concepts and Termino-
logy for the Conceptual Schema and the Info--
tion Base (J.J.van Griethuysen,ed.), ISO/TC97/
SC5/WG3-N695, 1982

(Ma831 Maier,D.: The Theory of Relational Data-
bases. Pitman, London 1983

(Ma821 Manna,Z.: Verification of Sequential
Programs: Temporal Axiomatization. In: Theore-
tical Foundations of Programming Methodology
(M.Broy/G.Schmidt,eds.), Reidel Publ.Co., Dor-
drecht 1982, 53-101

(MPSl) Manna,Z./Pnueli,A.: Verification of Con-
current Programs: The Temporal Framework. In:
The Correctness Problem in Computer Science (R.S.
Boyer/J.S.Moore,eds.) Academic Press,London 1981,
215-273

(~i82) Nicolas,J.M.: Logic for Improving Inte-
grity Checking in Relational Databases. Acta In-
formatica 18 (19821, 227-253

(NY781 Nicolas,J.M./Yazdanian,K.: Integrity
Checking in Deductive Databases. In: Logic and
Databases (H.Gallaire/J.M.Nicolas,eds.), Plenum
Press, New York 1978, 325-344

(RiSl) Richter,G.r Utilization of Data Access
and Manipulation in Conceptual Schema Defini-
tions. Inform. Syst. 6 (1981), 53-71

(RU71) Rescher,N./Urquhart,A.r Temporal Logic.
Springer, Berlin 1971

(ShSl) Shipman,D.W.: The Functional Data Model
and the Data Language DAPLEX. ACM TODS 6 (1981),
140-173

(st75) Stonebraker,M.r Implementation of Inte-
grity Constraints and Views by Query Modifica-
tion. Proc. ACM SIGMOD Int. Conf. on Management
of Data, San Jose 1975, 65-78
(TL82) Tsichritzis,D.C./Lochovsky,F.H,r Data
Models. Prentice Hall, Englevood Cliffs 1982

(To771 Todd,S.rAutomatic Constraint Maintenance
and Updating Defined Relations. Proc. IFIP Con-
gress 77(B.Gilchrist,ed.), North-Holland, Amater-
dam 1977, 145-148

(We76) Weber,H.: A Semantic Model of Integrity
Constraints in a Relational Database. In: Model-
ling in Database Management Systems (G.Nijesen,
cd.), North-Holland, Amsterdam 1976, 269-292
(WSK~~) Weber,W./Stucky,W./Karset,J.r Integrity
Checking in Database Systems. Inform. Syst. 8
(19831, 125-136

