
A RELATIONAL DATABASE VIEW UPDATE TRANSLATION l!~ECIIAllISI.l

Yoshifumi Llasunaga

University of Library and Information Science
Yatabe-machi, Tsukuba-gun , Ibaraki-ken 305, Japan

ABSTRACT: A semantic approach to design a
view update translator for relational database
systems is presented in this paper. Our
translator consists of a translator body and
four different types of semantic ambiguity
solvers. Since a view is defined as a tree with
the view on the root and its base relations on
the leaves, an update issued against the root
can be translated into updates against the lower
levels by applying a total of ten local
translation rules and a deletion and an insertion
modification rule recursively. The modification
rules make it possible to update base relations
through natural join views. Three of the ten
local translation rules require three different
types of semantic ambiguity solvers, and the
two modification rules together require another
solver. The translation capability depends on
the solvers available to the translator body and
the problem solving capability they offer. From
the nature of such ambiguities, the solvers may
involve the end-users in resolving the
ambiguities.

1. INTRODUCTION
A view is a virtual relation derived from

base (i.e., stored) relations using a set of view
defining operations such as projection, join,
and others (1). There are two major reasons
why it is desirable to support views in a
database system : The first is for user
convenience, in the sense that the user can

Permlrslon to coon without fee oil or oart of this moteriol b sronted
provfded that the co&s ore not-mode or &trlbukd for direct comkercial
odvontoge, the VLDB copyright notice ond the title of the publication ond its
dote appear, ond not&e ia g&n that copybtg Is by permlsaion of the Very Large
Doto Btwe Endowment. To copy otherwise, or to republish, requires o fee
and/or specbd pwmhlon from the Endowment.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

define his own database view to which he can
issue queries and updates (2,3). Another is to
provide an authorization mechanism (4,5).

The main purpose of this paper is to
present and motivate a mechanism for
propagating updates against views to their base
relations. Unfortunately, view update
capabilities are still not well supported in
existing systems. We still lack a theoretical
basis for designing an update translator of a
database system. Also, existing systems allow
only a subset of all theoretically possible views
and view updates. For example, a deletion from
a union view is always possible, but union
views are not supported in SQLlDS (7). The
purpose of this paper is to find a solution to
the theoretical problem.

In general, a view is virtual and an
update against a view is only possible if there
exists a certain set of update(s) to the base
relations. There are at least two major problems
which must be solved. First is to determine
which classes of view updates are possible and
which are not. Second is to inplement view
updates. In 1974, Codd first reported the view
update problem (1). Next year Chamberlin
et.al. (2) and Stonebraker (3) proposed
first-cut solutions to the problem. Then Paolini
and Pelagatti (8) and Dayal and Bernstein (9)
tried to formulate the problem. Furtado et .al.
(10) and Osman (11) deduced a set of view
update translation rules. It is now recognized
that the problem is closely related to the
database semantics. That is, it has been
recognized by several authors that extra,
semantic information should be supplied in order
to resolve the anomalies which may arise in
updating views. Dayal and Bernstein (9,191 and
Carlson and Arora (13) adopted functional
dependencies; B ancilhon and Spyratos
(14,15,16) introduced the concept of
complementary views; and Keller (18) used a
structural data model in order to provide such

Singapore, August, 1984

309

semantic information. llowevcr , theso
approaches are still insufficient bcceusc! the
view update translation nust ultimately be
guided by the user’s intention when he issued
the view updute.

Our approach is based on analyzing the
meaning of views. That is, we take into
consideration the meaning of a view which is
definable as a tine-varying first order predicate
calculus expression. Since the definition of a
view is represented as a tree, where the view
is on the root and its base relations are on the
leaves, our view update mechanisn translates an
update to a view into the lower level views
recursively by using translation rules. A total
of ten local translation rules and a deletion and
an insertion modificntion rule will be
introduced. Each of the ten local translation
rules has a scmentical basis justified by the
meaning of the view. Three of the ten rules
require semantic ambiguity solvers when they
are applied. Sometimes, t11ese solvers nw
require interaction with the user. The two
modification rules together also require another
semantic ambiguity solver. This solver is
necessary to resolve the semantic ambiguity
which may arise when one updates natural join
views. Therefore, our view update translator
consists of total five components; a translator
body and four semantic ambiguity solvers of
different types. The translator body has an
interface to each of the four solvers. The
translation capabiiity changes depending on
what solvers are nvsilable to the body and how
powerful they arc. From the nature of such
ambiguities, the sclvers may involve the users
in resolving the ambiguities.

The rest of this paper is organized as
follows: A formal definition of views is given in
section 2. In section 3, the meaning of views is
formally defind. In section 4, view updatability
criteria are re-examined. In section 5, a total
of ten local view update translation rules are
developed and motivated and a deletion and an
insertion modification rule are presented. Four
types of semantic ambiguity problems will be
explained. Then, our translation mechanism will
be made clear.

2. VIlwS
Let Al, A2, . . . , An be attributes. J,et

dom be a function which associates each
attribute Ai with its domain, dom(Ai). A
relation R(Al,A2 , . . . ,An) (with respect to this
domain function) is a finite subset of the direct
product don(Al)xdon(A2)x.. .xdom(An). WC

sometimes use R instead of R(Al,AB,. . . ,An)
and abbreviate the direct product to dam(R).

Proceedlngr of the Tenth International

Conference on Very Large Data Bsses.
310

Ry att(R) we denote the unordered set {Al,
As, . ..) An) , We define views in terms of the
relational algebra (17). There arc four
traditional RCf operations; direct product,
union, intersection, and difference. Also there
nre four operations that nre specific to the
relational algebra, namely, projection,
O-restriction, division, and e-join, where 0
represents a conpnrison operator (=, > , < ,l=,
>=, <=) . Of course, those eight operations are
redundant and we select direct product, unioii,
difference, projection, and e-restriction as a
generating set of the relational algebra. Then
views can be defined as follows :
Dcfin.ition :

(1) A base relation is a view.
(2) Let V be a view and X be a subset of

att(V). Then the projection of V on X, denoted
by VCXJ, is a view. Next, let X and Y be
subsets of &t(V) which are B-compatible, where
e is a comparison operator. Then the
&restr&tion of V on X and Y, denoted by
V[XBY) , is a view.

(3) I,et V and W be views. The11 the direct
product of V and IV, denoted by VsW, is a
view. If V nnd W arc union-compatible, then
the union of V and W, denoted by VuW, and
the difference of V and IV, denoted by V-W,
are views.

(4) A relation is a view if and onl-1 if it is
derived by using the above three rules.
Notice that the views which could be defined by
introducing the sc-called virtual columns (7)
are excluded in this definition because it is
almost obvious thnt those views arc impossible
to update.

Now it is easy to see that we can
construct p. tree from the definin.g expression of
a view, where the root and the leaves represent
the view and the base relations which are used
to define the view, respectively. Vie call a node
which is neither the root nor a leaf an
intermediate node. For e:rnmple , suppose a
parts dealer has a supplier-part-customer
database which has two base relations,
SP(supplier,part) and PC(pnrt ,customcr) . Then
the view derived from a natural join of SP and
PC, and denoted by
SPC(supplicr ,pnrt ,customer) , is defined as
follows in our framework :
SPC=((SPxPC)[SP.part=PC.part]) [supplier,
SP. part, customer].
--
* Suppose X= {Ail ,Ai2,. . . ,Aip) and Y=

{Ajl,AjZ ,...,Aip) are Q-compatible subsets of
att(V), where Aik and Ajk are single attributes
for every k=l,2,. . . ,p. Then V[XQY] consists of
all tuples v of V such that the predicate v[Aik)
&CAjk‘l is true for every k.

Singapore, August, 1994

Figure 1 (a) shows the view defining tree of
SPC anti ; (b) shows instances of SP, PC, SPC
and i;:terraediate views named VO. 1 and VO. 1.1.

T
VO=SPC (supplier ,SP.part ,custcner)

projection on {supplier, SP. part, customer}

I

I VO . l=VO . 1 . 1 [SP. part=PC . part]

=-restriction on SP .part and PC .part

vo. 1 . l=SPslW

Jrcct pry

VO. l.l.2=lJC(part ,customcr)
VO . 1 . 1 . l=SP(supplier, part >

Figure 1 (a). The view defining tree of SPC.

SP:
supplier part

PC:
part customer

_-~---------- -------------

sl
22
s3
s3
s3

Pl
P2
Pl
11%

P3

pl cl
pl c2
P2 C2

VG.l.l:
supplier SP . part PC. part customer

Sl
sl
sl
s2
S2

s2
s3
s3
s3
s3
s3
s3
s3
s3
s3

Pl
Pl
Pl
P2
P2
P2
Pl
PI
Pl
P2
p2
P2
P3
P3
P3

Pl
PI
P2
PI
PI
p2

PI
PI
P2
Pl
Pl
P2
Pl
Pl
$2

Cl
c2
‘C:!
Cl
c2
C2

cl
C2

c2
cl
c2
c2
cl
c2
c2

vo . 1:
supplier SP. part PC. part custur 1cr

sl PI Pl cl
Sl PI PI ’ cl
S2 P2 P2 (a::

s3 PI Pl cl
s3 PI PI c2
s3 P2 P2 c2

SPC:
supplier SP. part customer

sl PI Cl

sl PI c2
s2 p2 Y C?

s3 PI Cl
s3 pl c2
s3 P2 P2

Figure 1 (1)). Instances of SP, PC, VO.l.1,
VO.l, and SPC.

3. I+IEAIJIIlG C‘F VIEW
A formal definition of the ricaning of views

will be given as a time-varying first order
predicate calculus expression. The reader nay
note that such an expression gives us a
semantic basis from which we will deduce the
local translation rules of view updates in section
5.

We define the meaning of a view as
follows : For example, suppose V is a difference
view, i.e. V=LJ-W, where U and \V are views or
base relations which are union-compatible. Then
the meaning of V, denoted by N-of-V, may be
characterized in terms of the meanings of U and
l+J in such a way that

(Vt6dom(V))(Wof-V(t)=@+of-U(t) AlJD
+I-of-W(t))).

The rationale for this definition is the
observation that a tuple t of don(V) satisfies
N-of-V if and only if it satisfies l!l-of-U and not
M-of-W. That is, t is a tuplc of V if 2nd only
if it is a tuplc of U and it is ilot a tuple of W.

The meanings of four other views can be
defined in the sane manner. Table 1 shows how
the meanings of the five basic views nay be
defined in terns of the neaning of direct
descendant views or base relation::. Since ar
instance of a relation usually changes from tint
to time, a tine-varying prcdicatc calculus is
adopted. The meaning of T. base relation R,
denoted by Il-of-R, is that for any tuple t of
dam(R), RI-@f-R(t) is true if and only if t
belongs to Ii at this time. The meaning of any
view is obtained by applying (M-l), . . . , (@l-5)

Proceedings of the Tenth international

Conference on Very Large Dats Basas.

Singapore, August, 1984

311

to the meanings of its base relations
recursively.

4. VIIW UPljkTABILI”Y CI?ITERIA
A vice; update is realizable if there exists

a set of update(s) r.gainst the base relatiors
which causes the intended update. Eut what
dc!cs this rci!lly .nean? One answer was given by
Day&l and l3crnstein (9) from a syntactic point
of view. They inposc essentially the following
three criteria:

(Cri-1) No rjverupdatillg or underupdating of a
ViicVl. This means that any tuple of the view
should 1:ot be deleted or inserted or replaced
unless it is specified to be done so by the view
updater.

(Cri-2) 110 extraneous updates against the
base relations. This means that any
unnecessary base relation updtites are not
allowed to realize the desired view update.

(Cri-3) Unique view update translatior!.
v!c also adept (Cri-1) apt! (Cri-2). Iiowever, we
relax criterion (Cri-3) . The reason is that
although their interpretation is pertinent to
formulating the view update translation problcn
in a syntactic way, it can only deal with a small
subset of the semantic problems which arise in
updating views. \/bile Dayal and Bernstein
interpreted Cri-3 syntactically, we interpret it
semantically. i!!orc precisely, they say that the
view update translation is un.ique if no rilorc
than one possible translation can be f0ur.d when
the srntnctic information deduced from the
definiticri of database schema is used for the
translation. We say 9 however, that the
translation is also unio,uc if there exists a way
to resolve the trailslation ambiguity by using

certain semantic information. For example,
suppose a user issues a deletion of R set of
four tuples {(sl,pl,cl), (sl,pl,c2),
(s3,pl,cl.), (s3,pl,c2) 1 fron view SPC. Ther?
we can observe that there are three alternative
base relation updates which can satisfy the view
deletion as desired :

(Alt-I) Delete i (sl,pl), (s3,pl) f from base
relation SP .

(Alt-2) Delete {(pl,cl), (pl,c2)) from base
relation PC.

(Alt-3) Delete {(sl ,p1.), (s3,pl)) end
c(pl,cl), (pl,c2)) fron base relatinns SP and
PC , respectively.
IJoticc that each titernative satisfies criteria
(Cri-1) and (Cri-2)) but arbitrary choice is
unacceptable bccr.use it may rcsclt in a
semantically inconsistent database state.

There are two ways to handle this
situation : First we might
view deletion. Is impossible

conclude that the
because of this

ambiguity. Second, we night allow that the
deletion depends on whether this ambiguity is
removable or not. The former is the approach
adopted by Dayal and Bernstein, and the latter
is one that we are adopting in this paper. In
general, the latter alternative will give a more
powerful view support capability than the
Sorner one. But we need some additional
functions to perform senantic information
processing. The prcciso mechanisn for realizing
our view support will be giver: in the next
section. Suffice it to say for now that our
approach will requirt! four types of problem
solvers which can resolve such ambiguity
problens. In soclc cases, the nnbiguity solvers
may ask the user of his intelition; (Alt-1) ,
(Alt-2)) or (Alt-3). 1Jornally, however, it is

----------------_----- ----_---~----_---~----~----~---~--------~~--~~~---~----~--------------~
Type of View Plcaning of View

------------------------ __--___--__---___-__---
V=UxVJ (Vtbdon(V))(R’i-of-V(t)=(l!l-of-U(t[att(U)]) AND M-of-W(t [att(yj)J))).
Direct Product View . . . (K-1)

----_----_-------------- _---_---~--------~---~~---~~---~~---~---~~--~~~--~~~--~~--~~~---~~---~~
V=Uu\l (\ltcdom(V))(ll-of-V(t)=(p.i-of-U(t) OR M-of-W(t))).
Union View . . . (N-2)

------------------------ __-------------------------------
v=u-w (Vt6dom(V))(hl-of-V(t)=(hl-of-U(t) AliD lRi-of-W(t))).
Difference View . ..w3)

_----------------------- ____________-_______---

v=u rx 1 (tltrdoni(V))(N-of-V(t)=(&idom(IJ))(u[X]=t AND R;-of-U(u)=true)).
Projection View . ..w4)

_--~__--___--__---__--~~ _-~~---~~---~--~~~_~~~~-~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

v=u cr;ey 1 (Vtcdon(V))(C;i-of-V(t)=(PI-of-U(t) Af?D t(X]&CY])).
8 -restriction View . ..w5)

---------------------- _--___--__--~----~_~~~~---~~-~~~--~~~-~~~~-~~~~--~~-~~~~--~~~-~~~~~~~~~

Table 1. Meaning Ikpressions of Five Basic Views

Proceedlngr ol the Tenth lnternatlonal
Conterenco on Very Large Data Bases.

312

Singapore, August, 1994

expected that the ambiguity solvers can USC
some semantic integrity constraints or specific
knowledge given to them to resolve the
problems.

5. VIEW UPDATE TRAIJSLATIOL! f.?ECIIAlJISf.l

5.1 FUNDALIEllTAI, TRANSLATION SCIIEhiC
As mentioned in Section 2, the definition

of a view may be represented as a tree. We say
that the root of the view tree is on level zero.
The direct descendants are on level one, and so
on. In the example in Figure 1 (a), view SPC
is on level 0, the intermediate views VO. 1 and
VO. 1.1 are on levels 1 and 2, respectively, an.d
the base relations SP and PC are on level 3.

Suppose an update i!I is issued against
the view V. Then our translation mechanism
translates K into update(s) to its direct
descendant(s). Of course , the three
updatability criteria presented in section 4 must
be satisfied in this translation. We call this
type of translation a local translation and the
corresponding translation rule a. local translation
rule. A total of ten local translation rules will
be presented in detail in the next section. If
the local translation is successful on one level
of the view tree, local translation is perforncd
at the next lower level recursively. If
translation is successful on every level of the
tree, the resulting updates to the base relations
are the desired translation result. If local
translation becomes impossible on any level, it
will be concluded that view update hl is
unacceptable. Although success of local
translation on each level of the view tree
implies the success of the view update, there
exists one (and only one) exception. That is,
there exists one case in which an update to a
certain type of intermediate view which is
impossible will be allowed to be modified so that
the modified update becomes translatable to a
lower level. This rule is called the update
modification rule and it will be discussed in
section 5.3.

5.2 LOCAL TRAIJSLATIOI~J RULES
We will consider all five types of views :

direct product view, union view, difference
view, projectioll view, and Q-restriction view.
An update against a view may be A deletion, an
insertion, or a replace. Ilowever , replace can
be realized as a deletion and insertion pair.
Therefore, the local translation rules for only
the deletion and insertion will be presented for
each type of view. These rules will be justified
by the meanings of views given in Table 1.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

313

5.2.1 LOCAL TRANSLATIOII RIJLES b FOl’
DELETIOlI

Rule D-l (Deletion against a Direct
Product View) : “Suppose deletion D is issued
ngairst a direct product view I’-UxW. Then P
can be translated into deletions Dl against U
and 02 against W , respectively, where Dl=
(U-(V-D)Cdom(U)]) and IX=(W-(V-D) [don(\l)])
if and onl;r if the cross reference condition (see
below) holds for the diffcrcxlce V-D. ”
Justification : suppose deletion D is issued
against a direct product view V=UxW, where D
represents a set of tuples that tlke user wants
to delete from V. I/c assume without loss of
generality that D is a subset of V because
V-D=V-(V n D) . Since the expected result
relation V-P nu,st again be a direct product (if
the deletion D from V is realizable), the
following conditior. called the cross reference
condition must hold.

(Vt,t’edom(V)(t ,t’eV-D =+
t [dom(Ug IIt’Tdon(VJ)~cV-D),

where ==) stands for logical implication and II
tuplc concatenation operation (17). This means
that whenever two tuplcs t and t’ exist in V-D,
the concatenation of the don(U) part of t and.
the dom(I?) part of t’ must belong to V-D if it
is a direct product. From expression (al-l) in
Table 1, let us translate I) ir.to deletions Dl
and D2 against U and \‘J, respectively as
follows :
Dl=(U-(V-D)[don(U)]).
D2=(W-(V-D) [dam(W)>).

Then it is proved that V-D=(U-Dl)x(W-D2).
That is, the cross reference condition is a
necessary and sufficient condition for deletion D
against V (=Ux\‘l) to be realizable under the
above defined translation. 0

Rule D-2 (Deletion against a Union View):
“Suppose deletion D is issued against a union
view v=uuw , where U and IV arc
union-compatible. Then D is always translatable
into deletions Dl and D2 against IJ and W,
respectively, where Dl=D2=D. ”
Justification : Suppose deletion D is issued
against a union view V=UuW, where U and \V
are union-compatible. Remember that the
neaning of V is defined by expression (M-2) in
Table 1 as

(Vt6dom(v)(P.I-of-V(t)=(nI-of-U(t) OR
M-of-W(t))).

Since each tuple of D has lost the meaning of
V, i.e.,

(VtcD) (RI-of-V(t)=false) ,
(M-2) says that

(ytcD)(El-of-U(t)=false APlD bi-of-W(t)=false).
Obviously this means that deletion D against V
should be translated into deletion D against
both U and \V. Because union is a set

Singapore, August, 1984

operation, if U ard \t have the s~mc tuplc, the
duplicates will be elinilzted after union.
I;GvJf.?ver, th? meaning Of views approach
cnsurcs that no anbif3dty happens in the
t rilnslntioi i . b

Rule D-3 (Dclction against a Diffcrcnce
Vkw) : “Suppc~c clcletion I) is issued r)g::inst a
difference view V=U-ki, where C and vj arc
union-conpatiblc. Then D is translatable into
update against &her U or \il or both if and
only if SAP1 (see below) is soknble. The

solution: to SAP1 clctcrnines the translation.”
Justii’icatioii : Suppose dcletion D is issued
-. against a diffcrcrlcc view V=U-W, where U and
W are union-compatiblti. The meaning of V was
given by (1.1-3):

(Vtedon(V))(tl-of-V(t)=(bl-of-U(t) AND
lEl-of-VI(t))).

‘i’hel: dcletior, D !‘rom V means the fol1owir.g:
(VtcD)(Ll-of-U(t)=fnlse OR ti-of+l(t)=true).

This means that from a seriantic point of view,
there are three possible ways to realize the
deletion of tuple t fron V:

(Alt-1) Delete t from U.
(Alt-2) Insert t ix; VI.
(Alt-3) Delete t from U and insert it in 11.

Of course, arbitrary choice is ur;ncceptable
because it nn; result in a semantically
inconsistent database state. Therefore, in order
to realize deletion li against V, we must rcsolvc
this semantic anbiguity for every tuple t of D.
We call this problen semantic nnbiguity problem
of type one (SAPl) . Sometimes SAP1 is solvable
using certain integrity constraints deduced from
the view. For example , suppose EPbS(enane ,
sex,age,. . .) is the entire employee relation and
FEMP(ename , sex, age, . . .) is the female
enployee relation. Then the difference view
ELlP-FELlP defines the male employee relation. It
is clear that a deletion against EUP-FErIP must
be translated h:to n deletion against ELIP. In
other words, (Alt-1) must always be chosen in
this case.

However, there exists another case in
which human interaction may be necessary to
solve SAPl. For example, suppose
SOCCER(cnane,age,dept) is the relation of the
enployees who belong to the soccer club, while
TENNIS (ename ,agc, dcpt) is the relation of the
enployees who belong to the tennis club. Then
the difference view SOCCER-TEIINIS defines the
relation of the employees who belong to the
soccer club but not tennis club. Ilow, suppose
a deletion of crnployee e from the diffcrcnce
view is issued. Then which one of the three
possible alternatives (Alt-1), (Alt-2) or (Alt-3)
should be chosen? In fact, one of the following
three different facts could be observed behind
the deletion corresponding to the altcrnntivcs:

Proceedings ot the Tenth International
Conference on Very Large Data Bases.

314

(Fact-l) Employee e is no longer a member c?f
the soccer club.

(F:tct-2) Enployee e is no%< fl member of the
tennis club.

(Fact-3) Lnployec c is no longer a member oi
the soccer club and is noi! a nenber of the
tennis club.
In general, it is inpossible for the SAP1
solver to find a sennntically correct solution
without interacting with the user who issued
the deletion. 0

One corament is ir order hem. Dayal and
Dcrnstcin (9) inpoFc a restriction that a view
update should be translated into the sane type
of updates; for e:;ample, a deletion should be
translated into deletion(a). Put such a
restriction is not reasonable from a semar.tic
pokt of view. The above e:;cmple shows that a
deletion against a difference. view rii:y have to
be translated into both a deletion and an
insertion.

Rule D-4 (Deletion against h Projection
View) : %upposc deletion D is issuer; against L
projection view V=UCX 1, where X is a subset of
aft(R). Then D is always translatable into a
dclction I,1 against U, where
Dl=+U \ 3tGD, u[X‘l=t).”
Justification : Suppose deletion D is issued
against a projection vicn V=U IX], where X is a
subset of att(IJ). Then, by (M-4)) WC obtain

(VtcD)(Wurdon(U))(u[XJ=t =3
PI-of-U (u)=falsc!)) .

This implies that in order to delete D from U,
we must delete every tuple u of U having t as
its X value. 0

Rule D-5 (Deletion against a Q-Restriction
View) : “Suppose deletion D is issued against c
B-restriction. view V=U [XQY] , where X and Y
are e-compatible . Then D is always translatable
into the same deletion D against U.”
Justification : Suppose deletion D is issued
against a G-projection view V=U [XGY) , where X
and Y are &compatible. Then (Y t 6 D)
(M-of-V(t)=false) must hold. (M-5) implies
(t/tGD)(M-of-U(t)=false OR t(X)l&Cy]).
But, t CXl Bt CY 1 is true for every t of D

because D is assumed to be a subset of V.
Therefore, we obtain

(WD) (M-of-U(t)=fnlse).
This means that D itself becomes a deletion

agninst U. This translation realized D against
v. 0

5.2.2 LOCAL TRAlISLATION RULES FOR
:IJSERTIOlJ

Rule I-l (Insertion agsinst a Direct
Product View’ . “Suppose insertion I
against a dir&t product view V=UxW.

is issued
Then I is

translatable into insertions 11 and 12 against V

Singapore, August, 1994

and W, respectively, if and cnly if the cross
reicrence cor.dition holds for the union VuI,
where Il.=ICatt(LJ))-U and 12=I[att(W)]-W.”
Justification : Suppose insertion I is issued
against a direct product view V=Us\:‘, where I
represents a set of tuples that the user wrnts
to insert into V. Because the union VuI, that is
the desired result of the insertion, must again
be a direct product, the cross reference
conditior! (refer to ILule D-l) must be satisfied:

(vt,t’&don(V))(t,t’tVuI ==Q
t [don(U)] I\ t’[dnm(W)7 6 VuI).

That is, whenever two tuples t end t’ exist iri
VUI, the concatenation of the c,on(U) part of t
ord the dom(v/) IJcrt of t’ must belong to Vu1 if
it is a direct product. Ilow let US iKlI~slate I
into insertions 11 a@ist U and I2 against \V as
follows (notice that (II-l) ensures that I can be
translated into insertions again) :

!l=I[att(U)] -II.
12=l [att (W)l -W .

Then, VuI=(UuIl)x(WuI2). As with Rule D-l,
the cross reference condition governs the
translatability of an insertion against a direct
product view. ti

Rule I-2 (Insertion against a Ullion View) :
“Suppose insertion I is issued r2gainst a unior,
view v=uuw , where U and \V ore
union-compatible. Then I is translatable into
ir:sertions against either U or W or both if and
cnly if SAP2 (see below) is solvable. The
solution to SAP2 deternines the translation. ”
Justification : Suppose insertion I is issued
against r? union view V=UuW, where U and \‘I
are union-compatible. Then the neanir.& of V
given by (M-2) implies the following:

(t/t&I) (l!l-of-U(t)-true OR LI-of-W(t)=true).
This nealis that, from a semantic point of view
there arc in general three possible ways to
realize the insertion of tuple t into V:

(Alt-1) Insert t into U.
(Alt-2) Insert t into W.
(Alt-3) Insert t into both U and W.

Arbitrary choice is unacceptable because it may
result in. a semantically inconsistent database
state. Therefore, in order to rcalizc! insertion I
in V, WC must resolve this semantic anbiguity
for every tuplc t of I. We call this problem
semantic ambiguity problem of type two (SAP2).
Similar argunellts hold for SAP2 solvability as
for SAPl. That is, SAP2 is sometimes solvable
using certain integrity constraints deduced from
the view. For e::nnple , suppose
RiEPtl(enanc , sex ,a@, . . . > is the male employee
relation and FEbIP(ename , sex, age, . . .) is the
female employee relation. Ther: the union view
MEMPuFEC 1P represents the er.tire employee
r&&ion. In this case, it is clear that an
insertion against L’IERlPuFELiP is always

Proceedings of the Tenth International

Conference on Very Large Data Bases. -.

translatable without any ambiguity whc:?e,!er
SAP2 solver detects the se:: value of the
insertion tuple, which suc;;-~ests whic!i
translation nltcri?ativc should bc chosci!.

liowevcr, there c;:ists a situ&ion in whicll
humal, interaction rm:r be required to solve
SAP::. For example, consider the
SGCCER(ename,age,deyt) aid TEITIJIS (c:-.anc,
age, dept) relations cgain. Suppose an inscrtloll

of cnployee c is issued a@nst the union view
SOCCERuTENIJIS. Then, in order Ilot to result
in an:, semantic ambiguity, we must identif:,:
which one of the following three iacts e::ists
behil?d the insertion:

(Fact-l) Erlplojrce c has become ;? r Iember of
the soccer club.

(Fact-Z!) Employee e has become a ncmber of
the tennis club.

(Fact-3) Enployee e Iins becor?e a nerlber of
both the soccer club and the tenni? club.
The SAP2 solver nay not be able to fir:d r
semantically correct solutior! without intern&in?
wit11 the user who issued an il?scrtior. against a
union view. Cl

Rule I-3 (Insertion against a Differcncc
View) : “Suppose insertion I is issued against a
tlifferencc view V=U-\‘!, where 1J and G are
union-compatible. Then I is always trar.slatable
into insertion I against U and deletion ,D C.gSillSt

V/, where D=I.”
Justification : Suppose insertion 1 is issucd
against a difference view V=U-\:, where U and

Yv’ are union-corlpctible. Siricc the mcailing of V
is given by (hl-31, insertion I against V rlcans
the following:

(VteI)(M-of-U(t)=true AND K-of-W(t)=fplse).
This suggests that I should be translated into
insertion I against U and deletion D against W,

where D=I as a set. It is easy to see that this
translation realizes the desired insertion. As we
mentioned in the context of Rule D-3, an
insertion into a view is trar:slated into another
type of update, namely, a deletion. 0

Rule I-4 (Insertion against 2 Projection
View) : “Suppose insertion I is issued against a
projection view V=UcX I, where X is ;I subset of
att(U). Then I is translatable into insertion
against U if and only if SAP3 (see below) is
solvable. The solution to SAP3 determines the
translation . ”
Justification : Suppose insertion I is issued
against a projection view V=U [X J ,whc?re X is a
subset of att(U). Gy the neaning of a
projection view given by (M-4)) we must find a
tuple u whose projection on X is t and which
satisfies the neaning of U (M-of-U) in order to
make it possible to insert a tuple t of I in V.
Of course, such u must be unique for each t in
order r.ot to cause any semantic ambiguity.

Singapore, August, 1984

liow, a problem, which we call the senan.tic
ambiguity problcn of tvpe three (SAP3), may
arise. As observed in SAP1 and SAP2 (
sorlctimcs the problem cai1 ba solved by using
certain integrity constraints extracted from the
view definition. For example, SPC is defined as
a projection view of the iiitcrnedinte viicw
VO . 1 (supplier, SP. part, PC. part, customer) on
[supplier, SP.pnrt, customer) in Figure 1 (a).
In this case, l~~cnuse VO.l has the time
invariar:t propert:/ that SP.pnrt value is always
equal to PC .part value for each tuplc, every
insertion tuplc (s,p,c) against SPC has .a
unique original image (s,p,p,c). In gerernl,
however, it nay be difficult to solve SAP3
without human interaction. flu11 values may bc -.
used to fill the non-X values of u. For
cxamplc , SQLlDS (7) allows this unicss such
attributes, i.e. non-X attributes, do not permit
null values. IIowever, this expedienc;r nust be
used very carefully; olherwise the users will
face the semantic anbiP;uity problem associated
with the null values. II

Rule I-5 (Insertion against a 8-Restriction
View > : “Suppose insertion I is issued agair.st a
&restriction view V=U CX8Y] , where X and Y
are &conpntiblc. Then if t [X) 19 CY] holds for
CVCrj' tuple t of I, then I is translatable into
insertion 11 against U, where Il=I.”
Justification : Suppose insertion I is issued
against a e-restriction view V=U [XeY 3, where
X and Y arc! 8-compatible. Dccause the meaning
of \I is defined by (H-5), every tuple t of I
must satisfy the relationship t I Xl 6% CY 3 .
OtherGse the insertion will not be accepted. If
it is I atisfied, then I becomes an insertion
against I! . It is clear that the translated
insertion realizes the desired insertion against
v. 0

5.3 UPDATE fi!ODIFICATl(ilI RULES
As v;e mentioned ii1 section 5.1, there is

one e::ccptional case in which failure of a local
translation does not immediately mean the failure
of the view update. This is the case when the
translation of an update against an intermediate
view that satisfies the following conditions is
attempted :

(Sit-l) The intermediate view is a direct
product view.

(Sit-2) A B-restriction view is defind on the
interncdiate view.
We will first discuss two modification rules; the
deletion modification rule, and the insertion
nodification rule. Then the fourth scnantic
ambiguity problem will be discussed.

Proceedings of the Tenth Intematlonal
Conterence on Very Large Data Bases.

5.3.1 DELGTIOlI MODIFICATlOII RULE
Suppose a B-rcstrictioii view V=U [Xe!Z]

is defined on level i and the intermediate view
U on level i+l, on which V is defined, is a
direct product view I’ll.x112, where \il and W2
are on level i+2. Suppose D is a deletion
against V. Since V is a Q-restriction view, D is
immediately converted to a deletion against U
by Rule D-5. Since U is a direct product view,
the cross reference conditior. is checked for the
difference U-D. Suppose the condition does not
hold. This n-mans that it is impossible to
translate D into a lower level update (see Rule
D-l). Iiowever, let us allow D to be modified to
D’ as follows:

(Con-l) Intersection of D’ with V is equal to
D.

(Con-2) For any tuple t in D’-D, either its Wl
value is equal to the Wl value of some tuple in
D, or its W2 value is equal to the W2 value of
some tuple in D, i.e.,

(vtED’-D)(t[att(Wli] 6 D[att(Wl)J OR
t[att(~~2))~DI;dtt(~~2)]).

(Con-3) The cross reference condition holds
for IJ- D’ .
Criteria Cri-1 and Cri-2 of section 4 are
satisfied by Con-l and Con-2, respectively.
However, there may exist nore than one such
D’, thereby conflicting with criterion Cri-3. A
detailed discussion of this problem will be given
in section. 5.3.3. If a unique D’ is found,
however, by Con-3 it is possible to translate it
into deletion(s) against Wl and W without
violating the three updatability criteria. We call
the above the deletion modification rule.

An example may help to clarify the above
discussion. Consider view SPC in Figure 1..
Suppose a deletion DO= {(sl ,pl ,cl), (sl ,pl ,c2),
(s3,pl,cl), (s3,pl,c2)) is issued against SPC.
Then by Rule D-4, DO is tra.nslated into
deletion DO. 1 (against the intermediate view
VO. l), which is expressed as DO.l= [(sl ,pl,pl,
cl), (sl,pl,pI,c2). (s3,pI,pI,cI), (s3,pI,pl,
c2)J . Then by Rule D-5, DO. 1 becomes a
deletion against the intermediate view VO. 1.1,
which WC denote as DO.l.1. Notice that the
difference VO.l.l-DO.l.l does not satisfy the
cross reference condition. For example, because
two tuples (sl,pl,p2,c2) and (s2,p2,pl,cl) are
in it, the tuple (sl ,pl ,pl ,cl) , which is
obtained by concatenating the supplier and part
part of the first tuple and the part and
customer part of the second tuple, must be in
it (see the cross reference condition). Dut this
is not true.

So we try to modify it according to the
deletion modification rule. One possible
modification is
DO.l.l’=DO.l.lu{(sl,pl,p2,c2),(s3,pl,p2,c2)).

Singapore, August, 1994

316

By Rule D-l, DO. 1.1’ is translatable into
deletion t(el,pl), (s3,pl)) against the base
relation SP. It is easy to see that this deletion
‘against the base relation realizes the deletion
against SPC.

The remainder of this section examines
why the notion of deletion mcclification dots not
work for situatior.s other than the intcrnediate
view which satisfies Sit-l and Sit-2. First,
consider a direct product view V(=UsW) defined
on lCVi!i i , where U and \\I are on lcvcl i+l.
Suppose deletion D against V is translated into
c!cletions Dl against’ vi and I?? against \I;,
respectively. Now, suppose it is impossible to
translate Dl into the next lower lcval. Can WC’
modify it? The answer is 110, because any
modification conflicts with criterion Cri-1, that
is, V may lose tuple(s) thnt must not be
deleted. The sane argument holds for the case
in which V on level i is the projection view of
the intermediate view U cr X on level i+l , i.e.
V=UCX]. Any nodificntiori of the deletion again.st
U conflicts with Cri-1.

Second, consider a union: view V(=IJu\V)
defined on level i; that is, U alid I?’ are on
lcvcl i+l . Suppose a deletion I? against 1’ is
translated into deletions Dl against U and D2
against 17, rcspectivcly , and suppose Dl cann.ot
be translated into a lorvcr level. From a
non-semantic, i.e. opcratioiml, point of view,
Dl in certain cases cm be modified. From a
senantic point of view, however, it can not be
modified. In order to understand this, let us
consider the following example: Suppose V=UuK
and U=UlxU2, where Ul= [(a), (b)) , U2=: t(l),
(2)}, W= {(b,l), (c,l) b and deletioii D={(a,l))
is issued against V (= {(a,l), (a,2), (b,l),
(b,2), (c,l)]). By Rule D-2, D is translated
into deletion Dl(=D) against U and D2(=D)
against W. Then observtl that the cross
reference condition dots not hold for U-Dl=
{(b,l), (a,2), (b,2)). Since (b,l) exists in VI,
however, we can delete the same tuple from
U-D1 (i.e., modify Dl to Dl’=Dlu {(h,l))),
without causing any additional doletions from V.
Moreover, it hecomcs possible to tmr.slate it
into deletion {(l) r against U2 which realizes the
deletion against V. Notice that the CJ’OSS

reference condition holds for U-Dl’. Therefore,
modification is possible in the above sense,
i.e., from the operational point of view.
Ilowever, from a semantic point of view, this
modification is unncceptablc, because the two
tuplcs (b ,l) of U 2nd (b ,l) of K have different
meanings. That is, (b,l) of U satisfies M-of-U
and the sane tuple of \1 satisfies M-of-W, which
is different from M-of-U. Therefore, de1etin.g
(b ,l) from U conflicts with criterion Cri-2. For
this reason, we prohibit deletion modifications

Proceedings of the Tenth International

Conference on Very Large Data Bases.

in this situation. The same a.rgument holds for
a dii’ference view.

Third, let us consider the situation in
which modification is allowed to an intermediate
iricw which satisfies Sit-l. and Sit-:. Suppose
V=U (XQY] and IJ=WluW?:, In this case, no
modification is allowed, because is nay conflict
with Cri-2, that is, it nay delete extraneous
tuples from 171 arid/or W. The same argument
holds for three other cases; (i) V=IJ CXeYJ and
U=Wl-W2, (ii) V=U [XOYJ and U=\VcZ I, and (iii)
V=U [XQY) and U=W[Z@Z’) . In the cast where
V=U r.SQYl and U=\Vl::\12, we can see that the
modification does not conflict with Cri-2 in the
sense that the modification gives users a way to
specify s deletion against Wl and./or \J:! through
view V. For example, suppose a user wants to
delete i(a,l)) from IV1 through view V, where
YJl(A,B)={(a,l), (b,2)), ~~i2(C,D)=c(1,~~;),(2,y)),
U=\llsWZ, and V=U [B=Cj . Then the deletion
modification rule is necessary. The user night
issue deletion {(a,l,l,x) J against V. It is easy
to see that deletion { (a, 1,l ,x)) against IJ , the
result of translating the deleticn against V by
Rule D-5, cannot be translated into the
intended deletion [(a, 1)) against \11. Rather,
we realize that the only way to nakc it possible
is to modify it to the deletion; {(a, 1,l ,x> ,
(a,1,2,y)) against U whose modification does
not conflict with the user’s intention.

5.3.2 II~SERTIOLI hlCDIFICATI~1~ RULE
tlodification of an insertion is a.llov:cd for

exactly the sane type of interncdiatc view as
for deletion modification. A modification of I to
I’ must satisfy the following conditions:

(Con-l) The intersection of I’ with V is equal
to i.

(Con-2) For any tuple t in II-I, either its WI
value is equal to the \I1 value of some tuplt: in
I, or its W2 value is equal to the \L’2 value of
some tuplc in I, i.e. y

(~trI’-I)(tlatt(~~l)l~ I[att(C’!l>] OR
t[att(~;2)]EI[att(\J2)]).

(Con-3) The cross rcfcrencc condition holds
for UuI’.
IJe call this the insertiorl modification rule.

5.3.3 AhlBICUITY IIJ UPDATE RIODIFICATIGII
Ambiguity exists in modifying deletions or

insertions. Let us agaiii take deleticn DO
against view SPC that v~as used in section
5.3.1. In that cape: deletion Ml. 1.1 against the
intermediate view VO.1. 1 :‘::‘.c n c~J!didntc for
modification. One r-lodii’ic:atioi: (>f’ DO.l.1, to
DO.l.l’, was shown. ‘;‘ \ JO cthcr r~l~dif’ic:~~tic.,::i:
named DO. 1.1” and DO. 1.1”’ are possible. ‘;!ws;:
are listed below:

(Plod-l) D0.1.1’=P0.1.1u&4,p1,p::,c:!),

Singapore, August, 1994

317

(Mod-2) D0.1.1”=DL1.1u~(s1 ,pl ,p2,c2),
(S? ,p2 ,pl ,c2:, (sB,pY,pl,cl), (s3,p2,pl,c5),
(s3,p3,pl,cl), (s3,p3,pl,c!Z)~.
(Lad-3) DO. 1.1.“‘=U0.1.1’u1~0.1.1”.

The question is which alternative should 1~
chosen. Arbiti*ilrjr choice is unacceptable. Eacll
tilter:iativc results ill ;I differcr.t deletion
against the base relctions, as observed bclovr:

(CL-l) Ey rid-l, deletion LJO against SI’C will
be realized by deictinp; {(sl,pl), (s3,pl)\ from
the base rclaticjr. SP .

(Ob-2) Dy Riod-2, de!ction DO against SPC will
be realized by deleting {(pl ,cl), (pl,c2)) from
the base rciation PC.

(C)b-3) I3y Llod-3, delctior. DO against SW will
be reo:izcd by deleting [(sl,pl), (s3,pl) \ flYJP1

Sl’ m<l I<?1 ,cl) , (p1.d) } fron PC.
Notice that this ambiguity corresponds to the
three nltepnatives ner.tioned in section 4. That
is, WC have the fol1owir.g choices:

(Choice-l) If DO is issued to reflect the fact
?hnt suppliers sl and s3 hnve stopped
supplying p;lrt pl, thcr. E:od-1 should be
chosen.

(Choice-?) if DO is issued to reflect the fact
that custorxrs cl and CL have stopped
purchasing pert pl , ther: Eod-2 should be
chosen.

(Choice-3? If DO is issued to reflect the above
tVJ<! i’acts, thclt r!r,d-3 should be chosen.
In order to avoid a scnanticall;r ir2consistcnt
drtabasc SM~?, this ambiguity problcn should
be resolved. Kc call this the scmalitic ambiguity
problen of type four (Sj\P4).

LJC sllould notice that solving SAP4 is
cssentiaJly equivalent to solving the semantic
ambiguity th:,t nay arise vlhen an update is
issued against a r.htural join view, because the
update modification is only allowed when an
update is on the intcrncdiate view which
satisfies (Sit-l) Ed (Sit-Z). That is, in our
francwork, a natural join view V(A,D , C) of two
rclatioi:s U(A,U) and Y!(B,C) is defined as
V=VO[A,U.D,C], where VO=U::\srU.B=W.B1. By

I:ule D-4 01’ Rule I-4, aliy update against the
natural join view V is translatable into an
update against VO without cnusing any
ambiguity. Therefore, ambiguity may arise when
the update ngtlinst VO is trapslated into
update(s) against U and/or W. This is exactly
the situation that we discussed above. To
oddrcss the semantic ambiguity problem of the
natural join view update, Dayal and Rernsteir.
i9,19) and Carlson and Arorr. (13) used
i’unctional dependencies; Bancilhon and Spyratos
(14,15,1G) introduced the concept of
complementary views to supply extra semantic
information which nckes it possible to resolve

Proceeding8 of the tenth Internrtlonal
Conference on Very Large Data Saaer.

318

the ambiguity in certain situations. However,
siiice this problem ultir.l;itely requires
intcractiol L with users to capture the user’s
intei:tion, their approaches r?l’l? still not
suf?icient to construct a con:plete SAP4 solver.
The cction taken by SAP4 solver is essentially
to asl; which one cf rhe possible nodification
alternatives the user prefers. If if cnn find a
unique answer, then it can translate the update
into lower lel’cl views without introc!ucing any
semantic nnbiguity. llotice that the concept of
update modification provides the urivcrse of
discourse for the solver to interact with the
users.

5.4 VIE\\! UPDATE TIL\IJSLATOI:
This section supplements section 5.1. Cur

translator consists ot five components ; n
translator body, and a tot,al of folir different
types oi ambiguit:- solvers for SAPl, SAP:,
SAP3, azd SAPI. The translator body has 81:
interface to each of the four SAP solvers. The
basic view support capability will be provided
by the translator body itself. When no SAP
solvers are available, it can only handle the
view updates which are trruislatable by using
Rules D-l, D-2, D-4, D-5, I-l, I-3, and I-5.
If we could provide a SAP1 solver, then the
ViCW updote support capability would be
enhanced b!! Rule D-3. Similarly, if SAP2 and
SAP3 solvers were avnilnble, then the capability
would be enhnnced by Rules i-2 and 1-4,
respectiveI:/. Dy providing a SAP4 solver, the
translator could handle updates to natural join
views. Of course , the capacity of each solver is
also questioned. A poor solver would provide a
poor view support cgpability. A rich oT?e would
provide a ricll support. From the nature of the
ambiguity problen:; , such solvers may in.volve
the users in rcsolvin g the anbiguities.
Otherwise, a good, i.e. a semanticnlly correct,
translation may not bc obtained. Iiowever, the
design of such solvers is an open problem.

A sample translation used throughout this
paper could be handled by the translator body
with a SAP4 solver: Recall that deletion DO
(see section 5.3.1) was issued against the view
SPC (see Figure 1). Then the trnnslator body
translates DO into DO. 1 (see section 5.3.1) by
Rules D-4. It translates DO.1 into DO.l.1 by
Rules D-5. The]\, it recognizes that DO.l.1 is
on the intermediate view which satisfies (Sit-l)
and (Sit-a) (see section 5.3). It calls the SAP4
solver to handle DO. 1.1 translation. The SAP4
solver recognizes that the difference
VO.l.l-DO.l.l does not satisfy the cross
reference conditioll, and begins to try
modifying DO. 1.1. In this case, there are three

Singapore, August, 1984

possible modifications (WC section 5.3.3). The
problem of whcthcr it can choose correct
alternative depends on how good its problem
solving capability is. The result is reported to
the translator body. Depending 011 the answer,
it proceeds with further translation. The SAP4
solver would ir teract with the user if
necessary . lf the translator body finds that the
local translation is impossible, or if any
ambiguity solver finds that it can not resolve
ambiguity, the translator rcjc&s the view
update and notifics the user.

This paper discussed the relational view
update translation problem from n semantic point
of view. Views vlare defined in terms of the
relational aigcbra. The meanings of views were
defined by using the time-varying first order
predicate cnlculus . The view updatability
criteria wcrc re-examined fron the s:emantic
point of view. The mechanisns of our view
update tlnnslntor which can handle? any view
updntcs were presented. A totai of ten 1oce.l
tra.nslation rules; was deduced, each of which
has a semantic basis. A deletion and an
insertion modification rule were introduced to
augment the transle.tion capability provided by
the local rules. Our view update translator
consists of a trenslotor body and four semantic
ambiguity problem solvers of different types.
The t ranslntion capability depends oil the
solvers available to the translator body and the
problem solving capability they offer. From the
nature of the ambiguities the solvers resolve,
they nay involve the users in resolving the
anbiguities. Although, the four senantic
ambiguity problons were explained, the design
of such solvers is an open problem.

ACKNCI~lJ,1:I’IC;EtlE~J”I’
Dr. Won Kim of IBM Research Laboratory,

San Jose, California, read several versions of
this paper a1 1 d gave rxln~’ constructive
connerits from various points of view. The
author expresses his sincerest thar!ks to him
for helping transform an incomprehensible paper
into its present state.

REFEREIJCCS
1) Codd,E.F.: Recent Investigations in a

Relational Database Systen , Inf. Process. 74,
pp. 1017-1021 (1974).

2) Chamberlin ,D . D . , Gray,J.lJ
Traiger,I.L. : Views, Authorization,

Proceedings of the Tenth International

Conference on Very Large Data Bases.

and
and

319

Locking in a Database System, Proc. AFIPS
IJCC, Vol. 44, pp. 425-436 (1975).

3) Stoncbraker,M: Inplementation of Integrity
Constraints and Views by Query Modification,
Proc. ACM SlGLX!D, pp. 65-78 (1975).

4) Astrahan ,El . nl et. al. : System R : Relational
Approach to Database Elanagement, ACM TODS,
Vol. 1, 110. 2, pp. 97-137 (1976).

5) Fernandez , E. B . , Summers, 1~. C . and
Wood,C: Database Security and Integrity,
(book) , Addison-Wesley Pub. Co. (1981).

6) Ileld,G.D., Stonc1)raker.M. and \?ong,C.:
IrIGRES - A Relational Data Base System, Proc.
AFIPS lJCC, Vol. 44, pp. 409-416 (1975).

7) SQLlDS System Concepts and Facilities,
Gl124-501.3-0, File 140. S370-50, IBM (1981).

8) Paolini P . and
Definition of’ Mappings

Pelagatti, G. : Fornal
in a Database, Proc .

ACM SIGRIOI~) pp. 40-46 (1977).

9) Dayal,U. and Bernstein, I’. A. : On the
Updatability of Relational Views, Proc. VLDB ,
pp. 36S-377 (1978).

10) Furtndo, A. J, . , Sevic,K.C. and dos
Santos,C.S. : Permitting Updates Through
Views of Data Bases, Inform. Systems, Vol. 4,
flo. 4, pp. 269-283 (1979).

11) Osm?.r,,I.M. : Updating Defined R.elations,
Proc. AFIPS IJCC, Vol. 48, pp. 733-740 (1979).

12) Codd,E.F.: A Relational Model for Large
Shared Data Banks, Comn. ACM, Vol. 13,
K(J.~, pp. 909-917 (1970).

13) Cnrlson, C . R . and Arora,A.K. : The
Updatobilty of Reiational Views Based 011

Functional Dependencies, Proc. COblPSAC , pp.
415-420 (19793.

14) Bancilhon , F. : Supporting View Updates in
Relational Data Base, Proc. IFIP TC-2 Working
Conf. on Data Bese Architecture, pp. 198-219
(1979) ,

15) Spyratos , N . : Translation Structure of
Relational Views, l’roc. VLDB, pp. 411-416
(1980).

16) Bancilhon,F. and Spyratos , N . : Update
Semantics of Relational Views, ACLJ TODS, Vol.
6, IJO. 4, pp. 557-575 (1981).

Singapore, August, 1984

17) Codd,E.F. : Iklntional Conipletenem of
Database Sublangungcs, in Data Case System,
Courant Conputcr Sci. Symp. 6, Rustin ,R.
cc’ ,. , Pren ticc-liall, Englwwod Cliffs, pp. 65-97
(1972).

18) L eller , k . P I . : Updates to lklational
Database L’lwough Views Involving Joins, IBEX
Ccs. Rep. RJ3Cti2, (Gctober 1981).

19) Dnya1.U. azd Rernstein , P. A. : On the
Correct L’ranslation of Update Cpwctions on
Relational View;, AU.1 TODS, Vol. 7, 110. 3,
pp. 381-416 (1982).

Procwdlngr o? the Tenth Intomrtlonrl

Conforo~ on Vey Large Data Smm.

Slngrpore, August, 1994

320

