
ARCHITECTURAL ISSUES OF TRANSACTION MANAGEMENT
IN MULTI-LAYERED SYSTEMS

Gerhard Weikum , Hans-J&g Schek

Computer Science Department
Technical University Darmstadt

D-61 00 Darmstadt, West Germany

Abstract

The internal structure of current data b;lse systems
is ideally characterized by a hierarchy of multiple
layers. Each layer offers certain specific objects
and operations on its interface. Within this
framework we investigate the transaction
management aspects I It is shown that the System
R kind of concurrency control can be generalized
and an appropriate recovery method can be found
by introducing a type of open nested transactions
which are strongly tied to architectural layers.
Especially. our approach includes
application-specific levels on top of a data base
kernel system. Up to now, most of the
preprocessor solutions for so-called “non-standard”
applications that have been proposed simply ignore
aspects of concurrency control and recovery. We
sketch different possibilities to realize transaction
management in such a layered environment.

1, lntrodution and RB

Two different directions of evolution in data base
systems may be observed. On the one hand, the
performance for commercial applications should be
increased still further (/Ba83/) . On the other
hand, data base systems of the next generation are
expected to support so-called ‘non-standard”
applications such as CAD or office automation
(/HR83b/, /SchP82/) .

Permiwion to copy without fee all or part of this material is gmnted
provided that the cop&s ore not made or distributed for direct commercial
advantage, the VLDB copyright not&e and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Dora Bose Endowment. To copy otherwlrc. or to republish, requires a fee
and/or special permission from the Endowment.

7 hese two objectives, although different, have
something in common. To achieve them It does nor
suffice to modify single system components locally,
rather the overall architecture of data base systems
is affected (/Kie83/. /LSch83/). An important part
of the architectural considerations is concerned
with transaction management (/Ba83/, /PrS83/) .

Ideally we can look at the structure of modern data
base systems as a hierarchy of ‘virtual machines’.
Each such ‘machine’ is characterized by the
objects and operations which are available at its
interface. These are In turn implemented with the
help of objects and operations of the layer one
lower. Such a multi-layered architecture is
described In /HR83a/. A variant of it forms the
background df a data base kernel system which we
plan to implement (/PSSW84/). One special
design feature is that we use a single data model.
the so-called NF2-relational model, to describe
conceptual as well as internal data structures in a
uniform way (/SohS83/). In this model NF2-tuples
are the basis of complex structured objects which
appear on both the storage structure and access
path level and, In the context of “non-standard’
applications. at the user interface.

The layered architecture of the projected data base
kernel system Is roughly described in the following
figure 1.

Proceodlngr of the Tenth Intomatlonal

Confarenoa on Vary Larga Data Bases.

Slngapora, August, 1964

454

OBJECTS LAYER OPERATIONS

Application-
Specific Data
structures
te. g. Textual

Documents)

Application-
Specific Op’s

Boolean &
Non-Boolean
Retrieval)

BOT-L4. EOT-L.4

DATA BASE KERNE

Tuples
Reiations
Views

Tuples
Relations

Internal Tuples
Internal Relations Ll 1

1 Internal Tupiel

Pages
Segments

Layer

I LO
Page Layer

L SYSTEM

Select. . Where
Insert. . .
Update. . Where
Delete. . Where
BOT-W, EOT-L3

Retrieve
<Single Tuple

Search Cond>
Store, Erase
Modify
BOT-LP. EOT-f-2

Retrieve
<Addr Specb
Retrieve
<internal

Tupie Search
Condition>

Store, Erase
Modify
80T-Ll , EOT-Ll

Read<Page>
Wrfte<Page>
60T-LO, EOT-LO

Fiaure 1: Multi-Layered DBMS
(BOT. EOT mean Begin of Transaction, End of
Transaction resp. 1

Apart from extensions inherent to the NF2-relational
model, the interface L3 in principle corresponds to
the Relational Data System (RDS) of System R
(/As76/) : a single operation processes a set of
(conceptual) tuples. L2 is comparable to the
Research Storage System (RSS) . Selection
formulas are restricted to search conditions which
can be evaluated locally on single tuples
(“searchable arguments” in System R terminology)
and update operations refer to current scan
positions.
Whereas L2 operates on conceptual tuples as Well.
in Ll indexes are considered as internal (NF2-)
relations just as primary data are. Ll accordingly
offers a special “address selection” on its
interface. Such a layer has not been introduced in
System R. Finally, underlying to Ll we have the
segment and page structured storage module LO.

We suppose that not all of the requirements

Proceedtngs of the Tenth International

Conference on Very Large Data Bases.
455

associated with ‘non-standard’ applications can be
performed by a single homogeneous system. It
seems more realistic to extend a common kernel
system by different preprocessors according to the
application. Therefore, on top of L3 we will have
an additional layer L4 offering
application-dependent operations on data strutures
such as documents. images, geometric shapes or
matrices.

1 he question arises how to incorporate transaction
management into such a multi-layered
architecture. Conventionally, one would introduce a
lock manager and a recovery manager into a
particular layer. Very often the page layer LO has
been selected in available DBMS (e. g. UDS /Sfe/
or SQLIDS /IBM/). The consequence for our
architecture (fig. 1) would be that one user
transaction (L4-level) is mapped into one
L3-transaction which in turn corresponds to one
L2-transaction and so on until we arrive at the one
LO-transaction. This approach can also be found in
System R: One RDS-transaction corresponds to
one RSS-transaction, there is no different notion.
A closer look into this subject recalls two important
observations:

1. Although it seems so. transaction
management Is not a matter of a single layer.
Even when located at LO we depend on the
fact that the next deeper layer (in this case
the operating system) provides us with atomic
operations f e. g. write a page) .

2. A more careful inspection of the System R
transaction management shows that we could
understand the shadow page concept and the
RSS-operatlon logging as a two-level recovery
scheme f /GrBla/, /Tr82/) . Similarly we find
that RSS tuple locking is complemented by
page locking. Therefore, also the System R
concurrency control mechanism is a two-level
approach (/As76/. /Tr83/).

The idea of providing all levels of a multi-layered
architecture with their own recovery mechanism has
been proposed already in. /Ve79/. but has not
been pursued further as far as known. Also
concurrency control aspects have not been
discussed there. With this in mind we can state our

Problem: What are the fundamental possibilities for
transaction management in a multi-layered data
base system architecture? How can the System R
approach be generalized to several or all layers of
a system as sketched in flg. l? Is it advantageous
to construct a transaction at level (i+l) with more
than one transaction at level I?

This paper tries to give first considerations on the
above questions. in the next chapter we generalize
the two-level approach for concurrency COntrOl to a
multi-layered system. in chapter 3 we investigate
related recovery aspects. Finally. In chapter 4 we
show that these concepts can also be generalized
to appllcatlon-specific layers such as text retrieval

Singapore, August, 1984

on top of a data base kernel system.

2. Incorooration of Concurrencv Control into
Architectures

2.1. Conventional Techniaues

The most familiar and easy to understand
concurrency control method is two-phase locking
on page level (LO) with all locks held until End of
Transaction (EOT) (cf. /HR83a/). Because of the
rather coarse granularity the concurrency of
transactions mlght be limited with this approach.

A respresentative of more sophisticated locking
techniques is System Ft. which needs not
necessarily treat pages as objects for concurrency
control. Tuple locks are a possible option of
System R. Therefore, in the followtng scenario of
RSS-actions (see fig. 2) , I.e. LP-operations
according to fig. 1, no conflict occurs if 11 and t2
are two different tuples.

Modify 11
Transaction Tl j I

i

Modify t2
Transaction T2

t
I
I i

_Flaure 2: Operatlons at the L2-level
(RSS-operation level)

As RSS-operations are nevertheless transformed
Into page accesses at runtime. the system still has
to guarantee some sort of page level concurrency
control. To demonstrate this necessity . let us
assume that 11 and 12 are modified such that they
afterwards require more space within the respective
page (e.g. by increasing a variable length field).
In the following we sketch a possible LO-execution
of the above schedule. It might leave an
Inconsistent data base. If both tuples are stored in
the same page p but the latter has free place only
for one update.

Step 1: Tl reads 11 and checks the free place of p
Step 2: T2 reads 12 and checks the free place of p
Step 3: Tl modifies 11 withln p
Step 4: T2 modifies 12 within p

System R avoids such situations and solves the
problem by requesting page level locks for
LO-operations and holding them until the end of the
RSS-actlon (/As?8/). This means that the system
has a strict two-phase locking protocol for both,
for layer L2 within the scope of each transaction
and for layer LO within the scope of each
L2-operation f RSS-action) . Regardlng level LO.
fig. 2 corresponds to the situatlon shown in fig. 3.

R/W R/W . . . R/W

Transaction T 1
F-G-S- --L

R/W R/W . . . R/W

Transaction T2
I-

kiaure 3: Operations at the LO-level (page level)
(R/W means Read/Write of pages pl. . . I

Obviously, such a two-level locking mechanism
excludes any concurrency anomalies (maybe, apart
from phantoms). A formal proof of this statement
is mlssing, however. Since page level locks are
released at the end of each surrounding
RSS-actlon, the method sketched above is called
‘open nested transaction’ in /Tr83/ (compare also
with /Or81 b/I.

In spite of System KS rather fine locking granularity
situations arise in which potential concurrency is
prevented unnecessarily. This can be made clear
looking at figure 3. With the mapping of tuple
operations onto operations on data pages and
possibly index pages. the concurrent execution of
Tl and T2 has no delays only under the assumption
that the referenced page sets are disjoint, i. 8. if
{pl.. . ..pk) n [ql.... , qm) = 0. Otherwise one
transaction must wait until a lock on a common
page is released, which is at the end of the
RSS-actlon that holds the lock. The first page
which is accessed (exclusively) by both
transactlons causes a delay. In the worst case a
conflict between Tl and T2 occurs at the first data
page pl (= ql). The compatibility of tuple locks
would be meaningless in such a situation. because
T2 would be blocked by Tl due to locking w. r. 1.
LO-operations. The probability for this type of
conflict might be quite high. especially in case of
many indexes to be maintained according to
updates of primary data.

2. 2. A Multi-Level Aooroach

There are two different ways to decrease the
number resp. duration of delays occuring wlth the
two-level approach sketched above. The flrst
possibility is to apply special tec!nlques for the
synchronlsation of operations on B -tree-like index
structures. This direction generally means to utilize
the knowledge that only a small number of
well-known operations are allowed to operate on
these special data structures. In the context of the
previous discussion it means that we would have to
distinguish between data pages and index pages.

The second possibility, which is our proposal, Is
an extension of the two-layer approach to more
layers: the layer Ll could be made explicit and
would get Its own concurrency control. We assume
that an LP-operation on one LP-tuple affects
several (internal) Ll-tuples. One Ll-tuple, in
turn, may affect several LO-pages. In the context
of the previous discussion data tuples and index

Sfngapon, August, 1994 Proceodlngr cf the Tenth Intornatlonrl
Conference on Very Large Dab 8aaes.

456

tuples would be regarded both as internal tuples to
be managed by Ll-operations. Notice that we
would not differentiate between internal data tuples
and index tuples to avoid unnecessary duplication
of functions (/PSSW84/) . In the following we
discuss the various advantages of our multi-level
approach.

The layer Ll would have to grant locks on internal
tuples for the duration of L2-operations. Page level
locks then could already be released at the end of
each Ll-operation. This situation is shown in fig. 4.

Transaction T

Modlfy 11 L2

I
0

i

I
I

1
Modify Internal. . . Modify Internal
Tuple rl Tuple rj Ll

I l I
I 4

* e-l
R/W. *. R/W R/W. *. R/W

p1,1 pl, kl pj, 1 pi, ki LO

I------l)-----a --.-c----f--l

Fioure 4: Open nested transactions for three layers
(L2: Locks until EOT: Ll: Locks for the
duration of an L2-operation: LO: Locks for
the duration of an Ll-operation)

As we explained above. the worst case of the
schedule described in figures 2 resp. 3 arises from
an LO-conflict between Tl and T2. In this situation
one of the two transactions would have to wait until
the other’s f con-) current Ll -operation is finished,
whereas without the additional locking at the
Ll-level the delay lasts for the duration of the
surrounding L2-operation. Compared with System R
the waiting period approximately decreases with the
number of internal tuples to be modified per
(conceptual) LP-tuple. The proposed extension of
the RSS locking mechanism might pay off
particularly for environments in which many indexes
have to be maintained. As a critical point however
we must consider the additional implementation
overhead involved with a more sophisticated
concurrency control method.

We could apparently generalize the concept of
“open nested transactions’ to any n-layered
architecture. Each level L(i-1) regards the
sequence of L(i-l) -operations corresponding to an
Li-operation as a subtransaction of the comprising
sequence of Li-operations. This subtransaction has
to be serialized with other concurrent
L(i-1) -subtransactions, that belong to different
root transactions. The term “conflict of two
operations” could be defined in a specific way for
each layer so that we are not confined to
two-phase locking nor to locking methods in
general.

Another advantage of these ‘open nested

Proceedings of the Tenth International
Conference on Very Large Data Bases.

transactions’ Is that so-called “semantic”
concurrency control methods (e.g.
/Ef3L83/. /Ga83/. /Ko83/, /Ly83/) might be
applied. The notlon of serializability Is more than a
pure syntactic criterion with such approaches. By
considering (part of) the semantics of operations
they lead beyond the simple concept of schedules
as a sequence of ‘read’s” and “write’s”. For
example. one could have a special lock mode for
each operation, whose compatibility is deduced
from semantic properties (/Ko83/) . As operations
are layer-specific. the close relationship to the
ideas presented in this chapter becomes clear.

Finally we can apply this nested transaction
concept also in an environment consisting of a data
base kernel system and application-specific layers
(cf. chapter 1). The mapping of application
operations to the kernel interface, which is done by
a ‘preprocessor’, might again utilize the
transaction management of the LS-layer to form
subtransactions within a (longer) L4-transaction.
We will return to .this point in chapter 4.

3.y tion Recover

This section is devoted to the second branch of
transaction management. that is recovery. Since it
can not be regarded isolated from concurrency
control, we must include aspects of the latter too.

&A Transaction Model for Multi-CayaLa
Architectures

A simple model of the execution of a transaction T
in the multi-layered data base kernel system
according to figure 1 looks like the following. (We
restrict the discussion to the lower levels for the
moment and will come back to the upper levels in
chapter 4.)

UO - al + 02 - a3 - 04 - 05 - a6 - a? - 08

Fiaure 5: An example transaction in its resolution
through the layers (a0 . . . are states of the
volatile data base)

Each of the layers L2. Ll and LO is represented by
state-transforming functions fj. gj and hj
respectively. For ease of explanation we assume a
single-user mode for the moment. As usually we
distinguish between a volatile data base and a
permanent one. which both are modelled as

Singapore, August, 1984

457

clomcnts ov resp. ap of a set C of states. State
tranSitiOnS primarily refer to the volatile data base.
The only assumption about the propagation of
updates to the permanent data base is that at the
begin and at the end of each transaction WQ
postulate uv = op to hold, which means that
updates have to be propagated not later than EOT.
SC we can discard REDO measures from our
discussion of soft crash recovery.

Let us assume that a system crash occurs in state
07 of the scenario of figure 5. At this time neither

OP = ~70 nor up = U7 holds for the permanent data
base u

r
in general. The objective of recovery is to

reestab Ish state 00 through appropriate UNDO
ijclivilies. We call a state u s C “Li-consistent” if it
is the outcome of a sequence of complete
Li-operations starting from a state, 8. g. 00.
which, in turn. results from a sequence of
complete previous transactions. Looking upon
transactions as operations of an uppermost layer Ln
(n = 3 in fig. 5 scenario) we could state as a rule:
After a soft crash the data base system has to
reestablish the last Ln-consistent state that has
been reached (w. r. 1. the volatile data base)
before.

From the point of view of multi-layered
architectures we might imagine that control is
passed to a ‘recovery function’ Ri: C -a C for all
layers in a. bottom-up order (i = 0.1,. . . , n-l)
(cf. /Ve79/) . Each Ri is implemented solely with
operations of the corresponding layer Lt. The
recovery mechanism works correct if with RO
starting from the surviving ‘after-crash-state’ up of
the permanent database the equation

Rn,l(. . . RO(up). . .) = a0
holds.

In this section we consider recovery variants that
could be understood in terms of cur model. The
architecturally most simple form of recovery is
based on page logging. in such approaches RO is
responsible to restore the desired state 00.
whereas ail the higher level recovery functions RI
(i>O) are identity mappings on C. The relevant part
of figure 5 looks as follows: ’

a0 - 01 - 02 4 a3 - 04 4 a5 - a6 -. 07 - 06

Fiaure 6: Degeneration to page logging

The execution of page level operations
recorded, usually in form of their inverses hj Y ;;

so-called ‘before images’, on a log file. Recovery
then produces the state ROt upI =

Pehtgs ol the Tenth intematlonal
Confsrsnoa an Vary Lsrge Data S&a.

hl-‘f.. , h7-‘fop)...) = a0 after a crash in ~7.
A special property similar to ‘idempctency’
(/Gr76/) or “restar Lability’ (/Gr61 b/I is required
for LO-Inverses: For every LO-operation hj and
every state u that does not ‘contain’
condition hj-’ (0)

hj the
= a must hold. The property is

guaranteed for UNDO based on “befdte images’ as
well as for entry logging combined with so-called
‘log sequence numbers’ (/Li79/).

Pure page logging Is unsatisfactory for two
reasons. First. rapid growth of the log file may
cause serious problems especially with applications
like CAD or office systems where objects are rather
large and transactions are long. A primitive
operation on a CAD object could trigger a multitude
of pages to be modified (cf. /PrS63/. /KW63/).
The second disadvantage of page level recovery is
that it implies page level fccking too. Otherwise
updates of a successfully completed transaction
could be lost due to another transaction aborting
concurrently. The system would no longer
guarantee isolated rollback. This well-known thesis
about interrelations between recovery and
concurrency control (/HR62/, /Trf32/) gives
additional motivation to investigate transaction
management in multi-layered architectures more
thoroughly.

Both drawbacks we mentioned above are avoided in
the System R recovery manager (/GrBla/. /Tr82/)
more or less. As the following figure shows,
undoing transactions after a soft crash Involves
levels L2 and LO.

P,

F&ure 7: The System R recovery as a two-level
approach (L2: RSS-operations: LO: page
level operations)

The well-known shadow storage mechanism
(/Lc77/) provides for atomicity of LP-operations
because checkpoints (I. 8. points in time to
propagate updates) are always on RSS-action
boundaries. Moreover, System R not just has the
‘ail-or-nothing’ paradigm for every single operation
fj. but guarantees for any two LP-operations 11 and
12 that if the later one. 12, has been propagated to
the permanent data base, then the updates of 11
must survive a system crash too. In /Wei84/ a
more precise definition of thls property is contained
that can be applied to ail levels of a layered
architecture.

The recovery function RO of the shadow storage
thus ensures that after a crash In state a7 during

Singapore, Auguat, 1994

458

the execution of transaction T (see figure 7) the
L2-recovery R2 starts with one of the possible
states 00. 03, or 06. which all are L2-consistent.
Since all RSS-calls fj are recorded on the log file.
the A2 restart simply has to arrange the execution
of all inverse operations fj” “contained” in the
state AOt upI in reverse order. If. for example the
most recent RSS-checkpoint was generated in state
~3 and the contents of the log file is <fl . f2>. the
system must perform fl-‘(u3) in order to
reestablish ~0. To prevent that f2-’ is applied to
a3 either, the log file is organized with some sort
of “log sequence numbers” (cf. /GrBla/).

lnvertibility of ASS-operations Is the only
prerequisite for this method to work. Notice that
this requirement is nontrivial having the “DROP
TABLE” statement In mind. It enforces the end of a
System R transaction because the corresponding
inverse operation cannot simply be constructed
from a short log entry containing this RSS-call
C/Tr82/).

ooosal for a Multi-Level Method 3.2.2. Pr

We have summarized the System A recovery
mechanism because we will now be able to explain
our generalization to n layers. The two-level
System A recovery technique obviously is
coordinated with the two-level concurrency control
sketched in chapter 2. As we proposed that layers
L2. Ll, and LO should contribute to concurrency
control. it suggests itself to let participate also the
Ll-layer, but more generally all layers, in recovery
too. The result of this idea is a system of nested
transactions with levels naturally tied to
architectural layers. Such a systematic approach
can be extended to hierarchies of independent
subsystems. for example for transaction
management in application-specific preprocessors
on a data base kernel system (see chapter 4) .

On the lower end it is expected that future
operating systems will offer some klnd of
transaction concept (/Tr83/, /BaS84/). which then
could be utilized by data base systems to simplify
their own transaction management. The interface
LO at the bottom of our data base kernel system of
figure 1 offers atomic operations. but no real
transactions. The difference is that the effect of
successfully executed page operations might be lost
afterwards if a system crash occurs and the data
base buffer gets lost. To obtain transaction
characteristics LO-operations additionally need
durability. often called ‘persistency”, and “logical
indivisibility” w. r. t. concurrent actions. Whereas
the latter is no problem. we must realize that
persistency can only be achieved at the expense of
a poor performance. either by forcing modified
pages to disk immediately or by writing a REDO log
record for each page update. A better solution is
to have persistency for the comprising Ll-operation
merely, instead of LO. Ll could thus play the role
of an “intelligent”, (NF2-) tuple oriented stable
memory formlng the basis of all higher layers. This
stable memory could be implemented with

Proceedings of the Tenth International
Conference on Very Large Data Bases.

459

satisfactory performance utilizing the ‘cache/safe”
ideas of /Ba83/ and /El82/. In what follows we
nevertheless assume a persistent LO- interface to
simplify the discussion.

So we return to our main line that each layer
L(n-l)..... LO helps to restore a transaction’s
initial state after a crash. If LO guarantees
persistency then the log file in the various
intermediate states of figure 5 could look as follows:

State Log File

00 < > i. 8. empty
Ul <hl>
a2 <hl, h2> or <gl,
a3 <gl,h3>
04 <gl,h3,h4> or tgl.92, or <fl>
05 <fl. h5>
06 <fl, h5. h6> or <fl, g3>
07 <fl, 93, h7>

Figure 8: Log file entries in the example scenario

Due to LO-persistency the permanent data base is
in state 07 after a crash in 07. Rollback of the
considered transaction is done by applying the log’s
inverses, i. e. through <fl, 93, h7>-’ =
<h7-‘,g3-‘,11-l>, Execution of an inverse
Li-operation belongs to the corresponding recovery
function Ri. As the functions R(i-l), . . . , RO are
transparent to the layer Li, we virtually achieve
persistency for all layers including the transaction
level Ln. The result of each Ri is the most recent
L(l+l) -consistent state that was reached before the
crash. For simplification figure 8 shows a global
log file for all layers, but actually each level should
record its operations autonomously instead.

7he basic principle of each layer Li is to record all
Li-operations of a surrounding Lr i+l) -operation f
until the latter is finished and L(i+l) has written a
log entry for 1. Then the Li-log is needed no
longer and could be deleted. Since a crash might
occur exactly at a time where both exist on the
respective logs, f and its corresponding sequence
of Li-operations, operations of all layers must be
“careful”. which means that, for example
<gl,hl,h2>-‘(o2) = gl-‘(<hl,h2>-‘tu2)) =

9’ -’ (~0) = 00 holds.

As we already stated for the multi-layered
concurrency control of chapter 2, an increased
overhead must be expected with this kind of
‘hierarchical layer orlented logging”. Therefore it is
obvious to weaken the assumptions of our approach
and let only selected layers contribute to recovery.
lhis does not change the basic principle. as some
levels .are simply skipped when they do not
contribute to recovery. Let Li and Lj (i>j) be two
layers writing log records such that no intermediate
layer Lm (i>rn>j) participates in recovery. Lj has to
record all level j operations belonging to the
comprising Li-operation f currently executed. With
the successful completion of f the Lj-log entries

Singapore, August, 1984

are deleted and their purpose is taken over by the
entry ‘1’ in the Li-log.

This approach is similar to the kind of nested
transactions described in /Mo82/. The difference
to /Mo82/ however is that in our concept nesting is
strictly tied to architectural layers and not visible to
the application programmer on the uppermost
interface. Further. w. r. 1. concurrency control we
use the ‘open’ type of nested transactions.

We finally describe the ‘selected layers logging’ in
an algorithmic form. Each layer Li has to
understand an additional BOT- resp. EOT-call to
indicate the begin resp. the end of the surrounding
L(i+l) -operation. Thus, for each Li ti>O) and any
Li-operation f we have the following generic actions:

action BOT:
jf Li is one of the selected recovery layers

@8q prepare Li-log
(activation of a Li-subtransaction)

sh g.gfJ LIB1 (“BOT’)
fj:

action 1:
jf Li is one of the selected recovery layers

&tttd an Li-subtransaction is activated
lhs m L,ml (‘BOT’)

I!:
1Qj <g1*... ,gk> be the Li,l-operatlon

sequence implementing 1;
fgl j := 1 fn k Pn &j Li-l (‘gj”’ ~4:
jf Li is one of the selected recovery layers

&np an Li-subtransaction is activated
m write ‘1’ to the L,-log;

m L,-, (‘EOT’)
jj:

action EOT:
jf Li is one of the selected recovery layers

&gq release Li-log
sb m L,el (‘EOT’)

!j;

action R,:
Qa!! q-1:
jf L, is one of the selected recovery layers

w u <fl, . . . , f,, be the
contents of the Li-log :

fnrl := r& 14~
mh L,-, (“f -17 :
erase “fj . fkom the Li-log

nd
a:

For LO the actions f are simply elementary
operations, so that we have the
implementation:

action BOT:
prepare Lo-log

(activation of a Lo-subtransaction) :

Proceedings of the Tenth International
Conference on Very Large Data Bases.

following

460

gLction 1:
write “1’ to the Lo-log:
execute I:

action EOT:
release Lo-log:

lqj <fl. . . . , f,> be the
contents of the Lo-log:

!k?Ii :=r&l&
execute f.-’ :
erase ‘fj J from the b-log

94:

it is remarkable that the recovery functions Ri call
operations of the layer one below just as in normal
processing mode of the data base system. In
contrast to the regular mode no log records are
written however to prevent undoing
UNDO-operations in case of a second crash during
restart. Ri depends also on the prerequisite of
LO-persistency. since log records are deleted as
soon as the corresponding inverse operation has
been executed successfully.

The algorithm sketched above can be used for both
undoing a single transaction due to deadlock or
user abort as well as for crash recovery. Since
each UNDO step of an Li transaction must reaquire
certain system resources such as Lri-1) locks.
special measures. i. 8. like System KS ‘Golden’
latch (/GrBla/), should be taken to guarantee that
every aborting transaction is eventually terminated.
in the worst case an UNDO might result in a
system crash when resources are exhausted and
cannot be made available at runtime. However,
this seems not to be uncommon practice.

_S. Transaction Manaaement in an IRS-
Preorocessor to a (Kernel) 06MS

The objective of this chapter is twofold. First, it
can be regarded as a concrete example and further
justification for the open nested transaction
approach described so far. Second. it analyses the
aspects of transaction management of so-called
preprocessor solutions to DBMS which are thought
to support non-standard applications (/KL83/,
/SRG83/, /Wo83/. /Sch84/) . A general expectation
seems to be that a preprocessor to an available
DBMS does not need any concurrency control or
recovery function since the underlying DBMS would
be responsible for that.

In the following we will study this expectation more
carefully. We will take the example of an
information Retrieval System (IRS) at layer L4 (fig.
1) as a preprocessor to a (kernel) DBMS (layer L3
in figure 1). We might also think of a DBMS like
SQL/DS as a target which we map the IRS onto.
(Actually an IRS preprocessor has been
implemented on the System R prototype at the IBM
Heidelberg Scientific Centre /EHPRBl/ and
experience was gained from that exercise.) For the

Singapore, August, 1984

followlng discussion we use IRS interface and
L4-layer synonymously as well as DBMS interface
and LS-layer.

3. 1. Descrlotion of the IRS to DBMS Mactoinq

For the follwing discussion it is sufficient to regard
only simplified objects and operations at the two
layers of the IRS-DBMS-combination.

4. 1. 1. Obigsand Ooerations at thklRS lntgrface

At the IRS interface we have the following main
objects

document collection (DC)
document (D)
term(r)
IR transaction f IRT)

(IRO)

A document collection is a set of documents. Each
document consists of two fields. The first field is a
document number (DNO) , the second field is a set
(TS) of terms. The DNO should identify a
document. The operations which are important for
the following are

INSERT (dc, dot)
DELETE (dc. dot) (IROP)
UPDATE fdc, dot, btd. bti)
SEARCH (dc, dot, query, query-name. estimate)
NEXT (dot. query-name)

The parameter dc is name of a document collection
and dot is a document of the type as described
above. In case of an INSERT the DNO field will be
defined after a successful insertion. In case of an
UPDATE the DNO field contains the document
number (previously found by a SEARCH or NEXT)
to be changed. The update is defined by two sets
of terms 8td and bti. The first contains the set of
terms to be deleted, the second the ones to be
inserted. In the DELETE case the DNO field of dot
contains the document number to be deleted (also
found by a previous search). In the SEARCH
command the ‘query” parameter denotes a set Cl of
terms. A document is a match to Q if Q _c TS i. 8.
if all terms of Q, appear in the set of terms TS of a
document. The parameter “estimate” is a system
estimated number of document matches to the
given query and dot contains a first match.

One or more NEXT calls can be issued after a
previous search to the same query (identified by
“query-name’) and the same documents type. It
results in further matching documents. one for
each NEXT (“Scan” through the matching
documents).

An IRS transaction (IRT) is defined as a sequence
of operations which is entered by an IRS user

IRT := BOT-L4; Al;A2:. . . ;An; EOT-L4

Each operation Ai is one of those defined by
(IROP) on objects defined through (IRO) . Two

Proceedings of the Tenth International
Conference on Very Large Data Bases. I,

options exists for EOT. One is “ABORT”, the other
is “COMMIT”. The abort option is used when the
changes made since the last BOT-L4 shall be
undone. The commit option makes all changes
since BOT-L4 visible to other users and persistent.
This is the usual notion of a transaction.

We shall consider two examples of transactions
later on:

IRTl := BOT-L4 :

iRT2 : =

SEARCH(Ql):NEXTf...);...;
SEARCH(Q2) ; NEXT(. . .I. . . :
EOT-L4cCOMMIT) :
BOT-L4:
SEARCHf . . .I : UPDATEf . . .I ;
INSERT(. . . 1:
EOT-L4fCOMMIT)

Obviously the first transaction is a typical IR search
transaction. It has a first SEARCH with some query
Ql. gets more matches with NEXTs and decides to
modify the query. issue a next SEARCH with Q2
and a sequence of NEXTs for the new matches.
The second is fin present systems) not a typical IR
transaction. After some search the found document
is updated, a new document is inserted and the
transaction commits.

Note that the notion of a transaction seems to be
important for new IR applications like the
administration of office information: It may be
necessary in our example for transaction IRT2 not
to make visihlo a first update to a document unless
a second document is successfully inserted. If the
insert fails for some reason, also the first update
must be undone.

4.-l. 2. Obj.@cts and Qperations at the DBMS
klLQ&Q

We regard only those objects and operations which
will be necessary for the mapping of the previously
described IRS objects and operations. We assume
an interface with objects

lable or Relation (RL)
Tuple or Row (RI
Attribute (A)
DBMS transaction (DBT)

(DBO)

As basic DBMS operations we introduce

DINSERTC rl, tup)
DUPDATE(rl, tup, new attribute values)
DDELETE(rl, tup)

(DBOP)

DSEARCHC rl. tup. query, query-id)
DNEXTf tup, query-id)

The meaning of operations and parameters is
evident.

A DB transaction is again a sequence of actions
DAi as they are defined in (DBOP) on the objects
defined by (DBO) .

Singapore, August, 1984

DBT : = BOT-W: DA1 : DA2: . . . ; DAk: EOT-L3

As usually this defines a unit of concurrency and
recovery, now with respect to objects and
operations at the DBMS interface.

9. 1. 3. Maooina of IRS Obiects and Ooerations tg
DBMS-s

In this section we describe the mapping of IRS
operations on IRS objects to corresponding DBMS
operations and objects. For that we let the IRS
preprocessor impose the document interpretation
on stored byte strings managed by the DBMS. For
the DBMS we have variable length tupies (one
document corresponds to one tupie) where the set
of terms TS is represented as one (long) byte field
BYTESTRl. The IRS preprocessor then knows how
to interprete the We strlng as a
set-of-terms-structure. This procedure has been
proposed recently as the approach of ‘abstract data
types and abstract indices’ /SRG83/ or as attribute
level operations /Wo83/.

DC ==I==, RL

1
I I

1 I 1
DNO T’S DNO BYTiSTRl

I
1

_Flaure 9; Mapping of an IRS object (layer L4) to
a DBMS object fL3)

So far. we have considered only the mapping of
IRS user objects. But in order to support IRS
queries we must provide index support within the
IRS preprocessor. We introduce the usual fRS term
index IDC to a document collection consisting of an
inversion on terms (figure 10).

IOC =z===> IRL

4-l A
T DNOSET T BYTESTRP

I
DNO

ure 10: Mapping of an IRS term index to a
DBMS object

Every Index list consists of a term and a set
(DNOSET) of all document numbers (DNO)
pointing to a document which contains that term.
Such an index list is mapped to a single tuple at
the DBMS layer. This contains two fields: the first
is the term, the second is BYTESTRP. a (long)
bytestring as representation of the set of document
numbers f DNOSET) .

The IDC structure is not vislbie at the IRS Interface
but is inside the IR preprocessu. and provides

Pmcsedinga of ths Tenth intomrtional
Confsroncr on Vary Largs Dats Basso.

support for IR queries. It is also maintained within
the IRS preprocessor in case of IRS updates,
deletes or insertlons.

We are now able to describe the transformation of
IRS operations to DBMS operations. Assume that a
document with a term set TS = (Tl, T2.. . . , Tk)
has to be inserted. Since we must maintain our
term index this single user action has to be
transformed in a sequence of DBMS actions as
follows:

DINSERTf rl-of-dc. row-of-dot) :
/*DNO now definded*/

ti 8jj terms Ti E (Tl.. . . .Tk) pn
DSEARCHflri-of-dc. indexrow. term=‘Tl’) ;
jf found
lhea
Prepare new value (newbytestr) for BYTESTRP

by inserting new DNO value;
DUPDATEf irl-of-dc. indexrow, newbytestr)

BjE8
Prepare new ‘indexrow’:
DINSERTf irl-of-dc. indexrow)

f!
Qid:

This shows that one IRS (write) action produces
f k+l) DBMS (write) actions. Simiiariiy we will
produce a sequence of DBMS actions for a single
IRS query:

SEARCHfdc.doc. (Tl’,TZ.. . . .Tq’))

is executed as

ti 8jj terms Ti’ c (Tl’. . . . , Tq’) 9~
/*assume that ail index pointer lists exist*/
DSEARCHf irl-of-dc. indexrow. term=Tl’) ;
Determine a set CSET of ON0 values

which contain match candidates
94:
& “first’ dnoj 4 CSET f&

DSEARCHfrl-of-dc. row-of-dot. DNO=dnoj) :
Check whether delivered document

fin row-of-do& is a match;
If not, try a ‘next” dnoj

nsl:

Again we see that a IRS query with q terms
produces in the average a sequence of fq+l)
DBMS searches to locate the first match.

These two examples of mappings between the
IRS-layer and the DBMS-layer are sufficient to
discuss now the question of transaction mapping.

4 2. Magplna of IRS Transactions to DBMS -*
mosaaxis

3.2. 1, One-to-one Maooing

The most slmple way to map an IRS transactlon
onto the next layer Is to generate exactly one DBMS
transaction for it. This solution would indeed fully

Singapon, August, 1984

exploit the transaction management of the DBMS
layer and no effort would be necessary with respect
to concurrency control and recovery within the IRS
preprocessor. The layer L4 would not be a
recovery layer. Conflict tests would be performed
on the basis of DBMS objects, not on the basis of
IRS objects. This is now the same situation we had
described in the previous chapters when we
Compared page level (LO) concurrency control and
recovery with tuple oriented methods (levels L2 or
Ll). The disadvantages pointed out there are
similar to the ones we have at this point:

First regarding concurrency control we see that
transactions which are not conflicting w. r. 1. IRS
objects may be conflicting w. r. 1. DBMS objects.
1 his means that “pseudo conflicts’ are generated
by this transformation, In order to give an example
for pseudo conflicts here we consider the two IRS
transactions IRTI and lRT2. We assume that lRT1
reads documents which are different from the ones
which IRT2 changes or inserts. We denote the set
of terms in the documents which lRT2 writes by
1 Sl , TS2 (for the old and new term sets in the
update) and TS3 (for the insert). Ql and Q2 are
the term sets which IRTl uses in its query. Then,
IRTl und IRT2 are not in conflict if

Oi E&tJ E TSj (i=1.2: j=l,2,3)

Due to the transformation to the DBMS layer,
however. they are already in (pseudo-) conflict if

(Ql U Q2) n (TSl U TS2 U TS3) # #I

i. 8. if there is a single common term. Simple
probability calculations show that pseudo-conflicts
occur with probabilities which are orders of
magnitudes higher than for a real conflict. if
locking is used in the DBMS also deadlocks may be
frequent.

The second disadvantage Is related to recovery. In
the one-to-one transaction mapping recovery is at
the layer L3 or below. Before-images or old values
mean always the whole (long) bytestring BYTESTRP
which represents the set of document numbers in
case of IR index tuples. On the other hand, If
recovery would be done at layer L4 we could
discard log entries for IR index maintenance
completely (as In RSS /As76/) .

As it can be seen now these arguments repeat
similar arguments we had at the deeper layers
already. instead of the one-to-one transactlon
mapping we propose therefore a nested transaction
approach.

4 2 2. Ooen Nested Transaction8 -* *

We map an IRS transaction to a sequence of DBMS
transactions by taking the sequence of DBMS
actions which belong to a single IRS actlon as pn~
unit. As we know already this approach needs

Proceedinga of the Tenth Intrmrtionai
Conference on Vety Large Data Bases.

concurrency control in layer L4 (i. e. in the
preprocessor) . A method which can be applied
here is the predicate oriented locking approach
using signatures /DPS63/. The details are not
relevant for our discussion here but the important
fact is that such an IRS concurrency control
produces a sequence of operations which is
equivalent to some serial execution of the
transactions. The next layer, now. is responsible
for the correct execution of these operations which
in turn at that layer are again Seauences of DBMS
operations. But the proper execution of these is
guaranteed by the DBMS transaction management
function.

We also know from the previous discussion that
recovery is desirable in the IRS-preprocessor. For
that we need the inverse Ai-’ of each IRS
operation Ai which changes IRS objects. E. g. the
inverse of a INSERT is a DELFTE. According to the
well-known rule that the undo information - in our
case Ai- ’ to a write operation Ai - must be saved
before the objects related to Ai are (over-) written
we must introduce an additional log data set to a
document data base. In order to be sure that log
records are safely written before we commit any
changes on our objects we can again utilize the
DBMS transaction management: A (IRS) log record
(I. 8. for the IRS transaction abort facility) is
appended to the sequence of DBMS operations of
any IRS write operation. According to the algorithm
of chapter 3. the transformation of an IRS
transaction onto the DBMS layer now looks like
(fig. 11):

BOT-L4 BOT-W.
DINSERTf Log-L4. ‘BOT-L4’) ,
EOT-W;

A; BOT-L3, DAil, DAi2. DAik.
DINSERTf Log-L4. Ai- 1 1 , EOT-W:

&T-L4 BbT-L3,
DINSERT(Log-L4. ‘EOT-L4’),
EOT-W;

f&ure 11: Mapping of one IRS transaction into a
sequence of DBMS transactions

Notice that In addition to log tuple writes for the
Inverse operations we must write a log tuple for the
begin and for the end of an IR write transaction.

Let us again look into the previous lRT2 example.
We assume that there is a system crash within the
DBMS transaction belonging to the IRS operation
INSERT. After restart the DBMS recovery
component would produce a consistent DBMS
state: the changes of the transactlon belonging to
the UPDATE would be - If necessary - redone and
eventual changes caused by the transactlon to the
INSERT would be undone by the DBMS recovery

Singapore, August, 1984

463

component. Next, the IRS recovery component
would find no “EOT-L4’ log tuple of IRT2 and
therefore. would undo the changes of the update
by reading the related log tuple and perform the
inverse operation which was stored in this log
tuple. After this the data are in a consistent IRS
state.

This example shows that the cost for increased
parallel!sm and simpler logging may be more effort
in case of recovery after a crash or for transaction
abort. This may also be the price for a clean
concept of transaction management through layers
in general.

5 Conclusion -.

In this paper we Investigated architectural issues of
transaction management in layered systems. In
particular, we generalized the System R two-level
kind of ‘open nested transactlons’.

Our primary objective w. r. 1. multi-user control was
to increase concurrency by avoiding
‘pseudo-conflicts’ that could occur, especially in
an application-specific preprocessor on top of a
data base kernel system, due to real conflicts in
lower levels. Though there Is much research on
algorithms with this purpose, there is still no
theoretical framework of concurrency control in the
case of layered architectures. The work of e.g.
/BQL81/ or /Ly83/ may be steps into this direction.

Nested transactlons were also considered useful to
structure recovery. Starting from hardware
characteristics every additional layer Li increases
the degree of resistancy with the aid of certain
atomic Lf I- 1) -operations. finally achieving the
classical transaction concept for the uppermost
level. This possible generalization of the System R
approach has up to now not been examined,
though it might turn out as a key concept for
Incorporation of transaction management Into the
architecture of data base systems. An attempt to
categorize recovery in layered systems. based on a
more refined version of the transaction model
described in chapter 3. 1, is part of /Wei84/.

Further research efforts are necessary to develop a
theoretical basis and to investigate practical
applications of transaction management in layered
systems.

Acknowledaement

We would like to thank Liz Klinger for the excellent
preparation of this paper.

Reference9

/As76/
M. M. Astrahan et al. , System R: Relational
Approach to Database Management. TODS Vol. 1
No.2. 1976
/0a83/
R. Bayer. Database System Design for High

Pro~sedings of the Tenth International
Conference on Very Lsr9e Data Saaas.

Performance, Proc. of the IFIP Conference, Paris
1983
/BaS84/
R. Bayer, P. Schilchtiger. Data Management
Support for Database Management, Acta
lnformatica Vol. 21 No. 1, 1984
/BGL81/
P. A. Bernstein, N. Goodman. M. -Y. Lai. Laying
Phantoms to Rest. Proc. IEEE COMPSAC
Conference 198 1
/BGL83/
P. A. Bernstein. N. Goodman, M. -Y. Lai. Analyzing
Concurrency Control Algorithms When User and
Systems Operatlons Differ. IEEE Transactions on
Software Engineering Vol. SE-9 No. 3. 1983
/ DPS83/
P. Dadam. P. Plstor, l-l. -J. Schek, A Predicate
Oriented Locking Approach for Integrated
Information Systems. Proceedings of the IFIP
Conference, Paris 1983
/EHPR81/
R. Erbe. F. Hockenrainer. R. Poloczek. 6. Ruhbach.
SQL-TR: A System R Extension for Text Retrieval,
Internal Report, IBM Heidelberg Scientific Centre.
1981
/El827
K. Elhardt. The Data Base Cache: Design
Principles. Algorithms, Characteristics (in
German). Doctoral Thesis, available as: Technical
Report TUM-18208, Technical University Munich.
1982
/Ga83/
H. Garcia-Molina. Ustng Semantic Knowledge for
Transaction Processing in a Distributed Database,
TODS Vol. 8 No.2. 1983
/Gr78/
.I. Gray, Notes on Data Base Operatlng Systems,
in: Operating Systems - An Advanced Course,
LNCS 60. Springer-Verlag 1978
/Gr81a/
J.Qray et al.. The Recovery Manager of the
System R Database Manager, ACM Computing
Surveys Vol. 13 No.2, 1981
/Or81 b/
J. aray. The Transaction Concept: Virtues and
Limitations. Proc. of the VLDB Conference. Cannes
1981
/HR82/
T. HBrder. A. Reuter, Prlnclples of Transaction
Oriented Database Recovery - A Taxonomy.
Technical Report 50182, University Kaiserslautern
1982
/HR83a/
T. Harder. A. Reuter. Concepts for Implementing
a Centralized Database Management System, Proc.
International Computing Symposium, Nurnberg 1983
/HR83b/
T. Harder, A. Reuter. Database Systems for
Non-Standard Applications. Proc. Internal
Computing Symposium. Nurnberg 1983
/IBM/
SQL/Data System. Concepts and Faclllties. IBM
Corporation. Form No. GH 24-5013. 1981
/KW83/
R. H. Katz, S. Weiss, Transaction Management for
Design Databases. Technical Report #496,

Singapom, Auguat, 1984

Computer Science Dept. , University of Wisconsin,
1983
/Kie83/
W. KieBling. Data Base Systems for Computers with
intelligent Subsystems: Architecture, Algorithms,
Optimization (in German), Doctoral 1 hesis.
available as: Technical Report TUM-18307,
Technical University Munich. 1983
/KL83/
W. Kim, R. Lorie. Nested Transactions for
Engineering Design Databases, Research Report RJ
3934. IBM San Jose, 1983
/Ko83/
H. F. Korth. Locking Primitives in a Database
System, Journal of the ACM Vol. 30 No. 1, 1983
/Li79/
6. G. Lindsay et al., Notes on Distributed
Databases, Research Report RJ 2571, IBM San
Jose, 1979
/Lo77/
R. Lorie, Physical integrity in a Large Segmented
Database, TODS Vol. 2 No. 1, 1977
/LSch83/
V. Lum, H. -J. Schek (Chairmen) , Complex Data
Objects: Text, Voice. images: Can DBMS Manage
lhem 7. Panel Discussion, Proc. of the VLDB
Conference, Florence 1983
/Ly83/
N. A. Lynch, Multilevel Atomicity - A New
Correctness Criterion for Database Concurrency
Control, TODS Vol. 8 No. 4. 1983
/Mo82/
J. Moss. Nested Transactions and Reliable
Distributed Computing, Proc. 2nd IEEE Symposium
on Reliability of Distributed Software and Database
Systems, 1982
/PSSW84/
H. -8. Paul, H.-J. Schek. M. Scholl, G.
Weikum, Considerations on the Architecture of a
“Non-Standard” Data Base Kernel System (in
German), Internal Manuscript, Technical University
Darmstadt. 1984
/PrS83/
U. Prldei. G. Schlageter. Concurrency Control in
Integrated information Systems: A Survey of
Problems. Technical Report. University of Hagen,
1983
/SchP82/
H. -J. Schek. P. Pfstor. Data Structures for an
Integrated Data Base Management and information
Retrieval System, Proc. of the VLDB Conference,
Mexico 1982
/SchS83/
H. -J. Schek. M. Scholl. The NFti-Relational
Algebra for Uniform Manipulation of External.
Conceptual and Internal Data Structures (in
German), in: J. W. Schmidt (ed.) , Sprachen fur
Datenbanken, IFB 72. Springer-Veriag 1983
/Sch84/
H.-J. Schek. Nested Transactions in a Combined
IRS-DBMS Architecture, to appear in: Proc. 3rd
BCS/ACM Symp. on Research and Development in
Information Retrieval, Cambridge 1984
/Sic/
UDS Version 3.2. Reference Manual Package.
Siemens AG, Munich 1982

Proceedings of the Tenth International
Conference on Very Large Data Bases.

/SRG83/
M. Stonebraker, B. Rubinstein, A. Guttman.
Application of Abstract Data Types and Abstract
indices to CAD Data Bases; Proc. “Engineering
Design Application”, Database Week, San Jose 1983
/Tr82/
I. L. Traiger. Virtual Memory Management for
Database Systems. ACM Operating Systems Review
Vol. 16 No.4. 1982
/Tr83/
I. L. Traiger, Trends in Systems Aspects of
Database Management, Proc. 2nd int. Conf. on
Databases (iCOD-2) , Cambridge 1983
/Ve79/
J.S. M. Verhofstad. Recovery Based on Types. in:
G. Bracchi/G. M. Nijssen teds. 1. Data Base
Architecture, North-Holland Pubi. 1979
/ Wei84/
G. Weikum. Transaction Recovery in Data Base
Systems with Layered Architecture: New
Approaches to a Categorization fin German) ,
internal Manuscript, Technical University
Darmstadt, 1984
Iwo837
E. Wang, Semantic Enhancement through Extended
Relational Views, Proc. 2nd int. Conf. on
Databases t ICOD-2) , Cambridge 1983

Singapore, August, 1984

465

