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Abstract 

The internal structure of current data b;lse systems 
is ideally characterized by a hierarchy of multiple 
layers. Each layer offers certain specific objects 
and operations on its interface. Within this 
framework we investigate the transaction 
management aspects I It is shown that the System 
R kind of concurrency control can be generalized 
and an appropriate recovery method can be found 
by introducing a type of open nested transactions 
which are strongly tied to architectural layers. 
Especially. our approach includes 
application-specific levels on top of a data base 
kernel system. Up to now, most of the 
preprocessor solutions for so-called “non-standard” 
applications that have been proposed simply ignore 
aspects of concurrency control and recovery. We 
sketch different possibilities to realize transaction 
management in such a layered environment. 

1, lntrodution and RB 

Two different directions of evolution in data base 
systems may be observed. On the one hand, the 
performance for commercial applications should be 
increased still further (/Ba83/) . On the other 
hand, data base systems of the next generation are 
expected to support so-called ‘non-standard” 
applications such as CAD or office automation 
( /HR83b/, /SchP82/) . 
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7 hese two objectives, although different, have 
something in common. To achieve them It does nor 
suffice to modify single system components locally, 
rather the overall architecture of data base systems 
is affected (/Kie83/. /LSch83/). An important part 
of the architectural considerations is concerned 
with transaction management ( /Ba83/, /PrS83/) . 

Ideally we can look at the structure of modern data 
base systems as a hierarchy of ‘virtual machines’. 
Each such ‘machine’ is characterized by the 
objects and operations which are available at its 
interface. These are In turn implemented with the 
help of objects and operations of the layer one 
lower. Such a multi-layered architecture is 
described In /HR83a/. A variant of it forms the 
background df a data base kernel system which we 
plan to implement (/PSSW84/). One special 
design feature is that we use a single data model. 
the so-called NF2-relational model, to describe 
conceptual as well as internal data structures in a 
uniform way (/SohS83/). In this model NF2-tuples 
are the basis of complex structured objects which 
appear on both the storage structure and access 
path level and, In the context of “non-standard’ 
applications. at the user interface. 

The layered architecture of the projected data base 
kernel system Is roughly described in the following 
figure 1. 
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Fiaure 1: Multi-Layered DBMS 
(BOT. EOT mean Begin of Transaction, End of 
Transaction resp. 1 

Apart from extensions inherent to the NF2-relational 
model, the interface L3 in principle corresponds to 
the Relational Data System (RDS) of System R 
(/As76/) : a single operation processes a set of 
(conceptual) tuples. L2 is comparable to the 
Research Storage System (RSS) . Selection 
formulas are restricted to search conditions which 
can be evaluated locally on single tuples 
(“searchable arguments” in System R terminology) 
and update operations refer to current scan 
positions. 
Whereas L2 operates on conceptual tuples as Well. 
in Ll indexes are considered as internal (NF2-) 
relations just as primary data are. Ll accordingly 
offers a special “address selection” on its 
interface. Such a layer has not been introduced in 
System R. Finally, underlying to Ll we have the 
segment and page structured storage module LO. 

We suppose that not all of the requirements 
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associated with ‘non-standard’ applications can be 
performed by a single homogeneous system. It 
seems more realistic to extend a common kernel 
system by different preprocessors according to the 
application. Therefore, on top of L3 we will have 
an additional layer L4 offering 
application-dependent operations on data strutures 
such as documents. images, geometric shapes or 
matrices. 

1 he question arises how to incorporate transaction 
management into such a multi-layered 
architecture. Conventionally, one would introduce a 
lock manager and a recovery manager into a 
particular layer. Very often the page layer LO has 
been selected in available DBMS (e. g. UDS /Sfe/ 
or SQLIDS /IBM/). The consequence for our 
architecture (fig. 1) would be that one user 
transaction (L4-level) is mapped into one 
L3-transaction which in turn corresponds to one 
L2-transaction and so on until we arrive at the one 
LO-transaction. This approach can also be found in 
System R: One RDS-transaction corresponds to 
one RSS-transaction, there is no different notion. 
A closer look into this subject recalls two important 
observations: 

1. Although it seems so. transaction 
management Is not a matter of a single layer. 
Even when located at LO we depend on the 
fact that the next deeper layer (in this case 
the operating system) provides us with atomic 
operations f e. g. write a page) . 

2. A more careful inspection of the System R 
transaction management shows that we could 
understand the shadow page concept and the 
RSS-operatlon logging as a two-level recovery 
scheme f /GrBla/, /Tr82/) . Similarly we find 
that RSS tuple locking is complemented by 
page locking. Therefore, also the System R 
concurrency control mechanism is a two-level 
approach (/As76/. /Tr83/). 

The idea of providing all levels of a multi-layered 
architecture with their own recovery mechanism has 
been proposed already in. /Ve79/. but has not 
been pursued further as far as known. Also 
concurrency control aspects have not been 
discussed there. With this in mind we can state our 

Problem: What are the fundamental possibilities for 
transaction management in a multi-layered data 
base system architecture? How can the System R 
approach be generalized to several or all layers of 
a system as sketched in flg. l? Is it advantageous 
to construct a transaction at level (i+l) with more 
than one transaction at level I? 

This paper tries to give first considerations on the 
above questions. in the next chapter we generalize 
the two-level approach for concurrency COntrOl to a 
multi-layered system. in chapter 3 we investigate 
related recovery aspects. Finally. In chapter 4 we 
show that these concepts can also be generalized 
to appllcatlon-specific layers such as text retrieval 
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on top of a data base kernel system. 

2. Incorooration of Concurrencv Control into 
Architectures 

2.1. Conventional Techniaues 

The most familiar and easy to understand 
concurrency control method is two-phase locking 
on page level (LO) with all locks held until End of 
Transaction (EOT) (cf. /HR83a/). Because of the 
rather coarse granularity the concurrency of 
transactions mlght be limited with this approach. 

A respresentative of more sophisticated locking 
techniques is System Ft. which needs not 
necessarily treat pages as objects for concurrency 
control. Tuple locks are a possible option of 
System R. Therefore, in the followtng scenario of 
RSS-actions ( see fig. 2) , I.e. LP-operations 
according to fig. 1, no conflict occurs if 11 and t2 
are two different tuples. 

Modify 11 
Transaction Tl j I 

i 

Modify t2 
Transaction T2 

t 
I 
I i 

_Flaure 2: Operatlons at the L2-level 
( RSS-operation level) 

As RSS-operations are nevertheless transformed 
Into page accesses at runtime. the system still has 
to guarantee some sort of page level concurrency 
control. To demonstrate this necessity . let us 
assume that 11 and 12 are modified such that they 
afterwards require more space within the respective 
page (e.g. by increasing a variable length field). 
In the following we sketch a possible LO-execution 
of the above schedule. It might leave an 
Inconsistent data base. If both tuples are stored in 
the same page p but the latter has free place only 
for one update. 

Step 1: Tl reads 11 and checks the free place of p 
Step 2: T2 reads 12 and checks the free place of p 
Step 3: Tl modifies 11 withln p 
Step 4: T2 modifies 12 within p 

System R avoids such situations and solves the 
problem by requesting page level locks for 
LO-operations and holding them until the end of the 
RSS-actlon (/As?8/). This means that the system 
has a strict two-phase locking protocol for both, 
for layer L2 within the scope of each transaction 
and for layer LO within the scope of each 
L2-operation f RSS-action) . Regardlng level LO. 
fig. 2 corresponds to the situatlon shown in fig. 3. 

R/W R/W . . . R/W 

Transaction T 1 
F-G-S- --L 

R/W R/W . . . R/W 

Transaction T2 
I- 

kiaure 3: Operations at the LO-level (page level) 
(R/W means Read/Write of pages pl. . . I 

Obviously, such a two-level locking mechanism 
excludes any concurrency anomalies (maybe, apart 
from phantoms). A formal proof of this statement 
is mlssing, however. Since page level locks are 
released at the end of each surrounding 
RSS-actlon, the method sketched above is called 
‘open nested transaction’ in /Tr83/ (compare also 
with /Or81 b/I. 

In spite of System KS rather fine locking granularity 
situations arise in which potential concurrency is 
prevented unnecessarily. This can be made clear 
looking at figure 3. With the mapping of tuple 
operations onto operations on data pages and 
possibly index pages. the concurrent execution of 
Tl and T2 has no delays only under the assumption 
that the referenced page sets are disjoint, i. 8. if 
{pl.. . ..pk) n [ql.... , qm) = 0. Otherwise one 
transaction must wait until a lock on a common 
page is released, which is at the end of the 
RSS-actlon that holds the lock. The first page 
which is accessed (exclusively) by both 
transactlons causes a delay. In the worst case a 
conflict between Tl and T2 occurs at the first data 
page pl (= ql). The compatibility of tuple locks 
would be meaningless in such a situation. because 
T2 would be blocked by Tl due to locking w. r. 1. 
LO-operations. The probability for this type of 
conflict might be quite high. especially in case of 
many indexes to be maintained according to 
updates of primary data. 

2. 2. A Multi-Level Aooroach 

There are two different ways to decrease the 
number resp. duration of delays occuring wlth the 
two-level approach sketched above. The flrst 
possibility is to apply special tec!nlques for the 
synchronlsation of operations on B -tree-like index 
structures. This direction generally means to utilize 
the knowledge that only a small number of 
well-known operations are allowed to operate on 
these special data structures. In the context of the 
previous discussion it means that we would have to 
distinguish between data pages and index pages. 

The second possibility, which is our proposal, Is 
an extension of the two-layer approach to more 
layers: the layer Ll could be made explicit and 
would get Its own concurrency control. We assume 
that an LP-operation on one LP-tuple affects 
several (internal) Ll-tuples. One Ll-tuple, in 
turn, may affect several LO-pages. In the context 
of the previous discussion data tuples and index 

Sfngapon, August, 1994 Proceodlngr cf the Tenth Intornatlonrl 
Conference on Very Large Dab 8aaes. 

456 



tuples would be regarded both as internal tuples to 
be managed by Ll-operations. Notice that we 
would not differentiate between internal data tuples 
and index tuples to avoid unnecessary duplication 
of functions (/PSSW84/) . In the following we 
discuss the various advantages of our multi-level 
approach. 

The layer Ll would have to grant locks on internal 
tuples for the duration of L2-operations. Page level 
locks then could already be released at the end of 
each Ll-operation. This situation is shown in fig. 4. 

Transaction T 

Modlfy 11 L2 

I 
0 

i 

I 
I 

1 
Modify Internal. . . Modify Internal 
Tuple rl Tuple rj Ll 

I l I 
I 4 

* e-l 
R/W. *. R/W R/W. *. R/W 

p1,1 pl, kl pj, 1 pi, ki LO 

I------l)-----a --.-c----f--l 

Fioure 4: Open nested transactions for three layers 
(L2: Locks until EOT: Ll: Locks for the 
duration of an L2-operation: LO: Locks for 
the duration of an Ll-operation) 

As we explained above. the worst case of the 
schedule described in figures 2 resp. 3 arises from 
an LO-conflict between Tl and T2. In this situation 
one of the two transactions would have to wait until 
the other’s f con-) current Ll -operation is finished, 
whereas without the additional locking at the 
Ll-level the delay lasts for the duration of the 
surrounding L2-operation. Compared with System R 
the waiting period approximately decreases with the 
number of internal tuples to be modified per 
(conceptual) LP-tuple. The proposed extension of 
the RSS locking mechanism might pay off 
particularly for environments in which many indexes 
have to be maintained. As a critical point however 
we must consider the additional implementation 
overhead involved with a more sophisticated 
concurrency control method. 

We could apparently generalize the concept of 
“open nested transactions’ to any n-layered 
architecture. Each level L(i-1) regards the 
sequence of L( i-l) -operations corresponding to an 
Li-operation as a subtransaction of the comprising 
sequence of Li-operations. This subtransaction has 
to be serialized with other concurrent 
L( i-1) -subtransactions, that belong to different 
root transactions. The term “conflict of two 
operations” could be defined in a specific way for 
each layer so that we are not confined to 
two-phase locking nor to locking methods in 
general. 

Another advantage of these ‘open nested 
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transactions’ Is that so-called “semantic” 
concurrency control methods (e.g. 
/Ef3L83/. /Ga83/. /Ko83/, /Ly83/) might be 
applied. The notlon of serializability Is more than a 
pure syntactic criterion with such approaches. By 
considering (part of) the semantics of operations 
they lead beyond the simple concept of schedules 
as a sequence of ‘read’s” and “write’s”. For 
example. one could have a special lock mode for 
each operation, whose compatibility is deduced 
from semantic properties (/Ko83/) . As operations 
are layer-specific. the close relationship to the 
ideas presented in this chapter becomes clear. 

Finally we can apply this nested transaction 
concept also in an environment consisting of a data 
base kernel system and application-specific layers 
(cf. chapter 1). The mapping of application 
operations to the kernel interface, which is done by 
a ‘preprocessor’, might again utilize the 
transaction management of the LS-layer to form 
subtransactions within a (longer) L4-transaction. 
We will return to .this point in chapter 4. 

3.y tion Recover 

This section is devoted to the second branch of 
transaction management. that is recovery. Since it 
can not be regarded isolated from concurrency 
control, we must include aspects of the latter too. 

&A Transaction Model for Multi-CayaLa 
Architectures 

A simple model of the execution of a transaction T 
in the multi-layered data base kernel system 
according to figure 1 looks like the following. (We 
restrict the discussion to the lower levels for the 
moment and will come back to the upper levels in 
chapter 4. ) 

UO - al + 02 - a3 - 04 - 05 - a6 - a? - 08 

Fiaure 5: An example transaction in its resolution 
through the layers (a0 . . . are states of the 
volatile data base) 

Each of the layers L2. Ll and LO is represented by 
state-transforming functions fj. gj and hj 
respectively. For ease of explanation we assume a 
single-user mode for the moment. As usually we 
distinguish between a volatile data base and a 
permanent one. which both are modelled as 
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clomcnts ov resp. ap of a set C of states. State 
tranSitiOnS primarily refer to the volatile data base. 
The only assumption about the propagation of 
updates to the permanent data base is that at the 
begin and at the end of each transaction WQ 
postulate uv = op to hold, which means that 
updates have to be propagated not later than EOT. 
SC we can discard REDO measures from our 
discussion of soft crash recovery. 

Let us assume that a system crash occurs in state 
07 of the scenario of figure 5. At this time neither 

OP = ~70 nor up = U7 holds for the permanent data 
base u 

r 
in general. The objective of recovery is to 

reestab Ish state 00 through appropriate UNDO 
ijclivilies. We call a state u s C “Li-consistent” if it 
is the outcome of a sequence of complete 
Li-operations starting from a state, 8. g. 00. 
which, in turn. results from a sequence of 
complete previous transactions. Looking upon 
transactions as operations of an uppermost layer Ln 
(n = 3 in fig. 5 scenario) we could state as a rule: 
After a soft crash the data base system has to 
reestablish the last Ln-consistent state that has 
been reached (w. r. 1. the volatile data base) 
before. 

From the point of view of multi-layered 
architectures we might imagine that control is 
passed to a ‘recovery function’ Ri: C -a C for all 
layers in a. bottom-up order (i = 0.1,. . . , n-l) 
(cf. /Ve79/) . Each Ri is implemented solely with 
operations of the corresponding layer Lt. The 
recovery mechanism works correct if with RO 
starting from the surviving ‘after-crash-state’ up of 
the permanent database the equation 

Rn,l(. . . RO(up). . .) = a0 
holds. 

In this section we consider recovery variants that 
could be understood in terms of cur model. The 
architecturally most simple form of recovery is 
based on page logging. in such approaches RO is 
responsible to restore the desired state 00. 
whereas ail the higher level recovery functions RI 
(i>O) are identity mappings on C. The relevant part 
of figure 5 looks as follows: ’ 

a0 - 01 - 02 4 a3 - 04 4 a5 - a6 -. 07 - 06 

Fiaure 6: Degeneration to page logging 

The execution of page level operations 
recorded, usually in form of their inverses hj Y ;; 

so-called ‘before images’, on a log file. Recovery 
then produces the state ROt upI = 

Pehtgs ol the Tenth intematlonal 
Confsrsnoa an Vary Lsrge Data S&a. 

hl-‘f.. , h7-‘fop)...) = a0 after a crash in ~7. 
A special property similar to ‘idempctency’ 
(/Gr76/) or “restar Lability’ (/Gr61 b/I is required 
for LO-Inverses: For every LO-operation hj and 
every state u that does not ‘contain’ 
condition hj-’ (0) 

hj the 
= a must hold. The property is 

guaranteed for UNDO based on “befdte images’ as 
well as for entry logging combined with so-called 
‘log sequence numbers’ (/Li79/). 

Pure page logging Is unsatisfactory for two 
reasons. First. rapid growth of the log file may 
cause serious problems especially with applications 
like CAD or office systems where objects are rather 
large and transactions are long. A primitive 
operation on a CAD object could trigger a multitude 
of pages to be modified (cf. /PrS63/. /KW63/). 
The second disadvantage of page level recovery is 
that it implies page level fccking too. Otherwise 
updates of a successfully completed transaction 
could be lost due to another transaction aborting 
concurrently. The system would no longer 
guarantee isolated rollback. This well-known thesis 
about interrelations between recovery and 
concurrency control ( /HR62/, /Trf32/) gives 
additional motivation to investigate transaction 
management in multi-layered architectures more 
thoroughly. 

Both drawbacks we mentioned above are avoided in 
the System R recovery manager (/GrBla/. /Tr82/) 
more or less. As the following figure shows, 
undoing transactions after a soft crash Involves 
levels L2 and LO. 

P, 

F&ure 7: The System R recovery as a two-level 
approach (L2: RSS-operations: LO: page 
level operations) 

The well-known shadow storage mechanism 
( /Lc77/) provides for atomicity of LP-operations 
because checkpoints (I. 8. points in time to 
propagate updates) are always on RSS-action 
boundaries. Moreover, System R not just has the 
‘ail-or-nothing’ paradigm for every single operation 
fj. but guarantees for any two LP-operations 11 and 
12 that if the later one. 12, has been propagated to 
the permanent data base, then the updates of 11 
must survive a system crash too. In /Wei84/ a 
more precise definition of thls property is contained 
that can be applied to ail levels of a layered 
architecture. 

The recovery function RO of the shadow storage 
thus ensures that after a crash In state a7 during 

Singapore, Auguat, 1994 

458 



the execution of transaction T (see figure 7) the 
L2-recovery R2 starts with one of the possible 
states 00. 03, or 06. which all are L2-consistent. 
Since all RSS-calls fj are recorded on the log file. 
the A2 restart simply has to arrange the execution 
of all inverse operations fj” “contained” in the 
state AOt upI in reverse order. If. for example the 
most recent RSS-checkpoint was generated in state 
~3 and the contents of the log file is <fl . f2>. the 
system must perform fl-‘(u3) in order to 
reestablish ~0. To prevent that f2-’ is applied to 
a3 either, the log file is organized with some sort 
of “log sequence numbers” (cf. /GrBla/). 

lnvertibility of ASS-operations Is the only 
prerequisite for this method to work. Notice that 
this requirement is nontrivial having the “DROP 
TABLE” statement In mind. It enforces the end of a 
System R transaction because the corresponding 
inverse operation cannot simply be constructed 
from a short log entry containing this RSS-call 
C/Tr82/). 

ooosal for a Multi-Level Method 3.2.2. Pr 

We have summarized the System A recovery 
mechanism because we will now be able to explain 
our generalization to n layers. The two-level 
System A recovery technique obviously is 
coordinated with the two-level concurrency control 
sketched in chapter 2. As we proposed that layers 
L2. Ll, and LO should contribute to concurrency 
control. it suggests itself to let participate also the 
Ll-layer, but more generally all layers, in recovery 
too. The result of this idea is a system of nested 
transactions with levels naturally tied to 
architectural layers. Such a systematic approach 
can be extended to hierarchies of independent 
subsystems. for example for transaction 
management in application-specific preprocessors 
on a data base kernel system (see chapter 4) . 

On the lower end it is expected that future 
operating systems will offer some klnd of 
transaction concept (/Tr83/, /BaS84/). which then 
could be utilized by data base systems to simplify 
their own transaction management. The interface 
LO at the bottom of our data base kernel system of 
figure 1 offers atomic operations. but no real 
transactions. The difference is that the effect of 
successfully executed page operations might be lost 
afterwards if a system crash occurs and the data 
base buffer gets lost. To obtain transaction 
characteristics LO-operations additionally need 
durability. often called ‘persistency”, and “logical 
indivisibility” w. r. t. concurrent actions. Whereas 
the latter is no problem. we must realize that 
persistency can only be achieved at the expense of 
a poor performance. either by forcing modified 
pages to disk immediately or by writing a REDO log 
record for each page update. A better solution is 
to have persistency for the comprising Ll-operation 
merely, instead of LO. Ll could thus play the role 
of an “intelligent”, (NF2-) tuple oriented stable 
memory formlng the basis of all higher layers. This 
stable memory could be implemented with 
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satisfactory performance utilizing the ‘cache/safe” 
ideas of /Ba83/ and /El82/. In what follows we 
nevertheless assume a persistent LO- interface to 
simplify the discussion. 

So we return to our main line that each layer 
L(n-l)..... LO helps to restore a transaction’s 
initial state after a crash. If LO guarantees 
persistency then the log file in the various 
intermediate states of figure 5 could look as follows: 

State Log File 

00 < > i. 8. empty 
Ul <hl> 
a2 <hl, h2> or <gl, 
a3 <gl,h3> 
04 <gl,h3,h4> or tgl.92, or <fl> 
05 <fl. h5> 
06 <fl, h5. h6> or <fl, g3> 
07 <fl, 93, h7> 

Figure 8: Log file entries in the example scenario 

Due to LO-persistency the permanent data base is 
in state 07 after a crash in 07. Rollback of the 
considered transaction is done by applying the log’s 
inverses, i. e. through <fl, 93, h7>-’ = 
<h7-‘,g3-‘,11-l>, Execution of an inverse 
Li-operation belongs to the corresponding recovery 
function Ri. As the functions R( i-l), . . . , RO are 
transparent to the layer Li, we virtually achieve 
persistency for all layers including the transaction 
level Ln. The result of each Ri is the most recent 
L(l+l) -consistent state that was reached before the 
crash. For simplification figure 8 shows a global 
log file for all layers, but actually each level should 
record its operations autonomously instead. 

7he basic principle of each layer Li is to record all 
Li-operations of a surrounding Lr i+l) -operation f 
until the latter is finished and L( i+l) has written a 
log entry for 1. Then the Li-log is needed no 
longer and could be deleted. Since a crash might 
occur exactly at a time where both exist on the 
respective logs, f and its corresponding sequence 
of Li-operations, operations of all layers must be 
“careful”. which means that, for example 
<gl,hl,h2>-‘(o2) = gl-‘(<hl,h2>-‘tu2)) = 

9’ -’ (~0) = 00 holds. 

As we already stated for the multi-layered 
concurrency control of chapter 2, an increased 
overhead must be expected with this kind of 
‘hierarchical layer orlented logging”. Therefore it is 
obvious to weaken the assumptions of our approach 
and let only selected layers contribute to recovery. 
lhis does not change the basic principle. as some 
levels .are simply skipped when they do not 
contribute to recovery. Let Li and Lj (i>j) be two 
layers writing log records such that no intermediate 
layer Lm (i>rn>j) participates in recovery. Lj has to 
record all level j operations belonging to the 
comprising Li-operation f currently executed. With 
the successful completion of f the Lj-log entries 
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are deleted and their purpose is taken over by the 
entry ‘1’ in the Li-log. 

This approach is similar to the kind of nested 
transactions described in /Mo82/. The difference 
to /Mo82/ however is that in our concept nesting is 
strictly tied to architectural layers and not visible to 
the application programmer on the uppermost 
interface. Further. w. r. 1. concurrency control we 
use the ‘open’ type of nested transactions. 

We finally describe the ‘selected layers logging’ in 
an algorithmic form. Each layer Li has to 
understand an additional BOT- resp. EOT-call to 
indicate the begin resp. the end of the surrounding 
L(i+l) -operation. Thus, for each Li ti>O) and any 
Li-operation f we have the following generic actions: 

action BOT: 
jf Li is one of the selected recovery layers 

@8q prepare Li-log 
(activation of a Li-subtransaction) 

sh g.gfJ LIB1 (“BOT’) 
fj: 

action 1: 
jf Li is one of the selected recovery layers 

&tttd an Li-subtransaction is activated 
lhs m L,ml ( ‘BOT’) 

I!: 
1Qj <g1*... ,gk> be the Li,l-operatlon 

sequence implementing 1; 
fgl j := 1 fn k Pn &j Li-l (‘gj”’ ~4: 
jf Li is one of the selected recovery layers 

&np an Li-subtransaction is activated 
m write ‘1’ to the L,-log; 

m L,-, ( ‘EOT’) 
jj: 

action EOT: 
jf Li is one of the selected recovery layers 

&gq release Li-log 
sb m L,el ( ‘EOT’) 

!j; 

action R,: 
Qa!! q-1: 
jf L, is one of the selected recovery layers 

w u <fl, . . . , f,, be the 
contents of the Li-log : 

fnrl := r& 14~ 
mh L,-, (“f -17 : 
erase “fj . fkom the Li-log 

nd 
a: 

For LO the actions f are simply elementary 
operations, so that we have the 
implementation: 

action BOT: 
prepare Lo-log 

(activation of a Lo-subtransaction) : 
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gLction 1: 
write “1’ to the Lo-log: 
execute I: 

action EOT: 
release Lo-log: 

lqj <fl. . . . , f,> be the 
contents of the Lo-log: 

!k?Ii :=r&l& 
execute f.-’ : 
erase ‘fj J from the b-log 

94: 

it is remarkable that the recovery functions Ri call 
operations of the layer one below just as in normal 
processing mode of the data base system. In 
contrast to the regular mode no log records are 
written however to prevent undoing 
UNDO-operations in case of a second crash during 
restart. Ri depends also on the prerequisite of 
LO-persistency. since log records are deleted as 
soon as the corresponding inverse operation has 
been executed successfully. 

The algorithm sketched above can be used for both 
undoing a single transaction due to deadlock or 
user abort as well as for crash recovery. Since 
each UNDO step of an Li transaction must reaquire 
certain system resources such as Lri-1) locks. 
special measures. i. 8. like System KS ‘Golden’ 
latch (/GrBla/), should be taken to guarantee that 
every aborting transaction is eventually terminated. 
in the worst case an UNDO might result in a 
system crash when resources are exhausted and 
cannot be made available at runtime. However, 
this seems not to be uncommon practice. 

_S. Transaction Manaaement in an IRS- 
Preorocessor to a (Kernel) 06MS 

The objective of this chapter is twofold. First, it 
can be regarded as a concrete example and further 
justification for the open nested transaction 
approach described so far. Second. it analyses the 
aspects of transaction management of so-called 
preprocessor solutions to DBMS which are thought 
to support non-standard applications (/KL83/, 
/SRG83/, /Wo83/. /Sch84/) . A general expectation 
seems to be that a preprocessor to an available 
DBMS does not need any concurrency control or 
recovery function since the underlying DBMS would 
be responsible for that. 

In the following we will study this expectation more 
carefully. We will take the example of an 
information Retrieval System (IRS) at layer L4 (fig. 
1) as a preprocessor to a (kernel) DBMS (layer L3 
in figure 1). We might also think of a DBMS like 
SQL/DS as a target which we map the IRS onto. 
(Actually an IRS preprocessor has been 
implemented on the System R prototype at the IBM 
Heidelberg Scientific Centre /EHPRBl/ and 
experience was gained from that exercise. ) For the 
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followlng discussion we use IRS interface and 
L4-layer synonymously as well as DBMS interface 
and LS-layer. 

3. 1. Descrlotion of the IRS to DBMS Mactoinq 

For the follwing discussion it is sufficient to regard 
only simplified objects and operations at the two 
layers of the IRS-DBMS-combination. 

4. 1. 1. Obigsand Ooerations at thklRS lntgrface 

At the IRS interface we have the following main 
objects 

document collection (DC) 
document (D) 
term( r) 
IR transaction f IRT) 

(IRO) 

A document collection is a set of documents. Each 
document consists of two fields. The first field is a 
document number (DNO) , the second field is a set 
(TS) of terms. The DNO should identify a 
document. The operations which are important for 
the following are 

INSERT (dc, dot) 
DELETE (dc. dot) (IROP) 
UPDATE fdc, dot, btd. bti) 
SEARCH (dc, dot, query, query-name. estimate) 
NEXT (dot. query-name) 

The parameter dc is name of a document collection 
and dot is a document of the type as described 
above. In case of an INSERT the DNO field will be 
defined after a successful insertion. In case of an 
UPDATE the DNO field contains the document 
number (previously found by a SEARCH or NEXT) 
to be changed. The update is defined by two sets 
of terms 8td and bti. The first contains the set of 
terms to be deleted, the second the ones to be 
inserted. In the DELETE case the DNO field of dot 
contains the document number to be deleted (also 
found by a previous search). In the SEARCH 
command the ‘query” parameter denotes a set Cl of 
terms. A document is a match to Q if Q _c TS i. 8. 
if all terms of Q, appear in the set of terms TS of a 
document. The parameter “estimate” is a system 
estimated number of document matches to the 
given query and dot contains a first match. 

One or more NEXT calls can be issued after a 
previous search to the same query (identified by 
“query-name’) and the same documents type. It 
results in further matching documents. one for 
each NEXT (“Scan” through the matching 
documents). 

An IRS transaction (IRT) is defined as a sequence 
of operations which is entered by an IRS user 

IRT := BOT-L4; Al;A2:. . . ;An; EOT-L4 

Each operation Ai is one of those defined by 
(IROP) on objects defined through (IRO) . Two 
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options exists for EOT. One is “ABORT”, the other 
is “COMMIT”. The abort option is used when the 
changes made since the last BOT-L4 shall be 
undone. The commit option makes all changes 
since BOT-L4 visible to other users and persistent. 
This is the usual notion of a transaction. 

We shall consider two examples of transactions 
later on: 

IRTl := BOT-L4 : 

iRT2 : = 

SEARCH(Ql):NEXTf...);...; 
SEARCH(Q2) ; NEXT(. . .I. . . : 
EOT-L4cCOMMIT) : 
BOT-L4: 
SEARCHf . . .I : UPDATEf . . .I ; 
INSERT( . . . 1: 
EOT-L4fCOMMIT) 

Obviously the first transaction is a typical IR search 
transaction. It has a first SEARCH with some query 
Ql. gets more matches with NEXTs and decides to 
modify the query. issue a next SEARCH with Q2 
and a sequence of NEXTs for the new matches. 
The second is fin present systems) not a typical IR 
transaction. After some search the found document 
is updated, a new document is inserted and the 
transaction commits. 

Note that the notion of a transaction seems to be 
important for new IR applications like the 
administration of office information: It may be 
necessary in our example for transaction IRT2 not 
to make visihlo a first update to a document unless 
a second document is successfully inserted. If the 
insert fails for some reason, also the first update 
must be undone. 

4.-l. 2. Obj.@cts and Qperations at the DBMS 
klLQ&Q 

We regard only those objects and operations which 
will be necessary for the mapping of the previously 
described IRS objects and operations. We assume 
an interface with objects 

lable or Relation (RL) 
Tuple or Row (RI 
Attribute (A) 
DBMS transaction (DBT) 

(DBO) 

As basic DBMS operations we introduce 

DINSERTC rl, tup) 
DUPDATE( rl, tup, new attribute values) 
DDELETE( rl, tup) 

(DBOP) 

DSEARCHC rl. tup. query, query-id) 
DNEXTf tup, query-id) 

The meaning of operations and parameters is 
evident. 

A DB transaction is again a sequence of actions 
DAi as they are defined in (DBOP) on the objects 
defined by (DBO) . 
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DBT : = BOT-W: DA1 : DA2: . . . ; DAk: EOT-L3 

As usually this defines a unit of concurrency and 
recovery, now with respect to objects and 
operations at the DBMS interface. 

9. 1. 3. Maooina of IRS Obiects and Ooerations tg 
DBMS-s 

In this section we describe the mapping of IRS 
operations on IRS objects to corresponding DBMS 
operations and objects. For that we let the IRS 
preprocessor impose the document interpretation 
on stored byte strings managed by the DBMS. For 
the DBMS we have variable length tupies (one 
document corresponds to one tupie) where the set 
of terms TS is represented as one (long) byte field 
BYTESTRl. The IRS preprocessor then knows how 
to interprete the We strlng as a 
set-of-terms-structure. This procedure has been 
proposed recently as the approach of ‘abstract data 
types and abstract indices’ /SRG83/ or as attribute 
level operations /Wo83/. 

DC ==I==, RL 

1 
I I 

1 I 1 
DNO T’S DNO BYTiSTRl 

I 
1 

_Flaure 9; Mapping of an IRS object (layer L4) to 
a DBMS object fL3) 

So far. we have considered only the mapping of 
IRS user objects. But in order to support IRS 
queries we must provide index support within the 
IRS preprocessor. We introduce the usual fRS term 
index IDC to a document collection consisting of an 
inversion on terms (figure 10). 

IOC =z===> IRL 

4-l A 
T DNOSET T BYTESTRP 

I 
DNO 

ure 10: Mapping of an IRS term index to a 
DBMS object 

Every Index list consists of a term and a set 
(DNOSET) of all document numbers (DNO) 
pointing to a document which contains that term. 
Such an index list is mapped to a single tuple at 
the DBMS layer. This contains two fields: the first 
is the term, the second is BYTESTRP. a (long) 
bytestring as representation of the set of document 
numbers f DNOSET) . 

The IDC structure is not vislbie at the IRS Interface 
but is inside the IR preprocessu. and provides 
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support for IR queries. It is also maintained within 
the IRS preprocessor in case of IRS updates, 
deletes or insertlons. 

We are now able to describe the transformation of 
IRS operations to DBMS operations. Assume that a 
document with a term set TS = (Tl, T2.. . . , Tk) 
has to be inserted. Since we must maintain our 
term index this single user action has to be 
transformed in a sequence of DBMS actions as 
follows: 

DINSERTf rl-of-dc. row-of-dot) : 
/*DNO now definded*/ 

ti 8jj terms Ti E (Tl.. . . .Tk) pn 
DSEARCHflri-of-dc. indexrow. term=‘Tl’) ; 
jf found 
lhea 
Prepare new value (newbytestr) for BYTESTRP 

by inserting new DNO value; 
DUPDATEf irl-of-dc. indexrow, newbytestr) 

BjE8 
Prepare new ‘indexrow’: 
DINSERTf irl-of-dc. indexrow) 

f! 
Qid: 

This shows that one IRS (write) action produces 
f k+l) DBMS (write) actions. Simiiariiy we will 
produce a sequence of DBMS actions for a single 
IRS query: 

SEARCHfdc.doc. (Tl’,TZ.. . . .Tq’)) 

is executed as 

ti 8jj terms Ti’ c (Tl’. . . . , Tq’) 9~ 
/*assume that ail index pointer lists exist*/ 
DSEARCHf irl-of-dc. indexrow. term=Tl’) ; 
Determine a set CSET of ON0 values 

which contain match candidates 
94: 
& “first’ dnoj 4 CSET f& 

DSEARCHfrl-of-dc. row-of-dot. DNO=dnoj) : 
Check whether delivered document 

fin row-of-do& is a match; 
If not, try a ‘next” dnoj 

nsl: 

Again we see that a IRS query with q terms 
produces in the average a sequence of fq+l) 
DBMS searches to locate the first match. 

These two examples of mappings between the 
IRS-layer and the DBMS-layer are sufficient to 
discuss now the question of transaction mapping. 

4 2. Magplna of IRS Transactions to DBMS -* 
mosaaxis 

3.2. 1, One-to-one Maooing 

The most slmple way to map an IRS transactlon 
onto the next layer Is to generate exactly one DBMS 
transaction for it. This solution would indeed fully 
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exploit the transaction management of the DBMS 
layer and no effort would be necessary with respect 
to concurrency control and recovery within the IRS 
preprocessor. The layer L4 would not be a 
recovery layer. Conflict tests would be performed 
on the basis of DBMS objects, not on the basis of 
IRS objects. This is now the same situation we had 
described in the previous chapters when we 
Compared page level (LO) concurrency control and 
recovery with tuple oriented methods (levels L2 or 
Ll). The disadvantages pointed out there are 
similar to the ones we have at this point: 

First regarding concurrency control we see that 
transactions which are not conflicting w. r. 1. IRS 
objects may be conflicting w. r. 1. DBMS objects. 
1 his means that “pseudo conflicts’ are generated 
by this transformation, In order to give an example 
for pseudo conflicts here we consider the two IRS 
transactions IRTI and lRT2. We assume that lRT1 
reads documents which are different from the ones 
which IRT2 changes or inserts. We denote the set 
of terms in the documents which lRT2 writes by 
1 Sl , TS2 (for the old and new term sets in the 
update) and TS3 (for the insert). Ql and Q2 are 
the term sets which IRTl uses in its query. Then, 
IRTl und IRT2 are not in conflict if 

Oi E&tJ E TSj (i=1.2: j=l,2,3) 

Due to the transformation to the DBMS layer, 
however. they are already in (pseudo-) conflict if 

(Ql U Q2) n (TSl U TS2 U TS3) # #I 

i. 8. if there is a single common term. Simple 
probability calculations show that pseudo-conflicts 
occur with probabilities which are orders of 
magnitudes higher than for a real conflict. if 
locking is used in the DBMS also deadlocks may be 
frequent. 

The second disadvantage Is related to recovery. In 
the one-to-one transaction mapping recovery is at 
the layer L3 or below. Before-images or old values 
mean always the whole (long) bytestring BYTESTRP 
which represents the set of document numbers in 
case of IR index tuples. On the other hand, If 
recovery would be done at layer L4 we could 
discard log entries for IR index maintenance 
completely (as In RSS /As76/) . 

As it can be seen now these arguments repeat 
similar arguments we had at the deeper layers 
already. instead of the one-to-one transactlon 
mapping we propose therefore a nested transaction 
approach. 

4 2 2. Ooen Nested Transaction8 -* * 

We map an IRS transaction to a sequence of DBMS 
transactions by taking the sequence of DBMS 
actions which belong to a single IRS actlon as pn~ 
unit. As we know already this approach needs 
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concurrency control in layer L4 (i. e. in the 
preprocessor) . A method which can be applied 
here is the predicate oriented locking approach 
using signatures /DPS63/. The details are not 
relevant for our discussion here but the important 
fact is that such an IRS concurrency control 
produces a sequence of operations which is 
equivalent to some serial execution of the 
transactions. The next layer, now. is responsible 
for the correct execution of these operations which 
in turn at that layer are again Seauences of DBMS 
operations. But the proper execution of these is 
guaranteed by the DBMS transaction management 
function. 

We also know from the previous discussion that 
recovery is desirable in the IRS-preprocessor. For 
that we need the inverse Ai-’ of each IRS 
operation Ai which changes IRS objects. E. g. the 
inverse of a INSERT is a DELFTE. According to the 
well-known rule that the undo information - in our 
case Ai- ’ to a write operation Ai - must be saved 
before the objects related to Ai are (over-) written 
we must introduce an additional log data set to a 
document data base. In order to be sure that log 
records are safely written before we commit any 
changes on our objects we can again utilize the 
DBMS transaction management: A (IRS) log record 
(I. 8. for the IRS transaction abort facility) is 
appended to the sequence of DBMS operations of 
any IRS write operation. According to the algorithm 
of chapter 3. the transformation of an IRS 
transaction onto the DBMS layer now looks like 
(fig. 11): 

BOT-L4 BOT-W. 
DINSERTf Log-L4. ‘BOT-L4’) , 
EOT-W; 

A; BOT-L3, DAil, DAi2. DAik. 
DINSERTf Log-L4. Ai- 1 1 , EOT-W: 

&T-L4 BbT-L3, 
DINSERT( Log-L4. ‘EOT-L4’), 
EOT-W; 

f&ure 11: Mapping of one IRS transaction into a 
sequence of DBMS transactions 

Notice that In addition to log tuple writes for the 
Inverse operations we must write a log tuple for the 
begin and for the end of an IR write transaction. 

Let us again look into the previous lRT2 example. 
We assume that there is a system crash within the 
DBMS transaction belonging to the IRS operation 
INSERT. After restart the DBMS recovery 
component would produce a consistent DBMS 
state: the changes of the transactlon belonging to 
the UPDATE would be - If necessary - redone and 
eventual changes caused by the transactlon to the 
INSERT would be undone by the DBMS recovery 
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component. Next, the IRS recovery component 
would find no “EOT-L4’ log tuple of IRT2 and 
therefore. would undo the changes of the update 
by reading the related log tuple and perform the 
inverse operation which was stored in this log 
tuple. After this the data are in a consistent IRS 
state. 

This example shows that the cost for increased 
parallel!sm and simpler logging may be more effort 
in case of recovery after a crash or for transaction 
abort. This may also be the price for a clean 
concept of transaction management through layers 
in general. 

5 Conclusion -. 

In this paper we Investigated architectural issues of 
transaction management in layered systems. In 
particular, we generalized the System R two-level 
kind of ‘open nested transactlons’. 

Our primary objective w. r. 1. multi-user control was 
to increase concurrency by avoiding 
‘pseudo-conflicts’ that could occur, especially in 
an application-specific preprocessor on top of a 
data base kernel system, due to real conflicts in 
lower levels. Though there Is much research on 
algorithms with this purpose, there is still no 
theoretical framework of concurrency control in the 
case of layered architectures. The work of e.g. 
/BQL81/ or /Ly83/ may be steps into this direction. 

Nested transactlons were also considered useful to 
structure recovery. Starting from hardware 
characteristics every additional layer Li increases 
the degree of resistancy with the aid of certain 
atomic Lf I- 1) -operations. finally achieving the 
classical transaction concept for the uppermost 
level. This possible generalization of the System R 
approach has up to now not been examined, 
though it might turn out as a key concept for 
Incorporation of transaction management Into the 
architecture of data base systems. An attempt to 
categorize recovery in layered systems. based on a 
more refined version of the transaction model 
described in chapter 3. 1, is part of /Wei84/. 

Further research efforts are necessary to develop a 
theoretical basis and to investigate practical 
applications of transaction management in layered 
systems. 
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