ARCHITECTURAL ISSUES OF TRANSACTION MANAGEMENT

& N4
N

Gerhard Weikum ,

ALTTITY T AVDDEN OVOTELAIO
WMULILI"LAILRECL OIQ0LLLNMD

Hans~Jorg Schek

Computer Science Department
Technical University Darmstadt

D-6100 Darmstadt,

Abstract

The internal structure of current data buse systems
is ideally characterized by a hierarchy of multiple

layers. Each layer offers certain specific objects
and operations on its interface. Within this
framework we investigate the transaction

management aspects. it is shown that the System
R kind of concurrency control can be generalized
and an appropriate recovery method can be found
by introducing a type of open nested transactions
which are strongly tied to architectural layers.
Especially. our approach includes
application-specific levels on top of a data base
kernel system. Up to now, most of the
preprocessor solutions for so-called "non-standard”
applications that have been proposed simply ignore
aspects of concurrency control and recovery. We
sketch different possibilities to realize transaction
management in such a layered environment.

1. intr i n

Two different directions of evolution in data base
systems may be observed. On the one hand. the
performance for commercial applications should be
increased still further (/BaB83/). On the other
hand. data base systems of the next generation are

expected to support so-called “non-standard”
applications such as CAD or office automation
(/HRB83b/. /SchP82/).
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These two objeciives, aithough different. have
something in common. To achieve them it does not
suffice to modify single system components locally,
rather the overall architecture of data base systems
is affected (/Kie83/, /LSch83/). An important part
of the architectural considerations is concerned
with transaction management (/Ba83/, /PrS83/).

Ideally we can look at the structure of modern data
base systems as a hierarchy of "virtual machines”.
Each such ‘“machine* is characterized by the
objects and operations which are available at its
intertace. These are in turn implemented with the
help of objects and operations of the layer one
lower. Such a multi-layered architecture s
described In /HR83a/. A variant of it forms the
background of a data base kernel system which we
plan to Implement (/PSSW84/). One special
design feature is that we use a single data model.
the so-called NF2-relational model. to describe
conceptual as well as internal data structures in a
uniform way (/SchS83/). In this modet NF2—tup|es
are the basis of complex structured objects which
appear on both the storage structure and access
path level and, in the context of "non-standard"
applications, at the user interface.

The layered architecture of the projected data base

kernel system is roughly described in the foliowing
figure 1.
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OBJECTS LAYER OPERATIONS
Application~ Application-
Specitic Data Specific Op's
Structures L4 (e.g.
(e.g. Textual Application- Boolean &
Documents) Specific_Layer Non-Boolean
Retrieval)
BOT-14,EOT-L4
DATA BASE KERNEL SYSTEM
Tuples Select. . Where
Relations L3 Insert. . .
Views Descriptive Update. . Where
Query Layer Delete. . Where
BOT-L3,EOT-L3
Tuples Retrieve
Relations L2 <Single Tuple
Tuple Search Cond>
Layer Store. Erase
Modify
BOT-L2.EOT-L2
Internal Tuples Retrieve
Internal Relations L} <Addr Spec>
Internal Tuple Retrieve
Layer <Internal
Tuple Search
Condition>
Store. Erase
Modify
80T-L1.EOT-L1
Pages LO Read<Page>
Segments [ Page Layer | Write<Page>

BOT-L0.EOT-LO

Eigure 1: Muiti~Layered DBMS
(BOT.EOT mean Begin of Transaction.End of
Transaction resp.)

Apart from extensions inherent to the NF2-relational
model, the interface L3 in principle corresponds to
the Relational Data System (RDS) of System R
(/As76/): a single operation processes a set of
(conceptuall tuples. L2 is comparable to the
Research  Storage  System (RSS). Selection
formulas are restricted to search conditions which
can be evaluated locally on single tuples
("searchable arguments" in System R terminology)

and update operations refer to current scan
positions.

Whereas L2 operates on conceptual tuples as well,
in L1 indexes are considered as internal (NF2-)
relations just as primary data are. L1 accordingly
offers a special "address selection” on its

interface. Such a layer has not been introduced in
System R. Finally, underlying to L1 we have the
segment and page structured storage module LO.

We suppose that not all of the requirements
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assoclated with "non-standard" applications can be
performed by a single homogeneous system. It
seems more realistic to extend a common kernel
system by different preprocessors according to the
application. Therefore, on top of L3 we will have
an additionat layer L4 offering
application—-dependent operations on data strutures
such as documents. images, geometric shapes or
matrices.

The question arises how to incorporate transaction
management into such a multi-layered

architecture. Conventionally, one would introduce a

lock manager and a recovery manager into a
particular layer. Very often the page layer LO has
DBM UDS /Sie/

been selected in avaiiabie DBMS (e.g.

or SQL/DS /iBM/). The consequence for our
architecture (fig.1) would be that one user
transaction  (L4-level) is mapped into one

L3~transaction which in turn corresponds to one
L2-transaction and so on until we arrive at the one
LO-transaction. This approach can aiso be found in
System R: One RDS-transaction corresponds to
one RSS-transaction, there is no different notion.
A closer look into this subject recalis two important
observations:

1. Aithough it seems so. transaction
management is not a matier of a single layer.
Even when located at LO we depend on the
fact that the next deeper layer (in this case
the operating system) provides us with atomic
operations (e.g. write a page).

2. A more careful inspection of the System R
transaction management shows that we could
understand the shadow page concept and the
RSS-operation logging as a two-level recovery
scheme (/Gr8la/,/Tr82/). Simllarly we find
that RSS tuple locking is complemented by
page locking. Therefore, also the System R
concurrency control mechanism is a two-levet
approach (/As76/./Tr83/).

The idea of providing all levels of a multi-tayered
architecture with their own recovery mechanism has

been proposed already in. /Ve79/. but has not
been pursued further as far as known. Also
concurrency control aspects have not been

discussed there. With this in mind we can state our

Problem: What are the fundamental possibilities for
transaction management in a multi-layered data
base system architecture? How can the System R
approach be generalized to several or all layers of
a system as sketched in fig. 1?7 is it advantageous
to construct a transaction at level (i+1) with more
than one transaction at level i?

This paper tries to give first considerations on the
above questions. !n the next chapter we generalize
the two-level approach for concurrency control to a
multi-layered system. In chapter 3 we investigate
related recovery aspects. Finally. in chapter 4 we
show that these concepts can also be generalized
to application~specific layers such as text retrieval
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on top of a data base kernel system.

2._Incorporation of Concurrengy Control into
Lavered Architectures

L n i i hni
The most familiar and easy to understand
concurrency control method is two-phase locking

on page level (L0) with all locks held until End of
Transaction (EOT) (cf. /HR83a/). Because of the
rather coarse granularity the concurrency of
transactions might be limited with this approach.

A respresentative of more sophisticated locking
techniques is System R. which needs not
necessarily treat pages as objects for concurrency

control. Tuple locks are a possible option of
System R. Therefore. in the following scenario of
RSS-actions (see fig.2). i.e. L2~operations

according to fig. 1, no conflict occurs if t1 and t2
are two different tuples.

Modify t1

%
Modify t2
i i

Figure 2: Operations at the L2-level
(RSS-operation level)

Transaction T} }

e

Transaction T2 |r

As RSS-operations are nevertheless transformed
into page accesses at runtime. the system still has
to guarantee some sort of page level concurrency
control. To demonstrate this necessity let us
assume that t1 and t2 are modified such that they
afterwards require more space within the respective
page (e.g. by increasing a variable length field).
in the following we sketch a possible LO-execution
of the above schedule. It might Ileave an
inconsistent data base. if both tuples are stored in
the same page p but the latter has free place only
for one update.

T1 reads t1 and checks the free place of p
T2 reads t2 and checks the free place of p
T1 modifies t1 within p
T2 modifies t2 within p

Step 1:
Step 2:
Step 3:
Step 4:

System R avoids such situations and solves the
problem by requesting page level locks for
LO~-operations and holding them until the end of the
RSS-action (/As76/). This means that the system
has a strict two-phase locking protocoi for both,
for layer L2 within the scope of each transaction
and for layer LO within the scope of each
L2-operation (RSS-action). Regarding level LO,
fig. 2 corresponds to the situation shown in fig. 3.
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R/W R/W ... R/W
pl p2 pk
Transaction T1 F B B 4 |
R/W R/W ... R/W
ql q2 qm
Transaction T2 ; B ) s 1

Figure 3: Operations at the LO-level (page level)
(R/W means Read/Write of pages pl...)

Obviously, such a two-level locking mechanism
excludes any concurrency anomalies (maybe., apart
from phantoms). A formai proof of this statement

is missing. however. Since page level locks are
released at the end of each surrounding
RSS-action. the method sketched above is called

"open nested transaction® in /Tr83/ (compare also
with /Gr81b/).

In spite of System R's rather fine locking granularity
situations arise in which potential concurrency is
prevented unnecessarily. This can be made clear
looking at figure 3. With the mapping of tuple
operations onto operations on data pages and
possibly index pages. the concurrent execution of
T1 and T2 has no delays only under the assumption
that the referenced page sets are disjoint, i.e. if
{p1 pk} n {q1 qm} = ¢. Otherwise one
transaction must wait untii a lock on a common
page is released. which is at the end of the
RSS-action that holds the lock. The first page
which is accessed (exclusively) by both
transactions causes a delay. In the worst case a
conflict between T1 and T2 occurs at the first data
page pl (= ql). The compatibility of tuple locks
would be meaningless in such a situation. because
T2 would be blocked by T1 due to locking w.r.t.
LO-operations. The probability for this type of
conflict might be quite high. especially in case of
many indexes to be maintained according to
updates of primary data.

iti-tevel Appr h

There are two different ways to decrease the
number resp. duration of delays occuring with the
two-level approach sketched above. The first
possibility is to apply special tecpnlques for the
synchronisation of operations on B -tree-like index
structures. This direction generally means to utilize
the knowiedge that only a small number of
well-known operations are allowed to operate on
these special data structures. In the context of the
previous discussion it means that we would have to
distinguish between data pages and index pages.

The second possibility, which is our proposal. Is
an extension of the two-layer approach to more
layers: the layer L1 could be made explicit and
would get its own concurrency control. We assume

that an L2-operation on one L2-tuple affects
several (internal) Ll-tuples. One Ll-tuple. in
turn, may aftect several LO-pages. In the context

of the previous discussion data tuples and index
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tuples would be regarded both as internal tuples to
be managed by Ll-operations. Notice that we
would not differentiate between internal data tuples
and index tupies to avoid unnecessary duplication
of tfunctions (/PSSWB4/). In the following we
discuss the various advantages of our multi-ievel

P N ey Ay

appiroacn.

The layer L1 would have to grant focks on intsrnal
tuples for the duration of L2- operatuons. Page level
locks then could already be released at the end of

each Ll-operation. This situation is shown in fig. 4.

Transaction T

aa

Modify 1 i2
; —3 4
1
[ 1
Modify Internal. .. Modify internal
Tuple Tuple rj L1
I —A A |
- - f
] 1
| | | |
R/W R/W R/W R/W
P11 Pi.k1 Py Pj. ki Lo
-
Figure 4: Open nestad transactions for three layers
(L2: Locks wuntil €EOT: L1: Locks for the
duration of an L2-operation; LO: Locks for

the duration of an L)-operation)

As we explained above. the worst case of the
schedule described in figures 2 resp. 3 arises from
an L0-confiict beiween Ti1 and T2. in this situaiion
one of the two transactions would have to wait until
the others (con-)current Ll-operation is finished,
whereas without the additional locking at the
Li-tevel the delay lasts for the duration of the
surrounding L2-operation. Compared with System R
the waiting period approximately decreases with the

number of internal tuples to be modified per
(conceptual) L2-tuple. The proposed extension of
the RS8S iocking mechanism might pay off

particularly for environments in which many indexes

haua ta ha malemta ad Ae = ritinal anint hawauar
Have v UU Illﬂllllﬂll'vu "o o \'lltllcﬂl PUllll MUwWovo)
we must consider the additional implementation

overhead involved with a
concurrency control method.

more  sophisticated

We could apparently generalize the concept of
"open nested transactions® to any n-layered
architecture. Each level L(i-1) regards the

sequence of L(i-1)-operations corresponding to an
as a subtransaction of the comprising

This subtransaction has

Li-operation
sequence of Li~operations.

to be serialized with othar concurrent
L({i-1) ~subtransactions. that belong to different
root transactions. The term “conflict of two

operations” could be defined in a specific way for

each layer so that we are not confined to
two-phase locking nor to locking methods in
general.

Another  advantage of these "open nested
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transactions” is that so—-called "semantic”
concurrency control methods (e.g.
/BGL8B3/,/GaB83/, /Ko83/, /Ly83/) might be

applied. The notion of serializability is more than a
pure syntactic criterion with such approaches. By
considering (part of) the semantics of operations
thoy ilead beyond ihe simpie concept of scheduies

as a sequence of ‘reads” and “write’s". For
axam !n. one nnnld haun a ﬁ?nl\lﬁl !"‘"k mode for
each operation. whose compatibility is deduced

from semantic properties (/Ko83/). As operations
are layer-specific. the close relationship to the
ideas presented in this chapter becomes clear.

Finally we can apply this nested transaction
concept aiso in an environmeni consisting of a data
base kernel system and application-specific iayers
(ct. V). The mapping
operatnons to the kernel interface. which is done by
a  ‘"preprocessor” might  again  utilize the
transaction management of the (3-layer to form
subtransactions within a (longer) L4-transaction.
We will return to this point in chapter 4.

chapter af aoolication
\-HIGPI Vi npy icauon

Appropri Appr h 1o Tran tion R ver

l rllb bﬂbllul’l

o the second
transaction management, that is recovery. S
isolatad from congurrency

not be regarded isolated from concurrenc
we must include aspects of the latter too.

5
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3.1 A Transaction Model for Multi-Layered
Architectures

A simpie modei of the execution of a transaction T
in the muiti-layered data base kernel system
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clements o, resp. o, of a set I, of states. State
transitions primarily refer to the volatiie data base.
The only assumption about the propagation of
updates to the permanent data base is that at the
begin and at the end of each transaction we
postulate o0, = 0O, to hold., which means that
updates have to be propagated not later than EOT.
So we can discard REDO measures from our
discussion of soft crash recovery.

Let us assume that a system crash occurs in state
o7 of the scenario of figure 5. At this time neither
O, = 00 nor o, = 07 holds for the permanent data
base O, in general. The objective of recovery is to
reestablish state 00 through appropriate UNDO
aclivilies. We call a state 0 € )} “Li-consistent” if it
is the outcome of a sequence of complete
Li-operations starting from a state. e.g. 00,
which., in turn, results from a sequence of
complete previous transactions. Looking upon
transactions as operations of an uppermost layer Ln
(n = 3 in fig. 5 scenario) we could state as a rule:
After a soft crash the data base system has to
reestablish the last Ln-consistent state that has
been reached (w.r.t. the volatile data base)
betore.

From the point of view of multi-layered
architectures we might imagine that control is
passed to a “recovery function” Ri: I -> T for all
layers in a. bottom-up order (i = 0,1 n-1
(cf. /Ve79/). Each Ri is implemented solely with
operations of the corresponding layer Li. The
recovery mechanism works correct If with RO
starting from the surviving "after-crash-state” % of
the permanent database the equation

Rp-1(. .. Rglop)...) = 00
holds.

.....

3.2, A Famiily of Recovery Algorithms

.. Classical h

In this section we consider recovery variants that
could be understood in terms of our model. The
architecturally most simple form of recovery is
based on page logging. In such approaches RO is
responsible to restore the desired state 00.
whereas all the higher level recovery functions Ri
(i>0) are identity mappings on L. The relevant part
of figure 5 looks as follows: '

o) b b b [ el o

o0 - 01 - g2 - 03 - 04 - 05 - 06 - 07 - 08

h8 Lo

Figure 6: Degeneration to page logging

The execution of page level operations hs is
recorded, usually in form of their inverses hj~' as
so-called "before images”. on a log file. Recovery
then produces the state RO( op) =
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h\"(...h?'](op)...) = 00 after a crash in o7.
A speciai property similar to ‘idempotency”
(/Gr78/) or ‘“restariability" (/Gr81b/) is required
for LO-inverses:  For every LO-operation hj and
every state .0 that does not “contain® hj the
condition hj'1(o) = o must hold. The property is
guaranteed for UNDO based on "befdte images” as
well as for entry logging combined with so-called
"log sequence numbers® (/Li79/).

Pure page logging Is wunsatisfactory for two
reasons. First, rapid growth of the log file may
cause serious problems especially with applications
like CAD or office systems where objects are rather
large and transactions are long. A primitive
operation on a CAD object could trigger a muititude
of pages to be modified (cf. /PrS83/, /KW83/).
The second disadvantage of page level recovery is
that it implies page level locking too. Otherwise
updates of a successfully completed transaction
could be lost due to another transaction aborting
concurrently. The system wouid no longer
guarantee isolated rollback. This well-known thesis

about interrelations between recovery and
concurrency control (/HR82/, /Tr82/) gives
additional motivation to investigate transaction
management in muilti-layered architectures more
thoroughly.

Both drawbacks we mentioned above are avoided in
the System R recovery manager (/Gr8la/. /Tr82/)

more or less. As the following figure shows,
undoing transactions after a soft crash involves
levels L2 and LO.

e e T 0

00-01-02-03-+04+05+06-07-+08~09

Figure 7: The System R recovery as a two-level

approach (L2: RSS-operations: LO: page
level operations)
The weli-known shadow storage mechanism
(/Lo77/) provides ftor atomicity of L2-operations
because checkpoints (i.e. points in time to
propagate updates) are always on RSS-action
boundaries. Moreover, System R not just has the

"all-or-nothing® paradigm for every single operation
fi. but guarantees for any two L2-operations f1 and
f2 that if the later one, 12, has been propagated to
the permanent data base. then the updates of f1
must survive a system crash too. In /WeiB4/ a
more precise definition of this property is contained
that can be applied to all leveis of a layered
architecture.

The recovery function RO of the shadow storage
thus ensures that after a crash in state o7 during
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the execution of transaction T (see figure 7) the
L2-recovery R2 starts with one of the possible
states 00, 03, or o6, which ail are L2-consistent.
Since all RSS-calis fj are recorded on the log file.
the R2 restart simply has to arrange the execution
of all inverse operations fj"] *contained” in the
state RO(o,) in reverse order. if, for exampie the
most recent RSS~checkpoint was generated in state
03 and the contents of the log file is <«f1,f2>, the
system must perform {1~ '(03) _in order to
reestablish g0. To prevent that 2=1 is applied to
03 either, the log file is organized with some sort
of "log sequence numbers” (cf. /Gr8la/).

invartibility
' J

vertibilit of RS8SS-operations

....... is the only
prerequisite for this method to work. Notice that
this requirement s nontrivial having the "DROP
TABLE" statement in mind. It enforces the end of a
System R transaction because the corresponding
inverse operation cannot simply be constructed
from a short log entry containing this RSS-call

(/7r82/).

3.2.2. Proposal for a Multi-Level Method

We have summarized the System R recovery
mechanism because we will now be able to explain
our generalization to n layers. The two-ievel
System R recovery technique obviously is
coordinated with the two-ievel concurrency control
sketched in chapter 2. As we proposed that layers
L2. LI, and LO should contribute to concurrency
control, it suggests itself to et participate also the
Li-layer, but more generally all layers. in recovery

too. The result of this idea is a system of nested
transactions with levels naturally tied to
architectural layers. Such a systematic approach

can be extended to hierarchies of independent
subsystems. for example for transaction
management in application-specific preprocessors
on a data base kernel system (see chapter 4).

On the iower end it is expected that future
operating systems will offer some kind of
transaction concept (/Tr83/./BaS84/). which then
could be utilized by data base systems to simplify
their own transaction management. The Interface
L0 at the bottom of our data base kernel system of
figure 1 offers atomic operations. but no real
transactions. The difference is that the effect of
successfully executed page operations might be lost
afterwards if a system crash occurs and the data
base buffer gets lost. To obtain transaction
characteristics LO-operations  additionally need
durability., often called “persistency”. and "logical
indivisibility" w.r.t. concurrent actions. Whereas
the latter is no problem., we must realize that
persistency can only be achieved at the expense of
a poor performance. either by forcing modified
pages to disk immediately or by writing a REDO log
record for each page update. A better solution is
to have persistency for the comprising L1-operation
merely. instead of LO. L] couid thus play the role
of an ‘“intelligent", (NF2-) tuple oriented stable
memory forming the basis of ail higher layers. This
stable memory could be implemented with
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satisfactory performance utilizing the “cache/safe”
ideas of /Ba83/ and /EiIB2/. in what follows we
nevertheless assume a persistent LO- interface to
simplify the discussion.

So we return to our
L{(n-1),....LO0 helps
initial state after a crash. |(|f LO guarantees
persistancy then the log file in the various
intermediate states of figure 5 could look as follows:

main line that each
to restore a

layer
transaction’s

State Log File

o0 <> i.e. emply

ol <h

a2 <h1,h2 or <«gb

o3 <g1.h3

o4 <g1,h3.h4> or <gl.g2> or «D
o5 <«f1.h5>

o6 <«f1.h5.h6> or <«f1,g3

o7 «f1,93.h7>

Figure 8: Log file entries in the example scenario

Due to LO-persistency the permanent data base is
in state o7 after a crash in o7. Rollback of the
considered transaction is done by applying the log's
inverses, i.e. through <1, 93, h7>™) =
771,937, 17 H, Execution of an inverse
Li-operation belongs to the corresponding recovery
function Ri. As the functions R(i-1)....,R0 are
transparent to the layer Li., we virtually achieve
persistency for all layers including the transaction
level Ln. The result of each Ri is the most recent
L(i+1) -consistent state that was reached before the
crash. For simplification figure 8 shows a gilobal
log file for all layers. but actually each level should
record its operations autonomously instead.

The basic principle of each layer Li is to record all
Li-operations of a surrounding L(i+1)-operation f
until the latter is finished and L(i+1) has written a
log entry for f. Then the Li-log is needed no
longer and could be deleted. Since a crash might
occur exactly at a time where both exist on the
respective logs, f and its corresponding sequence
of Li-operations. operations of all layers must be
“careful”. which means _that, for example
gl.n, ha Vo2 = g1 V1. h> Vo2 =
91'1(00) = 00 holds.

As we already stated for the multi-layered
concurrency control of chapter 2. an increased
overhead must be expected with this kind of

*hierarchical layer oriented logging”. Therefore it is
obvious to weaken the assumptions of our approach
and let only selected layers contribute to recovery.
This does not change the basic principle, as some
levels are simply skipped when they do not
contribute to recovery. Let Li and Lj (iP}) be two
layers writing log records such that no intermediate
layer Lm (i>m>j) participates in recovery. Lj has to
record ail level | operations belonging to the
comprising Li—operation f currently executed. With
the successful completion of f the Lj-log entries
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are deleted and their purpose is taken over by the
entry *{* in the Li-log.

This approach is similar to the kind of nested
transactions described in /Mo82/. The difference
to /Mo82/ however is that in our concept nesting is
strictly tied to architectural layers and not visible to
the application programmer on the uppermost
interface. Further. w.r.t. concurrency control we
use the “open” type of nested transactions.

We finally describe the "selected layers logging” in
an algorithmic form. Each layer Li has to
understand an additional BOT- resp. EOT-call to
indicate the begin resp. the end of the surrounding
LGi+1) —operation. Thus, for each Li (i»0) and any
Li-operation f we have the following generic actions:

action BOT:
I L; is one of the selected recovery layers
then prepare Lj-log
(activation of a L;—subtransaction)
fi:

action f:
if L; is one of the selected recovery layers

and an L;-subtransaction is activated
then call L;_, (*BOT")
fi.
let <«gy..... gy> be the L;_y-operation
sequence implementing f;
for | := 1 to k do call Li_y("g;") od:
U L; is one of the selected recovery layers
and an Lj-subtransaction is activated
then write *{* to the L;-log:
call Ly ("EOTH
fi:

action EOT:

If L; is one of the selected recovery layers
then release L;~log

else call L;_y ("EOT")

fi:

action Ry
call R_y:
i L is one of the selected recovery layers
then let <y..... f> be the

contents of the L;-log:
for j :=r o 1 do
call L,_]('f‘ ")
erase “1]" rom the L;-log
od
fi

For LO the actions f are simply elementary
operations. so that we have the following
implementation:

action BOT:
prepare Lg-log
(activation of a Lg-subtransaction):
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action t:
write "{* to the Lg-log:
oxecute f.

action EOT:
release Lg-log:

action Rg:
let «fy..... f,> be the
contents of the Lg-log:
for j :=r $0 1 do
execute 5-' :
erase "1, from the Lg-log
od:

it is remarkable that the recovery functions Ri call
operations of the layer one below just as in normai
processing mode of the data base system. In
contrast to the regular mode no log records are
written however to prevent undoing
UNDO-operations In case of a second crash during
restart. Ri depends also on the prerequisite of
LO-persistency. since log records are deleted as
soon as the corresponding inverse operation has
been executed successfully.

The algorithm sketched above can be used for both
undoing a single transaction due to deadlock or
user abort as well as for crash recovery. Since
each UNDO step of an Li transaction must reaquire
certain system resources such as L(i-1) locks,
special measures. i.e. like System Rs "Golden"
latch (/Gr8la/). should be taken to guarantee that
every aborting transaction is eventually terminated.
In the worst case an UNDO might result in a
system crash when resources are exhausted and
cannot be made available at runtime. However,
this seems not to be uncommon practice.

4. Transaction Management in an RS-

Preprocessor to a (Kernel) DBMS
The objective of this chapter is twofold. First. it
can be regarded as a concrete example and further
justification for the open nested transaction
approach described so far. Second. it analyses the
aspects of transaction management of so-called
preprocessor solutions to DBMS which are thought
to support non-standard applications (/KL83/,
/SRG83/,/Wo83/./SchB84/). A general expectation
seems to be that a preprocessor to an available
DBMS does not need any concurrency control or
recovery function since the underlying DBMS would
be responsible for that.

In the following we will study this expectation more
carefully. We will take the example of an
Information Retrieval System (IRS) at layer L4 (fig.
1) as a preprocessor to a (kernel) DBMS (iayer L3
in figure 1). We might aiso think of a DBMS llke
SQL/DS as a target which we map the IRS onto.
(Actually an IRS preprocessor has been
implemented on the System R prototype at the IBM
Heidelberg Scientific Centre /EHPR81/ and
experience was gained from that exercise.) For the
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following discussion we use IRS interface and
L4-layer synonymously as well as DBMS interface
and L3-layer.

4.1. Description of the IRS to DBMS Mapping

For the follwing discussion it is sufficient to regard
only simplified objects and operations at the two
layers of the IRS-DBMS-combination.

4.1.1. Objects and Operations at the IRS Interface
At the IRS interface we have the following main

objects

document collection (DC)

document (D) (1IRO)
term(T)
IR transaction (IRT)

A document collection is a set of documents. Each

document consists of two fields. The first field is a
document number (DNO), the second field is a set
(TS) of terms. The DNO should identify a
document. The operations which are important for
the following are

INSERT (dc, doc)

DELETE (dc.doc)
UPDATE (dc, doc, dtd. bti)
SEARCH (dc. doc. query, query—name, estimate)
NEXT (doc.query—name)

(iIROP)

The parameter dc is name of a document collection
and doc is a document of the type as described
above. In case of an INSERT the DNO field will be
defined after a successful insertion. In case of an
UPDATE the DNO field contains the document
number (previously found by a SEARCH or NEXT)
1o be changed. The update is defined by two sets
of terms 8td and Oti. The first contains the set of
terms to be deleted. the second the ones to be
inserted. In the DELETE case the DNO field of doc
contains the document number to be deleted (also
found by a previous search). In the SEARCH
command the "query" parameter denotes a set Q of
terms. A document is a match to Q if Q € TS i.e.
if all terms of Q appear in the set of terms TS of a
document. The parameter "estimate” is a system
estimated number of document matches to the
given query and doc contains a first match.

One or more NEXT calls can be issued after a
previous search to the same query (identified by
“query-name®) and the same documents type. It

results in further matching documents. one for
each  NEXT ("Scan" through the matching
documents) .

An IRS transaction (IRT) is defined as a sequence
of operations which is entered by an IRS user

IRT := BOT-L4: AY;A2:....An: EOT-L4
is one of those defined by
through (IRO). Two

Each operation Ai
(IROP) on objects defined
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options exists for EOT. One is "ABORT"., the other
is "COMMIT". The abort option is used when the
changes made since the last BOT-L4 shall be
undone. The commit option makes all changes
since BOT-14 visible to other users and persistent.
This is the usual notion of a transaction.

We shall consider two examples of transactions

later on:

IRTY := BOT-L4.
SEARCH(Q1) :NEXT(...):...:
SEARCH(Q2) . NEXTC(...) ...
EOT-L4(COMMIT) :

IRT2 := BOT-L4.
SEARCH(. . .) UPDATE(...):
INSERT(...):

EOT-L4(COMMIT)

Obviously the first transaction is a typical IR search
transaction. It has a first SEARCH with some query
Q1, gets more matches with NEXTs and decides to
modify the query. issue a next SEARCH with Q2
and a sequence of NEXTs for the new matches.
The second is (in present systems) not a typical IR
transaction. After some search the found document
is updated. a new document is inserted and the
transaction commits.

Note that the notion of a transaction seems to be
important for new IR applications like the
administration of office information: It may be
necessary in our example for transaction IRT2 not
to make visible a first update to a document unless
a second document is successfully inserted. if the
insert fails for some reason. also the first update
must be undone.

4.1.2. Objects and Operations at the DBMS
Interface

We regard only those objects and operations which
will be necessary for the mapping of the previously
described IRS objects and operations. We assume
an interface with objects

Table or Relation (RL)
Tuple or Row (R)
Attribute (A)

DBMS transaction (DBT)

(DBO)Y

As basic DBMS operations we introduce

DINSERT((rl, tup)

DUPDATE(r!, tup. new attribute values)
DDELETE(rl. tup)

DSEARCH(rl. tup. query. query-id)
DNEXT (tup. query-id)

(DBOP)

The meaning of is

evident.

operations and parameters

A DB transaction is again a sequence of actions
DAi as they are defined in (DBOP) on the objects
defined by (DBO).
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DBT := BOT-L3:DA1:DA2:;...;DAk;EOT-L3

As usually this defines a unit of concurrency and

recovery. now with respect to objects and

operations at the DBMS interface.

4.1.3. Mapping of IRS Objects and Operations to
DEMS Obiects and Operations

in this section we describe the mapping of IRS
operations on IRS objects to corresponding DBMS
operations and objects. For that we let the IRS
preprocessor impose the document interpretation
on stored byte strings managed by the DBMS. For
the DBMS we have variable length tuples (one
document corresponds to one tuple) where the set
of terms TS is represented as one (long) byte field
BYTESTR1. The IRS preprocessor then knows how
to interprete the byte string as a
set-of-terms—structure. This procedure has been
proposed recently as the approach of "abstract data
types and abstract indices* /SRG83/ or as attribute
level operations /Wo83/.

RL

I l
[ | | |

BYTESTR}

Figure 9. Mapping of an IRS object (layer L4) to
a DBMS object (L3)

So far. we have considered only the mapping of
IRS user objects. But in order to support (RS
queries we must provide index support within the
IRS preprocessor. We introduce the usual IRS term
index IDC to a document collection consisting of an
inversion on terms (figure 10).

IRL

| | | |
T DNOSET T BYTESTR2

ONO

IDC

Figure 10: Mapping of an IRS term index to a
DBMS object

Every index list consists of a term and a set
(DNOSET) of ail document numbers (DNO)
pointing to a document which contains that term.
Such an index list is mapped to a single tuple at
the DBMS layer. This contains two fields: the first
is the term, the second is BYTESTR2., a (long)
bytestring as representation of the set of document
numbers (DNOSET).

The IDC structure is not visible ai the IRS interface
but is inside the IR preprocessu. and provides
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It is also maintained within
in case of IRS updates.

support for IR queries.
the |IRS preprocessor
deletes or insertions.

We are now able to describe the transformation of
IRS operations to DBMS operations. Assume that a
document with a term set TS = {T1,T2..... Tk}
has to be inserted. Since we must maintain our
term index this single user action has to be
transformed in a sequence of DBMS actions as
follows:

DINSERT(ri-of-dc. row-of-doc) ;
/*DNO now definded*/

for all terms Ti € {T1..... Tk} do
DSEARCH (irl-of-dc. indexrow, term="TI') ;
if found

then
Prepare new value (newbytestr) for BYTESTR2

by inserting new DNO value:
DUPDATE (irl—-of-dc. indexrow, newbytestr)
else
Prepare new “indexrow":
DINSERT (irl-of-dc. indexrow)
fi
od:

This shows that one IRS (write) action produces
(k+1) DBMS (write) actions. Similarily we will
produce a sequence of DBMS actions for a single
IRS query:

SEARCH(dc.doc. {TV.T2,.... QN
is executed as

for all terms Ti € {TV.....7Tq'} do
/*assume that all index pointer lists exist*/
DSEARCH( irl-of~dc. indexrow. term=Ti) ;
Determine a set CSET of DNO values

which contain match candidates

od:

for “first® dnoj € CSET do
DSEARCH(rI-of-dc. row-of-doc. DNO=dnoj) ;
Check whether delivered document
(in row-of-doc) is a match:

If not, try a "next® dnoj

od:

IRS query with q terms
(q+1)

Again we see that a
produces in the average a sequence of
DBMS searches to locate the first match.

These two examples of mappings between the
IRS-layer and the DBMS-layer are sufficient to
discuss now the question of transaction mapping.

4.2. Mapping of IRS Transactions to DBMS
TJransactions
4.2 -to-one M in

The most simple way to map an [RS transaction
onto the next layer is to generate exactly one DBMS
transaction for it. This solution would indeed fully
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cxploit the transaction management of the DBMS
layer and no effort would be necessary with respect
to concurrency control and recovery within the IRS
preprocessor. The layer (L4 would not be a
recovery layer. Conflict tests would be performed
on the basis of DBMS objects. not on the basis of
IRS objects. This is now the same situation we had
described in the previous chapters when we
¢ompared page level (LO) concurrency control and
recovery with tuple oriented methods (levels L2 or
L1). The disadvantages pointed out there are
similar to the ones we have at this point:

First regarding concurrency control we see that
transactions which are not conflicting w.r.t. IRS
objects may be conflicting w.r.t. DBMS objects.
This means that "pseudo conflicts" are generated
by this transformation. In order to give an example
for pseudo conflicts here we consider the two IRS
transactions IRT1 and IRT2. We assume that IRT1
reads documents which are different from the ones
which IRT2 changes or inserts. We denote the set
of terms in the documents which IRT2 writes by
T8Y, TS2 (for the old and new term sets in the
update) and TS3 (for the insert). Q1 and Q2 are
the term sets which IRT1 uses in its query. Then,
IRT1 und IRT2 are not in conflict if

Qi not € TSj (i=1.2: j=1.2.3)

Due to the transformation to the DBMS layer,
however, they are already in (pseudo-) conflict if

(Q1 U Q2) n (TS1 U TS2 U TS3) # ¢

i.e. if there is a single common term. Simple
probability calculations show that pseudo-confiicts
occur with probabilities which are orders of
magnitudes higher than for a real conflict. If
locking is used in the DBMS aiso deadlocks may be
frequent.

The second disadvantage Is related to recovery. In
the one-to-one transaction mapping recovery Is at
the layer L3 or below. Before-images or old values
mean always the whole (iong) bytestring BYTESTR2
which represents the set of document numbers in
case of IR index tuples. On the other hand, If
recovery would be done at layer L4 we could
discard log entries for IR index maintenance
completely (as in RSS /As76/).

As it can be seen now these arguments repeat
similar arguments we had at the deeper layers
already. Instead of the one-to-one transaction
mapping we propose therefore a nested transaction
approach.

4.2.2. Open Nested Transactions

We map an IRS transaction to a sequence of DBMS
transactions by taking the sequence of DBMS
actions which belong to a single IRS action as gne
unit. As we know already this approach needs
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concurrency control in layer L4 (i.e. in the
preprocessor). A method which can be applied
here is the predicate oriented locking approach
using signatures /DPS83/. The details are not
relevant for our discussion here but the important

fact is that such an IRS concurrency control
produces a sequence of operations which s
equivalent to some serial execution of the
transactions. The next layer, now. is responsible

for the correct execution of these operations which
in turn at that layer are again sequences of DBMS
operations. But the proper execution of these is
guaranteed by the DBMS transaction management
function.

We also know from the previous discussion that
recovery is desirable in the IRS-preprocessor. For
that we need the inverse Ai-! of each IRS
operation Ai which changes IRS objects. E.g. the

inverse of a INSERT is a DELFTE. According to the
well-known rule that the undo information - in our
case Ai"! to a write operation Ai - must be saved
before the objects related to Ai are (over—) written
we must introduce an additional log data set to a
document data base. In order to be sure that log
records are safely written before we commit any
changes on our objects we can again utilize the
DBMS transaction management: A (IRS) log record
(i.,e. for the IRS transaction abort facility) is
appended to the sequence of DBMS operations of
any IRS write operation. According to the algorithm

of chapter 3 the transformation of an IRS
transaction onto the DBMS layer now looks like
(fig. 11):
- - — -
BOT-L4 BOT-L3,
DINSERT(Log-L4. "BOT-L4")
EOT-L3;
Ai ===> | BOT-L3. DAIil. DAi2, DAik,
DINSERT(Log-L4.Ai” 1), EOT-L3:
EOT-L4 BOT-L3,
DINSERT(Log-L4. "EOT-14") ,
EOT-L3:
- . L -
Figure 11: Mapping of one IRS transaction into a

sequence of DBMS transactions

Notice that in addition to log tuple writes for the
inverse operations we must write a log tuple for the
begin and for the end of an IR write transaction.

Let us again look into the previous IRT2 example.
We assume that there is a system crash within the
DBMS transaction belonging to the IRS operation

INSERT. After restart the DBMS recovery
component would produce a consistent DBMS
state: the changes of the transaction belonging to

the UPDATE would be - if necessary ~ redone and
eventual changes caused by the transaction to the
INSERT would be undone by the DBMS recovery
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component. Next, the IRS recovery component
wouid find no "EOT-L4" log tuple of IRT2 and
thereiore. wouid undo the changes of the updaie
by reading the related log tuple and perform the
inverse operation which was stored in this log
tupie. After this the data are in a consistent IRS

state.

This example shows that the cost for increased
paraileiism and simpier iogging may be more efiort
in case of recovery after a crash or for transaction
abort. This may also be the price for a clean
concept of transaction management through layers
in general.

5. nclusion

In this paper we investigated architectural issues of
transaction management in layered systems. in
particular, we generalized the System R two-level
kind of "open nested transactions”.

Our primary objective w.r.t. multi-user control was
to increase concurrency by avoiding
"pseudo-conilicts” that could occur, especially in
an application-specific preprocessor on top of a
data base kernel system. due to real conflicts in
lower levels. Though there is much research on
algorithms with this purpose. there is still no
theoretical framework of concurrency control in the
case of layered architectures. The work of e.g.
/BGL81/ or /Ly83/ may be steps into this direction.

Nested transactions were also considered useful to
structure recovery. Starting from hardware
characteristics every additional layer Li increases
the degree of resistancy with the aid of certain
atomic L(i-1)-operations, finally achieving the
classical transaction concept for the uppermost
level. This possible generalization of the System R
approach has up to now not been examined.
though it might turn out as a key concept for
incorporation of transaction management into the
architecture of data base systems. An attempt to
categorize recovery in layered systems, based on a
more refined version of the transaction model
described in chapter 3.1, is part of /Wei84/.

Further research efforts are necessary to develop a
theoretical basis and to investigate practical
applications of transaction management in layered
systems.

Acknowl ment
We would like to thank Liz Klinger for the excelient
preparation of this paper.

Beferences

/As76/
M. M. Astrahan et al.. System R:
Approach to Database Management.
No.2. 1976
/Ba83/
R. Bayer.

Relational
TODS Vol. 1

Database System Design for High

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Performance. Proc. of the IFIP Conference, Paris

1983

/8aS84/

R. Bayer. P. Schiichtiger, Data Management
Support for Database Management. Acta
Informatica Vol.21 No.1, 1984

/BGL81/

P.A.Bernstein, N.Goodman, M.-Y. Lai, Llaying
Phantoms to Rest. Proc. IEEE  COMPSAC
Conference 1981

/BGL83/

P.A.Bernstein, N.Goodman, M.-Y.Lai. Analyzing

Concurrency Control Algorithms When User and
Systems Operations Differ, |EEE Transactions on
Software Engineering Vol. SE-9 No.3, 1983
/DPS83/

P.Dadam. P.Pistor, H.-J.Schek., A Predicate
Oriented Locking Approach for integrated
Information Systems. Proceedings of the IFiP
Conference, Paris 1983

/EHPR81/

R.Erbe, F.Hd&ckenrainer, R.Poloczek. B.Ruhbach.
SQL-TR: A System R Extension for Text Retrieval,
Internal Report, IBM Heidelberg Scientific Centre.
1981

/E182/
K. Elhardt. The Data Base Cache: Design
Principies. Algorithms., Characteristics (in

German). Doctoral Thesis. available as: Technical
Report TUM-18208. Technical University Munich,
1982

/Ga83/

H. Garcia-Molina., Using Semantic Knowledge for
Transaction Processing in a Distributed Database.
TODS Vol.8 No.2, 1983

/Gr78/

J.Gray. Notes on Data Base Operating Systems,
in:  Operating Systems - An Advanced Course,
LNCS 60, Springer-Veriag 1978

/Gr8la/

J.Gray et al.,
System R Database Manager,
Surveys Vol.13 No.2, 1981
/Gr81b/

J.Gray. 7The Transaction Concept: Virtues and
Limitations. Proc. of the VLDB Conference. Cannes
1981

The Recovery Manager of the
ACM Computing

/HR82/

T.H&rder. A.Reuter, Principles of Transaction
Oriented Database Recovery - A Taxonomy,
Technical Report 50/82., University Kaiserslautern
1982

/HRB83a/

T. Hérder, A. Reuter. Concepts for Implementing
a Centralized Database Management System. Proc.
International Computing Symposium, Niirnberg 1983
/HR83b/

T. Harder, A. Reuter, Database Systems for
Non-Standard Applications, Proc. Internal
Computing Symposium, Nirnberg 1983

/iBM/

SQL/Data System. Concepts and Facilities, I1BM
Corporation. Form No. GH 24-5013, 1981

/KW83/ '
R. H. Katz,
Design

S. Waeaiss,
Databases.

Transaction Management for
Technical Report #496,

Singapore, August, 1984



Computer Science Dept. ,
1983

/Kie83/

W. KieBiing. Data Base Systems for Computers with

University of Wisconsin,

intelliigent Subsystems: Architecture, Algorithms,
Optimization (in German), Doctoral Thesis,
available  as: Technical Report  TUM-18307,
Technical University Munich, 1983

/KL83/

W. Kim, R. Lorie. Nested Transactions for
Engineering Design Databases. Research Report RJ
3934, IBM San Jose. 1983

/Ko83/

H.F.Korth. Locking Primitives in a Database
System, Journal of the ACM Vol. 30 No.1, 1983
/Li79/

B.G.Lindsay et al.. Notes on Distributed
Databases. Research Report RJ 2571, I1BM San
Jose, 1979

/Lo77/

R. Lorie, Physical Integrity in a Large Segmented
Database. TODS Vol.2 No.1, 1977

/LSch83/

V.lum, H.-J.Schek (Chairmen), Complex Data
Objects: Text, Voice. images: Can DBMS Manage
Them ?, Panel Discussion, Proc. of the VLDB
Conference. Florence 1983

/1Ly83/

N.A. Lynch, Mutitilevel Atomicity - A New
Correctness Criterion for Database Concurrency
Control, TODS Vol.8 No.4, 1983

/Mo82/

J. Moss, Nested Transactions and Reliable

Distributed Computing, Proc. 2nd IEEE Symposium
on Reliability of Distributed Software and Database
Systems, 1982

/PSSW84/

H.-B. Paul, H.-d4. Schek, M. Scholl. G.
Weikum, Considerations on the Architecture of a

"Non-Standard” Data Base Kernel System (in
German), Internal Manuscript. Technical University
Darmstadt. 1984

/Prssa/s

U. Pradel. G.Schlageter, Concurrency Control in
Integrated Information Systems: A Survey of
Problems, Technical Report. University of Hagen.
1983

/SchP82/

H.-J.Schek. P.Pistor, Data Structures for an

Integrated Data Base Management and Information

Retrieval System. Proc. of the VLDB Conference,
Mexico 1982

/5¢chS83/

H.-J. Schek, M. Scholl, The NF U-Relational
Aigebra for Uniform Manipulation of External.
Conceptual and Internal Data Structures (in
German)., in:J.W.Schmidt (ed.), Sprachen fir
Datenbanken, IFB 72. Springer-Verlag 1983
/Sch84/

H.-J. Schek. Nested Transactions in a Combined

IRS~-DBMS Architecture. to appear in: Proc. 3rd
BCS/ACM Symp. on Research and Development in
Information Retrieval, Cambridge 1984
/Sie/
UDS Version 3.2. Reference Manual
Siemens AG. Munich 1982
Proceedings of the Tenth International
Conference on Very Large Data Bases.

Package.

465

/SRG83/

M. Stonebraker, B. Rubinstein, A. Guttman,
Application of Abstract Data Types and Abstract
Indices to CAD Data Bases. Proc. "Engineering
Design Application”, Database Week, San Jose 1983
/Tr82/

I.L. Traiger, Virtual Memory Management for
Database Systems. ACM Operating Systems Review
Vol. 16 No. 4, 1982

/Tr83/

I.L. Traiger. Trends in Systems Aspects of
Database Management, Proc. 2nd Int. Conf. on
Databases (ICOD-2), Cambridge 1983

/Ve79/

J.S. M. Verhofstad. Recovery Based on Types. in:
G. Bracchi/G. M. Nijssen (eds.). Data Base
Architecture. North-Holland Publ. 1979

/WeiB4/ :
G.Weikum, Transaction Recovery in Data Base
Systems with Layered Architecture: New
Approaches to a Categorization (in German),
Internal Manuscript, Technical University
Darmstadt, 1984 '

/Wo83/

E.Wong. Semantic Enhancement through Extended
Relational Views. Proc. 2nd Int. Conf. on
Databhases (ICOD-2), Cambridge 1983

Singapore, August, 1984



