
Integration of Time Versions into a Relational Database System 

P. Dadam, V. Lum, H.-D. Werner 

IBM Scientific Center Heidelberg 
Tiergartenstr. 15, D-6900 Heidelberg, West Germany 

ABSTRACT 

New application areas for database systems, such 
as office automation and CAD/CAM will require to 
support not only access to the current data, as 
is done in current database systems, but also to 
previous instances of the data (versions). This 
means that time version support is needed. This 
paper presents the design considerations for a 
database system currently under implementation, 
that integrates time version support as a normal 
database function. It is shown that many subtle 
issues, such as choice of a suitable timestamp, 
how to store history data in a compact form, how 
to integrate version management into update proc- 
essing, recovery, concurrency control, etc., have 
to be considered together to obtain an optimal 
design. 

1. INTRODUCTION 

The need to support the time domain within a 
database system has been indicated already 
several years ago (Bj75,Bu77,La73,La74). 
However, serious investigations by the database 
community have not been done until recently. The 
impetus for the recent actions originates from 
the growing interest in applying database tech- 
nology to new applications. It so happens that 
in these applications the need to have time 
support is strong. 

Although much work has been done recently 
(An82,CW83,Ki83,K181,KL83, MS83), it has been 
confined to conceptual studies in that the 
researchers concentrated on the effect of time 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commercial 
advantaee. the VLDB coovrieht notice and the title of the oublication and its 
date apiear, and notice is’ &vk that copying is by perkssio~ of the Very Large 
Data Base Endowment. To copy otherwke, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the Tenth International 

Conference on Very Large Data Bases. 

from the userst perspective. To support time in 
a database system, one must have in the underly- 
ing support all the time information associated 
not only with data, but also with some actions 
executed on the data base (e.g. updates and 
corrections for walk-through-time queries). 
This, indeed, is the objective of this paper. 

In the past there have been efforts to include 
into a system the function to support time 
versions. However, those studies have been mainly 
used for concurrency control purposes 
(BG83,BHR80,La82,PK84,Re78). Their approaches 
cannot be used to support the processing of 
history data that is needed for the new applica- 
tions. To our knowledge, the only exception is 
Reed's system /Re78/ which, designed for concur- 
rency control in a distributed environment, does 
permit to pose an ltasoflt (as of) query to some 
extent. His method, however, does not allow a 
user to pose queries which want to see the chang- 
es of some data items over time ("walk through 
time" queries) nor does the system attempt to 
obtain an optimal usage of its storage space. 

The support of the time domain, as indicated 
later, cannot be effectively implemented on top 
of an existing database system. It must be done 
as an integral part of the design of the system. 
In a previous report (Lu84), we have discussed 
conceptually how a system can be designed to have 
the time domain support. In this paper, we will 
show that, while the conceptual design may seem 
to be straightforward, many subtle issues must be 
solved first. 

In the next sections we will show first that 
there are many ways to store history data. We 
will analyze several possible alternatives and 
narrow down to the ones that seem to be most 
appropriate. We will discuss issues of choosing a 
timestamp and the effect of its selection strate- 
gy to performance. We will describe the effects 
of update operations to performance and show that 
one must analyze update strategies together with 
time version handling to determine a proper 
design. We will then conclude that the strategy 
of storing time information should be integrated 
into the design of concurrency control and recov- 

Singapore, August, 1984 



ery to arrive at an optimal solution, 

2. THE EXTENDED RELATIONAL MODEL 

Extending a 
time means 

relation (two-dimensional table) by 
to conceptually add a new dimension. 

The resulting data model can be viewed (Bj75) as 
a 3-dimensional cube (see fig. 1). The vertical 
slices represent the relation (table) at a 
specific point of time, with the front slice 
being the current one. Each horizontal slice 
represents a tuple and all its instances over 
time. Fig. 1, however, does not show the 
insertion and deletion of tuples after the 
initial load. A more realistic representation 
showing these effect's is given in fig. 2. "Asof" 
queries logically work just on one vertical 
slice. "Walk through time" queries,either work on 
a sequence of complete vertical slices, or on a 
sequence of selected parts of vertical slices 
(lIrowsll), depending on whether the logical view 
of having versions of relations 
versions of 

or having 
single tuples (see also section 

5.2.2) is held. 

3. ON TOP VS INTEGRATED TIME VERSION SUPPORT - 

At first sight, it seems to be very natural to 
implement time versions 'on top' of a relational 
database system in a view-like manner (Ch76). 
That means, the database system itself is not 
aware of supporting time versions. Time version 
support is therefore just an application from the 
system's point of view. This 'view' can be 
implemented by extending each relation to be 
versioned by two time attributes telling for each 
tuple when it has been created and when it has 
been logically deleted. A query pre-processor 
could help to implement the time 'view' 
(MS83,We83). 

As an example, consider figure 3. To retrieve 
all EMP tuples which were valid at 01/25/82, the 
user can specify a query of the following form: 

SELECT * 
FROM EMP AS-OF 01/25/82. 

A query preprocessor might transform this query 
into the form: 

SELECT * 
FROM EMP 
WHERE FROM-TIME I 820125 AND TO-TIME 1 820125. 

A great advantage of this approach is that time 
version support can be implemented rather quickly 
and easily on existing database systems with no 
change necessary. However, there are several 
drawbacks with this approach. For example, 
performance is decreasing with increasing number 
of versions, storage space is wasted, and the 
relational schema must not change over time 
(Lu84). 

Performance degradation arises not only from 
large relations (tables) but also from indexing 
tables. Since all tuples are 'current' from the 
systems point of view, the indexes will contain 

Proceedings of the Tenth InternstiQnsl 
Conference on Very Large Data Bases. 

not only information for the 'most current' 
tuples but also for 'old' tuples. As a conse- 
quence, indexes will grow not only by real 
insertions but also by updates. Other perform- 
ance problems may arise from the resulting bad 
overall system architecture (e.g. doubling of 
functions, no global optimization, pre-processor 
data treated as user data, etc.) and that 'log- 
ical key uniqueness' has to be ensured now at the 
application layer (e.g., see ManNo in figure 3). 

As logically old and logically current tuples are 
stored within the same table, both must also have 
the same structure. As a consequence, even if 
only one attribute value is changed from one 
version to another, both versions have to be 
stored completely. That is, the same unchanged 
attribute values are stored again and again, 
wasting much of the storage space. 

For database systems which are designed to 
support (history) time versions, one must take 
into account that the number and types of attri- 
butes (the attribute structure) may change over 
time. Database systems of today, however, 
support, at best, only very restricted structural 
changes without data reorganization. 

Hence the conclusion is clear: the performance, 
storage, and structural problems caused by an 'on 
top' implementation of versions are not 
tolerable. The best way to solve these problems 
is to integrate the time version support into the 
database system. How this can be done will be 
discussed in the following sections. 

4. DESIGN GOALS FOR INTEGRATED TIME VERSION 
SUPPORT 

As there are many choices to implement time 
version support, depending on one's objectives, 
one has to define first the primary goals. Our 
goals are to allow: 

l Fast access to the current version. 
l Many versions on-line. 
l Selective versioning. 
l Changes of the relational schema. 

These goals are motivated as follows: 

(1) Even in a system with time version support 
one can expect that most queries will work on the 
current data. This means, that access time to the 
current data can be expected to dominate the 
system's overall performance. Therefore, access 
to current data should be competitive to systems 
without time version support. Similar arguments 
hold for updates as well. 

(2) If one wants to support on-line ad hoc 
queries which require access to history data, one 
must be able to keep a reasonable amount of 
versions on-line. Despite the fact that the 
development of new storage technologies (e.g. 
optical disks) offers new capabilities for stor- 
ing large amounts of data, an extensive waste of 

Singapore, August, 1994 

510 



space for storing versions will still cause prob- 
lems. Therefore one has to think about how to 
represent versions compactly. 

(3) Supporting time versions will cost some 
price. However, the additional overhead created 
by having time versions must be relatively small; 
if some data is not versioned, then updates 
should be about as fast as in 'current view' 
database systems. This means that the system 
should also be suitable for environments where no 
(or only partial) time version support is 
required. We believe that it is very unlikely 
that everyone will want everything to be 
versioned. It seems to bs more realistic to 
assume that some relations will be completely 
(all attributes) versioned, while others will 
have some attributes versioned, and others will 
not be versioned at all. Thus selective 
versioning has to be offered if such a system is 
to be accepted by users. (4) The same is true 
with structure changes as already discussed in 
the previous section. 

5. DESIGN CONSIDERATIONS FOR TIME VERSION IMPLE- 
MENTATION 

-- 
-___ 

5.1 VERSIONING STRATEGIES 

In principle, one has the possibility to either 
store all versions of an object completely, or to 
store at least one version completely and the 
other ones as some kind of 'differences' or 
deltas (see also /We83/). The structure of 
deltas depends on the type of object one uses for 
versioning. We will discuss this in section 5.2. 

Though time versions should be addressed via a 
timestamp and not a version number, we will use 
version numbers in the following discussion for 
convenience reasons. Denote CVx(n) version number 

n of object x, with n, being the oldest version. 

"cv" stands for complete version. Denote 
A,(k,k') the delta (delta version) between the 

versions number k and k' of object x. If a 
version of an object is not stored as a complete 
version but only as a delta version, to 
materialize the version it has to be recon- 
structed using the delta version and the 
corresponding complete version. The following 
basic versioning strategies can be used for 
representing versions: 

VS-1: versions(x) = 
(Ax(n,n-l),Ax(n-l,n-2),...,Ax(no+l,no),CVx(n,,)) 

VS-2: versions(x) = 
(Ax(n,nO),Ax(n-l,n,,),...,Ax(no+l,no),CVx(no)) 

VS-3: versions(x) = 
(CVx(n),Ax(n,n-l),Ax(n-l,n-2),...,Ax(n,++I,no)) 

VS-4: versions(x) = 
(CVx(n),Ax(n,n-l),Ax(n,n-2),...,Ax(n,no>) 

VS-5: versions(x) = 
(CVx(n),CVx(n-i);...,CVx(nO)) 

VS-1 reads as follows: Version n,, of object x is 

represented by a complete version. Version n,+l 

is represented by a delta version. To material- 
ize version n,+l, one has to apply this delta 

against version n,, because the n,+l version is a 

(n,+l,n,)-delta. To materialize version n,+2, one 

has first to materialize version n,,+l and then to 

apply the (n,+2,n,+l)-delta, etc. We shall refer 

to a versioning strategy which has to reconstruct 
newer states from older states as forward 
oriented versioning strategy. The one which 
pursues the opposite direction is called backward 
oriented versioning strategy. As one can see, 
both VS-1 and VS-2 are forward oriented, while 
VS-3 and VS-4 are the backward oriented counter- 
parts. VS-5 shows an equivalent versioning 
strategy based on complete versions as discussed 
in section 3. 

These versioning strategies have the following 
characteristics: In VS-1, the current version is 
supported worst. That is, whenever the current 
version is to be accessed, it has to be material- 
ized first using A(n,+l,nO), A(n,+2,n0+l), . . . up 

to A(n,n-1) which requires n-l iterations. On the 
other hand, the older a version is the faster 
will the access be. This is contrary to current 
practice, and therefore contradicts the goal just 
mentioned; hence we can exclude VS-1 from further 
investigations. 

vs-2: Every version, and thus the current one 
too, can be materialized in at most two steps, 
because all deltas are related to the basic 
version. Access time to a version therefore is 
not dependent on its age. Hence VS-2 is certain- 
ly an interesting candidate. 

B-3: Access to the current version is supported 
without any additional penalty. All versions, 
except the current one, are expressed as deltas 
to the successor-in-time version. Hence access 
time to versions will grow with their age, and 
this seems to be acceptable, too. Therefore we 
will also keep an eye on VS-3. 

VS-4: This strategy seems to be the ideal choice 
at first sight. Having as fast access to the 
current version as VS-3 and as fast access to 
older versions as VS-2. Unfortunately there is a 
significant difference to VS-2. While VS-2 deltas 
remain unchanged when new versions are created, 
VS-4 versions have to be recomputed completely 
whenever a new version is created. This results 
from the fact, that VS-4 deltas are related to 
the current version which changes whenever a new 
version is created. It's rather obvious that this 
overhead is not tolerable in general. Hence we 
can exclude VS-4 from further considerations. 

Proceedings of the Tenth lnternatlonal 

Conference on Very Large Data Bases. 

Singapore, August, 1984 

511 



Finally, we reject VS-5 because storage space 
requirement is prohibitive (see section 3). As a 
result, only VS-2 and VS-3 remain for further 
analysis. 

5.2 UNITS OF VERSIONING 

Versioning can be done for physical as well as 
for logical objects. Physical objects in our 
sense are files, tracks, and blocks (pages), 
while logical objects are the database, 
relations, and tuples. We shall discuss these 
two aspects next. 

5.2.1 Versioning of,Physical Objects 

Suppose one chooses pages as the unit of version- 
ing, called page versions. That is, a page is 
just considered as a byte or bit string without 
worrying about what the bits and bytes mean. A 
very useful method for this approach is the XOR 
bit representation /HR79/. Such an XOR version 
can be stored very compactly if the two pages 
differ only in a few bits, because in this case 
the resulting bit vector contains many zero bits 
and well-known compression methods for bit 
strings can be used for a compact representation 
(delta). However, as even little changes will 
cause the pattern in the page to change in a 
large section, it may be hard to get small 
deltas. 

When using a version scheme based on page 
versions, versioning should be handled at the 
page handling layer of the database system. With 
the help of an appropriate timestamping scheme 
(see section 5.3), current and old page versions 
can then be logically addressed in a uniform way 
via <pageid,timestamp>. Using the VS-2 version- 
ing strategy as introduced in the previous 
section, an update of the current version of page 
p giving page version p(n), would cause to fetch 
also p(no), the basic (complete) version CV 

P 
(no) 

of page p. Ap(n,n,) can be obtained by first 

computing p(n) XOR p(no) and then applying some 

bit string compression technique to the result, 
if possible. Versioning based on VS-3 would be 
performed similarly. Instead of using the basic 
page version, however, p(n) XOR p(n-1) would be 
computed. The computational overhead for comput- 
ing the deltas is higher for VS-2 because p(no) 

has to be fetched additionally while p(n-1) will 
have been already fetched in most cases to 
compute p(n), the after-image. The storage over- 
head for VS-2 can also be expected to be somewhat 
higher because p(n) and p(n,,) will normally show 

more differences than p(n) and p(n-1). Thus the 
probability to have an XOR bit vector with many 
zero bits giving the chance for a significant 
compression, will be higher for VS-3. Neverthe- 
less both strategies remain applicable. 

From a simplicity point of view, page versioning 
looks quite appealing. There are, however, some 

ProceedInga of ths Tenth Internatlon~l 

Conference on Very Large Data Bases. 

drawbacks because page versioning implies also 
page locking (or coarser). This is required in 
order to guarantee a correct order of timestamps 
within the versions of an object (similar to the 
'lost update problem' /Gr78/; see also section 
5.3.1). As a consequence, concurrency is poten- 
tially decreased compared to tuple locking. When 
used in combination with "long locks" (HL82) on 
logical objects which might share pages (which 
results in page locks on these pages), this 
scheme may even be not tolerable. The second 
drawback is that selective attribute versioning 
is not possible, because only uninterpreted bit 
patterns on pages are considered. As a conse- 
quence, the decision whether to version, will be 
at the tuple (relation) level. Such relations 
could be put into segments (files) or on pages 
with the same objective. 

The drawbacks of having page versions (page lock- 
ing, large deltas, very restricted selective 
versioning) seem to be too serious. In the 
following we will focus therefore on versioning 
of logical objects only. 

5.2.2 Versioning of Logical Objects 

We start to discuss versioning of logical objects 
on tuple level, called tuple versions in the 
following. Analogous to page versions, tuple 
versions should be handled at the tuple handling 
layer of the database system. The versioning 
itself can be done similarly to page versioning 
with the help of XOR differences to describe the 
difference between the before- and the 
after-image of a given tuple. Instead of that 
"physically" oriented scheme, one ,can also use 
the operations performed on the different attri- 
butes of the tuple to describe the change (Bj75), 
thus implicitly describing the difference. This 
approach is called logical versioning in the 
following. 

If attribute values are rather long, e.g., if an 
attribute is a "long field" (HL82), it may be 
appropriate to apply the XOR technique also at 
the attribute level. Another approach to deal 
with such attribute types is to provide partial 
field operations in addition to the normal field 
operations whiz treat the field (the attribute 
value) always as a whole. Such operations can be 
"update a field partially", or, if the field is 
of variable length, "insert a part of the field 
"or "delete a part of the field". Obviously, 
these partial field operations can also directly 
be used for logical versioning. 

Hence, versioning of logical objects allows to 
choose among a variety of methods in order to 
aw 1~ the optimal delta method such that the 
resulting delta is as small as possible. Also 
SW is possible now, because the 
logical unit 'tuple' consisting of 'attribute 
values' is known now to the layer at which 
versioning is performed. Let us now analyze 
logical versioning with strategies VS-2 and VS-3: 

Singepore, August, 1984 

512 



Versioning strategy VS-2: 
Let xn be the current before-image version, 

stored as Ax(n,no) of object (tuple) x, and xn+l 

the new after-image version to be created and 
stored as Ax(n+l,n,). Let version number n,, be 

again the basic version stored as CVx(nO). Using 

strategy VS-2, there are two ways how one can 
compute a new delta version. One way, in the 
following called VS-2/l, is to compare directly 
the temporarily materialized after-images of 
versions number n+l and n, (essentially a phys- 

ical comparison). In this case, however, only 
very restricted selective versioning as with page 
versions is possible. Another way, in the 
following called VS-2/2, is to compute first 
Ax(n+l,n) and then to combine or "merge" 

Ax(n+l,n) and Ax(n,nO) such that Ax(n+l,n,) is 

obtained. 

Applying VS-2/l, the tuple and attribute oriented 
operations cannot be used for delta purposes. 
That is, logical versioning is not possible. In 
principle only XOR deltas based on the before and 
after-image of the whole tuple or of the attri- 
butes to be versioned can be computed. Applying 
VS-2/2 instead makes delta creation more complex, 
but offers the potential chance to compute a more 

. compact delta based on logical versioning, where 
appropriate. 

However, even if VS-2/Z is used, there are still 
some problems in computing compact deltas. 
Consider, for example, the following case: A 
variable long attribute value has length zero (is 
'empty') at insertion time and then 'grows' later 
on. VS-2/l as well as VS-2/2 will always have to 
store the attribute's complete after-image when- 
ever this attribute is updated regardless whether 
only one byte or the whole attribute value has 
changed from one version to the other. In such 
and similar cases VS-2 may waste a lot of storage 
space. 

Another problem is that the basic version has to 
be kept 'for ever', because all delta versions 
are related to the basic version. This can be 
circumvented rather easily by creating from time 
to time a complete version instead of a delta 
version and to use that as reference basis for 
the following versions. This may, in some cases, 
also help to solve to some extent the problem 
with 'growing' fields just described above. 

However, this would not solve the problem of 
purging history data. Generally, the purging of 
history data requires the re-calculation of most, 
if not all, of the deltas. This happens because 
the time at which complete versions of tuples are 
realized will differ from tuple to tuple and from 
the time beyond which data is to be purged. 
(Purging history data is a non-trivial problem 
and is beyond the scope of this paper.) 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

Versioning strategy VS-3: 
This strategy provides fast access to the current 
version without any additional overhead. As the 
deltas are computed on the basis of the 
before-image of a tuple and the operations 
applied against it, or by comparing before and 
after-image of a tuple, respectively, one has all 
the flexibility of choosing the appropriate delta 
method as indicated before. As one saves the 
additional access to the oldest tuple, update can 
be performed faster in general. In addition, 
there is no need to keep the oldest tuple 'forev- 
er' which makes purging or off-loading of old 
versions somewhat less complicated. Of course, 
access time to old versions will grow propor- 
tionally to the number of versions one wants to 
go back in time. From the user's point of view 
this is probably what he expects. 

Thus, we come to the conclusion that VS-3 is the 
most appropriate 'overall strategy and in the 
following we will therefore concentrate only on 
this strategy. 

up to now we have discussed how tuple versions 
can be implemented. A user, interacting with 
such a system with time version support might not 
think in versions of tuples but in versions of 
relations or may even have the view of having 
versions of the whole database. In the remainder 
of this section we will discuss how the view of 
having versions of relations can be supported. 
We restrict our discussion here to the case of a 
relation scan where the tuples have to be found 
via a physical scan through all the segment pages 
(segment scan). To simplify the discussion we 
will assume that only the current version of each 
object is stored in the (current) database and 
that all other versions are stored separately in 
a so-called history pool. 

Assume a query of the form llSelect 7'; from EMP 
asof t It is posed. 1 

This would result in scanning 

all the segment pages where EMP is stored to get 
all tuples belonging to EMP, and comparing their 
timestamps with tl. If a tuple's current time- 

stamp is too 'new', one has to check whether 
there exist deltas of this tuple in the history 
pool whose timestamps satisfy the time condition. 
Hence, insertions do not cause any major problem. 
But what about deletions? Obviously we may not 
simply erase a tuple along with all its deltas if 
we want to have time version support. One 
solution would,be to erase it in the database and 
to keep the deltas (including the version from 
the database) in the history pool. In this case 
every segment scan caused by a history query 
would enforce to scan the database segment as 
well as the history pool. A better solution is to 
keep a small remainder of the original tuple in 
the database which serves as a deletion mark and 
indicates that there existed a tuple and when it 
has been deleted. With a relatively small amount 
of additional storage space we can thus avoid 

Singapore, August, 1984 

513 



unnecessary accesses to the history pool. In this 
way, versions of relations can be implemented via 
the concept of tuple versions, too. 

5.3 TIMESTAMP SELECTION 

5.3.1 Timestamp Properties 

When we speak about 'time' in the following, we 
always mean the physical time which is related to 
and derived from the system's internal clock. (A 
detailed discussion about 'logical' (= user 
defined) and 'physical' (= system defined) time 
and their relationship can be found in /Lu84/.) 
As we deal with time versions, objects and 
versions of an object should be addressed via 
<object id,time>. The question, 
which time to associate 

however, is 
with an object or 

version, since a transaction spans a period of 
time. For example, a transaction T has started at 
10:17:10 and ended at 10:23:12. Which time- 
stamp(s) may one choose for objects/versions 
created by T? 

In the following, we want to analyze the 
restrictions which a timestamp selection scheme 
(TSS) has to obey to. Denote BOTi and RtCi begin 

of transaction Ti and the Ready-to-Commit point 

(the logical end) of transaction T., 
1 

respectively: Denote further TS(x) the value of 
the timestamp assigned to an object x or, if x is 
an event like BOT or RtC, the point in time when 
that event occurred. As the timestamp assigned 
to a new version Xk of an object x created by 

transaction Tk should be related to the time 

interval in which transaction Tk has been 

executed, TS(xk) f [TS(BOTk),TS(RtCk)] should 

hold. A TSS obeying this property is called 
transaction-consistent. 

The question arises, whether one may use differ- 
ent timestamps for different objects within one 
transaction. Consider a banking account example. 
Given an account A with single positions ai, i = 

1,2,..,n, and an account B with single positions 
b 

J ' 
. , ' = 1,2,...m. Assume, the integrity 

constraint 

2 value(ai) - T value(bj) = 0 

i=l j=l 

is implicitly modelled by a transaction Tu. No 

value of an a E A may be changed without also 
changing the value of a position b E B within the 
same transaction in the same way. Assume, the 
tuple containing an a c Ais updated first, 
getting timestamp tl assigned to it, and then the 

tuple containing a b E B, getting timestamp t2 

assigned to it, such that tI < t2. That is, TS(a) 

Proceedings of the Tenth Intematlonal 
Conterence on Very Large Data gases. 

Using some insights and notions from concurrency 
control theory on serializabilty (BSW79,Da82, 
Pa79), we can formulate the problem more precise- 
ly: Consider two transactions Tl and T2 which 

have been executed in parallel, in symbols Tl 11 

T2' producing result R. If they have been 

correctly synchronized, then either the serial 
execution order Tl before T2 or vice versa, in 

T2' orT < 2 Tl respectively, would 

the same result @, too. If only T. 

(1,2), i#j, would produce @ but no: 

symbols T < 1 
have produced 

< T., i,j c 

Tj : Ti, then 

in symbols Ti 

one calls Tj to be dependent on T., 
1 

+ T.. 
J 

To keep the order of time- 

stamps in accordance to an equivalent serial 
execution order, the following condition must 

Singapore, August, 1984 

< TS(b) holds, too. If later on a query is 
executed which requests to see the (logical) 
state of the database at time t, 

5 
<t<t 2, it 

may see an incomplete booking. To avoid this 
inconsistency, all objects created or updated by 
a transaction Tu (call this set Wu (write set) 

for short) must get the ,same timestamp. A TSS 
which obeys this property is called 
atomicity-preserving. 

Still one has the question, which timestamp to 
choose within the given restrictions 
(transaction-consistent, atomicity-preserving). 
Obviously, to use always the RtC timestamp would 
be a legal choice. As we will see in section 
5.3.2, this choice has also some drawbacks one 
might not want to have. We will therefore analyze 
the freedom one has in the choice of a "legal" 
timestamp. 

It seems reasonable to require that the sequence 
of versions of one object, ordered by time, 
reflects also the logical order of updates 
applied against that object. If one would, for 
example, always choose the BOT timestamp of a 
transaction to timestamp all its created objects 
and versions, this requirement would not always 
be satisfied. Consider two transactions Tl and 

T2 which are executed in parallel. Tl is started 

at time 100, reads and updates a tuple r, say, 
new value 1000, at time 200, and terminates at 
time 250. T2 is started at time 110, reads and 

updates tuple r, say, new value 500, at time 120 
and terminates at time 150. Hence, the sequence 
of after-image values, reflecting also the equiv- 
alent serial execution order, is 500 (created by 
T2) followed by 1000 (created by Tl). The corre- 

sponding sequence of timestamps, however, would 
be 110 (T2) followed by 100 (Tl) if the BOT time- 

stamp would have been used. Thus, either the 
timestamps or the values of the deltas are not in 
proper order. 

514 



always be met: T 
i 

+ T., 
J 

iZj + TS(xi) < TS(xj). 

A TSS which obeys this property is called 
order-preserving. - 

In the following we assume that strict two-phase 
locking (2PL) is applied. That is, all locks are 
held until the Ready-to-Commit point (RtC), which 
is the logical end of the transaction. Denote 

'k' 'k ' 'k' the update set of T k (= Wk without 

newly created objects) and OTSmax k the maximal 

(old) timestamp value of all objefts accessed by 
transaction T k for update, where OTSmax k:= 

TS(BOTk) if Uk = 0. Denote further xk again'the 

newest version of an object x created by trans- 
action T k' and Wk transaction T k 's write set. 

Definition: 
A TSS is said to be legal if and only if it is 
transaction-consistent, atomicity-, and order- 
preserving. 

Lemma 1: 
A TSS is legal @ V Tk: Wk # 0, V x E W 

k: 
1. TS(x) E TSIk:= 

[max{OTS max k+6,TS(BOTk)~,TS(RtCk)l, 6 ' 0, 
, 

and 
2. -3 (x,y), x,y c Wk: TS(y) + TS(x). 

We call TSIk to be the timestamp interval of 

transaction T k' 

Proof: 
11 

(Sketch) 
transaction-consistent 

[~(BOTk~~TS&Ck)], x E Wk, must 
TS(x) E 

hold. To be 

order-preserving, V x, V y: TS(x) ' OTS(y) (x E 

'k' y < U,), must hold, too. Hence the lower 

bound of Tk's timestamp interval has to be set to 

max(OTS max k+G,TS(BOTk)}. As a "legaltt TSS must 

be atomiciiy-preserving, condition 2 of lemma 1 
is implied as well. 
",+" : Obviously, if TS(x) E TSIk, then TSS is 

transaction-consistent and order-preserving. To 
be atomicity-preserving as well, only one time- 
stamp may be selected per transaction. This is 
guaranteed by condition 2 in lemma 1. Hence 'I#" 
holds. •I 

Lemma 1 can directly be used for designing 
version creation strategies as will be shown in 
the following section. 

5.3.2 Assigning Timestamps to Objects 

Assigning timestamps to objects has several 
aspects (see fig. 4). From the discussions above 
we know that only the RtC timestamp is really 
'safe' because its property to be ttlegal" is not 
dependent on the timestamps of objects the trans- 
action accesses for update. Hence every time- 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

515 

stamping which is done before RtC can only be 
done tentatively and might have to be corrected 
at RtC. One could choose the BOT timestamp, or 
the timestamp according to the first write opera- 
tion, or one could try to estimate the RtC time- 
stamp. A method using tentative timestamping is 
outlined in section 5.3.3. 

Final timestamping requires that the final 
(legal) timestamp is already known at time- 

stamping time. This can be achieved either by 
timestamping the versions after RtC (see 
'deferred update' in section 5.4.2), or via indi- 
rect timestamping. Direct timestamping means to --- .- 
put the timestamp physically into the object 
(e.g. as part of the tuple header). Indirect 
timestamping means that not the timestamp itself 
is stored in the object but only some kind of 
reference number (rn), e.g. a unique transaction 
sequence number. The relationship between this 
reference number and the corresponding timestamp 
is implemented via an rn-TS-table. As the time- 
stamp can be assigned at RtC, there is no need to 
refetch any object for timestamping reasons. On 
the other hand, as objects in the current data- 
base can become very old without being updated, 
the rn-TS-table may become very large. Especially 
in cases where concurrency control also uses 
timestamped versions (e.g., in /Re78/), accesses 
to this table may become a bottleneck. 

5.3.3 Optimistic Tentative Timestamping Scheme 
(Ol-rS) 

Lemma 1 can be used to design a tentative time- 

stamping scheme which may be interesting if 
access conflicts can be assumed to be rare ("op- 
timistic" assumption). This scheme can be brief- 
ly sketched as follows: Before the first object 
is updated by transaction Tk, it chooses a time- 

stamp TSk E [TS(BOTk),"current-time"]. As long as 

no object y is accessed by Tk for update with 

OTS(y) > TSk, all objects are timestamped with 

TSk. If such a conflict occurs, however, TSk is 

set to a new value (e.g. the current time), such 
that TSk > OTS(y). To be able to restamp tuples 

when necessary, all objects timestamped by Tk are 

recorded a list together with their (tentative) 
object timestamp TS(xk). At RtC time the object 

list is scanned for objects xk with TS(xk) # TSk. 

These (and only these) objects are refetched and 
timestamped with TSk. If no exceptions occurred, 

no objects have to be refetched and no additional 
overhead occurs as compared to systems without 
time versions. In the worst case when a conflict 
occurs while accessing the last object, all 
objects, except the last one, have to be 
refetched for re-timestamping. Hence this scheme 
is only appropriate when conflicts are expected 
to occur seldom. 

Singapore, August, 1984 



Applying OTIS means to assign, from the user's 
point of view, rather arbitrary timestamps to 
transactions and to objects. One transaction may 
get its BOT timestamp, another one something in 
between BOT and RtC, and still another one its 
RtC timestamp to timestamp its objects. If trans- 
actions are rather short, this should cause no 
acceptance problems in general. If transactions 
may run rather long (e.g., some hours), OTTS 
generated timestamps may cause acceptance prob- 
lems because the timestamps generated by OTTS may 
look too "arbitrary" to some users. So, even if 
the optimistic assumption is fulfilled, pure O'ITS 
might therefore not be applicable in all cases. 

5.4 INTEGRATING TIME VERSIONS INTO UPDATE PROC- 
ESSING 

Versioning has to be integrated carefully into 
update processing in order to keep the additional 
overhead as small as possible. As we have 
restricted our analysis to versioning of logical 
objects (see section 5.2.1), we need not consider 
update processing schemes which are based on 
physical objects (e.g. shadow page technique 
/Lo77/ or database cache /Ba83,E182/). In the 
following we will discuss how VS-3 can be inte- 
grated when update processing is based on 
immediate update and when it is based on deferred 
update. 

5.4.1 Immediate Update 

Immediate update means that whenever an object is 
created or modified it is immediately propagated 
to the database (not necessarily forced imme- 
diately to disk). Immediate update is an 'opti- 
mistic' strategy in the sense that one expects 
transaction backout to occur rather seldom 
compared to the number of successfully completed 
transactions. It means also that the objects are 
not refetched in the commit phase (in contrast to 
the deferred update approach described below). 
This behavior, however, causes a problem with 
assigning the timestamps. Assume transaction Tk 

updates an object x giving version xk. From lemma 

1 we know that the timestamp must be chosen such 
that TS(xk) E TSIk, and that this timestamp must 

be equal for all versions which T k creates. As 

the lower bound of TSIk, however, is dependent on 

the timestamps of objects which Tk accesses for 

update, this lower bound might not be known when 
creating %. Hence either tentative timestamping 

(e.g. OTIS) or indirect timestamping has to be 
used to solve this problem. 

Let us now discuss a method of version creation, 
based on strategy VS-3, integrated into update 
processing. Let x(n) again denote the current 
version of object x. Using versioning strategy 
VS-3 the first update of object x would require 
8he following steps: 

Proceedlngs of the Tenth International 
Conference on Very Large Data Bases. 

1. 

2. 

3. 

4. 

Access CV,(n). 

Compute CVx(n+l) and Ax(n+l,n). 

Insert Ax(n+l,n) into history pool. 

Replace CV,(n) by CVx(n+l) in the database. 

As a result of repeated updates of x within the 
same transaction, VS-3 would produce several 
before-image deltas (step 3) because it is back- 
ward-oriented and therefore dependent on the most 
current version. Having several deltas for the 
same object (tuple) is not very desirable because 
space is wasted and processing of history queries 
would be more inefficient. To get at most one 
new delta per object (tuple) for a given trans- 
action, step 2 has to be modified as follows: 

Denote x(n+l') the i-th after-image of version 
n+l of x after i (i 1 0) repeated updates within 
the current transaction, with i = 0 being the 

first update, and Ax(n+lo,n) the first delta for 

x created by this transaction. Assume, the 2nd 
update is performed against object x. The new 
delta must comprise the effects of the first 

update (Ax(n+lo,n) as well as the "difference" 

between the first and the second update 

A_(n+l',n+l'). Hence we can re-formulate step 2 
x 

as follows: 

2'. Compute CVx(n+li). 

If i=O + compute 

If i > 0 + compute 

Ax(n+lo,n). 

Ax(n+ll,n):=' 

Ax(n+ll,n+l i-1) "+" Ai(n+liml,n). 

As the final delta version is being built "incre- 
mentally" (each update will add something to it) 
we call this approach incremental versioning and 

Ax(n+li,n+li-1) an incremental delta. 

5.4.2 Deferred Update 

Deferred update means that modified and newly 
created objects are kept 'outside' the database 
and local to the corresponding transaction (in 
some kind of private workspace) until RtC. When 
the updates/inserts are committed, they are 
brought into the database in a separate write 
phase. This approach has been first proposed for 
distributed databases (Ro80,Th76,Th79) where 
updates may be prepared at another site than the 
objects are stored, to guarantee fast transaction 
backout, and where it is important to have a 
repeatable commit phase. Recently it has also 
been proposed for centralized systems, e.g. for 
'optimistic concurrency control' OCC (KR81); also 
the "database cache" approach (Ba83,E182), 
although it is page-oriented, can be seen under 
this perspective, to some extent. Applying 
deferred update, only little changes are required 

Singapore, August, 1984 

516 



for the version creation scheme just described. 
Instead of writing the deltas or after-images in 
steps 3 and 4 to the database or the history 
pool, respectively, they are written into the 
workspace. A separate write phase (step 5) has to 
be added to propagate the deltas and the 
after-images to the database and to the history 
pool. 

The 'write phase' can be used to timestamp the 
objects 'on the fly' with the RtC timestamp with- 
out creating any additional overhead for this 
purpose. On the other hand, the deferred update 
approach can cause a significant additional over- 
head compared to immediate update if it is not 
integrated very carefully into the overall 
concurrency control and recovery concept. To use 
deferred update without further integration only 
for timestamping reasons may therefore not be 
acceptable in general (for further discussions 
see section 6.2). 

5.4.3 Integrating Time Versions into Update Proc- 
essing - Conclusions 

In this section we have analyzed how time version 
(delta version) creation can be integrated into 
the normal update processing. Although the algo- 
rithms to compute compact deltas might look some- 
what involved, the integration causes no real 
problem. In the next section we will re-consider 
both update processing strategies under the 
aspect of using time versions for concurrency 
control and recovery. 

6. USING TIME VERSIONS FOR CONCURRENCY CONTROL 
AND RECOVERY 

Recently several concurrency control (CC) methods 
have been proposed which make use of 
before-images to enhance concurrency between 
conflicting transactions (BG83,BHR80,Ch82,La82, 
PK84,Re78). As "before images" are a special 
kind of time version, it seems reasonable to use 
the time versions as described above for this 
purpose too. (We will abbreviate these 
version-based CC methods with VCC in the follow- 
ing.) Whether this is really reasonable or not 
shall be discussed in the following. Again, we 
restrict our considerations to strategy VS-3. 

If a read-only transaction, called "reader" in 
the following, and an update transaction, called 
"writer", are executed in parallel, CC will often 
force the reader to wait for the writer to finish 
because the writer is updating an object which 
the reader wants to read. In some cases, 
however, it would cause no consistency (seriali- 
zabilty) problem to give the previous version 
(before-image) to the reader instead. This 
before-image version often exists anyway, as it 
is needed for recovery purposes. The new idea of 
these VCC methods is to make these before-images 
available for CC too, and to define CC rules to 
decide whether an old version may be used (and 

Proceedings of the Tenth lnternatlonal 
Conference on Very Large Data Bases. 

517 

sometimes also which version) or whether access 
to the current version is mandatory. 

In all proposals, the versions used for VCC are 
the same as used for recovery purposes. That is, 
the CC versions are complete before-image 
versions. In the following we will analyze 
whether we could utilize our delta versions for 
this purpose as well. To simplify the 
discussion, we shall assume that new versions are 
written to the same physical and/or logical 
location where the previous version was stored. 
That is, objects (tuples) are updated in place. 
The substitution of the previously current 
version by the new current version takes place 
either immediately or deferred, depending on the 
update processing strategy. As a consequence, 
once the update is propagated to the database, 
the before-image version is no longer available 
because it has been overwritten by the new 
version. 

Using delta versions for VCC purposes means that 
such a version, before it can be used, has to be 
materialized first. As complete versions are 
required, selective versioning obviously causes a 
problem because only the versioned attributes 
would show the correct old value in general. To 
solve this problem, one could compute a temporary 
complementary delta together with each regular 
delta which contains all attribute changes not 
covered by the regular delta. As a consequence, 
however, version creation, propagation of deltas 
and after-images, and materialization of before 
image versions become slightly more difficult. 

Having complementary deltas where necessary is 
equivalent - from the CC point of view - to 
having no selective versioning. That is, all 
attributes are versioned, at least temporarily. 
In the following analysis we will assume complete 
versioning. 

6.1 IMMEDIATE UPDATE 

Immediate update, as described in section 5.4.1, 
means to create the new after-image directly in 
the database and to have a delta (before-image 
delta) in the history pool, showing which changes 
have to be applied against this after-image to 
get back the initial before-image. As this delta 
depends on the value of the current version, each 
update of the current version (the after-image) 
will cause the delta to be re-computed if one 
transaction shall create at most one delta per 
object or tuple (we called this "incremental 
versioningn in section 5.4.1) In other words, the 
before-image delta is not stable in general. As 
the after-image is not stable in general either, 
one has always to ensure that the after-image and 
the delta one wants to use for materializing the 
before-image version do fit together. As a conse- 
quence, propagating the after-image and the 
corresponding delta to database and history pool 
must be done in one step requiring some kind of 
short-time locking, in general, to ensure 

Singapore, August, 1994 



consistent input for readers. In this way, delta 
versions could be used for VCC too. 

Let us now consider the usability of our deltas 
for undo-recovery purposes, i.e., whether they 
can substitute an undo-log. As an undo-log is 
used to remove the effects of incomplete trans- 
actions from the database (transaction abort, 
crash victim), log entries must be written to 
permanent storage before the corresponding change 
in the permanent database is performed 
(write-ahead-log principle /Gr78/). This means 
in our case, that the deltas must be written to 
the history pool before the after-image is writ- 
ten to the database. In addition, the deltas must 
always show what has to be done with the corre- 
sponding database tuple on disk, to obtain the 
before image value it had at BOT. We shall first 
assume, that incremental versioning is applied 
(see above). 

Consider fig. 5. Assume that one transaction 
updates object x twice. Before the new 
after-image is written to disk, the corresponding 
delta is written to the history pool. If a crash 
occurs at the time indicated in this figure, the 
history pool delta could not be used to restore 
the database object to its old value it had 
before BOT. One can show, that this problem 
could be resolved by using a list of incremental 
deltas with update counters, instead of computing 
and storing only one delta. 

Hence we can conclude that, if immediate update 
with incremental versioning (at least one delta 
per object and per transaction) is applied, then 
these deltas can be used for VCC but not for 
recovery purposes. If the incremental deltas are 
stored explicitly, e.g., as a linked list and 
some additional information like an update count- 
er, they could also be used for recovery 
purposes. Since this means to waste additional 
storage space and to enhance the overhead for 
processing history queries, this may only be 
acceptable if repeated update occurs rather rare- 
ly. 

6.2 DEFERRED UPDATE 

In this approach, all after-images and corre- 
sponding deltas created by a transaction Tk 

during run-time are withheld from other trans- 
actions until RtCk by simply keeping them in Tk's 

workspace. Hence, before RtCk no before-image 

materialization is needed. When the write phase 
has started, however, synchronization of 
after-image and delta write is required and 
access to the before-image requires materializa- 
tion as in the immediate update approach. As 
incremental versioning is done in the workspace, 
not visible to CC and other transactions, 
synchronization is needed only one time per 
object/delta and transaction. Thus, less overall 
overhead is necessary to guarantee consistent 
input for readers. 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

518 

As only one after-image and one delta is written 
to the database after RtC, the llincremental 
versioning problem" as outlined above, does not 
exist here. One delta is sufficient to capture 
all undo-information necessary for crash-recovery 
(transaction-backout is directly handled with the 
help of the workspace; see below). Hence, deltas 
based on deferred update are able to substitute 
an undo-log. 

A probably better idea, however, would be to make 
undo-recovery in the database superfluous by 
using the workspace in a permanent storage device 
to make the transaction's write phase repeatable. 
That is, to use the workspace as a transaction 
oriented redo-log. In this case, to undo a trans- 
action which has not yet reached its RtC would 
mean to simply Ilforget" the workspace. On the 
other hand, if a crash occurred during the trans- 
action's write phase, the workspace could be used 
to repeat it once more. 

6.3 USING TIME VERSIONS FOR CC AND RECOVERY - 
CONCLUSION 

Time versions (delta versions) can be used to 
implement version-based CC for both update proc- 
essing strategies, immediate and deferred update. 
Their usability for recovery, however, is 
restricted to deferred update processing in 
general. The deferred update approach offers a 
very good basis (considering also the RtC time- 
stamping aspect (see section 5.4.2)) for 
integrating time versions into update processing, 
concurrency control, and recovery. 

7. SUMMARY AND CONCLUSIONS 

Integrating time versions into a database system 
poses a lot of questions. For example, which 
object to choose (physical or logical), how to 
store the versions (complete, compact, forward, 
or backward oriented), how to select and assign 
an appropriate timestamp, how to integrate 
versioning into update processing, etc. These 
questions have been analyzed in this paper and 
solutions have been proposed. We have defined 
and discussed five basic versioning strategies. 
One of them has finally been selected for further 
investigation. It allows access to the current 
version without any additional overhead compared 
to systems with no version support. In addition 
it offers a good potential for creating small 
versions. The price to have compact versions is 
to have an increasing processing overhead for 
history queries according to the time one wants 
to go back. 

The goal of this paper was to show that inte- 
grated time version support does not necessarily 
cause an 'exotic' system architecture. We there- 
fore have analyzed how to integrate version 
creation into two different update processing 
strategies, immediate and deferred update, and 
whether, and under which conditions, these time 
versions (deltas) could also be used for concur- 

Singapore, August, 1994 



rency control and recovery purposes. We have 
shown that a fully integrated approach causes no 
major problems for both update processing strate- 
gies, although it might not be a really good idea 
to use time versions for recovery purposes when 
immediate update is applied. Opposed to that, a 
full integration of time versions into the 
deferred update approach looks very promising. 

Because of space, we had to restrict our analysis 
in this paper to some major points. For designing 
a system with time version support, other impor- 
tant issues have to be solved as well. 

One important point is how to support structural 
changes. By storing the catalog as a relation, 
the versioning mechanism can be used to have 
versions of the catalog as well. 

tional problems 
However, addi- 

like providing and defining the 
semantics Of additional null values and 
host-language coupling have to be solved in this 
context, too. 

Another important point is index -support for 
history data. The general problem and possible 
solutions have been already discussed in another 
paper (Lu84). We only want to outline here, how 
versions of pointer lists (as they may occur in a 
"history index") can be stored in a rather 
compact way. As already mentioned in section 
5.2.2, one uses partial field operations to 
obtain compact deltas for long attribute values. 
Treating a pointer list as a tuple of a unary 
relation with a variably long attribute value, an 
update or insertion at the object level causing a 
pointer value to be put into a pointer list, 
could be simply expressed as tlinsert value x 
after position y in field 2". Obviously, this 
allows potentially to derive reasonably small 

deltas also for pointer lists. 

As delta creation is automatically triggered by 
updates, and as updates may be incorrect (e.g., 
typing errors), the generated deltas, seen from 
the the user's point of view, may be incortect 
too. Hence, one has also to deal with correction -.--- 
of errors. Obviously, to simply overwrite wrong 
values is not acceptable in general. As 
corrections are "events" one might asked for in 
queries, a system with time version support. 
should be able to support three different types 
of 'history' queries. Queries which work on the 
corrected data, queries which work on the 
non-corrected data, and queries which answer when 
and which corrections have been issued. Another 
problem in this context is, how to implement a 
meaningful user interface to perform corrections. 
This problem has not been resolved yet. 

Last, but not least, one has to deal with logical 
time. That is, timestamps for objects which a 
user may define and possibly also may want to 
change. Logical time is of special interest when 
the time at which the update is performed differs 
from the time when the change shall become 
logically "effective" (e.g., a retroactive raise 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

in salary or new prices which shall become valid 
some days later). Providing logical time, which 
implies ltchange the history", it will probably be 
necessary to reproduce the sequence of updates 
(changes) on demand, providing a facility which 
allows to see which value did really (without: 
subsequent "corrections") exist at a given point 
in time in the history. Hence, logical t.imestamps 
will, in general, not replace but complement the 
physical timestamps described in th.is paper (for' 
further discussions see /Lu84/). 

For simplicity we have restricted our discussion 
to relational database systems. As a matter of 
fact 
deriled 

the results presented here, have been 
from our design considerations for n 

database system which is supposed to p-covide a 
basis for the support of both, the hierarchical 
and the relational data model. This system, 
currently under implementation within the data- 
base project at the Heidelberg Scientific Center, 
is expected to be useful to many scientific, 
engineering and office applications. Some othc~- 

aspects of this database system have already been 
reported in /DPS83,Ja84,JS82,SP82/. 

Acknowledgement ---- 

WC want to express our special thanks to R. b;rbc 
and N. Staab who participated in the design and 
implementation of the tuple handli.ng and time 
version management component of our database 
prototype. Many thanks also to J. Guenauer, P. 
Pistor, G. Walch, and J. Woodfill for helpfIll 
discussions. 

8. REFERENCES --- 

An82 Anderson, T:L.: Modeling Time at the 
Con_ceptual Level. Proc. Second Int. Conf. 
on Databases, Jerusalem, June, 1982 

Ba83 Bayer, R.: Database System Design for- High 
Performance. Proc. IFIP 83, Paris, Sept. 
1983, pp. 147-155 

BG83 Bernstein, Ph.A., Goodman, N.: Multiversion 
Concurrency Control - Theory and 
Algorithms. ACM TODS, Vol. 8, No. 4, PP. 
465-483 

BHR80 Bayer, R., Heller, H., Reiser, A.: Paral- 
lelism and Recovery in Database Systems. 
ACM TODS, Vol. 5, No. 2, 1980, pp. 139-156 

BSW79 Bernstein, Ph.A., Shipman, D.W., Wang , 
W.S. : Formal Aspects of Serializability in 
Database Concurrency Control. IEEE Trans. 
on Software Eng., Vol. SE-S, No. 3, 1979, 
pp. 203-216 

Bj75 Bjork, L.A., Jr.: Generalized Audit Trail 
Requirements and Concepts for Data Base 
Applications. IBM Systems Journal, Vol. 14, 
No. 3, 1975, pp. 229-245 

Bu77 Bubenko, J.A.: The Temporal Dimension in 
Information Processing. Architecture and 
Models in Database Management, G.M. 

Singapore, August, 1984 

519 



Ci176 

Ch62 

CUR.', 

D a s 2 

Nijssen, Ed., North Holland, 1977, pp . 
93-118 
Chamberlin, D.D. et al.: SEQUEL 2: A 
Unified Approach to Data Definition, Manip- 
!Ilation, and Control. IBM .Journal of 
Research and Development, Nov. 1976, pp. 
560-575 
Ghan, A. et al.: The Implcmcntatic~n of an 
Integrated Concurrc:ncy Control and Recovery 
Scheme. Proc. STGMOD 82, Orlando, Florida, 
June 1982, pp. 184-191 
Clifford, J., Warren, D.S.: Formal Seman- 
tics of Time in Databases. ACM TODS, Vol. 
8, No. 2, 1983, pp. 214-254 
Dadam, P.: Concurrency Control and Recovery 
in Distributed Databases: Fur1damnntal.s and 
Concepts. Ph.D. thesis, Ilniversity of 
Hngen, Dept. of Mathematics and Computer 
Science, 1982 

DPS83 Dadam, P., Pintor, P., Schek, H.-J.: A 

X1.82 

CK78 

HR79 

HL82 

Ja84 

JS82 

Kj.83 

Kl81 

KL83 

Predicate Oriented Locking Approach EOX 

Integrated Information Systems. Proc. IFIP 
83, Paris, France, Sept. 1983, pp. 763-768 
Elhardt, K.: Das Datenbank-Cache: Entwurfs- 
prinzipien, Algorithmen, Eigcnschaften. 
Technical University Munich, Dept. of Math- 
ematics and Computer Science, Tcchn. Rep. 
No. TUM-18208, Mai 1982 
Gray, J.N.: Notes on Database Operal:i.ng 
Systems. Lecture Notes in Cisinputel 
Science, Vol. 60, Springer-Verlag, Berlin, 
Heidelberg, New York, Tokyo, 1978, PP 
393-481 
Haerder, Th., Reuter, A.: A Systematic 
Framework for the Description of Trans- 
action-oriented Logging and Recovery 
Schemes. TH Darmstndt, Fachbereich Infor- 
matik, DVI 79-4 
Haskin, R.L.; Lorie, K.A.: On Extending the 
Functions of a Relati.onal Database System. 
Proc. SIGMOD 82, Orlando, June 1982, pp. 
207-212 
Jneschke, G.: Recursive Algebra for 
Relations With Relation Valued Attributes. 
Heidelberg Scientific Center, Techn. Rep. 
84.01.003, 1984 
Jaeschke, G., Schek, H.-J.: Remarks on the 
Algebra of Non First Normal Form Relations. 
Proc. ACM SIGACT-SIG?lOD Symp. on Principles 
of Data Base Systems, Los Angeles, March 
1982, pp. 124-138 
Kinzinger, H . : Erweiterung e j ni: I* 
Datenbank-Anfragesprache zur Unterstuetzung 
des Versionenkonzepts. Sprachen fuer Daten- 
banken, Informatik-Fachberichte 72, Spring- 
er-Verlag, Berlin, Heidelberg, New York, 
Tokyo, 1983, pp. 96-112 (in German) 
Klopprogge, M.R. : TERM: An Approach to 
Include the Time Dimension in the 
Entity-Relationship Model. Proc. Second 
Int. Conf. on Entity-Relationship Approach, 
1981, pp. 466-512 
Klopprogge, M.R., Lockemann, P.C.: ?lodel- 
ling Information Preserving Databases: 
Concequences of the Concept of Time. Proc. 

KRSl 

La73 

La74 

La82 

I.077 

I,1184 

MS83 

Pa?') 

PK84 

Re78 

Ro80 

SP82 

Th76 

Th73 

We83 

VLDB 1983, Florence, Italy, Oct./Nov. 1983, 
pp. 399-416 
Kung, H.T., Robinson, J.T.: On Optimistic 
Methods for Concurrency Control. ACM TODS, 
Vol. 6, No. 2, 1981, pp. 213-226 
Langefors, B.: Theoretical Analysis of 
Information Systems. Studentljtteruri 
Auerbach, Lund, Sweden, 1973 
Langefors, B.: 'Theoretical Aspects of 
Information Systems for ManagemenL. Proc. 
tFIP 74, Stockholm, Sweden, 1974, pp. 
937-945 
Lausen, G.: Formal Aspects of Optimistic 
Concurrency Control in a Multiple Versions 
Database System. Information Systems, Vol. 
8, No. 4, 1983, pp. 291-301 
Lorie, R.A.: Physical Integrity in a Large 
Segmented Database. ACM TODS, Vol. 2, No. 
1, 1977, pp. 91-104 
Tam, V. et al.: Designing DBMS Support for 
the Temporal Dimension. Heidelberg Scien- 
tific Center, Techn. Rep. No. 84.03.001, 
1984 
Mueller, Th., Steinbauer, D.: Eine Spra- 
chschnittstelle zur Versionenkontrolle in 
CAM-Datenbanken. Informatik-Fachberichte 
72, Springer-Verlag, Berlin, Heidelberg, 
New York, Tokyo, 1983, pp. 76-95 (in 
German) 
Papadimitriou, Ch. H.: The Serial.izabi.lity 
of Concurrent Database Updates. Journal OF 
the ACM, Vol. 26, No. 4, Oct. 1979, pp. 
631-653 
Papadimitriou, Ch.H., Kanellakis, P.C.: On 
Concurrency Control by Multiple Versions. 
ACM TODS, Vol. 9, No. 1, 1984, pp. 89-99 
Reed, D.P.: Naming and Synchronization in a 
Decentralized Computer System. Ph.D. 
Thesis, M.I.T., Dept. of Electrical Engi- 
neering and Computer Science, Sept. 1978 
Rothnie, J.B., Jr. et al.: Introduction to 
a System for Distributed Databases (SDD-1). 
ACM TODS, Vol. 5, h'o. 1, 1980, pp. 1-17 
Schek, H.-J., Pistor, P.: Data Structures 
for an Integrated Database Management and 
Information Retrieval System. Proc. VLDB 
82, Mexico City, Sept. 1982, pp. 197-207 
Thomas, R.H.: A Solution to the Update 
Problem for Multiple Copy Databases Which 
Uses Distributed Control. Bolt, Beranek and 
Newman, Inc., Rep. No. 3340, July 1976 
Thomas, R.H.: A Majority Consensus Approac!l 
to Concurrency Control for Multiple Copy 
Databases. ACM TODS, Vol. 4, No. 2, 1979, 
pp. 180-209 
Weikum, G.: Entwurfsueberlegungeu fucr 
einen Versionen-Manager zur Realisierung 
eines temporalen Datenbanksystems. Techn. 
Hochschule Darmstadt (W. Germany), Fachber- 
eich Informatik, Bericht DVSI-1983-Al (in 
German) 

Proceedings of the Tenth International 

Conference on Very Large Data Bases. 

Singapore, August, 1904 

520 



FIGURE 1: Tuples in Table 

FIGURE 2: Tuples in Table 

EMP: DeptNo 

1345 
1345 
1345 
1345 

I 

1345 
1345 
1345 

ManNo Name Salary FROM-TIME TO-TIME 

12239 Jones 3,000 800123 
12239 Jones 3,500 810313 
12239 Jones 4,200 820221 
12239 Jones 5,000 830313 
17887 Miller 3,500 810210 
17887 Miller 4,500 820212 
17887 Miller 5,500 830306 

810312 
820220 
830312 

i32;211 
830305 

8. 

FIGURE 3: Relation with Additional Time Attributes 

Proceedings of the Tenth International 

Conference on Very Large Data Bases. 
521 

Singapore, August, 1994 



timestamping 

' 'final tentative 

dirL Lirect ' Lirect direct 

FIGURE 4: Possibilities of Assigning Timestamps to Objects 

old value value after value after 
: 1st update : : 2nd update : 
: : : 

history pool: - : -5 : :-7 1 
: 
: 

: : : 
database: 10 : 1s: : I 17: 

1 : 
: : 
. . 1. i P 

BOT crash time 

FIGURE 5: Delta Creation in the Case of Repeated Updates 

Proceedings of the Tenth International 
Conference on Vety Large Data B5w5. 

522 

Singapore, August, 1994 


