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Abstract 
This paper describes an approach to the 

specification and modeling of information associated 
with the design and evolution of VLSI components. 
The approach is characterized by combined structural 
and behavioral descriptions of a component. Database 
modeling requirements specific to the VLSI design 
domain are considered and techniques t.o address them 
are described. An extensible object-oriented 
information management framework, the 3DIS (3 
Dimensional Information Space), is presented. The 
framework has been adapted to capture the underlying 
semantics of the application environment by the 
addition of new abstraction primitives. An example 
3DIS database for a VLSI design system is presented. 

1. Introduction 
The Very Large Scale Integrated circuit (VLSI) 

design environment is characterized by a large volume 
of data, with diverse modalities and complex data 
descriptions [Bushnell 831, [Davis 821, and [Knapp 851. 
Bot,h data a.nd descriptions of data are dynamic, as is 
t,he underlying collection of design techniques and 
procedures. Design engineers, who are normally not 
database experts, nevertheless become the designers, 
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manipulators, and evolvers of their databases. A final 

distinctive property of VLSI design environments is a 
requirement to model both the dynamic behavior of a 
circuit and its static structure. 

In this pa.per, we characterize a class of digital 
VLSI design environments, describe a unified syst.em for 
VLSI design, and present an object-orient.ed 
information framework appropriate to model these 
environments. The remainder of this section concerns 
digital VLSI design application domains and their 
specific database modeling requirements. Section 2 
briefly describes an extensible object-oriented 
framework suitable for modeling VLSI design 
environment,s, the 3DIS (3 Dimensional Information 
Space), which has been extended to capture the 
underlying semantics of circuit structure and behavior. 
Section 3 describes the modeling of VLSI circuits in the 
ADAM (Advanced Design AutoMation) system. An 
example 3DIS database for the ADAM VLSI design 
system is presented in Section 4 of this paper. 

1.1. The VLSI Circuit Design Domain 
The VLSI circuit design process typically begins 

wit,h a descriptive high-level specification of the design, 
consist.ing primarily of dataflow and timing graphs, 
which t.ogether describe the data-transformation and 
timing behavior of the desired hardware. Less detailed 
structural (i.e. schematic) and physical specificat,ions 
are given, describing static properties of the target 
circuit. The descriptive graphs are hierarchical in t.hat 
their components can be recursively decomposrd into 
simpler components. For example, a dataflow node 
“multiply. can be decomposed into simpler ‘shift” and 
“add’ constructs. 

Several relationships might be specified among 
t,he components of a high level design specification; e.g. 
among specific time intervals and data operations in the 
timing and dataflow graphs. Various constraints can br 
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attached to the graphs; for example, the duration of a 
time interval can be limited, a schematic wire can be 
specified to be a bidirectional bus connection, and the 
area of a physical bounding box can be limited. The 
descriptive graphical representations contain both 
numeric and symbolic attributes on their arcs and 
vertices. 

The descriptive specification is usually large and 
complex. Many kinds of data are involved and it is in a 
large part recursively defined. Furthermore, the 
specification must be checked for completeness and 
consistency before the design process begins. 

VLSI circuit design typically utilizes a design 
library, which contains components to be used in the 
construction of new components. It can also contain 
designs that are themselves under construction; these 
may be subparts of a larger design (e.g. the control unit 
for a CPU), or independent projects. Selecting the 
appropriate library component may be difficult. For 
example, if an adder is desired, there might be several 
components named ‘adder’, a few named ‘ALU’, and a 
few ‘complex standard’ (i.e. microprocessors). In other 
situations, the behavior desired may not match the 
stated behavior of any component in the library 
without some transformation being applied. 

The output of the design system includes a set of 
graphs, relationships, and constraints similar to those of 
the descriptive specification, but with a much more 
detailed physical description. 

1.2. ADAM: A Unified System for VLSI Design 
The ADAM (Advanced Design AutoMation) 

system [Granacki 851 is envisioned to become a unified 
system for VLSI design, starting with a functional and 
timing specification and proceeding to circuit layout via 
automatic synthesis routines. The ADAM system 
describes VLSI circuits by means of four recursively 
defined and explicitly interrelated hierarchies. In 
ADAM, the representational formalisms of the input 
descriptive specification, the library components, and 
the output design are identical. This in turn facilitates 
the task of design verification and validation, e.g. 
testing the equivalence of specified and implemented 
dataflow graphs. 

ADAM supports several major circuit design 
activities. These activities comprise the main part of 
the process by which the dataflow and timing 
descriptive specifications are mapped into the physical 
output components [Parker 841, [Director 811. An 

appropriate information modeling environment for 
ADAM must support these tasks: 

l Algorithm Synthesis: The dataflow graph is 
transformed in order to optimize speed, 
area, power, and other tradeoffs. 

l Partitioning: Some part of the specification 
is partitioned so that the parts can be dealt 
with separately. 

l Floor Planning: Given partitions and 
constraints, high-level chip plans can be 
constructed that aid in the prediction and 
optimization of area and performance. 

l Data Path and Control Synthesis: Data 
paths are allocated hardware resources and 
the order of operations is fixed. Controllers 
are specified and synthesized. 
Interconnections are synthesized. 

l Built-In Test Synthesis: Hardware is added 
to make the end product testable. 

l Module Selection: Design library elements 
are introduced to implement operators, 
memories, and random logic. 

l Placement and Routing: Modules are 
allocated physical positions on the layout, 
and interconnect wires are routed. 

l Validation and Verification: At any step of 
the design process, performance and 
function may be validated using an 
appropriate simulator or formal verification 
tool. 

1.3. Information Management Requirements of 
VLSI Design Environments 
Given the above general characterization of t.he 

VLSI design process, the fundamental characteristics of 
digital VLSI design environments can be summarized as 
follows: 

l The design data is of large volume, and of 
various modalities and complexities, e.g. 
graphical, symbolic, numeric, textual and 
formatted data. 

0 Structural information (e.g. data- 
description, data-interrelation, and d&a- 
classification) is complex, of large quantity 
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a.nd must support dynamic use. Structures 
must allow programs, documents, messages, 
constraints, and graphs to coexist. 

l The end-users, design engineers and CAD 
application programmers, are familiar with 
their application environment, but are not 
likely to have expertise in databases or 
programming. 

2. Information Modeling for VLSI/CAD 
Much of the reported work in the VLSI database 

design literature describes management of design 
information as collections of raw data in files. 
Interpretation of the stored design data is completely 
hidden in the application programs and the users’ 
minds. These database systems are costly to maintain 
and evolve. Record-oriented database models, such as 
the relational data model has also been applied to 
VLSI/CAD design environments [Wong 791, [Eastman 
801. However, these models are of limited suitability for 
non-database-expert VLSI designers who int.end to 
build, use, and maintain their own databases. 

Recently, the suitability of the so-called semantic 
database models as tools to help in the construction 
and use of design databases has been examined [Katz 
821, [McLeod 831, [Batory 841, and [Dittrich 851. Some 
semantic database models are object-oriented in the 
sense that the modeling constructs and the construct 
manipulators of these models are defined as objects. In 
such systems objects can be defined to correspond to 
the concepts, entities, and activities of application 
environments. 

2.1. A Brief Summary of the 3DIS 
The 3 Dimensional Information Space 

(3DIS) [Afsarmanesh 841, and [Afsarmanesh 85aj is a 
simple but extensible object-oriented information 
management framework. The 3DIS is mainly intended 
for applications that have dynamic and complex 
structures, and whose designers, manipulators, and 
evolvers are non-database experts. As a step towards 
addressing the modeling needs of such application 
environments, the 3DIS unifies the view and treatment 
of all kinds of information including the structural 
(description and classification of data) and non- 
structural (data) database contents, which simplifies 
database manipulation and modification tasks. 

3DIS databases are collections of interrelated 
objects, where an object represents any identifiable 
piece of information, of arbitrary kind and level of 
abstraction. For example, a VLSI component, a 

component’s attribute, a string of characters, a 
structural component (type), and a procedure defined 
on a component type are all modeled uniformly as 
objects in a homogeneous framework. Therefore, what 
distinguishes different kinds of objects is the set of 
structural and non-structural (data) relationships 
defined on them. 

Each 3DIS object has a globally unique object-id 
that is an identifier generated by the system. An object 
can also have several user-specified surrogate 
object-names which also uniquely identify it. Objects 
may be referred to via their unique object-ids, object- 
names, or via their relationships with other objects. 
The 3DIS model supports the following kinds of objects: 

l Atomic objects represent symbolic constants 
in databases. These objects carry their own 
information content in their object-ids. 
Atomic objects cannot be decomposed into 
other objects. The contents of atomic 
objects are uninterpreted, in the sense that 
they are either displayable or executable. 
Strings of characters, numbers, Booleans, 
text, messages, audio, and video objects, as 
well as behavioral (procedural) objects, are 
example atomic objects. Text objects and 
messages represent long character strings, 
while audio and video objects represent 
digitized voice and images. Behavioral 
objects represent the routines that embody 
database activities, representing objects that 
are executable. Behavioral objects 
accomplish modeling of data definition, 
manipulation, and retrieval primitives, e.g. 
Insert-an-OEM-Component2. 

0 Composite objects describe non-atomic 
entities and concepts. The information 
content of these objects can be interpreted 
meaningfully by the 3DIS system through 
their decomposition into other objects. An 
example of a composite object is a 
component H42psddr. Composite objects 
are not displayable, except in terms of their 
relationships with atomic objects; for 
example, Designer-names for H42padder 
are David and John. If a composite object 
is related to certain other composite objects, 
e.g. H42paddr has the dataflow model 
Hllpaddr-Dataflow, then it may be 
displayed recursively in terms of the atomic 

2 &Id&e is used to denote object-names. 



objects related to those composite objects. 
Mapping objects are a special kind of 
composite objects. A mapping object is 
defined in terms of, and may be decomposed 
into, a domain type object, a range type 
object, an inverse mapping object, and the 
minimum and maximum number of the 
values it may return. Mappings model both 
the descriptive characteristics of an object, 
e.g. a component’s name via 
Component-Name, and the associations 
defined among objects, e.g. a component’s 
constituents via Has-Link-Constituents. 
Mappings also model both single and multi- 
valued relationships. 

l Type objects specify classification 
information: a type object is a structural 
specification of a group of atomic or 
composite objects. It denotes a collection of 
database objects, called its members, 
together with the shared common 
information about these members. A type 
object is defined in terms of its members, a 
set of mappings shared by its members, the 
fundamental relationships between this type 
object and other type objects, and a set of 
operations shared by its members. A type 
object can be a subtype of another type 
object (supertype). Subtypes are defined by 
the enumeration of members of their 
supertypes and inherit some of their 
supertype’s definition such as the mappings 
and operations shared by members 
(Enumeration may be accomplished through 
a behavioral object, i.e. a procedure defined 
on the supertype; this in effect supports 
predicate-defined subtypes). A type object 
can be the subtype of more than one type 
object. The subtype/supertype relationships 
a.mong type objects can be represented by a 
directed acyclic graph (DAG). Examples of 
type objects are In-House-Component 
and Dataflow-Model. 

Basic associations among objects in 3DIS 
databases are established through a set of predefined 
abstraction primitives. The 3DIS model has been 
extended to accommodate other kinds of abstractions 
that are useful in VLSI design applications. For 
example, abstraction primitives to support the 
definition of recursively defined entities and concepts 
such as sets, lists, and binary trees are included in the 
model. In particular, for the ADAM design database, 

the 3DIS supports the recursive definition of VLSI 
components, as described in section 4. . 

An integral part of the 3DIS model is its simple 
and multi-purpose geometric representation. This 
geometric framework graphically organizes both 
structural and non-structural database information in a 
3-D representation space and supports their uniform 
handling. The framework reflects a mathematically 
founded definition for 3DIS modeling constructs in 
terms of the geometric components that represent 
them. The three axes in the space represent the 
domain (D), the mapping (M), and the range (R) axes. 
Relationships among objects are modeled by “domain- 
object, mapping-object, range-object. triples that 
represent specific points in the geometric space. 

Figure 2-1 illustrates a perspective view of the 
geometric representation of an example 3DIS database. 
In this figure, FA-1 and FA-2 are members of the type 
object Single-Node, while they are also the 
Model-Constituents of H42padder-Dataflow. 
Figure 2-2 illustrates the right view of the geometric 
representation for the H42padder-Dataflow. Both 
figures have been simplified to represent only a part of 
the information in the database; the example is further 
described in Section 4. 

Several geometric components such as points, 
lines, and planes play a meaningful role in representing 
certain abstractions of the data. For instance, in 
Figure 2-1, the vertical line emanating from the object 
H42padder-Dataflow represents all mappings defined 
on that object. Similarly, an orthogonal plane passing 
through the same object contains the information about 
all objects directly related to H42padder-Dataflow. 
The variety of information encapsulation supported by 
the geometric representation, is a unique feature of the 
3DIS data model. 

The geometric representation is also intended to 
provide a foundation for information browsing and 
serves as an environment for a simple graphics-based 
database user interface. A simple set of navigational 
operations is defined that consists of viewing and 
moving primitives. Viewing operations provide 
“display windows’ to ‘information neighborhoods’ of 
interest, such as the example views in Figures 2-l and 
2-2. Moving operations allow the informat,ion browsing 
and retrieval. Movements are defined between points 
on views in orthogonal directions, and they ha.ve unique 
meanings relative to their start positCon. Iiowevtr, 
moving in each direction has also a specific mcnning 
that is independent of the start position. For rxarnplt:, 



Figure 2-l: Perspective view of a part of 
information in a 3DIS database 

Figure 2-2: Right view of H42padder-Dataflow 

moving parallel to the R-axis from any point to the 
next always returns the next range object for t-he same 
domain and mapping objects. Navigational operations 
support viewing, browsing, and retrieval of both 
structural and non-structural information. A further 
description of the 3DIS user interface is given in 
[Afsarmanesh 85aj. 

3. A 3DIS Database for VLSI 
The digital circuit design process can be regarded 

as a search of a “design space. [Director 811 for a 
particular solution that meets constraints on 
functionality, timing, power, cost, etc. The entire 
design space can be broken down into subspaces which 
are near-orthogonal in the sense that decisions taken in 
one subspace affect decisions taken in another subspace 
weakly across some region of interest. For example, a 
single functional specification can be mapped into 

several different implementations with varying speeds, 
power dissipations, and costs. 

The 3DIS database described below is based on 
four hierarchical subspaces (also called models) chosen 
for their near-orthogonality [Knapp 831 and [Knapp 851. 
For example, one of the subspaces is used to represent 
schematic (structural) information; this subspace is a 
hierarchy with block diagrams at the top, registers and 
ALUs at the middle, gates a little lower, and transistors 
at the bottom. Design entities are described in terms of 
these subspaces and a set of relationships across them. 

3.1. The Definition of Component 
The fundamental structure of the ADAM 3DIS 

database is the component. A component can 
represent either a specification, a design in progress, or 
a member of the design library. A specification is 
represented as an incomplete component. The 
information that is present in the specification usually 
represents the operations the target must perform and 
the constraints it must meet. 

A design in progress is also an incomplete 
component. The design gradually becomes more and 
more complete, until it can be manufactured. In the 
initial stages of design, the target component contains 
primarily dataflow and timing information; in the later 
stages it contains more schematic information, and 
finally physical layout. The original dataflow, t.iming, 
and schematic information are preserved for 
documentation and verification/validation purposes. 

The design library is used to store both procured 
components (OEM components) and .In-house” 
component,s. An in-house component may be either 
complete or incomplete. 

3.2. The Four Models of a Component 
A component is described in terms of four 

models and a set of relationships (bindings) across the 
constituents of the models. The models correspond to 
the four subspaces of the design space. The four models 
are: 

1. The dataflou~ model describes the data 
transformation operations performed by the 
component. Its primitives are nodes and 
values. Nodes represent data 
transformations; values represent data 
passed between nodes. 

2. The timing and sequencing model describes 
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time-domain and branching behavior of the 
component. Its primitives are ranges and 

points3. A range represents a time interval 
during which an operation can take place; 
points represent infinitesimal ‘events’, 
which are partially ordered because the 
ranges have signs as well as durations. 

3. The structural model describes the 
schematic diagram of the component. Its 
primitives are modules and carriers. A 
module represents a schematic block, gate, 
transistor etc.; a carrier represents a 
schematic wire. 

4. The physical model describes the layout, 
position, size, packaging and power 
dissipation of the component. The primitive 
elements are blocks and nets, which 
represent layout cells and interconnect 
respectively. 

For example, the OEM-component n 74181’, which is a 
4-bit TTL ALU slice, has a dataflow model with add, 
subtract, AND, and OR nodes, which represent its 
data transformations. This component has a timing- 
and-sequencing model that describes its propagation 
delays for various combinations of inputs. It has a 
schematic diagram that either consists of a box with 
connection points or a gate diagram. It also has a 
physical description that signifies that its package is a 
14-pin DIP. 

3.2.1. Hierarchy within the Subspaces 
The four models are each hierarchically 

structured. For example, a dataflow node is either 
primitive or it is defined recursively in terms of other 
nodes and values. Similarly, a value is either primitive 
or defined recursively in terms of other values. Similar 
recursive definitions are used in all four hierarchies. 

3.2.2. Models and Links in the Four Subspaces 
The generic name Model is used for nodes, 

ranges, modules, and blocks. The dataflow model of a 
component is therefore a Node, which can be 
recursively decomposed into Nodes and Values. The 
generic name Link is used for values, points, carriers, 
and nets. These too can be decomposed, with the 
exception of points, which represent atomic events of 
infinitesimal duration. 

‘These points (timing events) are not to be confused with the 
points of the 3DIS geometric representation. 

3.2.3. Relationships across Subspaces 
All relationships among models and links of 

different subspaces are explicitly represented by means 
of bindings. There are two basic types of bindings, 
which are general enough to cover all of the cases of 
interest: 

1. Operation bindings, which relate dataflow 
elements to structural elements and time 
ranges. 

2. Realization bindings, which relate 
structural elements to physical element,s. 

For example, an operation binding expresses the 
relationship between an add operation (dat,aflow), an 
ALU (structure), and the time interval during which it, 
happens. A realization binding represents the 
correspondence between a particular layout region and 
the ALU. 

3.3. The Target, the Specification, and the 
Library 
The design being constructed is the target. The 

target is functionally equivalent to the speci/ication; it 
is composed of primitive elements and mcmbrrs of the 
design library. Near the top of the hierarchies, the 
dataflow of the target might be syntactically identical 
to the dataflow of the specifica.tion, but at the low 
levels this is unlikely. For example, suppose the 
specification contains a multiplication node. The 
definition of multiplication can be regarded as a series 
of shifts and conditional additions. But under a given 
set of timing, power, and area constraints, the dataflow 
actually implemented might be radically different. 
Therefore, the specification and the target are 
considered to be two completely different components. 
In general the relationships among constituents of the 
target and the specification can be complex. 

4. An Example 
Consider the design of a particular component, a. 

two-bit binary adder, which can be represented as in 
Figure 4-l. First the schema of the componrnt is 
discussed; then the dataflow model of the component is 
examined in detail. The timing, structural, and 
physical models of the component are not detailed her<,; 
for further details please see [Afsarmanesh 85b]. 
Finally, the way in which bindings are used to unify the 
four subspaces is described. 

4.1. The Component 
The subtype/supertype (generalization) hierarchy 



of component definitions is shown in Figure 4-2, where 
boxes represent type objects, the arrows represent 
subtype/supertype relationships, and the undirected 
lines that come out of the boxes lead to mappings 
(properties) that d escribe members of the types. The 
type Component has properties that denote its name, 
four Models of the component, and two sets of 
Bindings. 

There are two subtypes of Component. The 
OEM-Component represents a component supplied 
by an OEM (Outside Equipment Manufacturer). As 
such it is characterized by the name of the 
manufacturer, the manufacturer’s designation (Kind), 
and a list of Suppliers. Other properties, such as 
Price, have been omitted from the figure in the 
interest of simplicity. 

In-House-Component represents a component 
that is manufactured in-house. It may not even be a 

Figure 4-1: Two-bit adder example 

complete design; that information is captured by the 
Complete-Bit4. The in-house component also has a set 
of Designer-Names, denoting the people responsible 
for its construction, a Process, which identifies a 
particular fabrication process, and a Guru. 

4More complex historical information could be attached, e.g. a 
Verification-History. 

The member of the Component type used for 
this example is shown in Figure 4-3. This Component 
is an In-IIouse+Component. Its name, a property 
inherited from the supertype, is .H42padder’. The four 
Models are similarly named; Figure 4-3 shows only the 

Figure 4-2: The generalization hierarchy of 
Components and Bindings 

‘H42padder.Dataflow’ Model in detail, where again 
some mappings such ;ts Complete-Bit and Designer 
have been omitted in the interest of simplicity5. 
Operation-Bindings and Realization-Bindings are 
also shown schematically as lists of logical references to 
the actual binding objects, as discussed in Section 4.3. 
The other properties of “H42padder’ are self- 
explanatory. The dataflow graph of ‘H42padder” is 
given in Figure 4-l. 

4.1.1. Models and Subspaces 
In this example we examine only the dataflow 

subspace. The other models are similar to the dataflow 
model. The differences mainly consist of minor 

51n figures 4-3 and 4-6, the use of parentheses ( ) denote 
objects whose details have been omitted in the interest of 
simplicity. Square brackets [ 1 represent list delimiters. 
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‘Low Order Bit’ 

Figure 4-3: A Component member and its partial l The Dimension property specifies the bit 
dataflow model width of the Node. 

attributes. For example, the structural counterpart of 
a dataflow value is the carrier. The carrier attribute 
driver, which describes hardware implementation 
attributes such as tri-state, open-drain, has no 
counterpart in the dataflow model. The interested 
reader is referred to [Afsarmanesh 85b] and [Knapp 851. 

4.2. The Dataflow Subspace and Dataflow 
Models 
The generalization hierarchy for the 

Dataflow-Model is shown in Figure 4-4. Objects of 
type Model each have a name, a Complete-Bit 
similar to that of Components, and a Designer. 
There are four subtypes of Model, one for each 
subspace. Shown in Figure 4-4 is the subtype 
Dataflow-Model, also called Node for short. The 
other three subtypes of Model are Structural-Model, 
Timing-Model, and Physical-Model. 

Dataflow-Model has the following properties: 

l The Function property indicates the 
overall function performed by the Node. For 
example, in Figure 43 the function of 
‘H42padder-Dataflow’ is that of “Two Bit 
Adder’. 

single 

I I 

McdPl- 
Compfmi 

Mod&Name 
CompktpBit 

DF+ner 

h M&l 

Datallou- I I Model 

(NW 

Figure 4-4: The generalization hierarchy of 
Dataflow Models 

l The Has-Link-Constituents property 
indicates which links (for dataflow models, 
links are Values) are contained within the 
model. 

l The Has-Model-Constituents property 
specifies which models (Nodes) are 
contained within the model. 

The constituents of a model together express the 
application domain semantics of that model, thereby 
supporting its recursive definition. In the example of 
Figure 43, which corresponds to the two-bit adder 
dataflow graph of Figure 4-1, the link-constituents are 
the input, output and carry Values; and the model- 
constituents are the Nodes ‘FA-1’ and ‘FA-2’. The 
constituents of a model are represented as lists of 
logical references. 

The objects that are logically referred to in 
Has-Model-Constituents are of type 
Node-Component, which also designates that they 
are either of type Single-Node or Nif. If the 

6 This is accomplished via tbe definition of the recursion 
abstraction described in [Afsarmanesh 85a]. 
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reference is to Nil, then the constituent is not further 
defined, i.e. the Node is either a primitive or its 
definition does not exist at present. In either case the 
recursive definition of the model ends at this point. If 
the reference is to a Single-Node, as is the case in the 
example, the recursive definition of the model continues 
through it. In the example, the Single-Nodes are 
called “FA-1” and ‘FA-2’. ‘FA-1’ has the 
Intended-Function #Low Order Bit’; presumably 
“FA-2” is the high order bit of the adder. Both 
“FA-1” and “FA-2’ could have the value ‘Full-Adder- 
Data-Flow* in their Has-Kind properties; that means 
they are both one-bit full adder nodes. “Full-Adder- 
Data-Flow” is itself a Node, and is represented by a 
Dataflow-Model; hence it is further defined in terms 
of its model and link constituents. This is the recursion 
abstraction at work: Models are defined in terms of 
other Models. 

4.2.1. Dataflow Links 
Figure 4-5 shows the subtype/supertype hierarchy 

of Links for the dataflow subspace. Links are more 
complicated than Models, because they bear the 
burden of representing connections between Models. 
A Dataflow Link is called a Value. A Value has a 
Name, such as “Carry’, which is inherited from the 
supertype Link. It also inherits a Complete-Bit and a 
Designer, with meanings similar to those of the 
Component’s corresponding properties. 

The reason a Value should have an explicitly 
mentioned Designer is that a Value is potentially a 
structured entity (for example a complex floating-point 
number). If the Value is a simple array, then the 
Has-Structural-Dimension property specifies the 
dimension of the array. If the Value is structured, then 
its Has-Sublink-Constituents property defines the 
structure. Sublink-Constituents are of type 
Value-Component, which also indicates that they are 
either of type Nil, or if they are of type 
Single-Element it signifies that they are again either 
of type Single-Value or Sub-Value (Figure 4-5). 

For example, a floating-point number “Flonumg 
is a structured value consisting of two fields “Mantissa’ 
and “Exponent*. These are Sub-Values, which have 
Has-Kind properties of their own. The Has-Kind 
property of “Mantissa* might refer to a Value named 
“Long-Signed-Integer’ and the Has-Kind property of 
“Exponent” might refer to “Excess-6CInteger”. 

The input “X” of Figure 4-l is a Single-Value. 
Figure 4-6 shows ‘X’ in more detail. The Has-Kind 
property of “X” points to the Value “Two-Bit- 
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Figure 4-6: The generalization hierarchy of 
Dataflow Links 

Integer’. The Value ‘Two-Bit-Integer” has the 
Structural-Dimension 2. ‘Two-Bit-Integer” also has 
Sublink-Constituents consisting of two Sub-Values, 
named ‘High-Order-Bit’ and .Low-Order-Bit” 
respectively. The Has-Kind properties of these bits 
have logical references to the primitive Value “Bit”. 
The Has-Sublink-Constituents of the Value ‘Bit’ 
is nil, so the recursive definition of ‘Two-Bit-Integer’ 
ends at this point. 

In addition, ‘X’ has a Role which is ‘second 
vector input.. Furthermore, it has connections, 
represented by a Dataflow-Netlist. The 
Dataflow-Netlist is a list of logical references to 
DF-Nets. In Figure 4-6, the two bits of the “Two-Bit- 
Integer” “X’ are connected separately, only the 
connections of the ‘Low-Order-Bit’ being shown. 

The DF-Net has a Sub-Value-Path. This is a 
path into the structure of the value being connected. 
For example, if the high-order bit of the mant,issa of a 
complex floating-point number ‘A’ was connected 
individually, the path would be 
“A.Real.Mantissa.Bit63”. In Figure 4-6, the path simply 
points to the low-order bit of ‘X’. 
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The DF-Net also has a Visibility-Bit; this 
determines whether the bit can be %een’ from outside 
“H42padder-Dataflow’. Since .X’ is an input, this bit 
is true for all its DF-Nets. Other structured Links 
may have their visibilities determined on a field-by-field 
basis, which is why the visibility information is 
attached to the individual connections rather than to 
the Single-Link itself. 

I sbglevdue x I 

9 
DF-Pi (conwliw d X to FA-l.Dfs A input) 

Sub\‘alucPath 1 (Full-Adder-Data-Fbw’s ‘A’lnput ) 

SingIl-Tide 1 c* (FA-I.Df1 

Figure 4-6: The definition and connections of the 
Value ‘X’ . 

DF-Connections are used to describe 
connections in the dataflow subspace. The 
DF-Connections of a DF-Net are references to 
DF-Pins. A DF-Pin refers to a Single-Node, e.g. 
“FA-l.Df’, and a Sub-Value-Path, which represents 
a connection point on that Single-Node. In the 
example of Figure 4-6, the Sub-Value-Path of the 
‘X’ connection point is a path to the .A. input bit of 
the ‘Full-Adder-Data-Flow” model, which is given in 
parentheses in Figure 46 (recall that ‘Full-Adder-Data- 
Flow’ is the Has-Kind property of “FA-l.Df’). 

Using both the Sub-Value-Path of a link, as 
expressed in the DF-Net, and the Sub-Value-Path of 

a Single-Node connection point, as expressed in the 
DF-Pin, very general kinds of connections can be 
constructed. 

For example, using both paths in their full 
generality would allow us to make arbitrary 
permutations of structured array values at connection 
points. If a twebit Value .P” was to be connected to 
the “X’ input of .H42padder.Dataflow’, it would be 
possible to connect .P[l]’ to ‘X[O]’ and ‘P[O]. to 
.X[l]., thus achieving a bitwise reversal at the point of 
connection. 

4.3. Bindings 
The two binding sets represent the 

interrelationships between the elements of the models. 
Operation-Bindings show the relationship between 
an operation (or value), a structure, and a time 
interval; (for example, an addition, an adder, and a 
microcycle). Similarly, a different Operation-Binding 
might represent the relationship between a value, a bus 
or register, and a microcycle. Realization-Bindings 
are used to represent the relationships between 
structural elements and physical realizations (for 
example, between an adder’s schematic and its layout). 

Both kinds of Bindings have properties that 
represent paths into the four hierarchies, e.g. ‘St-Path’ 
as shown in Figure 4-2. The reason paths must be used 
is that Bindings refer to unique 
Single-Model-Components. Such a 
Single-Model-Component may be deep down in the 
recursion hierarchy, and the only way to uniquely 
specify it is by giving a complete path down into the 
hierarchy, starting at the root Component. 

The Kind-of-Df-Path property of 
Operation-Binding simply indicates whether the 
binding is to a Node or a Value; similarly the 
Kind-of-St-Path property indicates whether the 
binding is to a Carrier or a Module. These are 
examples of the use of a ‘generic interrelation 
abstraction”‘. All combinations are permitted in the 
schema. Similar considerations apply to 
Realization-Bindings. 

There is no Kind-of-Range-Path property for 
Operation-Bindings because the only valid timing 
element for a binding is a Range. Points have 

7 This abstraction primitive and the recursion abstraction 
mentioned earlier were specifically defined for the ADAM VLSI 
design database, and are supported by the 3DIS data model. 
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mfinit,esimal duration, and hence are never suitable for 
binding either operations or values to structural 
elements. 

5. Conclusions 
The 3DIS was introduced as an extensible 

information modeling framework that captures the 
underlying semantics of VLSI/CAD application 
environments, and supports requirements specific to 
this domain. The application of the 3DIS to the ADAM 
system was described. An example 3DIS database 
design for ADAM was presented. 

The 3DIS database is object-oriented in that all 
data entities, relationships defined on entities, events 
and operations, as well as the description of data (meta- 
data) are modeled as objects. It provides a structured, 
unified view of the application information that reduces 
the required level of expertise for database 
manipulation and database development/evolution. 
The extension of the 3DIS model to support the specific 
modeling requirements of engineering design 
environments, such as modeling recursively defined 
entities and concepts, simplifies the task of database 
design. 

The representation schema is based on the idea of 
unifying the design data in three major structures 
called the specification, the target, and the library, 
respectively. Each of these consists of a single 
component or a collection of components, where all 
components are modeled uniformly. A component is 
represented in terms of four orthogonal hierarchies: 
dataflow, timing, structural, and physical. The four 
hierarchies are linked by explicit relationships called 
bindings. 

We expect significant benefits from the presented 
approach in construction of the overall ADAM system. 
Since the design data is unified by the database, adding 
application packages is greatly simplified. Since non- 
experts can access the underlying schema easily, the 
designers of CAD packages need not be database 
experts to use the system flexibly. The representation 
has several advantages. It cleanly represents the data of 
interest. Important relationships between specification 
and the target are not obscured. Designer freedom is 
limited to the degree permitted by the specification. 
The same concepts and techniques can be used to 
analyze and construct target designs, specifications, and 
library components. Finally, the design details are 
hidden until they are needed. The unification of the 
database with the synthesis and analysis tools results in 
an automated process from algorithm specification to 

circuit layout. This in itself is expected to simplify the 
design process and enhance design correctness. 

A Pascal-based graphical interface to the 3DIS, 
implemented on an IBM PC/XT [Afsarmanesh 85a], 
has been designed and implemented. This interface 
provides an experimental vehicle for evaluation and 
improvement of the browsing capabilities of the 3DIS 
user interface. A Pascal-based graphical editor for an 
older, file-oriented version of the design data structure 
(DDS) has also been implemented. 

Future work on this project includes integrating 
the system into a coherent whole. In particular the data 
structures of a number of synthesis packages must be 
changed from the DDS file format to the new 3DIS- 
oriented database support system in order for ADAM to 
function as a single unified system. The 
implementation of the 3DIS database system and its 
user interface must be completed. The definition and 
implementation of database activities, e.g. the 
invocation of semantic checking routines, must also be 
added. 
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