
ACCOMMODATING EXCEPTIONS IN DATABASES, AND
REFINING THE SCHEMA BY LEARNING FROM THEM

Alezander Borgida
Keith E. Williamson

Department of Computer Science
Rutgers University

New Brunswick, NJ 08904
USA

Abstract

To utilize DBMSs, a database designer must usually
construct a schema, which is used to validate the data stored
and help set up efficient access structures. Because database
design is an art, and because the real world is irregular,
unpredictable, and evolves, truly useful database systems must
be tolerant of occasional deviations from the constraints
imposed by the schema, including the semantic integrity
constraints. We therefore examine the problems involved in
accommodating ezceptional information in a database, and ’
outline techniques for resolving them.

Furthermore, we consider ways in which the schema can be
refined to better characterize reality as it is reflected in the
data encountered, including the exceptions. For this purpose,
we describe part of a “database administrator’s assistant” - a
computer system which can suggest modifications and
additions to the current definitions and integrity constraints
in the schema. This system makes generalizations from the
currently encountered exceptions, and is based on techniques
used in Machine Learning.

1. INTRODUCTION
It is by now conventional wisdom to consider a database to

be a model of some portion of the real world]Tsichritzis 821.
As with any other model, the usefulness of the database
depends on its correctness and accuracy: A database which
contains incorrect information is worze than having no
database since it gives a false sense of security. And,
obviously, if a fact is known, it is better to have it in the
database: one can make better decisions with more
information.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
net commercial advantage, the VLDB copyright notice and the title
of the publication and iti date appear, and notice is given that copy.
ing is by permiesion of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

In databases, the above-mentioned world model is normally
partitioned into two parts: i) the schema, which captures
generic, time-invariant information; ii) the facts, which are
specific, volatile and occur in large quantities. From the
user’s point of view, the schema describes what concepts the
database knows about (e.g., the classes and properties of a
semantic data model [Borgida 851) and what constraints exist
on the possible relationships between objects (e.g., integrity
constraints of various kinds). This paper addresses the
problems arising when the schema of a database does not
model the respective aspects of the world entirely accurately.

In particular, we first present a technique for storing and
accessing in the database information which does not conform
to the constraints imposed by the schema, but which
nonetheless reflects the correct state of the real world. We
call such information ezceptional information. The ability to
accommodate such exceptional information allows a much
greater degree of flexibility for the users of the database,
since the database of facts c.an now be more accurate than
before without the need to recompile the entire database
system. In the second part of the paper, we follow this up
by describing the principles of a program whose goal is to
propose refinements to the integrity constraints and definitions
of the database based on an analysis of the exceptions
encountered so far. Such an algorithm can be viewed as part
of a more general “database administrator’s assistant”: s
program which makes suggestions on ways in which the
database schema could be improved based on evidence of its
use. Our work is based on, and extends, techniques for
generalization from examples in the field of learning in
Artificial Intelligence.

In the next section, we present a particular language for
describing the schema of databases -- essentially a “semantic
data model” -- and motivate the need for permitting
violations to constraints to persist in a particular database.
In section 3, we then introduce a mechanism which allows
such exceptional information to be stored and accessed in the
database. Section 4 describes some ways in which a computer
system might aid in the refinement of a database schema
based on the exceptions to it encountered so far, and the last
section proposes a technique to accomplish this based on
empirical generalization.

Proceedings of VLDB 85, Stockholm 72

EXCEPTIONS

2.1 Ckmceptual databases and schemas
w-e have carried out our investigation in the general

context of what are known as “semantic data models” (e.g.,
DAPLEX, SDM, TAXIS) [Borgida 851, although a similar
treatment of exceptional information is possible in the
framework of more traditional data models such as the
relational one.

We see a database state as a collection of object
descriptions: every object is an instance of one or more
classes, and has 0 or more attributeslproperties, which relate
it to other objects, and thus describe it. Note that each
object has a distinct identity independent of the values of its
attributes (contrast this to the relational model, where a
tuple’s identity is defined by its key attributes).

The schema of such a database then specifies two things:
(1). The definition of the da88e8 available in this database,
including their name, the attributes applicable to each of
their instances, the range of possible values for every
attribute, and constraints on the membership of various
classes (such as subclass relationships); this essentially defines
a typing mechanism for database objects. (2). Additional
semantic integrity constraint8 (ICs) limiting the possible
relationships in the database, expressed in some sort. of logical
language.

Before proceeding with the details of our specific data
model, it may be worth briefly reviewing here the purpose of
the schema:

From the user’s point of view, the schema: a) describes the
“domain of discourse” of the database; and b) checks the
correctness of data entered.

From the DBMS point of view, the schema aids in
achieving various forms of efficiency: (a) storage
efficiency: e.g., by allowing concise codes to be assigned to
enumerated types; (b) jaster retrieval: e.g., fixed-length
record schemes can be used for storage when attributes and
their ranges are known; or the subclass hierarchy can be
used to suggest vertical and horizontal splitting
strategies IChan 821; (c) compile-time optimization8 of
pWrJrW7,8: by using type information, one can often
eliminate run-time type checking; (d) semantic query
optimization: integrity constraints can be used to find
faster access paths LO Ihe data :King 80;.

We will introduce the language of class definitions used in
this work through an example, relying on the reader’s ability
to generalize. According to Ihe definition in Figure 2-1, the
class of EMPLOYEE objects is a subclass of PERSONS (i.e.,
every EMPLOYEE instance is also a PERSON instance) with
attributes name, degree, j obCat , wages and
supervisor. Furthermore, names of employees are strings of
no more than 25 characters, degree can be one of HSGD,
BS, MS or PhD, jobCat is a integer between 1 and 7, wage
is a decimal number in the range 0.00 to 80000.00, and the
supervisor of an employee must also be an employee

Note that as usual in semantic models, classes “inherit” the
attributes of their super-classes; hence, if PERSONS have age
and address attributes, then so will EMPLOYEES. In
addition, when defining a subclass one can also specify a
restriction on the range of an existing attribute; for example,
PERSONS may have had age defined to have range 0..130,
but for EMPLOYEES this may be restricted to be 14..90.

EMPLOYEE == PERSON with
jname : STRING(25)]
(degree : {‘HSGD, ‘BS, ‘MS, ‘PhD}]
[jobCat : I..71
[wages : 0.00 80000.00]

[supervisor : EMPLOYEE]

Figure 2-l: Definition of EMPLOYEE class

The definition of a class such as EMPLOYEE specifies
necessary properties for objects belonging to that class, but it
is up to the user to explicitly assert that an object is an
instance of it (i.e., there is no recognition of objects).
However, in some cases we need classes for which we have
sufficient conditions determining membership. For example,
secretaries are by definition exactly those employees who have
job category 6. Such classes are described by selecting some
“definitive” property specifications (in the above case, jobCat
being 6) as tests applicable to a base class (EMPLOYEE, in
the above case):

SECRETARY == EMPLOYEE
such that --

[jobcat: 6..6]
with

[salary: 0.00 20000.00]
jtypingSpeed: 20..80]

Note that test-defined classes may also have additional
necessary conditions attached to them

A database state then records information about the current
state of the world by keeping track of the membership of
objects in classes, and the known property values of objects.
For example, we may have the following information about
an object emp45 at. some moment:

EMPLOYEE <emp45>
(jname=“karl marx”] Iage= [jobCat=4])

leaving it to be inferred from the subclass hierarchy that
emp45 is also a PERSON.

The language of class definitions allows us to capture
certain constraints on Ihe possible facts in the database. Most
obvious are the property constraints limiting the possible
ranges of properties. As mentioned earlier, integrity

CcWUtrcZint6 are used to enforce additional consistency
conditions not captured by the restrictive language of class
definitions. ICs will be stated in a first-order language where
the attribute names are considered as functions, class names
are unary predicates and the primitive predicates are =, ?,
numeric and string comparators. For example, the following
two constraints capture part of the semantics of the terms
introduced in the above definition of class EMPLOYEE:

(Vx) EMPLOYEE(x)+(x.supervisor#null)
(Vx) EMPLOYEE(x)+(x.wages<x.supervisor.wages)

2.2 Exceptions in databases.
In most practical situations we will find that the schema

developed during database design does not perfectly describe
the world in the sense that there will occasionally be
information which we want to st.ore, but which contradicls
the constraints of the schema. One obvious reason for this is
that the world has changed since the database was designed.
Another reason is that database design is an art. not a
science, often pursued by someone unfamiliar with the

application rl~~maln hence the %rh(r1.a f’:ti! cii~~l,l! I,(urc,ng.
.4 third reason is t.hc variability of the real world It is
often neither feasible to anticipate, nor desirable to capture
all possible situations that may occur in the world.
Philosophers have long been aware of the problems posed by
“natural kinds” -- concepts which occur in our everyday
experience rather than being defined. Unfortunately databases
often hold information exactly about such natural domains.
The following examples illustrate some of the problems
involved:

. A few persons may get paid more than $gO,OOO.OO, thus
violating the constraint on salary; unfortunately, the

upper bound will always be debatable (lOOK?, IOOOK?),
and if we use such a high bound, we’ll lose much of the
error checking function of the constraint.

. Some employee may have received a foreign degree (e.g., a
French “Baccalaureate” or ‘Bat), which is not even closely
equivalent to any American one, yet decisions such as
promotions, raises, etc. are based partly on this; it is
therefore important to keep the actual value of the degree
in the database.

l Because of work on a new classified project, a few
employees may receive security clearances of various
degrees. The company then desires to record this
information in the database for possible future references.

l In some special cases, a person may in fact earn more
than his/her supervisor.

. Although it is reasonable to describe the class of valid
addresses for a country like the USA, it seems impractical,
if not impossible, to describe the addresses for all the
countries in the world just in case we encounter someone
from that country. At issue here are the necessary
attributes for an address, not just their legal values.

Therefore databases need the flexibility to accommodate
special cases at runtime that are not sanctioned by the
schema.

3. HOW TO LIVE WITH EXCEPTIONS
There are a number of problems which arise when we

consider allowing the constraints of the schema to be violated.
The following are some of the areas of concern:

1. Storage and Access Efficiency: The most obvious, though
not the most interesting, problems arise when we consider
the implementation of the DBMS. When inherent
constraints of the data model are violated, we must be
prepared to store extra attributes, to find attribute
domain-constraints violated, non-unique keys, etc. all of
which are problematic for most traditional techniques of
mass data organization, based on records. Note that we
don’t want the presence of exceptions to degrade the
efficiency of handling normal data, though we will assume
relatively few exceptions occur overall.

2. Semantics of computations: Exceptional data will need to
be treated with circumspection in computations, since its
semantics may be different. For example, if the supervisor
of an employee turns out not to be an employee (she may
be a consultant, say), then she may not have some
attributes normally expected of all employees (e.g.,
jobcat).

3. Sharing: The same problems arise in the interpretation of
data when we realize that there are several users or

prograrrl: UI.IIJI~I~ rhr dalatuw rczr ekanlplr. a user
should be warned that an attribute which normally holds
an integer representing US Dollar values now has Swiss

Francs in it.

4. Administration and accountabilitu: As with other updates.

5

.
there is an obvious need to control the ability to allow
exceptional facts to enter the data base.

Validation of future updates: Although violations of
semantic integrity constraints do not usually pose
storage/retrieval problems, they do cause logical difficulties:
If an integrity constraint is violated in a database, and we
allow the violation to persist because it is a special case,
then the constraint will henceforth be inconsistent with the
database. This means that, the IC will not be able to
detect errors in more recent updates since it will always be
“ringing the alarm”, and we will not be able to t.ell
whether it is just a false alarm due to the old exception.

To resolve some of these issues, observe that our database
can store facts in two essentially distinct ways: through the
membership of objects in classes and through property values
for objects. In this paper we will treat only exceptional
property values, though exceptional instances of classes can be
dealt with in a parallel manner. Let us assume that facts
about property values are entered into the database by two
primitive operations, modify and createobject, and are
retrieved by the operator getvalue.

One simple way of storing and retrieving exceptional
property values -- ones which lead to the violation of
constraints imposed by the schema -- is to have a second set
of operators: exnal modify, exnal createobject and
ewal getvalue. These operators w% take care of the -
special ways in which exceptional facts must be stored, given
that the schema has been used to optimize storage and access
structures for the normal case. For example, while ordinary
facts will be stored according t.o standard techniques (e.g.,

]Chan 82]), exceptional facts will be stored in a separate
(logical) file of records, with variable length fields, each of
which holds a single fact (e.g., the object, property name,
property value, type information about the value, etc.). This
second file is then accessed and modified by the exnal
operators, and can be indexed and clustered to improve
efficiency.

To deal with the next two issues, related to semantics and
sharing, we adopt the philosophy that users/programs must
be cautioned when they encounter exceptional data, so ‘that
they can determine whether normal procedures apply here, or
whether special actions need to be taken. To accomplish
this, we adopt a uniform framework for signalling both the
initial violation of constraints, which is necessary in any case,
and the use of exceptional property values. This framework is
based on the concept of “exception signalling and handling”
common in modern programming languages such as ADATM,
and originally described by Goodenough jGoodenough 751:
Whenever an error or special situation arises, such as division
by 0, an operation is aborted and an ezception is signalled;
the program (or user in our case) can then propose a handler:

a fragment of code which is executed instead of ~hr

interrupted operation. In our case, an update or retrieval
operation will signal that a constraint, violation has been
detected by creating an object in the special class
VIOLATION, This violation object should carry information
about exactly what has gone wrong. To accomplish this,
every constraint is named, and then the violation records this
information through its properties. For example, if croesus’

74

modify(croesus,degree,‘Bac)

then the violation object would identify the constraint being
violated, namely [degree : {‘HSGD,‘BS,‘MS.‘PhD},, as
(EMPLOYEE,degree).

Usually, such a violation would uncover an error which
would need to be corrected; but if the value is correct, we
can force it to be actually stored by invoking
exnal-modify(croesus,degree,‘Bac) in the violation handler.
This operator in addition marks the respective property of
that object a.s requiring special handling. This is
accomplished by defining a special class of objects

EXCEPTIONAL with
/prop : PropertyIdentifier]
[obj : AnyObject]
[class: Classldentifier]
IwithRespectTo: Assertionldentifier]

whose instances mark exceptional properties of objects. We
require that such an instance be created as part of
exceptional updates. Thus, in the above example
ewal modify would also have taken as an argument the
viola& (which held the identifier of the assertion being
violated), and in addition to storing croesus’ degree, it would
have created the object el, shown below.

EXCEPTIONAL <el>
(Iprop=degree] (obj=croesus] [&s=EMPLOYEE]

[withRespectTo=(EMPLOYEE,degree)])

Objects in the class EXCEPTIONAL can be examined by
database users to find, for example, all exceptions to certain
rules or all exceptions involving certain properties. Thus the
obj property values of objects satisfying the query

EXCEPTIONAL(x) A
x.prop=degree A x.claas=EMPLOYEE

would locate all employees with exceptional degrees. This is
then one technique whereby users sharing the database,
including administrators, can become aware of exceptions
introduced by others.

More importantly, when someone tries to retrieve a property
value which turns out to be exceptional, the DBMS raises the
corresponding EXCEPTIONAL object as a violation - in some
sense an “echo” of the original violation. For example, if we
now try to retrieve croesus’ degree using getValne(croesus.
degree), then el is raised as a violation. The user can then
invoke ewal getvalue in the violation handler to obtain
the actual stored value, ‘Bat. After seeing this value, the
user could decide to continue with the current plan or take
special measures.

Note that the above mechanism can also be used to store
new attributes - ones not mentioned in the schema. For
example, one can record the security clearance code of a
particular employee by the operation
ewal-modify(croesus,securityCode,lO).

We would like to make the treatment of exceptions lo ICs
resemble that of exceptions to property constraints.

’ Therefore we will label ICs and attach them to classes:
the assertion concerning the supervisor’s salary

‘Note that property constraints of the form [jot&at: 1. .7] arc
equivalent to quantitied formulas like

(vx) (EMPLOYEE(x) + ltx.jobCat A x.jobCats7).

nol(‘\erVsnagrr (: w) bMPl.Ol P;E;(x)
(x.wages ‘. x.supervisor sage5)

could thus be ident,ified as (EMPLOYEE. notoverhlanager).
Violations of ICs are then signalled in an identical manner to
those of property range constraints, and the user may
“blame” this on the value of zero or more properties, which
are marked exceptional. For example, if the above constraint
fails when x=croesus then any of the following facts may be
exceptional: croesus.wages, croesus.supervisor or
croesus.supervisor.wages.

Finally, consider the problem of continued integrity
checking: if after an update croesus earns more than his
supervisor, then the constraint not0verManage.r will always
be false as long as his and his supervisor’s salary do not
change. We therefore propose to modifar the IC so that this
“false alarm” is avoided, and would like to make this
modification “minimal” in the sense that other errors which
would have been caught by the original 1C will continue to
be detected by the new constraint. In this paper we will
adopt the relatively straightforward approach of considering
every IC to be actually of the form:

con&, : (Viw) SPECIALconstri(w) v G(w)

where constri is the label of the rule, w is a sequence of

variables, 0 is the original form of the IC, and
SPEClALconstr, is a predicate which prevents the actual
condition from being evaluated for special cases. Initially,
SPECIALconstri is everywhere false, but as exceptions are

encountered and “excused” for various argument tuples 6,, 6,,

. . . . the definition of SPECIALcons&, becomes

SPECIALconstri(w) ++ ~=6~ v w=6, v

Thus, after encountering croesus az an exception, the
constraints concerning managers’ salaries would actually look
as follows:

(Vx)(SPEClALnotOverManager(x) V

(EMPLOYEE(x)ti(x.wages<x.supervisor.wages)))

SPEClALnotOverManager(x) e (x=croesus)

In summary, we have proposed to accommodate exceptions
to constraints in databases by I) marking exceptional
information using objects in the database so that information
about exceptions can be maintained, 2) using an exception
handling mechanism to alert the user when exceptional
information is being manipulated, as well as when constraints
are violated, 3) providing special operators to do this
manipulation, and 4) modifying integrity constraints so that
they are consistent with the exceptional facts. For the
interested reader, a considerably more general and complete
proposal for exception handling is presented in [Borgida 841.
This includes considerat.ions about software engineering issues,
implementation, accountability, and techniques for dealing
with transactions. In addition we provide a more refined
theory of how to deform ICs in a “minimal” way, including
model and proof-theoretic accounts of this phenomenon.

4. LEARNING FROM EXCEPTIONS
The way that a user determines whether the schema of a

database is ill-designed is to see it in use: to watch the
queries and updates issued against it. Note that as long as
everything entering the database must be shoe-horned to fit
the schema, there is no way for the system itself to drt,rrmine
that the schema is somehow wrong. However, once we allow
the database t,o accommodate exceptional facts, then the

system can itself identify case> 111 which 1116, ,I (I 111 twr ul
exceptions mounts CO the point where a change in rhr schema
1s indicated. We wish to investigat,e here the possibility of
having automatic aids which watch for such occurrences and
then suggest to the database administrator possible
improvements to the schema. In this sense we are describing
a part of an expert system which we might call a “database
administrator’s assistant”.

Given this goal, the fast question is what kinds of changes
to the schema are we contemplating. We will restrict our
attention to incremental modifications of the following sort:

. Modifying ICs to apply in more restricted circumetancee.

Thus “all employees earn less than their supervisors” could
be qualified with “unless their supervisor’s status is part-
time.” Such qualification takes place by defining the
predicates SPECIALc occurring in all constraints in a more
general way than just by enumeration, for example by
describing a new class whose instances include all the
exceptions.

. Adding new attributes to a class definition. For example,
a eecuritycode property could be added to the
employee class.

. Defining a new class and placing it in the current subclass

hierarchy. An alternative to adding the eecuritycode
property directly to the EMPLOYEE class would be to
create a subclass CLEARED-EMPLOYEES of
EMPLOYEES, with property SecurityCode, among
others. A different example: if all employees who earn
over 80K (and hence are exceptions to the salary range
constraint (EMPLOYEE,salary)) have jobCat 1 or 2, then
perhaps a subclass UPPER-LEVEL-MANAGEMENT of
employees should be created for them.

Of course there are many other possible changes that one
might want to make to a schema (dropping attributes,
changing their names, making ICs stronger or adding new
ones, etc.) but the information present in exceptional facts
seems to support mainly the changes listed above.

The following are some of the benefits of the above
mentioned changes:

1. Fewer exceptions will need to be excused in the future. As
we have seen, introducing and accessing exceptional facts
involves the overhead of handling violations and excuses
for them, so this gain can be quite significant.

2. Refined ICs may be more useful for semantic query
optimization, and even evaluating ICs may be faster:
checking a single attribute value may be faster than
searching through a sequence of disjuncts to see if any

apply.

3. The addition of new attributes and classes gives the user a
refined vocabulary for expressing queries and updates.

4. The increased vertical/horizontal splitting provided by new
classes in the hierarchy might be used to improve retrieval
efficiency .

We present next a technique for characterizing the class of
currently known exceptions, and thence adjusting the schema
to accommodate them. This technique locates commonalities
for sets of objects baaed on their class memberships and
property values, with the limitation that these commonalities
must be expressible in the language of schema definitions.

5. USING EMPIRICAL (;ENERALlZATION
FOR SCHEMA REFINEMENT

5.1. The utility of empirical generalization.
Suppose we have an algorithm Descr which given a set of

objects {al,a2,...} infers a class description for them. In
particular, it provides the definition of the/a most specific
class which contains all these objects, given the language of
class definitions from Section 2. Thus, Descr will output class
definitions that consist entirely of “definitive” attribute
specifications attached to some least general existing class
which contains these objects as instances.

We can use Descr to accomplish some of the goals stated
earlier as follows:

1. Zmproving constraints. If for some constraint c, the
predicate SPECIALc is defined as

SPECIALc(x) * x=el v x=eZ v ,., v x=en

as a result of a number of exceptions e,, eZ, ,,. en, then

replace this definition by

SPECIALe(x) o Descr({el,eZ,...))(x)

Since class descriptions cannot consist of enumerations of
instances, the predicate SPECIALc will typically be
generalized to admit more objects as implicitly exceptional,
without the need for user intervention.

2. Adding new attribute specifications. Suppose that. some
new attribute attr, which does not appear in the schema.
has been introduced in several exceptional facts
al.attr=v ,’ “’ a,.sttr=v”. Then we may want to

propose that the attribute specification [ettr :
Descr({vl,...,vn })] be added to the least class containing

a ,,..., an.

3. Changing attribute specifications on ezieting classes. If for
some class C, which currently has property definition Ip :
E], there are many exceptional property values LI.p=vI, ___,

then find the most general existing subclass C’ of C to
which the constraint [p : E] can be restricted (i.e., such
that C’ does not contain any of the exceptional objects
al,...); if the constraint on p has not. been refined between

C and C’ then we can augment the definition of C’ with
[p : El, and then generalize the constraint on C to be /p :
Descr(E u {v~,...})].

Introducing new classes is of course another way to modify
the schema. In general, the decision to introduce a subclass is
a heuristic one, classes being defined in order to represent
collections of objects to which certain properties are restricted,
and/or collections over which ICs or queries may be
quantified. Specifically, in each of the cases in the above
list, there are several classes which may be of use if added to
the database schema:

1. While modifying constraints, there is evidence for a new
class Descr({el,...}) describing the objects to which the
constraint did not apply.

2. While adding a new attribute specification, there is
evidence for the existence of the class describing objects to
which the attribute applied, Descr({a,,...)), as well as the

set of values for the new property, Descr({vl,...}).

3. When an attribute specification is modified, there is
evidence for a class to which the old definition applied,
Descr(C - {al,...}) as well as a more general class for the

76

rHIIf?P IIf I ha1 ~~“‘[““I) I)rscr(C: u {VI,...)).

M c realize that there IS in fact a tradwff tetwem adding

new classes to make it more convenient to communira1.e with
the database, and the confusion caused by the presence of too
many marginally useful class definitions. We propose t,o
protect the DB manager from a blizzard of suggestions for
class definitions by using a scheme in which suggestions for
class definitions that appear to be useful are placed in a
“suggestion box”, and a second program sifts through these to
find evidence for truly useful definitions, sometimes as an
amalgam of several individual suggestions. The details of this
algorithm are currently under investigation.

In summary, WC see the following scenario: The DB
administrator’s assistsnt keeps track of violations and
exceptions to constraints in the schema. When prompt,ed by
the DB administrator or when sufficient evidence is
accumulated’; it suggests one or more alternative changes to
the schema to be carried out. The DB administrator has the
final decision about which changes, if any, to implement. In
fact. the administrator may chose to modify the class
suggestions by. for example, removing or relaxing certain
property restrictions (since they were the result of coincidences
in the particular sample of exceptions), or by making some
property constraints necessary conditions only, rather than
part of the test for class membership.

We present next the basic algorithm underlying Descr which
we have used, and in the following section we describe a
number of refinements to improve it.

5.2. The generalization algorithm
Descr takes as input a set of object descriptions, and

produces a class description which has as instances these
objects. One of our goals is to make this the “most specific”
such class, in the sense that any other class which would
have them as instances would subsume this class. One reason
for this is that we do not want to over-generalize constraints,
since their goal is to detect errors: a most specific class
makes the SPECIAL predicate apply t.o the fewest cases. We
shall first describe how we approach this goal, and then deal
with other, possibly conflicting goals for Descr, in the
following subsection.

The fundamental idea of the algorithm is to consider the
objects to be described a1,a2, one by one, and in each case

deform the current class description by the least amount
necessary to have it also describe the current object. The
description of the set of exceptions is initialized to be the
first exceptional instance. The next exceptional instance is
then compared against this. Whenever part of the class
description is too restrictive, that part is generalized by one
of the rules below. In the technical terminology of machine
learning, the algorithm Descr makes a specific-to-general
breadth-first search IMitchell R2, Michalski 83) to induce a
description for a set of objects.

I. Introduce/Ezpand Range - A range of values can be
introduced or expanded to cover a new scalar data value
(string, number, enumeration). For example, to describe
salaries of 40k and BOk, the attribute specification [salary:

2
The decision on when enough evidence has heen accumulated to

suggest changes is heuristic. and may be based on absolute or relative
numbers of exceptions, and the “goodness” of the induced description,
which measures how useful or precise the description is.

Introduce/Generalize Class - An existing class can be
introduced or generalized (using the IsA hierarchy) in a
description to cover a new data value. especially an enttty
object. For example, [supervisor : ACCOUNTANT] can be
generalized to /supervisor : EMPLOYEE,, if the next
example’s supervisor is not an accountant. In this
generalization process, one uses the least class in the
hierarchy of classes which subsumes both the old class and
the new value. We note that this generalization could also
be applied to scalar values if our language allowed classes
of scalars to be defined, such as EMPLOYEE-. AGES.

Drop Attribute Specifications - Descriptions are prunned by
dropping attribute specifications which are not uniformly
applicable. For example, in generalizing a description from
“EMPLOYEE such that . ..” to “PERSON such that . ..“. --
we must eliminate references to attributes which are
specific to EMPLOYEES but do not occur on PERSONS.
Specifications are also dropped when they are redundant or
vacuous, such as in “EMPLOYEE such that idegree :
{‘HSGD,‘BS.‘MS,‘PhD)I.”

For example, suppose we want to find a description for the
following 3 employees:

RESEARCHER <e41>

(lage=35j idegree=PhD] [jobCat= [wages=A5ki
jsupervisor=EMPLOYEE<e56>])

RESEARCHER <r57>
(iage= [degree=MS] [jobCat=21 [wages=QOki

jsupervisor=EMPLOYEEte56>])
EMPLOYEE <e66>

((age=501 Idegree=PhD] IjobCat=l] [wages=Q5kj
[supervisor=EMPLOYEE<e76>])

The initial description would be

iRESEARCHER such that --
jage : 351 Idegree : ‘PhD]
;jobCat : 21 Iwages : &35k]
Isupervisor : EMPLOYEE<e56>]]

The second researcher r57, forces this description to be
generalized to

IRESEARCHER such that ~-
/age : 35 451 [degree : ‘MS _. ‘PhDj
!jobCat : 2j jwages : 85k . QOk]
[supervisor : EMPLOYEE<e56>]]

The third employee e66, forces this description to be
generalized to

/EMPLOYEE such that --
[age : 35 501 jdegree : ‘MS ,. ‘PhD]
/jobCat : 1 21 Iwages : 85k _. QSk]]

The description of supervisors was generalized to lsupervisor :
EMPLOYEE], since r66 has a different supervisor than the
other two employees. This restriction was then dropped since
supervisor’s of employees are always employees.

5.5. Refinements to the generalization process.
In this section we present a number of ideas designed co

resolve certain problems with the algorithm presented in the
previous subsection.

To begin with, in the schema there may be more than one
maximally specific class that. contains an object. For
example, a person may be an employee and a cust.omer at

the same tlrn(. 41~. m genwal. Ihe aul~ lass rcslati .t,shkp
need not form a tree. SO that two classes may have more
than one most specific subsumer in the IsA hierarchy. For
these reasons, there may be more than one most specific
description for a set of objects. Therefore, Descr must
act,ually maintain a set of maximally specific descriptions (as
is done in IHayes-Roth 76, Vere 781). This set is initialized
to be the minimal classes which contain the fast object to be
described. Given another object, Descr generalizes each
description in the set as described earlier. In “climbing” the
generalization hierarchy, the set of most specific descriptions
may grow if there is more than one parent. On the other
hand, when one description in the set is generalized, it may
now subsume one of the other descriptions and hence is no
longer necessary. In this case, the set of most specific
descriptions may shrink.

A more important source of problems is an inherent conflict
between some of our goals for finding the generalization. On
the one hand, we have looked so far for the most specific
description of a set of exceptional objects, because this
minimizes the set of objects for which the original integrity
constraint is not checked, and hence allows us to continue to
detect errors effectively. In finding the most specific
description, the algorithm Descr may generate spurious
restrictions based on accidental commonalities in the data,
unless we have a very large sample of exemplar objects. For
example, a subclass of employees is likely to have few PhD’s
among them, and hence the restriction [degree: ‘HSGD..‘MS]
may be suggested, though it is not necessarily relevant to
characterizing this set. Also, Descr may introduce circular
reasoning along the lines “the employees who earn over 80K
are those who satisfy the constraint [salary : 85000..120500]“.
The presence of such spurious attribute specifications is
bothersome for two reasons: it makes integrity constraints
more expensive to check, and it allows fewer objects to be
special, which may circumvent our goal of eliminating the
need to excuse exceptional cases. These two problems can be
resolved by selectively elitiinating all but the most “essential”
attribute specifications in a description. Of course, if we
drop too many property restrictions or the wrong ones, the
constraint expressed in the schema will become over-
generalized, thereby making it less effective for detecting
errors. We will therefore make use of a number of heuristics
in order to decide which attribute specifications can or cannot
be dropped from a description.

To avoid over-generalizing a constraint, we can try looking
for negative ezomples: objects which should NOT be covered
by the class generalized by Descr from a list of examples.
Since our goal is to retain the ability to detect errors, the
best candidates for negative examples are those circumstances
where the current constraint did detect a violation that was
NOT excused - a real data entry error. In other words, a
constraint can be considered over-generalized if it no longer
detects some of the errors it caught earlier. Therefore the
generalization of the predicate SPECIAL should cover as few
such negative examples as possible. Negative examples allow
us then to chose between alternative descriptions of a set of
exceptions to a constraint, and to decide when dropping some
attribute specification from a description is ill-advised.

If the number of entities in the database which satisfy a
description increases dramatically when some attribute
specification is dropped, then the resulting description has a
good chance of being overly general; this provides a second
global heuristic for determining when an attribute constraint
is essential. We are not currently using this heuristic,
preferring to rely on statistical information on the distribution

This still leaves us with the problem of deciding which
constraints to try to drop in a description, since it may not
be feasible to try all combinations, and since we may not
have enough positive and negative examples to work with.

For this purpose we introduce the notion of “relevance”.
In any situation we wish to have an evaluation of which
attribute specifications are more relevant to the generalization
at hand so that irrelevant ones can be discarded. The
following are some heuristic sources of relevance.

l Classes, and their properties, which are closer to a
particular class in the superclass hierarchy are more
relevant to it than ones further away. In particular, the
new attributes introduced when a subclass is defined would
seem to be most relevant to each other and to that
subclass.

l If we are using Descr on values violating an IC, then the
other classes and properties mentioned in the IC are likely
to be relevant.

l If we are describing objects which are exceptional with
respect to the range constraint of some attribute p, then
their p property is irrelevant to this characterization. (This
prevents circular descriptions.)

l The availability of information about the distribution or
frequency of certain values in the database can also be
used in deciding relevance. For example, if certain values
of a property p are statistically infrequent in the database
(e.g., ‘PhD degrees) then the absence of those values in a
restriction is not very significant (so the constraint [degree:
HSGD..MS] could be dropped). Conversely, if a value of a
property occurs very frequently in the database (e.g.,
jobCat 8 or 7, representing low-ranking employees) then
the absence of these property values in a set of examples
is quite significant (so [jobcat: 1..2] would seem to be a
relevant constraint). These intuitions will eventually be
made more precise through the proper application of
statistical techniques which establish whether there are
significant differences between the distributions of property
values for the genera1 population and the set of exceptional
objects.

As an example, if the description learned at the end of the
last section was being used to describe employees who
violated the constraint [wages: 0.00 80000.00] on
EMPLOYEE, then the following description would be more
appropriate.

EMPLOYEE such that --
[degree : ‘MS ‘PhD]
/jobCat : 1 21

Two attribute restrictions were dropped. The age attribute
is less relevant than degree and jobCat since it was
introduced for PERSONS and not specifically for
EMPLOYEES. The degree and job&t restrictions were
also kept because they were statistically significant. On the
other hand, the wage attribute is irrelevant to characterizing
independently employees with high wages, so it was dropped.
Note that in order to avoid dependence on the order of
examining the examples during the generalization process, the
pruning of descriptions should be delayed until after the
algorithm Descr completes.

In order to combine the suggestions of the various sources
of information about the merits of dropping some attribute
restriction from a description we use a weighted sum of the

Irldrvidual estimates. The exat.1 numkvs for I his
computation, as well as the thresholds to be used for cut-offs
can only be determined empirically. We have therefore
implemented most of the learning algorithm described above
as a prototype PROLOG program, and we plan to carry out
experiments with it to determine, among others, the . .
appropriate defimtlon of relevance. We also continue to refine
and look for new heuristics for determining relevance.

A final problem to be addressed here concerns the restrictive
nature of the generalirations possible. Techniques of
empirical generalization are in genera1 limited by the language
chosen for describing generalizations. In particular, although
our language allows characterizing commonalities of objects in
terms of their properties, it does not allow referring to
properties of their properties, for example. Thus, if persons
have addresses, which are objects that have properties such as
street, city, etste, etc., then we are unable to
characterize the set of persons living in New York City.

We can remedy this by extending the language to allow
nested class definitions as a way of imposing additional
integrity constraints3. For example, the following definition
ensures that fathers of persons are male:

PERSON with
[sex : {‘male, ‘female}]
[father : PERSON such that [sex : {‘male}]]

At this point, we can add another entry to the list of ways
whereby a description is generalized in Descr:

. Introduce Attributer - A reference to a particular instance
of a non-scalar class can be generalized by introducing a
description of its attributes. For example, [supervisor :
EMPLOYEE<el4>] might be generalized to also describe
Isupervisor : EMPLOYEE<e21>] by the attribute-
specification

[supervisor : EMPLOYEE such that --
[degree : ‘BS]]jobCat : S..4] [wages : 50k..BOk]
[supervisor : EMPLOYEE<e4S>]]

in case they both have e4S as supervisor and ‘BS degrees.

This generalization can be accomplished by a recursive call to
the Descr procedure on the values of the respective property
(ruperviror in the above example).

Of course, unless we are careful, this can lead to a sudden
growth in the size of the descriptions, which is not desirable
in light of the second and third goals for generaliration
mentioned earlier. Worse, it can lead to infinite recursion, as
in the case when persons have spouse attributes, whose values
are also persons. The solution to this problem lies in the
judicious use of relevance: clearly, the farther we get away (in
terms of properties of properties) from the original set of
exceptional objects, the less relevant things get, so that we
will want to stop after a few levels. Also, in describing
properties of properties, we should be more willing to drop
attribute specifications which are not sharply restrictive, for
example. For this purpose, the relevance threshold can be
raised with each level of recursion.

The current generalization program can be easily modified
to the case when the data model allows multi-valued
properties, as in DAPLEX [Shipman 811 for example, since in
that case our object descriptions would simply have the form

3 There are of course many other possible extensions to the
generalization language, but this one sterna most consistent with the
spirit of the enterprise so far.

‘EMt’LO~‘El~ .rih (super\Iscjr :e12 ruper\ lsor ei5 1’
We are also extending the algorithm to be incremental so
that the effort of learning a description for a set of
exceptions at one point will not be lost when another
description is required later on, after some more exceptions
have been found.

6. SUMMARY
One of the hallmarks of intelligent human behavior is the

ability to cope with situations which represent deviations from
the norm, and we would like for DBMSs to have this
capability. On the other hand, we find ourselves in a
situation where we wish to impose constraints on the data to
be entered in the database both for detecting the ubiquitous
data-entry errors, and for capturing regularities which are
needed by the currently used techniques for managing large
amounts of data efficiently. This paper has presented a
technique for accommodating exceptional information in the
context of a semantic data model. The technique is based on
the following four principles:

l special information can be stored and manipulated by
special operators in ways which differ from those used to
deal with the large majority of normal data;

*since the database is shared, users must be warned when
they deal with exceptional information so they become
aware that something imgular has happened before;

l the ability to detect violations of constraints and the use
of exceptional values can be conveniently captured within
the framework of “exception handling” as this concept
appears in most modem programming languages;

l integrity constraints must be refined to disregard the
contradictions raised by exceptional values that have
already been “excused”, so that they can continue to be
useful in detecting errors in new updates.

A second characteristic of intelligent human behaviour is the
ability to adapt to change or to recognise and correct
erroneous assumptions. In our case, exceptions of certain
kinds may become quite common if the database schema was
improperly designed to begin with, or if the application
domain has changed slightly since the original design. In
either case, we believe that computer tools can be used to
redesign the schema, based on the exceptions encountered so
far. In fact, we presented some of the principles of an
experimental program which uses techniques of Machine
Learning to solve parts of this problem. This technique
attempts to find commonalities among the elements of a set
of objects, such as exceptions to a rule encountered so far,
and characterizes these in the form of a class description.
Such a characterization can be used to adjust the database
schema in various ways such as changing restrictions on
property value ranges, modifying integrity constraints, and
defining new classes. At the moment, we see this program
only as an assistant to the database administrator, who
makes final decisions about the appropriateness of new
definitions, their naming, etc.

Although the approach described here is relatively efficient
and robust, to the extent that it always produces some
(better or worse) generalization, we are aware of several
inherent shortcomings. These include the heuristic nature of
the relevance function defined here, and the inability to
handle negation and disjunction in descriptions. For these
reasons we are currently investigating a second approach
which uses a single exemplary exception to guide the search

79

/or an crplnno/ion of wh) th<, 1c~~nc~l~1u1 u 1. \i,Blstrad an
explanstlon based on some underlying logIcal theory of thP
domain. This explanation could then be generalized to cover
other potential exceptions which fit the same pattern. along
lines similar to [Utgoff 841 or [Fikes 72].

Finally, we are currently investigating other ways in which
information about the current use of a database can be used
to improve its schema, such as looking at the queries issued
againt it. These techniques would also be part of the
proposed “database administrator’s assistant”.

Acknowledgements: Dr. Tom Mitchell, who is our
collaborator in extensions of this work, has made many
suggestions which have significantly improved this paper, and
we are very grateful for them. This research has been
supported by the National Science Foundation under grant
NO. MCS-82-1019S, and Rutgers CAIP.

REFERENCES

jBorgida 84) Borgida, A. “Language features for flexible
handling of exceptions in Information Systems.“, Technical
Report LCSR-TR-70, Rutgers University, August 1984
(revised March 1985). (Submitted for publication).

[Borgida 851 Borgida, A. “Features of languages for the
development of Information Systems at the Conceptual
level.” IEEE Soflware 2(1):63-73, January, 1985.

[Ghan 821 Chan, A., Danberg, S., Fox, S., Lin, W.K.,
Nori, A. and Ries, D. “Storage and access structures to
support a semantic data model.” In Proc. 1982 VLDB

Conference. September, 1982.

[Fikes 721 Fikes, R., P.Hart and N.Nilsson. “Learning and
executing generalieed robot plans.” Artificial Intelligence

9(4):251-288, 1972.

jGoodenough 751 Goodenough, J.B. “Exception handling:
Issues and a proposed notation.” Commun. A CM

18383-696, December, 1975.

[Hayes-Roth 761 Hayes-Roth, F. “Patterns of Induction
and Associated Knowledge Acquisition Algorithms.” In
Chen, C. (editor), Pattern Recognition and Artificial
Intelligence. Academic Press, New York, 1976.

[King 801 King, J. “Intelligent Retrieval Planning.” In
Proc. 1st Natl. Con/. on AI, pages 243-245. August,
1980.

jMichalski 831 Michalski, R., Carbonell, J. and Mitchell,
T. Machine Learning: An Artificial Intelligence Approach.
Tioga Publishing Company, 1983.

IMitchell 821 Mitchell, T. “Generalization as Search.”
Artificial Intelligence 18(2):203-226, March, 1982.

[Shipman 811 Shipman, D. “The functional data model
and the data language DAPLEX.” ACM TODS 6,

March, 1981.

[Tsichritzis 821 Tsichritais, D. and Lochovsky, F. Data

Mode/e. Prentice Hall, 1982.

/Utgoff 841 Utgoff, P. E. “Shift of Bias for Inductive
Concept Learning.” PhD thesis, Rutgers University,
October. 1984.

\'err ib Crrc. S \ ‘.Indut IIve Iearnlng 0f r6.la11~~n;ll
productions.” In Wat.erman. D A. and Hayes-Roth.
F. (editors), Pattern-Directed Inference Systems. Academic
Press, New York, 1978.

APPENDIX: Algorithms

In order to define more precisely our ideas, we include here
a pseudo-code description of our current algorithms.

(i) The language for describing generalizations: Classes
whose instances are scalars (integers, enumerations, or strings)
are described by the term range(lower-bound,upper-bound),
where the bounds are either integers or enumeration elements.
For strings, any ordering relation (e.g. <, 5) refers to the
lengths of the strings, so that, for a collection c of strings,
min(c)=the length of the shortest string in c, maz(c)=the
length of the longest string in c, and thus c is described by
range(min(c),max(c)). Dataclasses are classes whose instances
are described by attribute values. Restrictions on dataclasses
are described by constraining these attributes. The terms for
describing a set of dataclass instances conform to the syntax:

bound-description ::= instances(class,description)
description ::= id-of-a-dataclass-instance

/ list-of-attribute-specifications 1 all
attribute-specification ::-] attribute, bound-description I

I (attribute, range(lower-bound, upper-bound)]

The boolean function Describcs?(B,I) is assumed to determine
whether the bound-description B covers the instance 1, and
the function Prune(SB) eliminates from the set SB of bound
descriptions those which are subsummed by others.

(ii) Other terms: minclass(e) returns the set of lowest
classes in the ISA hierarchy to which e belongs, if e is an
entity; if e is a collection of classes, then minclass(r) is the
set of its least upper bounds in the ISA partial-order. In
addition, attribute(p,Cl,C2) states that for class Cl, property
p is defined to have range C2. In what follows, variable
names ending in Seq will be sequences of values, and the
notation Seq[++n] means that n is first incremented and then
used as an index to refer to the nth value in the sequence.
Finally, the global variable CO will contain the constraint
whose violations are being generalized.

(iii) The algorithms:

@&ion DESCR (ExSeq:list of exceptional instances)
returns a set of bound-descriptions

;f scalars(ExSeq) then return(range(min(ExSeq),max(ExSeq)))
someEx = ExSeq[l]
B = { instances(c,someEx) / c E minclass(someEx) }
for each exception ex c ExSeq where ex#someEx & --

Bl = {}
for each bound-description b g B & --

Bl = Bl u GENERALIZE(b,ex,l)
B = Prune(B1)

return(Prune({ CROP(b,l) I b6B }))

80

funrtion GENl;R 11.1%1;1 b t,~,und-df,~cri~IIc,ll.l 1u.i an~~e.Ievcl ini 1
returns a set of bound-descriptions

suppose I = instances(c,d)
jf Describes?(b.I) then return({b})
Bl : {)
if -isin(l,c) then

C = minclass({c} U minclass(1))
for each class k E C &I

Bl = Bl u
GENERALIZE(instances(k,APPLICABLE(d,k)),I,level)

else if d is an id-of-a-dataclass-instance then --
for each bound-description bd E SPECIFY(d,c,level) & --

Bl = BI IJ GENERALIZE(bd,I,level)
& /” isin(I,c) A d is a list-of-attribute-specifications ‘/

n-0
for each at.tribute-specificat.ion as E d & --

;f Describes?(instances(c,as).l) then deSeqjt+n] = { as }
else case on the form of as do ---

jattr, range(lower,upper)]:-
lower = min(lower, I.attr)
upper r max(upper, I.attr)
deSeq[++n] =: { [attr, range(lower,upper)] }

[attr, instances(c%,d%)j:
deSeqj++n] = { lattr, b] 1 b E

Generaliee(instances(c2,d2),I.attr,level+l)))
Bl = { instances(c,las) 1 las E

cartesian product of the n sets in d&q }
return(Prune(B1))

function APPLICABLE(D:description, k:class)
returns description

,I” eliminates from D those attrib-specifications
whose attributes are not defined for k */

;f D is not a list-of-attribute-specifications then return(D)
n=O
for each attribute-specification as E D & --

suppose as = /attr, spec]
3 attribute(attr,k,c) A cfNone then asSeqj++n] = as

;f n-0 then return(al1) else return(asSeq) -- --

function SPEClFY(I:instance, d:class, level:integer)
returns a set of bound-descriptions

/’ introduces a list of attribute-speei/ications
for the dataclass instance I oj class d ‘/

n=O
;f level<nestingThreshold then

for each attribute p of class d & --
suppose attribute(p,d,c)
;f levelf 1 V constraint CO is not

the attribute range constraint on p then
;f c is a dataclass then -

SC = minclass(1.p)
if SC={} then SC = { c } -
deSeql++n] = {Ip,instances(cl,I.p)] 1 c~ESC}

&e deSeql++n] = { [p, range(I.p,I.p)])
if n=O then return({ instances(d,alI) })

return({ instances(d,asSeq) I asSeq E
Cartesian product of the n sets in deSeq })

junction CROl’(h hound-dcscripi ion. lrvr~ irci,~gwl
returns a bound-description

,I* remove8 attribute specijications
which are redundant or not relevant ‘/’

suppose b G instances(c,d)
if d is not a list-of-attribute-specifications then return(b)
n=O
for each attribute-specification as E d &

relev = RELEVANT?(as,c,level)
case on the type of as &o --
[attr, range(lb,ub)]:

if attribute(attr,c,range(lb,ub))
then /* redundant so omit */ nil -

else
7

if relev and fewer than -
ProportionThresholdjlevel] % of instances
of c have values for attr in the range(lb,ub)

then asSeql++n] = as
else if -- -CAN-DROP(attr) then asSeqj++n] = as

lattr, instances(c3,d3)]:
b2 = CROP(instances(cS,d3), level+l)
suppose bf E instances(cJ,d4)

and attribute(attr,c,c.2)
if dl=all A c2=c3 -

then /’ redundant 60 omit */ nil -
else if d4 is an id-of-a-dataclass-instance --

then asSeql++n] = as
else if relev and fewer than --

Pro~tionThresholdIlcvel~ % of instances
of c have values for attr described by b2

then asSeq[++n] = as
& 3 -CAN-DROP(attr) then asSeq[++n] = as -

if n=O then return(instances(c,alI)) -__
else return(instances(c,asSeq)) --

finetim RELEVANT?(AS:attr-spec, C:class, 1evel:integer)
returns boolean

suppose AS = [A, S]
xl = 1/(1-t IsA-distance(C,Class-where-Introduced(A)))
if A occcurs syntactically in constraint CO

then x2 = 1 else x2 = 0
g (wtl’xl + ~232) < RelevanceThresholdllevel]

then return(false) else return(true) -- --

fimtion CAN-DROP(Attr:attribute) returns boolean
/’ global check to ace if unacceptably many negative

ezamples (detected errora) would have been allowed by
the modified integrity constraint, if the description
of ezeeptions was modified bg dropping the specification
of this attribute. */

81

