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Abstract 

To utilize DBMSs, a database designer must usually 
construct a schema, which is used to validate the data stored 
and help set up efficient access structures. Because database 
design is an art, and because the real world is irregular, 
unpredictable, and evolves, truly useful database systems must 
be tolerant of occasional deviations from the constraints 
imposed by the schema, including the semantic integrity 
constraints. We therefore examine the problems involved in 
accommodating ezceptional information in a database, and ’ 
outline techniques for resolving them. 

Furthermore, we consider ways in which the schema can be 
refined to better characterize reality as it is reflected in the 
data encountered, including the exceptions. For this purpose, 
we describe part of a “database administrator’s assistant” - a 
computer system which can suggest modifications and 
additions to the current definitions and integrity constraints 
in the schema. This system makes generalizations from the 
currently encountered exceptions, and is based on techniques 
used in Machine Learning. 

1. INTRODUCTION 
It is by now conventional wisdom to consider a database to 

be a model of some portion of the real world ]Tsichritzis 821. 
As with any other model, the usefulness of the database 
depends on its correctness and accuracy: A database which 
contains incorrect information is worze than having no 
database since it gives a false sense of security. And, 
obviously, if a fact is known, it is better to have it in the 
database: one can make better decisions with more 
information. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for di- 
net commercial advantage, the VLDB copyright notice and the title 
of the publication and iti date appear, and notice is given that copy. 
ing is by permiesion of the Very Large Data Base Endowment. To 
copy otherwise, or to republish, requires a fee and/or special permis- 
sion from the Endowment. 

In databases, the above-mentioned world model is normally 
partitioned into two parts: i) the schema, which captures 
generic, time-invariant information; ii) the facts, which are 
specific, volatile and occur in large quantities. From the 
user’s point of view, the schema describes what concepts the 
database knows about (e.g., the classes and properties of a 
semantic data model [Borgida 851) and what constraints exist 
on the possible relationships between objects (e.g., integrity 
constraints of various kinds). This paper addresses the 
problems arising when the schema of a database does not 
model the respective aspects of the world entirely accurately. 

In particular, we first present a technique for storing and 
accessing in the database information which does not conform 
to the constraints imposed by the schema, but which 
nonetheless reflects the correct state of the real world. We 
call such information ezceptional information. The ability to 
accommodate such exceptional information allows a much 
greater degree of flexibility for the users of the database, 
since the database of facts c.an now be more accurate than 
before without the need to recompile the entire database 
system. In the second part of the paper, we follow this up 
by describing the principles of a program whose goal is to 
propose refinements to the integrity constraints and definitions 
of the database based on an analysis of the exceptions 
encountered so far. Such an algorithm can be viewed as part 
of a more general “database administrator’s assistant”: s 
program which makes suggestions on ways in which the 
database schema could be improved based on evidence of its 
use. Our work is based on, and extends, techniques for 
generalization from examples in the field of learning in 
Artificial Intelligence. 

In the next section, we present a particular language for 
describing the schema of databases -- essentially a “semantic 
data model” -- and motivate the need for permitting 
violations to constraints to persist in a particular database. 
In section 3, we then introduce a mechanism which allows 
such exceptional information to be stored and accessed in the 
database. Section 4 describes some ways in which a computer 
system might aid in the refinement of a database schema 
based on the exceptions to it encountered so far, and the last 
section proposes a technique to accomplish this based on 
empirical generalization. 
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EXCEPTIONS 

2.1 Ckmceptual databases and schemas 
w-e have carried out our investigation in the general 

context of what are known as “semantic data models” (e.g., 
DAPLEX, SDM, TAXIS) [Borgida 851, although a similar 
treatment of exceptional information is possible in the 
framework of more traditional data models such as the 
relational one. 

We see a database state as a collection of object 
descriptions: every object is an instance of one or more 
classes, and has 0 or more attributeslproperties, which relate 
it to other objects, and thus describe it. Note that each 
object has a distinct identity independent of the values of its 
attributes (contrast this to the relational model, where a 
tuple’s identity is defined by its key attributes). 

The schema of such a database then specifies two things: 
(1). The definition of the da88e8 available in this database, 
including their name, the attributes applicable to each of 
their instances, the range of possible values for every 
attribute, and constraints on the membership of various 
classes (such as subclass relationships); this essentially defines 
a typing mechanism for database objects. (2). Additional 
semantic integrity constraint8 (ICs) limiting the possible 
relationships in the database, expressed in some sort. of logical 
language. 

Before proceeding with the details of our specific data 
model, it may be worth briefly reviewing here the purpose of 
the schema: 

From the user’s point of view, the schema: a) describes the 
“domain of discourse” of the database; and b) checks the 
correctness of data entered. 

From the DBMS point of view, the schema aids in 
achieving various forms of efficiency: (a) storage 
efficiency: e.g., by allowing concise codes to be assigned to 
enumerated types; (b) jaster retrieval: e.g., fixed-length 
record schemes can be used for storage when attributes and 
their ranges are known; or the subclass hierarchy can be 
used to suggest vertical and horizontal splitting 
strategies IChan 821; (c) compile-time optimization8 of 
pWrJrW7,8: by using type information, one can often 
eliminate run-time type checking; (d) semantic query 
optimization: integrity constraints can be used to find 
faster access paths LO Ihe data :King 80;. 

We will introduce the language of class definitions used in 
this work through an example, relying on the reader’s ability 
to generalize. According to Ihe definition in Figure 2-1, the 
class of EMPLOYEE objects is a subclass of PERSONS (i.e., 
every EMPLOYEE instance is also a PERSON instance) with 
attributes name, degree, j obCat , wages and 
supervisor. Furthermore, names of employees are strings of 
no more than 25 characters, degree can be one of HSGD, 
BS, MS or PhD, jobCat is a integer between 1 and 7, wage 
is a decimal number in the range 0.00 to 80000.00, and the 
supervisor of an employee must also be an employee 

Note that as usual in semantic models, classes “inherit” the 
attributes of their super-classes; hence, if PERSONS have age 
and address attributes, then so will EMPLOYEES. In 
addition, when defining a subclass one can also specify a 
restriction on the range of an existing attribute; for example, 
PERSONS may have had age defined to have range 0..130, 
but for EMPLOYEES this may be restricted to be 14..90. 

EMPLOYEE == PERSON with 
jname : STRING(25)] 
(degree : {‘HSGD, ‘BS, ‘MS, ‘PhD}] 
[jobCat : I..71 
[wages : 0.00 80000.00] 

[supervisor : EMPLOYEE] 

Figure 2-l: Definition of EMPLOYEE class 

The definition of a class such as EMPLOYEE specifies 
necessary properties for objects belonging to that class, but it 
is up to the user to explicitly assert that an object is an 
instance of it (i.e., there is no recognition of objects). 
However, in some cases we need classes for which we have 
sufficient conditions determining membership. For example, 
secretaries are by definition exactly those employees who have 
job category 6. Such classes are described by selecting some 
“definitive” property specifications (in the above case, jobCat 
being 6) as tests applicable to a base class (EMPLOYEE, in 
the above case): 

SECRETARY == EMPLOYEE 
such that -- 

[jobcat: 6..6] 
with 

[salary: 0.00 20000.00] 
jtypingSpeed: 20..80] 

Note that test-defined classes may also have additional 
necessary conditions attached to them 

A database state then records information about the current 
state of the world by keeping track of the membership of 
objects in classes, and the known property values of objects. 
For example, we may have the following information about 
an object emp45 at. some moment: 

EMPLOYEE <emp45> 
(jname=“karl marx”] Iage= [jobCat=4]) 

leaving it to be inferred from the subclass hierarchy that 
emp45 is also a PERSON. 

The language of class definitions allows us to capture 
certain constraints on Ihe possible facts in the database. Most 
obvious are the property constraints limiting the possible 
ranges of properties. As mentioned earlier, integrity 

CcWUtrcZint6 are used to enforce additional consistency 
conditions not captured by the restrictive language of class 
definitions. ICs will be stated in a first-order language where 
the attribute names are considered as functions, class names 
are unary predicates and the primitive predicates are =, ?, 
numeric and string comparators. For example, the following 
two constraints capture part of the semantics of the terms 
introduced in the above definition of class EMPLOYEE: 

(Vx) EMPLOYEE(x)+(x.supervisor#null) 
(Vx) EMPLOYEE(x)+(x.wages<x.supervisor.wages) 

2.2 Exceptions in databases. 
In most practical situations we will find that the schema 

developed during database design does not perfectly describe 
the world in the sense that there will occasionally be 
information which we want to st.ore, but which contradicls 
the constraints of the schema. One obvious reason for this is 
that the world has changed since the database was designed. 
Another reason is that database design is an art. not a 
science, often pursued by someone unfamiliar with the 



application rl~~maln hence the %rh( r1.a f’:ti! cii~~l,l! I,( urc,ng. 
.4 third reason is t.hc variability of the real world It is 
often neither feasible to anticipate, nor desirable to capture 
all possible situations that may occur in the world. 
Philosophers have long been aware of the problems posed by 
“natural kinds” -- concepts which occur in our everyday 
experience rather than being defined. Unfortunately databases 
often hold information exactly about such natural domains. 
The following examples illustrate some of the problems 
involved: 

. A few persons may get paid more than $gO,OOO.OO, thus 
violating the constraint on salary; unfortunately, the 

upper bound will always be debatable (lOOK?, IOOOK?), 
and if we use such a high bound, we’ll lose much of the 
error checking function of the constraint. 

. Some employee may have received a foreign degree (e.g., a 
French “Baccalaureate” or ‘Bat), which is not even closely 
equivalent to any American one, yet decisions such as 
promotions, raises, etc. are based partly on this; it is 
therefore important to keep the actual value of the degree 
in the database. 

l Because of work on a new classified project, a few 
employees may receive security clearances of various 
degrees. The company then desires to record this 
information in the database for possible future references. 

l In some special cases, a person may in fact earn more 
than his/her supervisor. 

. Although it is reasonable to describe the class of valid 
addresses for a country like the USA, it seems impractical, 
if not impossible, to describe the addresses for all the 
countries in the world just in case we encounter someone 
from that country. At issue here are the necessary 
attributes for an address, not just their legal values. 

Therefore databases need the flexibility to accommodate 
special cases at runtime that are not sanctioned by the 
schema. 

3. HOW TO LIVE WITH EXCEPTIONS 
There are a number of problems which arise when we 

consider allowing the constraints of the schema to be violated. 
The following are some of the areas of concern: 

1. Storage and Access Efficiency: The most obvious, though 
not the most interesting, problems arise when we consider 
the implementation of the DBMS. When inherent 
constraints of the data model are violated, we must be 
prepared to store extra attributes, to find attribute 
domain-constraints violated, non-unique keys, etc. all of 
which are problematic for most traditional techniques of 
mass data organization, based on records. Note that we 
don’t want the presence of exceptions to degrade the 
efficiency of handling normal data, though we will assume 
relatively few exceptions occur overall. 

2. Semantics of computations: Exceptional data will need to 
be treated with circumspection in computations, since its 
semantics may be different. For example, if the supervisor 
of an employee turns out not to be an employee (she may 
be a consultant, say), then she may not have some 
attributes normally expected of all employees (e.g., 
jobcat). 

3. Sharing: The same problems arise in the interpretation of 
data when we realize that there are several users or 

prograrrl: UI.IIJI~I~ rhr dalatuw rczr ekanlplr. a user 
should be warned that an attribute which normally holds 
an integer representing US Dollar values now has Swiss 

Francs in it. 

4. Administration and accountabilitu: As with other updates. 

5 

. 
there is an obvious need to control the ability to allow 
exceptional facts to enter the data base. 

Validation of future updates: Although violations of 
semantic integrity constraints do not usually pose 
storage/retrieval problems, they do cause logical difficulties: 
If an integrity constraint is violated in a database, and we 
allow the violation to persist because it is a special case, 
then the constraint will henceforth be inconsistent with the 
database. This means that, the IC will not be able to 
detect errors in more recent updates since it will always be 
“ringing the alarm”, and we will not be able to t.ell 
whether it is just a false alarm due to the old exception. 

To resolve some of these issues, observe that our database 
can store facts in two essentially distinct ways: through the 
membership of objects in classes and through property values 
for objects. In this paper we will treat only exceptional 
property values, though exceptional instances of classes can be 
dealt with in a parallel manner. Let us assume that facts 
about property values are entered into the database by two 
primitive operations, modify and createobject, and are 
retrieved by the operator getvalue. 

One simple way of storing and retrieving exceptional 
property values -- ones which lead to the violation of 
constraints imposed by the schema -- is to have a second set 
of operators: exnal modify, exnal createobject and 
ewal getvalue. These operators w% take care of the - 
special ways in which exceptional facts must be stored, given 
that the schema has been used to optimize storage and access 
structures for the normal case. For example, while ordinary 
facts will be stored according t.o standard techniques (e.g., 

]Chan 82]), exceptional facts will be stored in a separate 
(logical) file of records, with variable length fields, each of 
which holds a single fact (e.g., the object, property name, 
property value, type information about the value, etc.). This 
second file is then accessed and modified by the exnal 
operators, and can be indexed and clustered to improve 
efficiency. 

To deal with the next two issues, related to semantics and 
sharing, we adopt the philosophy that users/programs must 
be cautioned when they encounter exceptional data, so ‘that 
they can determine whether normal procedures apply here, or 
whether special actions need to be taken. To accomplish 
this, we adopt a uniform framework for signalling both the 
initial violation of constraints, which is necessary in any case, 
and the use of exceptional property values. This framework is 
based on the concept of “exception signalling and handling” 
common in modern programming languages such as ADATM, 
and originally described by Goodenough jGoodenough 751: 
Whenever an error or special situation arises, such as division 
by 0, an operation is aborted and an ezception is signalled; 
the program (or user in our case) can then propose a handler: 

a fragment of code which is executed instead of ~hr 

interrupted operation. In our case, an update or retrieval 
operation will signal that a constraint, violation has been 
detected by creating an object in the special class 
VIOLATION, This violation object should carry information 
about exactly what has gone wrong. To accomplish this, 
every constraint is named, and then the violation records this 
information through its properties. For example, if croesus’ 
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modify(croesus,degree,‘Bac) 

then the violation object would identify the constraint being 
violated, namely [degree : {‘HSGD,‘BS,‘MS.‘PhD},, as 
(EMPLOYEE,degree). 

Usually, such a violation would uncover an error which 
would need to be corrected; but if the value is correct, we 
can force it to be actually stored by invoking 
exnal-modify(croesus,degree,‘Bac) in the violation handler. 
This operator in addition marks the respective property of 
that object a.s requiring special handling. This is 
accomplished by defining a special class of objects 

EXCEPTIONAL with 
/prop : PropertyIdentifier] 
[obj : AnyObject] 
[class: Classldentifier] 
IwithRespectTo: Assertionldentifier] 

whose instances mark exceptional properties of objects. We 
require that such an instance be created as part of 
exceptional updates. Thus, in the above example 
ewal modify would also have taken as an argument the 
viola& (which held the identifier of the assertion being 
violated), and in addition to storing croesus’ degree, it would 
have created the object el, shown below. 

EXCEPTIONAL <el> 
( Iprop=degree] (obj=croesus] [&s=EMPLOYEE] 

[withRespectTo=(EMPLOYEE,degree)] ) 

Objects in the class EXCEPTIONAL can be examined by 
database users to find, for example, all exceptions to certain 
rules or all exceptions involving certain properties. Thus the 
obj property values of objects satisfying the query 

EXCEPTIONAL(x) A 
x.prop=degree A x.claas=EMPLOYEE 

would locate all employees with exceptional degrees. This is 
then one technique whereby users sharing the database, 
including administrators, can become aware of exceptions 
introduced by others. 

More importantly, when someone tries to retrieve a property 
value which turns out to be exceptional, the DBMS raises the 
corresponding EXCEPTIONAL object as a violation - in some 
sense an “echo” of the original violation. For example, if we 
now try to retrieve croesus’ degree using getValne(croesus. 
degree), then el is raised as a violation. The user can then 
invoke ewal getvalue in the violation handler to obtain 
the actual stored value, ‘Bat. After seeing this value, the 
user could decide to continue with the current plan or take 
special measures. 

Note that the above mechanism can also be used to store 
new attributes - ones not mentioned in the schema. For 
example, one can record the security clearance code of a 
particular employee by the operation 
ewal-modify(croesus,securityCode,lO). 

We would like to make the treatment of exceptions lo ICs 
resemble that of exceptions to property constraints. 

’ Therefore we will label ICs and attach them to classes: 
the assertion concerning the supervisor’s salary 

‘Note that property constraints of the form [jot&at: 1. .7] arc 
equivalent to quantitied formulas like 

(vx) (EMPLOYEE(x) + ltx.jobCat A x.jobCats7). 

nol(‘\erVsnagrr (: w) bMPl.Ol P;E;(x) 
(x.wages ‘. x.supervisor sage5) 

could thus be ident,ified as (EMPLOYEE. notoverhlanager). 
Violations of ICs are then signalled in an identical manner to 
those of property range constraints, and the user may 
“blame” this on the value of zero or more properties, which 
are marked exceptional. For example, if the above constraint 
fails when x=croesus then any of the following facts may be 
exceptional: croesus.wages, croesus.supervisor or 
croesus.supervisor.wages. 

Finally, consider the problem of continued integrity 
checking: if after an update croesus earns more than his 
supervisor, then the constraint not0verManage.r will always 
be false as long as his and his supervisor’s salary do not 
change. We therefore propose to modifar the IC so that this 
“false alarm” is avoided, and would like to make this 
modification “minimal” in the sense that other errors which 
would have been caught by the original 1C will continue to 
be detected by the new constraint. In this paper we will 
adopt the relatively straightforward approach of considering 
every IC to be actually of the form: 

con&, : (Viw) SPECIALconstri(w) v G(w) 

where constri is the label of the rule, w is a sequence of 

variables, 0 is the original form of the IC, and 
SPEClALconstr, is a predicate which prevents the actual 
condition from being evaluated for special cases. Initially, 
SPECIALconstri is everywhere false, but as exceptions are 

encountered and “excused” for various argument tuples 6,, 6,, 

. . . . the definition of SPECIALcons&, becomes 

SPECIALconstri(w) ++ ~=6~ v w=6, v 

Thus, after encountering croesus az an exception, the 
constraints concerning managers’ salaries would actually look 
as follows: 

(Vx)(SPEClALnotOverManager(x) V 

(EMPLOYEE(x)ti(x.wages<x.supervisor.wages))) 

SPEClALnotOverManager(x) e (x=croesus) 

In summary, we have proposed to accommodate exceptions 
to constraints in databases by I) marking exceptional 
information using objects in the database so that information 
about exceptions can be maintained, 2) using an exception 
handling mechanism to alert the user when exceptional 
information is being manipulated, as well as when constraints 
are violated, 3) providing special operators to do this 
manipulation, and 4) modifying integrity constraints so that 
they are consistent with the exceptional facts. For the 
interested reader, a considerably more general and complete 
proposal for exception handling is presented in [Borgida 841. 
This includes considerat.ions about software engineering issues, 
implementation, accountability, and techniques for dealing 
with transactions. In addition we provide a more refined 
theory of how to deform ICs in a “minimal” way, including 
model and proof-theoretic accounts of this phenomenon. 

4. LEARNING FROM EXCEPTIONS 
The way that a user determines whether the schema of a 

database is ill-designed is to see it in use: to watch the 
queries and updates issued against it. Note that as long as 
everything entering the database must be shoe-horned to fit 
the schema, there is no way for the system itself to drt,rrmine 
that the schema is somehow wrong. However, once we allow 
the database t,o accommodate exceptional facts, then the 



system can itself identify case> 111 which 1116, ,I (I 111 twr ul 
exceptions mounts CO the point where a change in rhr schema 
1s indicated. We wish to investigat,e here the possibility of 
having automatic aids which watch for such occurrences and 
then suggest to the database administrator possible 
improvements to the schema. In this sense we are describing 
a part of an expert system which we might call a “database 
administrator’s assistant”. 

Given this goal, the fast question is what kinds of changes 
to the schema are we contemplating. We will restrict our 
attention to incremental modifications of the following sort: 

. Modifying ICs to apply in more restricted circumetancee. 

Thus “all employees earn less than their supervisors” could 
be qualified with “unless their supervisor’s status is part- 
time.” Such qualification takes place by defining the 
predicates SPECIALc occurring in all constraints in a more 
general way than just by enumeration, for example by 
describing a new class whose instances include all the 
exceptions. 

. Adding new attributes to a class definition. For example, 
a eecuritycode property could be added to the 
employee class. 

. Defining a new class and placing it in the current subclass 

hierarchy. An alternative to adding the eecuritycode 
property directly to the EMPLOYEE class would be to 
create a subclass CLEARED-EMPLOYEES of 
EMPLOYEES, with property SecurityCode, among 
others. A different example: if all employees who earn 
over 80K (and hence are exceptions to the salary range 
constraint (EMPLOYEE,salary)) have jobCat 1 or 2, then 
perhaps a subclass UPPER-LEVEL-MANAGEMENT of 
employees should be created for them. 

Of course there are many other possible changes that one 
might want to make to a schema (dropping attributes, 
changing their names, making ICs stronger or adding new 
ones, etc.) but the information present in exceptional facts 
seems to support mainly the changes listed above. 

The following are some of the benefits of the above 
mentioned changes: 

1. Fewer exceptions will need to be excused in the future. As 
we have seen, introducing and accessing exceptional facts 
involves the overhead of handling violations and excuses 
for them, so this gain can be quite significant. 

2. Refined ICs may be more useful for semantic query 
optimization, and even evaluating ICs may be faster: 
checking a single attribute value may be faster than 
searching through a sequence of disjuncts to see if any 

apply. 

3. The addition of new attributes and classes gives the user a 
refined vocabulary for expressing queries and updates. 

4. The increased vertical/horizontal splitting provided by new 
classes in the hierarchy might be used to improve retrieval 
efficiency . 

We present next a technique for characterizing the class of 
currently known exceptions, and thence adjusting the schema 
to accommodate them. This technique locates commonalities 
for sets of objects baaed on their class memberships and 
property values, with the limitation that these commonalities 
must be expressible in the language of schema definitions. 

5. USING EMPIRICAL (;ENERALlZATION 
FOR SCHEMA REFINEMENT 

5.1. The utility of empirical generalization. 
Suppose we have an algorithm Descr which given a set of 

objects {al,a2,...} infers a class description for them. In 
particular, it provides the definition of the/a most specific 
class which contains all these objects, given the language of 
class definitions from Section 2. Thus, Descr will output class 
definitions that consist entirely of “definitive” attribute 
specifications attached to some least general existing class 
which contains these objects as instances. 

We can use Descr to accomplish some of the goals stated 
earlier as follows: 

1. Zmproving constraints. If for some constraint c, the 
predicate SPECIALc is defined as 

SPECIALc(x) * x=el v x=eZ v ,., v x=en 

as a result of a number of exceptions e,, eZ, ,,. en, then 

replace this definition by 

SPECIALe(x) o Descr({el,eZ,...))(x) 

Since class descriptions cannot consist of enumerations of 
instances, the predicate SPECIALc will typically be 
generalized to admit more objects as implicitly exceptional, 
without the need for user intervention. 

2. Adding new attribute specifications. Suppose that. some 
new attribute attr, which does not appear in the schema. 
has been introduced in several exceptional facts 
al.attr=v ,’ “’ a,.sttr=v”. Then we may want to 

propose that the attribute specification [ettr : 
Descr({vl,...,vn })] be added to the least class containing 

a ,,..., an. 

3. Changing attribute specifications on ezieting classes. If for 
some class C, which currently has property definition Ip : 
E], there are many exceptional property values LI.p=vI, ___, 

then find the most general existing subclass C’ of C to 
which the constraint [p : E] can be restricted (i.e., such 
that C’ does not contain any of the exceptional objects 
al,...); if the constraint on p has not. been refined between 

C and C’ then we can augment the definition of C’ with 
[p : El, and then generalize the constraint on C to be /p : 
Descr(E u {v~,...})]. 

Introducing new classes is of course another way to modify 
the schema. In general, the decision to introduce a subclass is 
a heuristic one, classes being defined in order to represent 
collections of objects to which certain properties are restricted, 
and/or collections over which ICs or queries may be 
quantified. Specifically, in each of the cases in the above 
list, there are several classes which may be of use if added to 
the database schema: 

1. While modifying constraints, there is evidence for a new 
class Descr({el,...}) describing the objects to which the 
constraint did not apply. 

2. While adding a new attribute specification, there is 
evidence for the existence of the class describing objects to 
which the attribute applied, Descr({a,,...)), as well as the 

set of values for the new property, Descr({vl,...}). 

3. When an attribute specification is modified, there is 
evidence for a class to which the old definition applied, 
Descr(C - {al,...}) as well as a more general class for the 
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rHIIf?P IIf I ha1 ~~“‘[““I) I)rscr(C: u {VI,...)). 

M c realize that there IS in fact a tradwff tetwem adding 

new classes to make it more convenient to communira1.e with 
the database, and the confusion caused by the presence of too 
many marginally useful class definitions. We propose t,o 
protect the DB manager from a blizzard of suggestions for 
class definitions by using a scheme in which suggestions for 
class definitions that appear to be useful are placed in a 
“suggestion box”, and a second program sifts through these to 
find evidence for truly useful definitions, sometimes as an 
amalgam of several individual suggestions. The details of this 
algorithm are currently under investigation. 

In summary, WC see the following scenario: The DB 
administrator’s assistsnt keeps track of violations and 
exceptions to constraints in the schema. When prompt,ed by 
the DB administrator or when sufficient evidence is 
accumulated’; it suggests one or more alternative changes to 
the schema to be carried out. The DB administrator has the 
final decision about which changes, if any, to implement. In 
fact. the administrator may chose to modify the class 
suggestions by. for example, removing or relaxing certain 
property restrictions (since they were the result of coincidences 
in the particular sample of exceptions), or by making some 
property constraints necessary conditions only, rather than 
part of the test for class membership. 

We present next the basic algorithm underlying Descr which 
we have used, and in the following section we describe a 
number of refinements to improve it. 

5.2. The generalization algorithm 
Descr takes as input a set of object descriptions, and 

produces a class description which has as instances these 
objects. One of our goals is to make this the “most specific” 
such class, in the sense that any other class which would 
have them as instances would subsume this class. One reason 
for this is that we do not want to over-generalize constraints, 
since their goal is to detect errors: a most specific class 
makes the SPECIAL predicate apply t.o the fewest cases. We 
shall first describe how we approach this goal, and then deal 
with other, possibly conflicting goals for Descr, in the 
following subsection. 

The fundamental idea of the algorithm is to consider the 
objects to be described a1,a2, one by one, and in each case 

deform the current class description by the least amount 
necessary to have it also describe the current object. The 
description of the set of exceptions is initialized to be the 
first exceptional instance. The next exceptional instance is 
then compared against this. Whenever part of the class 
description is too restrictive, that part is generalized by one 
of the rules below. In the technical terminology of machine 
learning, the algorithm Descr makes a specific-to-general 
breadth-first search IMitchell R2, Michalski 83) to induce a 
description for a set of objects. 

I. Introduce/Ezpand Range - A range of values can be 
introduced or expanded to cover a new scalar data value 
(string, number, enumeration). For example, to describe 
salaries of 40k and BOk, the attribute specification [salary: 

2 
The decision on when enough evidence has heen accumulated to 

suggest changes is heuristic. and may be based on absolute or relative 
numbers of exceptions, and the “goodness” of the induced description, 
which measures how useful or precise the description is. 

Introduce/Generalize Class - An existing class can be 
introduced or generalized (using the IsA hierarchy) in a 
description to cover a new data value. especially an enttty 
object. For example, [supervisor : ACCOUNTANT] can be 
generalized to /supervisor : EMPLOYEE,, if the next 
example’s supervisor is not an accountant. In this 
generalization process, one uses the least class in the 
hierarchy of classes which subsumes both the old class and 
the new value. We note that this generalization could also 
be applied to scalar values if our language allowed classes 
of scalars to be defined, such as EMPLOYEE-. AGES. 

Drop Attribute Specifications - Descriptions are prunned by 
dropping attribute specifications which are not uniformly 
applicable. For example, in generalizing a description from 
“EMPLOYEE such that . ..” to “PERSON such that . ..“. -- 
we must eliminate references to attributes which are 
specific to EMPLOYEES but do not occur on PERSONS. 
Specifications are also dropped when they are redundant or 
vacuous, such as in “EMPLOYEE such that idegree : 
{‘HSGD,‘BS.‘MS,‘PhD)I.” 

For example, suppose we want to find a description for the 
following 3 employees: 

RESEARCHER <e41> 

(lage=35j idegree=PhD] [jobCat= [wages=A5ki 
jsupervisor=EMPLOYEE<e56>]) 

RESEARCHER <r57> 
(iage= [degree=MS] [jobCat=21 [wages=QOki 

jsupervisor=EMPLOYEEte56>]) 
EMPLOYEE <e66> 

((age=501 Idegree=PhD] IjobCat=l] [wages=Q5kj 
[supervisor=EMPLOYEE<e76>]) 

The initial description would be 

iRESEARCHER such that -- 
jage : 351 Idegree : ‘PhD] 
;jobCat : 21 Iwages : &35k] 
Isupervisor : EMPLOYEE<e56>]] 

The second researcher r57, forces this description to be 
generalized to 

IRESEARCHER such that ~- 
/age : 35 451 [degree : ‘MS _. ‘PhDj 
!jobCat : 2j jwages : 85k . QOk] 
[supervisor : EMPLOYEE<e56>]] 

The third employee e66, forces this description to be 
generalized to 

/EMPLOYEE such that -- 
[age : 35 501 jdegree : ‘MS ,. ‘PhD] 
/jobCat : 1 21 Iwages : 85k _. QSk]] 

The description of supervisors was generalized to lsupervisor : 
EMPLOYEE], since r66 has a different supervisor than the 
other two employees. This restriction was then dropped since 
supervisor’s of employees are always employees. 

5.5. Refinements to the generalization process. 
In this section we present a number of ideas designed co 

resolve certain problems with the algorithm presented in the 
previous subsection. 

To begin with, in the schema there may be more than one 
maximally specific class that. contains an object. For 
example, a person may be an employee and a cust.omer at 



the same tlrn(. 41~. m genwal. Ihe aul~ lass rcslati .t,shkp 
need not form a tree. SO that two classes may have more 
than one most specific subsumer in the IsA hierarchy. For 
these reasons, there may be more than one most specific 
description for a set of objects. Therefore, Descr must 
act,ually maintain a set of maximally specific descriptions (as 
is done in IHayes-Roth 76, Vere 781). This set is initialized 
to be the minimal classes which contain the fast object to be 
described. Given another object, Descr generalizes each 
description in the set as described earlier. In “climbing” the 
generalization hierarchy, the set of most specific descriptions 
may grow if there is more than one parent. On the other 
hand, when one description in the set is generalized, it may 
now subsume one of the other descriptions and hence is no 
longer necessary. In this case, the set of most specific 
descriptions may shrink. 

A more important source of problems is an inherent conflict 
between some of our goals for finding the generalization. On 
the one hand, we have looked so far for the most specific 
description of a set of exceptional objects, because this 
minimizes the set of objects for which the original integrity 
constraint is not checked, and hence allows us to continue to 
detect errors effectively. In finding the most specific 
description, the algorithm Descr may generate spurious 
restrictions based on accidental commonalities in the data, 
unless we have a very large sample of exemplar objects. For 
example, a subclass of employees is likely to have few PhD’s 
among them, and hence the restriction [degree: ‘HSGD..‘MS] 
may be suggested, though it is not necessarily relevant to 
characterizing this set. Also, Descr may introduce circular 
reasoning along the lines “the employees who earn over 80K 
are those who satisfy the constraint [salary : 85000..120500]“. 
The presence of such spurious attribute specifications is 
bothersome for two reasons: it makes integrity constraints 
more expensive to check, and it allows fewer objects to be 
special, which may circumvent our goal of eliminating the 
need to excuse exceptional cases. These two problems can be 
resolved by selectively elitiinating all but the most “essential” 
attribute specifications in a description. Of course, if we 
drop too many property restrictions or the wrong ones, the 
constraint expressed in the schema will become over- 
generalized, thereby making it less effective for detecting 
errors. We will therefore make use of a number of heuristics 
in order to decide which attribute specifications can or cannot 
be dropped from a description. 

To avoid over-generalizing a constraint, we can try looking 
for negative ezomples: objects which should NOT be covered 
by the class generalized by Descr from a list of examples. 
Since our goal is to retain the ability to detect errors, the 
best candidates for negative examples are those circumstances 
where the current constraint did detect a violation that was 
NOT excused - a real data entry error. In other words, a 
constraint can be considered over-generalized if it no longer 
detects some of the errors it caught earlier. Therefore the 
generalization of the predicate SPECIAL should cover as few 
such negative examples as possible. Negative examples allow 
us then to chose between alternative descriptions of a set of 
exceptions to a constraint, and to decide when dropping some 
attribute specification from a description is ill-advised. 

If the number of entities in the database which satisfy a 
description increases dramatically when some attribute 
specification is dropped, then the resulting description has a 
good chance of being overly general; this provides a second 
global heuristic for determining when an attribute constraint 
is essential. We are not currently using this heuristic, 
preferring to rely on statistical information on the distribution 

This still leaves us with the problem of deciding which 
constraints to try to drop in a description, since it may not 
be feasible to try all combinations, and since we may not 
have enough positive and negative examples to work with. 

For this purpose we introduce the notion of “relevance”. 
In any situation we wish to have an evaluation of which 
attribute specifications are more relevant to the generalization 
at hand so that irrelevant ones can be discarded. The 
following are some heuristic sources of relevance. 

l Classes, and their properties, which are closer to a 
particular class in the superclass hierarchy are more 
relevant to it than ones further away. In particular, the 
new attributes introduced when a subclass is defined would 
seem to be most relevant to each other and to that 
subclass. 

l If we are using Descr on values violating an IC, then the 
other classes and properties mentioned in the IC are likely 
to be relevant. 

l If we are describing objects which are exceptional with 
respect to the range constraint of some attribute p, then 
their p property is irrelevant to this characterization. (This 
prevents circular descriptions.) 

l The availability of information about the distribution or 
frequency of certain values in the database can also be 
used in deciding relevance. For example, if certain values 
of a property p are statistically infrequent in the database 
(e.g., ‘PhD degrees) then the absence of those values in a 
restriction is not very significant (so the constraint [degree: 
HSGD..MS] could be dropped). Conversely, if a value of a 
property occurs very frequently in the database (e.g., 
jobCat 8 or 7, representing low-ranking employees) then 
the absence of these property values in a set of examples 
is quite significant (so [jobcat: 1..2] would seem to be a 
relevant constraint). These intuitions will eventually be 
made more precise through the proper application of 
statistical techniques which establish whether there are 
significant differences between the distributions of property 
values for the genera1 population and the set of exceptional 
objects. 

As an example, if the description learned at the end of the 
last section was being used to describe employees who 
violated the constraint [wages: 0.00 80000.00] on 
EMPLOYEE, then the following description would be more 
appropriate. 

EMPLOYEE such that -- 
[degree : ‘MS ‘PhD] 
/jobCat : 1 21 

Two attribute restrictions were dropped. The age attribute 
is less relevant than degree and jobCat since it was 
introduced for PERSONS and not specifically for 
EMPLOYEES. The degree and job&t restrictions were 
also kept because they were statistically significant. On the 
other hand, the wage attribute is irrelevant to characterizing 
independently employees with high wages, so it was dropped. 
Note that in order to avoid dependence on the order of 
examining the examples during the generalization process, the 
pruning of descriptions should be delayed until after the 
algorithm Descr completes. 

In order to combine the suggestions of the various sources 
of information about the merits of dropping some attribute 
restriction from a description we use a weighted sum of the 



Irldrvidual estimates. The exat.1 numkvs for I his 
computation, as well as the thresholds to be used for cut-offs 
can only be determined empirically. We have therefore 
implemented most of the learning algorithm described above 
as a prototype PROLOG program, and we plan to carry out 
experiments with it to determine, among others, the . . 
appropriate defimtlon of relevance. We also continue to refine 
and look for new heuristics for determining relevance. 

A final problem to be addressed here concerns the restrictive 
nature of the generalirations possible. Techniques of 
empirical generalization are in genera1 limited by the language 
chosen for describing generalizations. In particular, although 
our language allows characterizing commonalities of objects in 
terms of their properties, it does not allow referring to 
properties of their properties, for example. Thus, if persons 
have addresses, which are objects that have properties such as 
street, city, etste, etc., then we are unable to 
characterize the set of persons living in New York City. 

We can remedy this by extending the language to allow 
nested class definitions as a way of imposing additional 
integrity constraints3. For example, the following definition 
ensures that fathers of persons are male: 

PERSON with 
[sex : {‘male, ‘female}] 
[father : PERSON such that [sex : {‘male}]] 

At this point, we can add another entry to the list of ways 
whereby a description is generalized in Descr: 

. Introduce Attributer - A reference to a particular instance 
of a non-scalar class can be generalized by introducing a 
description of its attributes. For example, [supervisor : 
EMPLOYEE<el4>] might be generalized to also describe 
Isupervisor : EMPLOYEE<e21>] by the attribute- 
specification 

[supervisor : EMPLOYEE such that -- 
[degree : ‘BS] ]jobCat : S..4] [wages : 50k..BOk] 
[supervisor : EMPLOYEE<e4S>]] 

in case they both have e4S as supervisor and ‘BS degrees. 

This generalization can be accomplished by a recursive call to 
the Descr procedure on the values of the respective property 
(ruperviror in the above example). 

Of course, unless we are careful, this can lead to a sudden 
growth in the size of the descriptions, which is not desirable 
in light of the second and third goals for generaliration 
mentioned earlier. Worse, it can lead to infinite recursion, as 
in the case when persons have spouse attributes, whose values 
are also persons. The solution to this problem lies in the 
judicious use of relevance: clearly, the farther we get away (in 
terms of properties of properties) from the original set of 
exceptional objects, the less relevant things get, so that we 
will want to stop after a few levels. Also, in describing 
properties of properties, we should be more willing to drop 
attribute specifications which are not sharply restrictive, for 
example. For this purpose, the relevance threshold can be 
raised with each level of recursion. 

The current generalization program can be easily modified 
to the case when the data model allows multi-valued 
properties, as in DAPLEX [Shipman 811 for example, since in 
that case our object descriptions would simply have the form 

3 There are of course many other possible extensions to the 
generalization language, but this one sterna most consistent with the 
spirit of the enterprise so far. 

‘EMt’LO~‘El~ .rih ( super\Iscjr :e12 ruper\ lsor ei5 1’ 
We are also extending the algorithm to be incremental so 
that the effort of learning a description for a set of 
exceptions at one point will not be lost when another 
description is required later on, after some more exceptions 
have been found. 

6. SUMMARY 
One of the hallmarks of intelligent human behavior is the 

ability to cope with situations which represent deviations from 
the norm, and we would like for DBMSs to have this 
capability. On the other hand, we find ourselves in a 
situation where we wish to impose constraints on the data to 
be entered in the database both for detecting the ubiquitous 
data-entry errors, and for capturing regularities which are 
needed by the currently used techniques for managing large 
amounts of data efficiently. This paper has presented a 
technique for accommodating exceptional information in the 
context of a semantic data model. The technique is based on 
the following four principles: 

l special information can be stored and manipulated by 
special operators in ways which differ from those used to 
deal with the large majority of normal data; 

*since the database is shared, users must be warned when 
they deal with exceptional information so they become 
aware that something imgular has happened before; 

l the ability to detect violations of constraints and the use 
of exceptional values can be conveniently captured within 
the framework of “exception handling” as this concept 
appears in most modem programming languages; 

l integrity constraints must be refined to disregard the 
contradictions raised by exceptional values that have 
already been “excused”, so that they can continue to be 
useful in detecting errors in new updates. 

A second characteristic of intelligent human behaviour is the 
ability to adapt to change or to recognise and correct 
erroneous assumptions. In our case, exceptions of certain 
kinds may become quite common if the database schema was 
improperly designed to begin with, or if the application 
domain has changed slightly since the original design. In 
either case, we believe that computer tools can be used to 
redesign the schema, based on the exceptions encountered so 
far. In fact, we presented some of the principles of an 
experimental program which uses techniques of Machine 
Learning to solve parts of this problem. This technique 
attempts to find commonalities among the elements of a set 
of objects, such as exceptions to a rule encountered so far, 
and characterizes these in the form of a class description. 
Such a characterization can be used to adjust the database 
schema in various ways such as changing restrictions on 
property value ranges, modifying integrity constraints, and 
defining new classes. At the moment, we see this program 
only as an assistant to the database administrator, who 
makes final decisions about the appropriateness of new 
definitions, their naming, etc. 

Although the approach described here is relatively efficient 
and robust, to the extent that it always produces some 
(better or worse) generalization, we are aware of several 
inherent shortcomings. These include the heuristic nature of 
the relevance function defined here, and the inability to 
handle negation and disjunction in descriptions. For these 
reasons we are currently investigating a second approach 
which uses a single exemplary exception to guide the search 
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/or an crplnno/ion of wh) th<, 1c~~nc~l~1u1 u 1. \i,Blstrad an 
explanstlon based on some underlying logIcal theory of thP 
domain. This explanation could then be generalized to cover 
other potential exceptions which fit the same pattern. along 
lines similar to [Utgoff 841 or [Fikes 72]. 

Finally, we are currently investigating other ways in which 
information about the current use of a database can be used 
to improve its schema, such as looking at the queries issued 
againt it. These techniques would also be part of the 
proposed “database administrator’s assistant”. 
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APPENDIX: Algorithms 

In order to define more precisely our ideas, we include here 
a pseudo-code description of our current algorithms. 

(i) The language for describing generalizations: Classes 
whose instances are scalars (integers, enumerations, or strings) 
are described by the term range(lower-bound,upper-bound), 
where the bounds are either integers or enumeration elements. 
For strings, any ordering relation (e.g. <, 5) refers to the 
lengths of the strings, so that, for a collection c of strings, 
min(c)=the length of the shortest string in c, maz(c)=the 
length of the longest string in c, and thus c is described by 
range(min(c),max(c)). Dataclasses are classes whose instances 
are described by attribute values. Restrictions on dataclasses 
are described by constraining these attributes. The terms for 
describing a set of dataclass instances conform to the syntax: 

bound-description ::= instances(class,description) 
description ::= id-of-a-dataclass-instance 

/ list-of-attribute-specifications 1 all 
attribute-specification ::- ] attribute, bound-description I 

I ( attribute, range(lower-bound, upper-bound) ] 

The boolean function Describcs?(B,I) is assumed to determine 
whether the bound-description B covers the instance 1, and 
the function Prune(SB) eliminates from the set SB of bound 
descriptions those which are subsummed by others. 

(ii) Other terms: minclass(e) returns the set of lowest 
classes in the ISA hierarchy to which e belongs, if e is an 
entity; if e is a collection of classes, then minclass(r) is the 
set of its least upper bounds in the ISA partial-order. In 
addition, attribute(p,Cl,C2) states that for class Cl, property 
p is defined to have range C2. In what follows, variable 
names ending in Seq will be sequences of values, and the 
notation Seq[++n] means that n is first incremented and then 
used as an index to refer to the nth value in the sequence. 
Finally, the global variable CO will contain the constraint 
whose violations are being generalized. 

(iii) The algorithms: 

@&ion DESCR (ExSeq:list of exceptional instances) 
returns a set of bound-descriptions 

;f scalars(ExSeq) then return(range(min(ExSeq),max(ExSeq))) 
someEx = ExSeq[l] 
B = { instances(c,someEx) / c E minclass(someEx) } 
for each exception ex c ExSeq where ex#someEx & -- 

Bl = {} 
for each bound-description b g B & -- 

Bl = Bl u GENERALIZE(b,ex,l) 
B = Prune(B1) 

return(Prune({ CROP(b,l) I b6B })) 

80 



funrtion GENl;R 11.1%1;1 b t,~,und-df,~cri~IIc,ll.l 1u.i an~~e.Ievcl ini 1 
returns a set of bound-descriptions 

suppose I = instances(c,d) 
jf Describes?(b.I) then return({b}) 
Bl : {) 
if -isin(l,c) then 

C = minclass({c} U minclass(1)) 
for each class k E C &I 

Bl = Bl u 
GENERALIZE(instances(k,APPLICABLE(d,k)),I,level) 

else if d is an id-of-a-dataclass-instance then -- 
for each bound-description bd E SPECIFY(d,c,level) & -- 

Bl = BI IJ GENERALIZE(bd,I,level) 
& /” isin(I,c) A d is a list-of-attribute-specifications ‘/ 

n-0 
for each at.tribute-specificat.ion as E d & -- 

;f Describes?(instances(c,as).l) then deSeqjt+n] = { as } 
else case on the form of as do --- 

jattr, range(lower,upper)]:- 
lower = min(lower, I.attr) 
upper r max(upper, I.attr) 
deSeq[++n] =: { [attr, range(lower,upper)] } 

[attr, instances(c%,d%)j: 
deSeqj++n] = { lattr, b] 1 b E 

Generaliee(instances(c2,d2),I.attr,level+l)) ) 
Bl = { instances(c,las) 1 las E 

cartesian product of the n sets in d&q } 
return(Prune(B1)) 

function APPLICABLE(D:description, k:class) 
returns description 

,I” eliminates from D those attrib-specifications 
whose attributes are not defined for k */ 

;f D is not a list-of-attribute-specifications then return(D) 
n=O 
for each attribute-specification as E D & -- 

suppose as = /attr, spec] 
3 attribute(attr,k,c) A cfNone then asSeqj++n] = as 

;f n-0 then return(al1) else return(asSeq) -- -- 

function SPEClFY(I:instance, d:class, level:integer) 
returns a set of bound-descriptions 

/’ introduces a list of attribute-speei/ications 
for the dataclass instance I oj class d ‘/ 

n=O 
;f level<nestingThreshold then 

for each attribute p of class d & -- 
suppose attribute(p,d,c) 
;f levelf 1 V constraint CO is not 

the attribute range constraint on p then 
;f c is a dataclass then - 

SC = minclass(1.p) 
if SC={} then SC = { c } - 
deSeql++n] = {Ip,instances(cl,I.p)] 1 c~ESC} 

&e deSeql++n] = { [p, range(I.p,I.p)] ) 
if n=O then return({ instances(d,alI) }) 

return({ instances(d,asSeq) I asSeq E 
Cartesian product of the n sets in deSeq }) 

junction CROl’(h hound-dcscripi ion. lrvr~ irci,~gwl 
returns a bound-description 

,I* remove8 attribute specijications 
which are redundant or not relevant ‘/’ 

suppose b G instances(c,d) 
if d is not a list-of-attribute-specifications then return(b) 
n=O 
for each attribute-specification as E d & 

relev = RELEVANT?(as,c,level) 
case on the type of as &o -- 
[attr, range(lb,ub)]: 

if attribute(attr,c,range(lb,ub)) 
then /* redundant so omit */ nil - 

else 
7 

if relev and fewer than - 
ProportionThresholdjlevel] % of instances 
of c have values for attr in the range(lb,ub) 

then asSeql++n] = as 
else if -- -CAN-DROP(attr) then asSeqj++n] = as 

lattr, instances(c3,d3)]: 
b2 = CROP(instances(cS,d3), level+l) 
suppose bf E instances(cJ,d4) 

and attribute(attr,c,c.2) 
if dl=all A c2=c3 - 

then /’ redundant 60 omit */ nil - 
else if d4 is an id-of-a-dataclass-instance -- 

then asSeql++n] = as 
else if relev and fewer than -- 

Pro~tionThresholdIlcvel~ % of instances 
of c have values for attr described by b2 

then asSeq[++n] = as 
& 3 -CAN-DROP(attr) then asSeq[++n] = as - 

if n=O then return(instances(c,alI)) -__ 
else return(instances(c,asSeq)) -- 

finetim RELEVANT?(AS:attr-spec, C:class, 1evel:integer) 
returns boolean 

suppose AS = [A, S] 
xl = 1/(1-t IsA-distance(C,Class-where-Introduced(A))) 
if A occcurs syntactically in constraint CO 

then x2 = 1 else x2 = 0 
g (wtl’xl + ~232) < RelevanceThresholdllevel] 

then return(false) else return(true) -- -- 

fimtion CAN-DROP(Attr:attribute) returns boolean 
/’ global check to ace if unacceptably many negative 

ezamples (detected errora) would have been allowed by 
the modified integrity constraint, if the description 
of ezeeptions was modified bg dropping the specification 
of this attribute. */ 
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