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ABSTBACT 

A new solution to the cyclic res- 
tarting and infinite restarting pro- 
blems for locking schemes in Distri- 
buted Database Systems (DDBSE) is 
presented. The solution proposed is 
based on the data marking mechanism, 
which ensures the completion of each 
transaction in the system. The solu- 
tion is fully distributed. It only 
requires information locally access- 
ible on each site of the DDBS, and it 
intervenes into transaction processing 
only in the case of real danger of 
cyclic and/or infinite restarting. 
Simulation has shown that this solu- 
tion significantly reduces the number 
of transaction restarts in DDBSs 
using locking schemes, and thus con- 
siderably improves DDBS performance. 

I. Introduction 

Two general goals of concurrence 
control in transaction-based Distributed 
Database Systems (DDBSS) are: (I) to 
preserve database consistency, and (2) 
to guarantee the completion of each 
transaction submitted to the system in 
finite time. Let us note that both these 
goals concern consistency in the wide 
6cnse. The first one concerns the con- 
sistency of data stored in the database. 
The second one concerns the consistency 
of the database with respect to the 
external world which it reflects. To 
clarify this problem, let us consider 
the situation when a transaction updat- 

a bank account can never be comule- 
t'% (for some reasons which will be ex- 
plcined later). The data stored in the 
database are consistent among themselves 
but the database is not consistent with 
respect to the external world since 

money was taken from or put into the 
account, but the account was not 
updated. 

The commonly accepted solution to 
the concurrency control in distributed 
databases is the use of locking schemes 
[I, 6, 7, 13, 21, 321. It has been 
proved that among locking schemes, the 
Two-Phase Locking (2PL) scheme is the 
best one for general distributed data- 
base ssxtems admitting data dependent 
transactions44 which can modify any 
data item they access [Is, 32). The 2PL 
scheme preserves database consistency, 
but does not guarantee the conpletion 
of each transaction in finite time, and 
it should thus be supplemented by sone 
special algorithms that do this. 

To Guarantee the conpletion of 
each transaction in finite time, we nust 
protect each transaction from four kinds 
of phenomena which can prevent its com- 
pletion, namely: deadlock, permanent 
blocking, cyclic restarting and infinite 
restartin& 

Deadlock occurs when two or tlore 
transactions wait forever for each 
other. 

Permanent blocking occurs when a 
transaction waits forever for data 
lockinS because of a steady strear; of 
other transactions whose lock requests 
are always accepted before its lock 
request. 

Cyclic restarting occurs when two 

---e-B ----mm 4 By a data dependent transaction, we 
mean one for which, in general, not 
all of the set of data items accessed 
is known at the beginning of the tran- 
saction processing because it is de- 
termined during; transaction proccssint 

2 based upon data accessed earlier. 
The last two phenomena are also known 
under the following nazes: dyiia;;ic 
deadlock, livelock, permanent res- 
tarting, cyclic restart, restartinj 
forever. 
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or more transactions always cause the 
abortion of each other. 

Infinite restarting occurs when a 
transaction requesting a data lock is 
always aborted because of a steady 
stream of other transactions whose lock 
requests are always accepted before its 
lock request. 

It is easy to notice some symmet- 
ries between these phenomena. First, 
deadlock and cyclic restarting concern 
a set of transactions whose lock 
requests are contradictory in some sense 
while permanent blocking and infinite 
restarting concern transactions which 
are permanently postponed because of 
Ilbad" characteristics, in comparison 
with those of other transactions conti- 
nuously arriving. 

Second, deadlock and permanent 
blocking can occur when unlimited wait- 
ing is allowed in the case of lock in- 
ComDatibility, while cvclic and infinite 
restarting can occur when unlimited num- 
ber of abortions are allowed. 

In the literature, the most atten- 
tion was paid to the deadlock problem. 
There are two general approaches to 
this problem in DDBS, namely: explicit 
detection and recovers. and prevention. 

There have been several deadlock 
detection protocols suggested, both cen- 
tralized and distributed, which differ 
from one another in the algorithms used 
to locate directed cycles in the so 
called decand graph representing the 
global state of all transactions in 
progress in the system [I, 4, IO, II,I3, 
17, 22, 301. However. due to the huge 
number of system resources (data lock 
units), data replication and the inhe- 
rent communication delays in distribu- 
ted computer systems. it is quite dif- 
ficult to construct and maintain the 
consistent demand graph for the whole 
distributed transaction system. Indeed, 
it was shown in 19. 123, that most of 
the distributed deadlock detection 
protocols proposed to date are incorrect 
Even assuming the improvement of these 
protocols, their very poor performance 
renders them impractical for DDBSs. 

Prevention is the alternative 
approach to the deadlock problem. The 
simplest deadlock prevention strategy 
consists of the abortion of a transac- 
tion requesting a data lock in any case 
of its inconpatibilitv with the locks 
already granted. The aborted transac- 
tion is rolled back (i.e., all its 
locks are preempted and released) 
before it is restarted. A somewhat more 
sophisticated deadlock prevention stra- 
tegy allows the transaction to wait a 
prespecified time period (called time- 
out) before being aborted [I, 2, 7, 8, 

13, 311. Let us note that these strate- 
gies also prevent permanent blocking. 

Another prevention strategy, used 
in such distributed systems as XDFS and 
EWES is based on time-limited breakable 
locks 118. 31). A transaction that has 
some of its locks "brokenl', will be 
aborted if it tries to commit broken 
locks, which of course prevents poten- 
tial deadlock. 

Summarizing, for the solution of 
the deadlock problem in the DDBS, a ver- 
sion of the prevention strategv using 
abortion is usually adopted, because of 
its simplicity in comparison with the 
deadlock detection, the control using 
only the information locally available 
at the DDBSs'sites, and the simultaneous 
prevention of permanent blocking. 

However, as was mentioned above? 
the use of the abortion as the principal 
mechanism of deadlock and permanent 
blocking prevention provokes cyclic and/ 
or infinite restarting, which sre total- 
ly unacceptable as well [I, 4, 9, II, 
20, 26, 273. Thus, it is necessary to 
introduce some strategies for the pre- 
vention of these phenomena to the DDBS 
concurrency control. 

There are some known solutions to 
the problems of cyclic and infinite res- 
tarting in DDBSs. The most inportent 
group of methods is based on priority 
schemes. 

The best known priority schemes are 
\!ait-Die (k/D) and WoundGiait (i?(i) both 
proposed by Rosenkrsntz et al. [I, 13, 
271, in which both waiting and abortion 
are used. These schemes are free from 
deadlock and cyclic restarting. However, 
they are not free from permanent block- 
ing and infinite restarting'l 

Another solution is used in the 
XDFS system [181, where the additional 
intention-write lock mode is introduced 
to the set of basic lock modes to reduce 
the likelihood of a cyclic and infinite 
restarting. Such a solution considera- 
bly reduces the probability of cyclic 
restarting, but does not eliminate it. 
Moreover, this solution does not elimi- 
nate infinite restarting. 

r 
----------- 
This results from the fact that, in 
general, in locking algorithms the 
requirements of the strict concurren- 
cy control assumed in the original 
proposition of \lD and :s"i: (27) are not 
preserved. Additionai mecha.nisrJs are 
needed to restrict the concurrent 
reading of the data items and thus 
avoid the above problems. However, t!le 
performance of the lockint; al-orithns 
then becomes very low [IS, 20 0 . 
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A simple, but rather radical solu- 
tion to the infinite restarting problem 
consists of cutting off the stream of 
new transactions initiated in the system. 
In other words, after the detection of a 
repeatedly restarted transaction, the 
requests of new transactions arriving to 
the svstem are suspended until after it 
reaches its commit point [16, 261. This 
is equivalent to wrltt-locking the 
entire database, and thus. this method 
can be used only if infinite restarting 
occurs very rarely. 

Summarizing, there has, until now, 
been no method for preventing transac- 
tions from all of: deadlock, permanent 
blocking, cyclic end infinite restart- 
ing, and which does not considerably 
reduce the level of concurrency. The 
most complete proposal up to date are 
those using priority schemes. However, 
the main disadvantage of these methods 
is that they always intervene in tran- 
saction processing, whether there is a 
real danger of unacceptable phenomena 
or not, thus reducing the level of con- 
currency end DDBS performance. 

In this paper. we propose a new, 
simple and efficient cure for all the 
phenomena listed above, which intervenes 
only in the case when there is a real 
danger of them, thus keeping the level 
of concurrency in the DDBS high. Kore- 
over, we show. that the application of 
this method can improve the total DDBS 
performance. The method is fully distri- 
buted and it only needs information lo- 
cally available at DDBS sites and does 
not need any extra inter-site communi- 
cation. 

We use abortion after the prespeci- 
fied time-out, in order to eliminate in- 
definite waiting and thus prevent the 
system fron deadlock and permanent 
blocking, and we propose data iten nerk- 
ing as an approach for preventing of 
transactions from cyclic and infinite 
restarting. To this end, the restart 
indicator is attached, to each transac- 
tion initiated in the system. This de- 
fines the admissible number of transac- 
tion restarts, above which a transaction 
is treated as restarting infinitely. 
When such a transaction is detected, 
the system, according to our method, 
reserves all data items needed by it in 
such a way that it will be completed 
with ninicurr system perfornance cost. 
The nean response time to a transaction 
and the mean number of transaction res- 
tarts were used as the system perfor- 
mance measures. 

The paper is organized as follows. 
Section 2 contains the basic definitions 

of the DDBS model adopted. In Section 3, 
the proposed method for the prevention 
of cyclic and infinite restarting is 
described. In Section 4, the results of 
the simulation experiments are discus- 
sed. The performance of the proposed 
method is compared with classical 2PL. 
This section also contains the discus- 
sion of the choice of the appropriate 
value of restart indicator, which con- 
siderably influences the performance of 
the presented method. Section 5 con- 
tains conclusions. 

2. A node1 of distributed database 
system 

2.1. Basic definitions 
We consider a distributed system 

as a collection of sites interconnected 
by a communication network and control- 
led by a Distributed Database i+.nagement 
System (DDBIU). A Distributed Database 
(DDB), formally, is defined as 
DDB=(ST, L, D), where ST=(ST 
is a collection of sites, 

a t;r&p;e 

L G'~'~et?' 
of logical data items called the logical 
database, 
data items 

and D is a set of physical 
called the physical database. 

We assume, according to the above 
definition, 8 two-level DDB model. At 
the higher level of abstraction (i.e., 
from the user point of view), DDB is 
represented by the set of logical data 

nay be rela- 
tions, files, records, etc. Each logical 
data item may be represented by a set 
of one or more (replicated) physical co- 
pies stored at different sites of the 
DDBS. The physical copies of logical 
data item X. are denoted x. 
X. Each $hgsical data i&i; $!!$'bi*' 
r@&sented by one or more physical 
units of access (e.g., pages of virtu- 
al memory). For simplicity, in this 
paper, we will assume the so called 
page-level access, i.e., the page is 
assumed to be a unit of locking. In 
practice, this assumption is usually 
net [31]. 

The set of all physical data items 

& ik,"Dl?B at 
physi- 

the lower level of abstraction. Hence- 
forth, by "data iten" we will rrean 
physical data itec.'Pdysical database D 
is the application-oriented i::ple;.ze:Lta- 
tion of L, for a i;iveh DDBS hardylaze 
Configuration. Each site of DDi3: acco:..- 

nodates the subset of the phvsicai 
database D called the Local Database 
(LD). 
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Data items are operated on by 
transactions consisting of read and 
write operations and local computations. 
The l*transactionU means a physical 
transaction here, not a logical one (i. 
e., a transaction after compilation and 
optimization). 

In this paper, we assume the gene- 
ral multi-step transaction model [20, 
241, in which transactions may be data- 
dependent. Moreover, a transaction is 
not necessarily a sequence of opera - 
tions, but rather consists of (sequen- 
tial and/or concurrent) subtransactions 
executed concurrently at different 
sites of the DDBS. A set of transac- 
tions residin, in the DDBS is denoted 
T =(T , ,.... F %I l 

Each site of the DDBS may contain 
two software modules: a Transaction 
Manager (TM), which initiates and 
supervises transaction processing, and 
a Data Manager (DM), which manages and 
controls access to a local database at 
a given site. Each LD is controlled by 
a single DM, which accepts subtransac- 
tions fron TNs and is responsible for 
the concurrency control and recovery in 
its local database. 

2.2. Transaction processing 
Let us now briefly describe the 

general transaction processing schene 
in accordance with 2PL in order to 
point out the possibility of cyclic and 
infinite restarting. 

Our 2PL realization is similar to 
the one presented by Moss 1211. Locking 
is implemented by the TMs, in coopera- 
tion with the DMs which contain lock 
managers. In a particular system, Tl\ls 
and DMs nay be specialized computers, 
as for example: workstations or servers 
in the client/server model [18, 311. 
The TN responsible for a transaction's 
processing issues subtransactions to 
the appropriate DMs in response to con- 
nands froc the transaction. Each sub- 
transaction is a sequence of read and/ 
or write requests to the local data- 
base. Tho T1.I issues two additional 
requests: connit and abort. Commit 
tells the DFI that: the transaction has 
terninated, all of its data items 
should be pernanently reflected in the 
local database, and all of its locks 
should be released. Abort tells the Di; 
that: the transaction has terminated 
abnornally, all changes prepared by the 
transaction should be undone, and all 
of its locks should be released. 

Data lock management is realized 

by lock managers encapsulated in DIG. 
For simplicity. we assume that only two 
basic lock modes are used b a lock 
manager: read lock mode (LB 3 and write 
lock mode (LW). However, rather than 
setting onlg read and write locks on 
data items, DM can exploit the seman- 
tics of operations to achieve increased 
concurrency using type-specific locking 
[I% 291. 

With each data item x, (i.e., with 
each page) the DM associates a data lock 
record, denoted by dir(x). A data lock 
record is dynamically created when a 
data item is first locked, and then de- 
stroyed when a data item 1s unlocked. 
The structure of a data lock record is 
shown in Fig. 2.1. 

For each transaction Ti, which 
requests access to data item x, we indi- 
cate the transaction identifier and the 
re uested 
LW x). 4 

lock mode - Ti:LB(x) or Ti : 
Two transaction lists are 

associated with each data lock record, 
namely: 

OL - the owner list of the data itec 
lock, and WL - the waiter list for the 
data item lock. If a read or write 
request to data iten x cannot be gran- 
ted, due to the incompatibility of locks, 
it is placed on WL. For each transac- 
tion placed on NL, a tine-out is 
defined. If a transaction request fror: 
!jL cannot be granted within its tine- 
out period, then it has to be aborted. 
Deadlock and perr;anent blocking are 
avoided because aborted transactions 
release their locks. This solution, 
however, may lead to either the cyclic 
or infinite restarting problem. 

Let us consider the following 
example to illustrate the possibility 
of cyclic restarting phenonenon. 

Example I 

Let us consider the transaction 
set r =(T,, Tz, T~ls) such that 

readset( writeset( (x), 
readset( writeset( (y), 
readset( writeset( (2). 

Let us assue the following con- 
current execution of2: 

x: . . . ..Tl A&(x) . . . . .T, :L'ii;(x) 

9: . . . . . T2 d&(y) . . . . .T, :E(y) 

2: . . . ..T3.I&z).....T..Lij(z) 
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; DATA INDEX ; 

tpzsr pointer to the new data item 
vu~uc (prewritten version) 

Fig. 2.1. Data lock record etructure 

read - lock 
assignments 

T,: g(x) 
x: 

T2 11 
abort m&art abort nstart 

Y: 

0 - initiation or restart of a 
transaction 

I - transaction abort 
0 - time-out 

/vv\ - data locking 
Y - communication 

FiF;. 2.2. An example of cyclic restarting 
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-- 
where LR(LW) means read(write) lock 
requests, and LII(L1;') means read(write) 
lock assignment me above execution 
leads to deadlock. After the expiration 
of time-outs, transactions T,, Te and 
TJ are rolled back and restarted again. 
The above situation may possibly repeat- 
ing forever. This simple example of 
cyclic restarting of transactions T,, T2 
and T3 is illustrated in Fig. 2.2, . 

3. Locking with prevention of cyclic 
and infinite restarting 

We are interested in the design of 
a cyclic and infinite restarting preven- 
tion method in which the control deci- 
sions are completely distributed and 
inter-site communication is maximally 
limited. In particular, we set the fol- 
lowina design goals: 
(I) 

(2) 

The solGti& to the cyclic and in- 
finite restarting should not un- 
necessrily restrict data accessibi- 
lity. It should also not affect the 
processing of transactions if the 
nentioned phenomena do not occur. 
The solution proposed cannot lead 
to the deterioration of system per- 
formance, (e.g., to the increase of 
the mean response time). 
The proposed solution ought to be 
easily implemented, particularly in 
2PL, and ought to have a low run- 
tire overhead. 

Our method fulfills the require- 
ments mentioned above. It involves two 
modifications to the basic locking 
mechanism. 

The first one consists of introdu- 
cing the so called data marking nechan- 
isn which is applied if a repeatedly 
restarted transaction has been encoun- 
tered. We will now describe this nechan- 
1 s c 

Each transaction Ti initially 
receives a unique identifying tinestamp: 

TS(Ti). Transaction timestanps define 
the total ordering of transactions resi- 
ding in the system. We assune that the 
transaction tines-tamp is kept by a 
transaction, even if it has been rolled 
back and restarted. 

For each transaction Ti initiated 
in the system, we define the restart 
indicator, denoted by r(Ti). If the 
number of restarts of transaction Ti 
during its processing exceeds r(Ti). 
then transaction Ti is considered to be 
involved in either cvclic or infinite 
restarting. 

With each data lock record dir(x), 
we associate a data-mark(x) (cf. Fig. 

2.1.). We assume the values of the data 
marks are eaual to +w for all no rark- 
ed data items. 

Whenever transaction Tr is detec- 
ted as having restarted repeatedly it 
marks all the data items necessary for 
its completion'/. Data marking consists 
of the assignment of the transaction Tr 
timestamp TS(Tr> to the data mark. 
Data marking is realized according to 
the following scheme: 

if data-mark(x) > TS(Tr> 
then (3.1) 

data-mark(x) .- TS(Tr) 

The second modification to the 
basic locking concurrency control 
algorithm consists of the introduction 
of the locking precondition, which is 
called and tested whenever a data iten 
lock is requested. 

The locking precondition is 
defined as follows. 

Locking precondition 
Transaction Ti is allowed to lock 
data item x if and only if 

TS(T,) ,C data-rimk(x) (3.2) 

Note that according to the above 
definition, an access request of tran- 
saction T for data iten x can be ,ran- 
ted (i.e., T may lock data item x F if 
and only if both of the following con- 
ditions are fulfilled: 
(I) TS(T) 4 data-mark(x); 
(2) the lock mode requested for tran- 

saction T is compatible with lock 
mode of dir(x). 

Let the modified 2PL algorith::, 
with marking as a mechanism of prcve:l- 
tion of cyclic and infinite restartin;, 
be denoted by 2PLIG. It is fairly easy 
to prove the correctness of the 2?LI:. 

Theorem: 
The 2PLI1 is correct in the sense 

that serializability is guaranteed, ald 
each transaction is conpleted in finite 
tine. 

Proof Sketch: 
The basic 2PL is well know11 to be 

------------ 
' fisrking transaction will be denoted 
by TF 



correct in the sense of serializability 
[6, 321. Thus, to prove the first part 
of the theorem, it suffices to show 
that 2PLM only permits accesses to data 
itens which would be permitted by 2PL. 
This fact is obvious and follows imme- 
diately from the conditions (I) and (2) 
presented above. 

To prove the second part of the 
theorem, it is sufficient to show that 
problems of deadlock, permanent block- 
inf2, cyclic and infinite restarting are 
correctly resolved. Let us note that no 
deadlock and permanent blocking will 
last indefinitely, because of the abor- 
tion. Cyclic and infinite restarting 
are resolved by data-marking. The data 
marking defines a priority scheme, in 
which the priorities of transactions 
are defined by their timestamps. This 
priority scheme guarantees that marked 
transaction Tf with the highest priori- 
ty (i.e., the oldest one) may reserve 
all the data items needed for its com- 

P 
letion. Thus, after some finite tine 
and perhaps some restarts needed for 

the termination or abortion of transac- 
tions which currently own the locks of 
data iter;s marked by transaction Tr >, 

Tr will be successfully conpleted. As 
we assumed, each restarted transaction 
retains its old tinestamp. Thus, the 
priority of each transaction Tr in- 
creases with the number of completed 
transactions and after a finite time, 
transaction Tr reaches the highest 
priority in the system. Therefore, nei- 
ther cyclic nor infinite restarting 
cannot occur in the system. m 

Let us note that the serialization 
order of transactions for 2PLK is 
doubly defined. When cyclic and in- 
finite restarting do not occur in the 
system, and no transaction marks data, 
the serialization order is determined 
by the commit points of transactions 
(i.e., in the same manner as in the 2PL 
[I, 6,321). In the case when cyclic and 
or infinite restarting often occur, the 
serialization order of transactions is 
deternined by the order of the tine- 
stamps of the marked transactions (si- 
milarly to the timestemp ordering 
approach [I]). 

Let us consider the following 
example to illustrate the processing of 
2PLi;. 

Example 2 
Let us consider the transaction 

set T from Example I. We assune that 
TS(T,)<TS(T2)< TS(T3). We have shown 
that concurrent processing ofr nay 

lead to cyclic restarting. Now, we will 
show how the cyclic restarting from 
Example I will be resolved by 2PLI.1. 

Whenever the DDBKS detects that the 
number of T,, II? and T3 restarts exceed 
the restart indicator value then it 
requires them to mark data (we then de- 
note them as marking transactions T7.T:. 
T$). During the next restart cvcle, 
transactions TT, Ts, Tgmark all mauest- 
ed data items. 
The following assignments are realized: 

data-mark(x)- TS(Tl") 
data-mark(y) -TS(T;) 
data-mark(z)-TS(TT) 

Now. after the generation of the same 
requests as in Example I: 

x: . . . . . T:: B(x)..... 
y: . . . . . T;: z(y) . . . . . 
z: . . . . . Tl;: a(z) . . . . . 

only transactions Tr and Ti obtain ac- 
cesses to data items x and y due to the 
fulfillment of precondition (3.2): 

TS(T:) ,c data-mark(x) 
TS(Tz) d data-mark(y) 

Transaction T$ does not fulfill the 
locking precondition (3.2). 

FurtherLore. let transactions T? 

?$:Thfz) and Tr: m(x). Only zhe'ec- 
enerate the write requeetsa-' 

cess request 
TS(T: 

of Tt is accepted, since 
4 

T;: i!m 
data-mark(z); while the request 

(x) is placed on the OL for data 
item x. After commitment and tercination 
of T*, 

1 > 
data iten x is unlocked, data- 

mark x is set to +oo and x nay be ac- 
cessed by T;. Then Tr runs to co-rpletion 
and unlocks data item y. Transactions 
T,, Te, T3 sre realized correctly. The 
serialization order detercined by 2PLK 
is the following: 

T, < T2 4 Tg 
where < means here the precedence 
relation. n 

4. Performance evaluation of 2PLM 
In this section, the results of the 

performance evaluation of 2PLH are 
presented and COnpaD?d with 2PL. In 
order to evaluate the perforuance of 
2PLI3, a special DDBS simulator was con- 
structed. The entire process of messace 
exchage between the TIGs and D&s ~2s 
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simulated for locking and marking, as 
described in Section 2.2 and 3. 

The nain aim of the simulation 
experiment was to give the answer to the 
ouestion concerning the reduction of 
data item accessibility implied by the 
locking precondition (3.2). We were 
interested in how the locking precondi- 
tion (3.2) influenced the DDBS perfor- 
name. 

The following assumptions were 
made: 

t 3 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(IO) 

(II) 

(12) 

(13) 

(14) 

(15) 

the DDBS contained 5 sites; 
there were 500 data items unifoy?ly 
distributed over the DDBS sites ; 
the size of each data item was IO 
units, each unit corresponding to 
transmission packet; 
each site concurrently processed 5 
transactions? so the degree of 
parallelism in the DDBS was 25; 
references to data items were uni- 
formly distributed over all of them; 
the write-set of a transaction was 
not necessarily contained in its 
read-set; 
there was one restart indicator r, 
comnon for all transactions; 
transaction size was defined as the 
number of data items accessed by the 
transaction over total number of 
data items in the DDBS; 
transaction coefficient of selecti- 
vity for a data item x, was defined 
as the ratio of the size of the 
result of a transaction operation on 
x to the size of x, and was ass&Ted 
to be from the range (0.1 - 1.0); 

mean packet transmission time 
between any pair of DDBS sites was 
COnStS.tlt; 
data volume transmission time was 
proportional to its Size; 
message transmission time was equal 
to packet transmission time; 
the network was assumed to be con- 
pletely reliable and unbounded (i. 
e., transmission times did not 
depend on network loading); 
in order to obtain one point of the 
curve, at least 100 transactions 
had to be completed; 
because of 2PL, we only took into 
account those simulations for which 
neither cyclic nor infinite res- 
tarting occurred i 

‘T”“““” 
Let us explain that the number of data 
items was restricted to 500 because 
the pheno;lena examined here concerns 
only frequently accessed data itens as 
for exar-iple directories,indices etc., 
which are not numerous in real DDBSs. 

(16) 

Fig. 
that 
2PIlN 

the mean response time to a tran- 
saction, and the mean number of 
transaction restarts were selected 
as the DDBS performance measures. 

Simulation results are shown in 
4.1 and Fig. 4.2. Let us first note 
the performance of both 2PL and 
heavily depends on transaction - 

size. It follows from the fact that the 
increase of the mean transaction size 
cause the considerable increase in the 
number of lock incompatibility conflicts 
between transactions. Thus, a very 
significant increase in the mean 
response time and mean number of re- 
starts versus transaction size are ob- 
served in Fig. 4.1 and Fig. 4.2.Y 

As it can be seen from Fig. 4.1 
and Fig. 4.2, for small mean transac- 
tion size, the performance of 2PLI.1 is 
the same as that of 2PL. It means that 
for small mean transaction size. the 
data marking mechanism does not affect 
the processing of transactions, which 
are processed strictly according to 2PL. 
On the other hand, the performance of 
both algorithms differs considerably 
with increasing mean transaction size. 
followed by the increasing number of 
transaction conflicts. This neans that 
the data marking mechanism starts to 
schedule transactions. 

As can be seen from the presented 
curves, the performance of 2PLI.i depends 
heavily on the choice of the restart 
indicator value. The appropriate choice 
of the restart indicator value may sig- 
nificantly improve the efficiency of 
2PLM, which then provides higher per- 
formance than 2PL. It means that data 
marking ensures not only the correct 
resolution of cyclic and infinite res- 
tarting problems, but may also consi- 
derably improve the overall DDBS per- 
formance, despite some data iten acces- 
sibility restrictions. This fact can be 
explained in the following way. 

In a DDBS running under 2PL, a 
number of transactions can be involved 
in cyclic or infinite restsrtini;. These 
transactions are characterized by an 
excessive number of restarts and a long 
response time. Cutting off the cycle of 
transaction restarting early, and ther, 
executing then strictly accordins to 
their tinestmps, we significantly 
reduce their response times. This con- 
------------ 
2 Sinilar results, regarding; 2Pi.,, were 

obtained by Gray [7,8]. Gray asserts 
that transaction conflicts are a 
function of the square of the neau 
transaction size. 
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MEAN RESPONSE TIME 

2Pi. ALGORITHM 0 
PPLM ALGORITHM 

I- = 10 0 
r = 15 X 

r = 20 Cl 
f = 25 0 

0 
x 

0 
OV 

MEAN TRANSACTION 

SIZE [%I 
I 

lo 20 30 

FiG. 4.1. Mean response tine for 2PL!,I and 2PL algorithms 
versus transaction size for different values 
of the restart indicator. 



2PL ALGORITHM 0 
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0 

X 
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0 0 
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Fig. 4.2. Hean number of transaction restarts for 2PI&i 
and 2PL algorithm versus transaction size 
for different values of the restart indicator. 
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tributes to the improvement of the mean 
DDBS response time. 

Of course, a trade off occurs bet- 
ween the reduction of the response 
times of repeatedly restarted transac- 
tions and the restriction of some data 
items accessibility, which is followed 
by sane increase in restart numbers and 
the response times of other transac- 
tions. 

If, for a given system loading, 
the restart indicator value is too 
small, then the number of transactions 
marking data becomes high and data 
accessibility is severely restricted. 
The level of concurrency in the systen 
then decreases unnecessarily, because 
many transactions sre processed sequen- 
tially. 

On the other hand, if the restart 
indicator value is too great, then both 
the suppression of repeated restarting 
and the completion of the transactions 
concerned is unnecessarily delayed. 

An interesting relationship bet- 
ween the appropriate restart indicator 
value.for 2PLI: and the mean number of 
transaction restarts in a DDBS using 
2PL can be drawn from the detailed ana- 
lysis of the sinulation results presen- 
ted. It appears that for a given system 
loading, a nearly maximal performance 
is ob 

F 
ained when the restart indicator 

is se- to the Liean nmber of transac- 
tion restarts in a DDBS running under 
2PL. 

5. Conclusions 

The solution to the cyclic and in- 
finite restarting problems proposed in 
this paper fulfills the design require- 
ments stated in Section 3. In particu- 
lhr, it affects the processing of tran- 
sactions only in the case of a real 
danger of cyclic or infinite restarting, 
and can be easily implemented in DDBSs. 
!;ore over, because of the reduction of 
the total number of transaction res- 
tarts, the overall DCBZ performance is 
improved. 

Finalljr, we would like to point 
out that the infinite restx+in,- 
proble;: concerns not only the locking 
approach to the concurrency control in 
DDBSs, but also the validation and 
tinestarlp ordering approaches [I, 5,I3, 
16, 25, 26, 311. A prevention method 
sicilhn to that presented in this paper 
can be used to solve this problem. 
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