Looking with Preveation of Cyclic and Infinite
Restarting in Distributed Database Systems

Wojciech Celleary and Tadeusz Morzy

Institute of Control Engineering
Technical University of Poznan
Poznan, POLAND

ABSTRACT

A new solution to the cyclic res-
tarting and infinite restarting pro-
blems for locking schemes in Distri-
buted Database Systems (DDBSs) is
presented. The solution proposed is
based on the data marking mechanism,
which ensures the completion of each
transaction in the system. The solu-
tion is fully distributed. It only
requires information locally access-
ible on each site of the DDBZ, and it
intervenes into transaction processing
only in the case of real danger of
cyclic end/or infinite restarting.
Simulation has shown that this solu-
tion significantly reduces the number
of transaction restarts in DDBSs
using locking schemes, and thus con-
siderably improves DDBS performance.

I. Introduction

Two general goals of concurrency
control in transaction-based Distributed
Database Systems (DDBSs) are: (I) to
preserve database consistency., and (2)
to guarantee the completion of each
transaction submitted to the system in
finite time. Let us note that both these
goals concern consistency in the wide
scnse. The first one concerns the con-
sistency of data stored in the database.
The second one concerns the consistency
of the database with respect to the
external world which it reflects. To
clarify this problem, let us consider
the situation when a transaction updat-
ing & bank account can never be comple-
ted (for some reasons which will be ex~
plained later). The data stored in the
datebase are consistent among themselves
but the database is not consistent with

respect to the external world since

Proceedings of VLDB 85, Stockholm

115

money was taken from or put into the
account, but the account was not
updated.

The commonly sccepted solution to
the concurrency control in distributed
databases is the use of locking schemes
(1, 6, 7, I3, 2I, 32]. It has been
proved that among locking schemes, the
Two-Phase Locking (2PL) scheme is the
best one for general distributed date-~
base systems% adnitting data dependent
transactions®, which can modify any
data item they access [I5, 32]. The 2PL
schene preserves database consistency,
but does not guarantee the coopletion
of each transaction in finite time, and
it should thus be supplenented by sone
special algorithms that do this.

To guarantee the completion of
each transaction in finite time, we nust
protect each transaction from four kinds
of phenomena which can prevent its con-
pletion, namely: deadlock, permanent
blocking, cyclic restarting and infinite
restarting?®/

Deadlock occurs when two or nore
transactions wait forever for each
other.

Permanent blocking occurs when a
transaction waits forever for data
locking because of a steady streamn of
other transactions whose lock requests
are always accepted before its lock
request.

Cyclic restarting occurs when two

1 By a data dependent transaction, we

mean one for which, in general, not
all of the set of data items accessed
is known at the beginning of the tran-
saction processing because it is de-
termined during transaction processing
based upon data accessed earlicer.

The last two phenomena are also known
under the following names: dynauic
deadlock, livelock, permenent res-
tarting, cyclic restart, restarting
forever.

2

or more transactions always cause the
abortion of each other.

Infinite restarting occurs when a
transaction requesting a data lock is
always aborted because of a steady
strean of other transactions whose lock
requests are always accepted before its
lock request.

It is easy to notice some symmet-
ries between these phenomena. First,
deadlock and cyclic restarting concern
a set of transactions whose lock
requests are contradictory in some sense
while permanent blocking and infinite
restarting concern transactions which
are permanently postponed because of
nbad" characteristics, in comparison
with those of other transactions conti-
nuously arriving.

Second, deadlock and permanent
blocking can occur when unlimited wait-
ing is allowed in the case of lock in-
compatibility, while cvclic and infinite
restarting can occur when unlimited num-
ber of abortions are allowed.

In the literature, the most atten-
tion was paid to the deadlock problem.
There are two general approaches to
this problem in DDBS, namely: explicit
detection and recovery, and prevention.

There have been several deadlock
detection protocols suggested, both cen-
tralized and distributed, which differ
from one another in the algorithms used
to locate directed cycles in the so
called derand graph representing the
global state of all tramnsactions in
progress in the system [I, 4, I0. II.I3,
I7, 22, 307]. However, due to the huge
nunber of system resources (data lock
units), data replication and the inhe-
rent communication delays in distribu-
ted computer systems. it is quite dif-
ficult to construct and maintain the
consistent demand graph for the whole
distributed transaction system. Indeed,
it was shown in [9, I2], that most of
the distributed deadlock detection
protocols proposed to date are incorrect
Even assuning the improvement of these
protocols, their very poor performance
renders them impractical for DDBSs.

Prevention is the alternative
approach to the deadlock probler. The
sinplest deadlock prevention strategy
consists of the abortion of a transac-
tion requesting a data lock in any case
of its incompatibility with the locks
already granted. The aborted transac-
tion is rolled back (i.e., all its
locks are preerpted and released)
before it is restarted. A somewhat more
sophisticated deadlock prevention stra-
tegy allows the transaction to wait a
prespecified time period (called time-
out) before being aborted [I, 2, 7, 8,

116

I3, 3I]. Let us note that these strate-
gies also prevent permanent blocking,

Another prevention strategy, used
in such distributed systems as XDFS and
EWPFS is based on time-limited breakable
locks [I8. 3I]. A transaction that has
sone of its locks "broken", will be
aborted if it tries to commit broken
locks, which of course prevents poten-
tial deadlock.

Summarizing, for the solution of
the deadlock problem in the DDBS, a ver-
sion of the prevention strategy using
abortion is usually edopted, because of
its simplicity in comparison with the
deadlock detection, the control using
only the information locally available
at the DDBSs' sites, and the simultaneous
prevention of permanent blocking.

However, as was mentioned above,
the use of the abortion as the principal
mechanism of deadlock and permanent
blocking prevention provokes cyclic and/
or infinite restarting, which are total-
ly unacceptable as well [I, 4, 9, II,
20, 26, 27). Thus, it is necessary to
introduce some strategies for the pre-
vention of these phenomena to the DD3S
concurrency control.

There are some known solutions to
the problems of cyclic and infinite res-
tarting in DDBSs. The most important
group of methods is based on priority
schenes.

The best known priority schenes are
Vait-Die (WD) and Wound-Wait (ii) both
proposed by Rosenkrantz et al. [I, I3,
27), in which both waiting and abortion
are used., These schemes are free fron
deadlock and cyclic restarting. However,
they are not free from permanent block-
ing and infinite restarting¥

Another solution is used in the
XDFS system [I8), where the additional
intention-write lock mode is introduced
to the set of basic lock modes to reduce
the likelihood of a cyclic and infinite
restarting. Such a solution considera-
bly reduces the probability of cyclic
restarting, but does not eliminate it.
Moreover, this solution does not elini-
nate infinite restarting.

{'This results fron the fact that, in
general, in locking algorithms the
requirements of the strict concurren-
¢y control assumed in the original
proposition of WD and Wi (27) are not
preserved. Additional mechanisus arc
needed to restrict the concurrent
reading of the data itens and thus
avoid the above probleuns. However, the
perfornance of the locking algorithns
then becomes very low [I9, 20].

A simple, but rather radical solu-
tion to the infinite restarting problem
congsists of cutting off the stream of

new transactions initiated in the systen.

In other words, after the detection of a
repeatedly restarted transaction, the
requests of new transactions arriving to
the system are suspended until after it
reaches its commit point [I6, 26]. This
is equivalent to write-locking the
entire database, and thus. this method
can be used only if infinite restarting
occurs very rarely.

Summarizing, there has, until now,
been no method for preventing transac-
tions from all of: deadlock, permanent
blocking, cyclic and infinite restart-
ing, and which does not considerably
reduce the level of concurrency. The
most complete proposal up to date are
those using priority schemes. However,
the main disadvantage of these methods
is that they always intervene in tran-
paction processing, whether there is a
real danger of unacceptable phenomena
or not, thus reducing the level of con-
currency and DDBS performance.

In this paper. we propose a newv,
sinple and efficient cure for all the
phenomena listed above, which intervenes
only in the case when there is a real
danger of them, thus keeping the level
of concurrency irn the DDBS high. lore-
over, we show, that the application of
this nethod can improve the total DDBS
perfornance. The method is fully distri-
buted and it only needs information lo-
cally available at DDBS sites and does
not need any extre inter-site communi-
cation.

We use abortion after the prespeci-
fied time-out, in order to eliminate in-
definite waiting and thus prevent the
system from deadlock and permanent
blocking, and we propose data iten nark-
ing as an approach for preventing of
transactions from cyclic and infinite
restarting. To this end, the restart
indicator is attached, to each transac-
tion initiated in the systen. This de-
fines the admissible number of transac-
tion restarts, above which a transaction
is treated as restarting infinitely.
When such a transaction is detected,
the system, according to our method,
reserves all data iterms needed by it
such a way that it will be completed
with mininun syster performance cost.
The riean response time to a transaction
and the mean nunber of transaction res-
tarts were used as the system perfor-
mance Leasures.

The paper is organized as follows.
Section 2 contains the basic definitions

in

"7

of the DDBS model adopted. In Section 3,
the proposed method for the prevention
of cyclic end infinite restarting is
described. In Section 4, the results of
the simulation experiments are discus-
sed. The performance of the proposed
method is compared with classical 2PL.
This section also contains the discus-
sion of the choice of the appropriate
value of restart indicator, which con-
siderably influences the performance of
the presented method. Section 5 con-
tains conclusions.

2. A model of distributed database
systen

2.I1. Besic definitions

We consider a distributed systen
as a collection of sites interconnected
by a communication network and control-
led by a Distributed Database lianagement
System (DDBMS). A Distributed Database
(DDB), formally, is defined as a triple
DDB=(ST, L, D), where ST=(ST,...,ST,)
is a collection of sites, L {s a seth
of logical data items called the logical
database, and D is a set of physical
data itens called the physical database.

We assume, according to the above
definition, a two-level DDB model. At
the higher level of abstraction (i.e.,
from the user point of view), DDB is
represented by the set of logical deta
items denoted (X;,...,4). In practice,
the logical data items nmay be rela-
tions, files, records, etc. Each logical
data 1tem may be represented by a set
of one or more (replicated) physical co-
pies stored at different sites of the
DDBS. The physical copies of logical
data item X. are denoted X.;, X.,,ee0,
X;.,. Each ﬁhysical data i%gm mé§ be
régfesented by one or more physical
units of access (e.g., pages of virtu-
al memory). For simplicity, in this
paper, we will assune the so called
page-level access, i.e., the page is
assuned to be a unit of locking. In
practice, this assumption is usually
net [3I].

The set of all physical data items
X;:: I<ig<n, I<jgm; }, (i.e., physi-
cal’database D) repres&nts the DDB at
the lower level of abstraction. Hence-
forth, by "data itenm", we will mean
physical data iten. Physical database D
is the application-oriented iuplerenta-~
tion of I, for a given DDBS hardware
configuration. Each sitc of DDBL accorn~
nodates the subset of the phvsical
%at?base D called the Local Database
LD .

Data items are operated on by
transactions consisting of read and
write operations and local computations.
The "“transaction® means a physical
transaction here, not a logical one (i.
e.., a transaction after compilation and
optimization).

In this paper., we assume the gene-
ral multi-step transaction model [20,
24]), in which transactions may be data-
dependent. Moreover, a transaction is
not necessarily a sequence of opera -
tions, but rather consists of (sequen-
tial and/or concurrent) subtransactions
executed concurrently at different
sites of the DDBS. A set of transac-
tions residing in the DDBS is denoted
T=(T1goounm .

Each site of the DDBS may contain
two software modules: a Transaction
Manager (TM), which initiates and
supervises transaction processing, and
a Data Manager (DM), which manages and
controls access to & local database at
a given site. Each LD is controlled by
a single DM, which accepts subtransac-
tions from TMs and is responsible for
the concurrency control and recovery in
its local database.

2.2. Transaction processing

Let us now briefly describe the
general transaction processing schene
in accordance with 2PL in order to
point out the possibility of cyclic and
infinite restarting.

Qur 2PL realization is similar to
the one presented by Moss [2I]. Locking
is implemented by the TMs, in coopera-
tion with the DMs which contain lock
managers. In a particular system, TMs
and DMs may be specialized computers,
as for exanple: workstations or servers
in the client/server model [I8, 3I].
The TM responsible for a transaction's
processing issues subtransactions to
the appropriate DMs in response to com-—
nands from the transaction. Each sub-
transaction is a sequence of read and/
or write requests to the local data-
base. The Tl issues two additional
requests: connit and abort. Commit
tells the DM that: the transaction has
terminated, all of its data items
should be permanently reflected in the
local database, and all of its locks
should be released. Abort tells the DI
that: the transaction has terzinated
abnormally, all changes prepared by the
transaction should be undone, and all
of its locks should be released.

Data lock management is realized

118

by lock managers encapsulated in Dls.
For simplicity. we assume that only two
basic lock modes are used by a lock
manager: read lock mode (IR) and write
lock mode (ILW). However, rather than
setting only read and write locks on
data items, DM can exploit the seman-
tics of operations to achieve increased
concurrency using type-specific locking
[14, 29].

With each data item x, (i.e., with
each page) the DM associates a data lock
record, denoted by dlr(x). A data lock
record is dynamically created when a
data item is first locked, and then de-
stroyed when a data item is unlocked.
The structure of a data lock record is
shown in PFig. 2.I.

For each transaction T, which
requests access to data item x, we indi-
cate the transaction identifier and the
re?uested lock mode - T; :IR(x) or T;:
LW(x). Two transaction lists are
associated with each data lock record,
namely:

OL - the owner list of the data iter
lock, and WL - the waiter 1list for the
data item lock. If a read or write
request to data item x cannot be graan-
ted, due to the incompatibility of locks,
it is placed on WL. For each transac-
tion pleced on WL, a tine-out is
defined. If a transaction request from
WL cannot be granted within its tine-
out period, then it has to be aborted.
Deadlock and permanent blocking are
avoided because aborted transactions
release their locks. This solution,
however, may lead to either the cyclic
or infinite restarting problem.

Let us consider the following
exanple to illustrate the possibility
of cyclic restarting phenonenon.

Example I

Let us consider the transaction
set T =(Ty, T2, T3) such that

readset(T4)= writeset(T,)= (%),
readset(T2)= writeset(T;)= (¥),
readset(T ;)= writeset(Ti)= (z).

Let us assune the following con-

current execution of T:
X .'.Q.T“ :-L_B.(X)OOOOOT2 :E(X)
;Y: .oo.oTz :E(y)..---Ta:m(y)
Z: ooo--Ta :_L_lg(z).....'l‘-, :m(z)

DATA INDEX

data
identifier ~
| |
] |
1
Pig. 2.1.
read - lock
assignments

-

data lock mode

list of the data item

*T™lock owners - LO

list of the data item
1™ lock waiters - WL

o Pointer to the new data item
value (prewritten version)

Data lock record structure

time

write -lock
requests
T1 : rW—(Z)
Tz: E(x)
T3: LW(y)
Fig. 2.2,

initiation or restart of a
transaction

transaction abort

time - out

data locking

- communication

\‘%l- o

An example of cyclic restarting

119

where LR(LV) means read(write) lock
requests, and IR(LW) means read(write)
lock assignment, The above execution
leads to deadlock. After the expiration
of time-outs, transactions T,, T, and

T3 are rolled back and restarted again.
The sbove situation may possibly repeat-
ing forever. This simple example of
cyclic restarting of transactions T4, T,
and T3 is illustrated in Fig. 2.2. w

3. Locking with prevention of cyclic
and infinite restarting

We are interested in the design of
a cyclic and infinite restarting preven-
tion method in which the control deci-
sions are conpletely distributed and
inter-site comnunication is maximally
linited. In particular, we set the fol-
lowing design goals:
(I) The solution to the cyclic and in-
finite restarting should not un-
necessrily restrict data accessibi-
lity. It should also not affect the
processing of transactions if the
mentioned phenomena do not occur.
The solution proposed cannot lead
to the deterioration of system per-
formance, (e.g., to the increase of
the mean response time).
The proposed solution ought to be
easily implemented, particularly in
2PL, and ought to have a low run-
time overhead.

Our method fulfills the require-
nents mentioned above., It involves two
modifications to the basic locking
mechanism,

The first one consists of introdu-~
cing the so called data marking nechan-
ism which is applied if a repeatedly
restarted transaction has been encoun-
tered. We will now describe this nechan-
ism

(2)

Each transaction Ti initially
receives a unique identifying timestanmp:
TS(Ti). Transaction timestanps define
the total ordering of transactions resi-
ding in the system. We assume that the

transaction tinestanp is kept by a
transaction, even if it has been rolled
back and restaxted.

For each transaction T{ initiated
in the systen, we define the restart
indicator, denoted by r(Ti). If the
nunber of restarts of transaction T
during its processing exceeds r(T;).
then transaction Ti is considered to be
involved in either cyclic or infinite
restarting.

With each data lock record dlr(x),
we associate a data-mark(x) (cf. Fig.

(@]

2.1.). We assume the values of the data
marks are equal to +oco for all no rark-
ed data itens.

Whenever transaction Tf is detec-
ted as having restarted repeatedly it
marks all the data items necessary for
its completion¥, Data marking consists
of the assignment of the transaction Tf
timestamp TS(TY) to the data mark.
Data marking is realized according to
the following scheme:

if data-mark(x) > TS(T])
then (3.1)
data-mark(x) «— TS(T?)

The second modification to the
basic locking concurrency control
algorithnm consists of the introduction
of the locking precondition, which is
called and tested whenever a data iten
lock is requested.

The locking precondition is
defined as follows.

Locking precondition

Ti is allowed to lock
if and only if
£ data-rnark(x) (3.2)

Transaction
data item x
TS(T;)

Note that according to the above
definition, an access request of tran-
saction T for data item x can be gran-
ted (i.e.. T may lock data item x) if
and only if both of the following con-
ditions are fulfilled:

(1) s(T) < data-mark(x);

(2) the lock mode requested for tran-
saction T is compatible with loci
node of dir(x).

Let the modified 2PL algoritih:,
with narking as a mechanism of preven-
tion of cyclic and infinite restarting,
be denoted by 2PLM., It is fairly easy
to prove the correctness of the 2PLi..

Theorem:

The 2PLI is correct in the sense
that serializability is gueranteed, and
each transaction is completed in finite
tice.

Proof Sketch:
The basic 2PL is well kxnown to be

! Marking transaction will be denoted
by T

correct in the sense of serializability
[6, 32]. Thus, to prove the first part
of the theorer, it suffices to show
that 2PLM only pernits accesses to data
itens which would be permitted by 2PL.
This fact is obvious and follows imme-
diately from the conditions (I) and (2)
presented above.

To prove the second part of the
theorem, it is sufficient to show that
problems of deadlock, permanent block-
ing, cyclic and infinite restarting are
correctly resolved. let us note that no
deadlock and permanent blocking will
last indefinitely, because of the abor-
tion. Cyclic and infinite restarting
are resolved by data-marking. The data
marking defines a priority scheme, in
which the priorities of transactions
are defined by their timestenps. This
priority scheme guarantees that narked
transaction T{ with the highest priori-
ty (i.e., the oldest one) may reserve
all the data items needed for its con-~

letion. Thus, after some finite time
?and perhaps sone restarts needed for
the ternination or abortion of transac-
tions which currently own the locks of
data items narked by transaction Tf)y

T¥ will be successfully completed. As
we assumed, each restarted transaction
retains its old timestamp. Thus, the
priority of each transaction T{ in-
creases with the number of completed
transactions and after a finite time,
transaction T{ reaches the highest
priority in the system. Therefore, nei-
ther cyclic nor infinite restarting
cannot occur in the systen. =

Let us note that the serialization
order of transactions for 2PLM is
doubly defined. When cyclic and in-
finite restarting do not occur in the
systen, and no transaction marks data,
the serialization order is deternined
by the commit points of transactions
(i.e., in the same manner as in the 2PL
[I, 6,32]). In the case when cyclic and
or infinite restarting often occur, the
serialization order of transactions is
deternined by the order of the time-
stanps of the marked transactions (si-
milarly to the timestamp ordering
approach [I]).

Let us consider the following

exanple to illustrate the processing of
2PLi1.

Example 2

Let us consider the transaction
set T fror Example I. We assune that
TS5(T4) < TS(T,) < TS(T3). We have shown
that concurrent processing of T nay

121

lead to cyclic restarting. Now, we will
show how the cyclic restarting fron
Example I will be resolved by 2PLH.

Whenever the DDBIS detects that the
number of T4, T, and T3 restarts exceed
the restart indicator value, then it
requires them to mark data (we then_de-
note them as marking transactions T,.T;.
T3). During the next restart cvcle,
transactions T7, T%, Tijmark all raeguest-
ed data items.

The following assignments are realized:

data-nark(x) < TS(T1)
data-mark(y) < TS(T3)
data~-mark(z) «— TS(T})

Now, after the generation of the sane
requests as in Example I:

x: OCO.IT*:E(X).‘...
y: eveeeTh: IR(F) eeve.
Z: .ee.l.T3: IR(Z).....

only transactions T) and Tg obtain ac-

cesses to data items x and y due to the

fulfillment of precondition (3.2):
o3(T})
Ts(T3)

data-marik(x)

<
€ data~-mark(y)
Transaction T; does not fulfill the
locking precondition (3.2).

Furthercore, let transactions T}
end T generate the write requests:

T%: fW%z) and T;: IW(x). Only the ac-
cess request of T4 is accepted, since
TS(T}) & data-nark(z); while the request

T$: IW(x) is placed on the OL for data
iten x. After commitment and termination
of T%, data iten x is unlocked, data-
markex) is set to + oo and x may be =c-
cessed by T3. Then T3 runs to completion
and unlocks data item y. Transactions
Ty, T2, T3 are realized correctly. The
serialization order deternined by 2PLMN
is the following:

Ty < Tp< T3

where < neans here the precedence

relation. - s

4, Performance evaluation of 2PLM

In this section, the results of the
performance evaluation of 2FPLll are
presented and coumpared with 2PL. In
order to evaluate the performance of
2PLli, a special DDBS simulator was con-
structed. The entire process of ressare
exchege between the TIs and Diis Was

simulated for locking and marking, as
described in Section 2.2 and 3.

The main aim of the simulation
experiment was to give the answer to the
guestion concerning the reduction of
data item accessibility implied by the
locking precondition (3.2). We were
interested in how the locking precondi-
tion (3.2) influenced the DDBS perfor-
mance.

The following assumptions were
made:

§1) the DDBS contained 5 sites;
2) there were 500 data items unifogyly
distributed over the DDBS sites /}
(3) the size of each data item was IO
units, each unit corresponding to
transmission packet;
each site concurrently processed 5
transactions, so the degree of
parallelism in the DDBS was 25;
references to data items were uni-
fornly distributed over all of then;
the write-set of a transaction was
not necessarily contained in its
read-set;
there was one restart indicator r,
comnon for all transactions;
transaction size was defined as the
nunber of data items accessed by the
transaction over total number of
data itens in the DDBS;
transaction coefficient of selecti-
vity for a data item x, was defined
as the ratio of the size of the
result of a transaction operation on
x to the size of x, and was assunmed
to be from the range (0.I - I.0);
(I0) mean packet transmission time
between any pair of DDBS sites was
constant;
data volume transmission time was
proportional to its sizej
nessage transmission time was equal
to packet transmission tine;
the networik was assuned to be con~
pletely relieble and unbounded (i.
e., transnission times did not
depend on network loading);
in order to obtain one point of the
curve, at least I00 transactions
had to be completed;
because of 2PL, we only toox into
account those simulations for which
neither cyclic nor infinite res-
tarting occurred j

(#)

(5)
(6)

(7
(8)

(9

(11)
(12)
(13)

(18

(15)

Let us explain that the number of data
itens was restricted to 500 because
the phenonena examined here concerns
only frequently accessed data itens as
for exanple directories,indices etc.,
which are not numerous in real DDBSs.

122

(16) the mean response time to a tran-
saction, and the mean number of
transaction restarts were selected

as the DDBS performance measures.

Sinulation results are shown in
4.T and Fig. 4.2. Let us first note
that the performance of both 2PL and
2PLM heavily depends on transaction
size. It follows from the fact that the
increase of the mean transaction size
cause the considerable increase in the
number of lock incompatibility conflicts
between transactions. Thus, a very
significant increase in the mean
response time and mean number of re-
starts versus transaction size are ob-
served in Fig,., 4.I and Fig. 4.2.%

As it can be seen from Fig. 4.1
and Fig. 4.2, for small mean transac-
tion size, the performance of 2PLN is
the same as that of 2PL. It means that
for small mean transaction size. the
data marking mechanism does not affect
the processing of transactions, which
are processed strictly according to 2PL.
On the other hand, the performance of
both algorithms differs considerably
with increasing mean transaction size.
followed by the increasing number of
transaction conflicts. This neans that
the data marking mechanisn starts to
schedule transactions.

As can be seen from the presented
curves, the performance of 2PLI: depends
heavily on the choice of the restart
indicator value. The appropriate choice
of the restart indicator value may sig-
nificantly improve the efficiency of
2PLM, which then provides higher per-
formance than 2PL. It means that date
marking ensures not only the correct
resolution of cyclic and infinite res-
tarting problens, but may also consi-
derably inprove the overall DDBS per-
formance, despite some data item acces-
sibility restrictions. This fact can be
explained in the following way.

In a DDBS running under 2PL, a
number of transactions can be involved
in cyclic or infinite restarting. These
transactions are characterized by an
excessive number of restarts and a long
response time. Cutting off the cycle of
transaction restarting early, and then
executing them strictly according to
their timestaups, we significantly
reduce their response times. This con-
zSimilar results, regerding 2PL, were

obtained by Gray [7,8]. Gray asserts
that transaction conflicts are a
function of the square of the mean
transaction size.

Fig.

4

MEAN RESPONSE TIME

2PL ALGORITHM (o]
300 | 2PLM ALGORITHM
r=10 ®
=15 X
r=20 O
r=25 v
°
s
200 +
°
o
ov
® »
. v
o
§ X
100 + X
o
ey &
MEAN TRANSACTION
SI1ZE [%]
10 20 30 o

Fig. 4.1. Mean response time for 2PLII and 2PL algorithns
versus transaction size for different values
of the restart indicator.

) MEAN NUMBER OF
TRANSACTION RESTARTS
2PL ALGORITHM o
304 2PLM ALGORITHM
r=10 ®
r=15 X
r=20 (]
r=25 v,
20 +
®
X
15 4
® o
10 + av
® O©
51 %! ’g:
X&
&)& MEAN TRANSACTION
1z€ [®
o8 %) SIZE &/n]

0 20 30

Fig. 4.2. Mean number of transaction restarts for 2PLH
and 2PL algorithms versus transection size
for different values of the restart indicator.

124

tributes to the improvement of the mean
DDBS response tine.

Of course, a trade off occurs bet-
ween the reduction of the response
times of repeatedly restarted transac-
tions and the restriction of some data
itens accessibility, which is followed
by sone increase in restart numbers and
the response times of other transac-
tions.

I1f, for a given system loading,
the restart indicator value is too
snall, then the number of transactions
narking data becomes high and data
accessibility is severely restricted.
The level of concurrency in the systen
then decreases unnecessarily, because
many transactions are processed sequen-
tially.

On the other hand, if the restart
indicator value is too great, then both
the suppression of repeated restarting
and the conpletion of the transactions
concerned is unnecessarily delayed.

An interesting relationship bet-
ween the appropriate restart indicator
value for 2PLII and the mean number of
transaction restarts in a DDB3 using
2PL can be drawn fron the detailed ana~
lysis of the sinulation results presen-
ted. It appears that for a given systen
loading, & nearly maximal perfornance
is objained when the restart indicator
is set to the mean nunber of transac-
tion restarts in a DDBS running under
2FL.

5. Conclusions

The solution to the c¢yclic and in-
finite restarting problexs proposed in
this paper fulfills the design require-
ments stated in Section 3. In particu-
lar, it affects the processing of tran-
sactions only in the case of a real
danger of cyclic or infinite restarting,
and can be easily implemented in DDBSs.
lloreover, because of the reduction of
the total number of transaction res-
tarts, the overall DDBS performance is
improved,

Finally, we would likxe to point
out that the infinite restarting
problex concerns not only the locking
approach to the concurrency control in
DDBSs, but also the validation and
tinestanp ordering approaches [I, 5,I3,
i6, 25, 26, 3I). A prevention niethod
sinilar to that presented in this paper
can be used to solve this problen.

125

References

I

IC

II

I2

13

P.A. Bernstein, N. Goodman,"Con-
currency control in distributed
database systems" ,Computing Sur-
veys, vol. I3, no. 2, I98I, pp.
185-221

P. Bouchet, A. Chesnais, J.M.
Feuvre, G. Jomier, A. Kurinckx,"
PEPIN: An experimental multi-
microcomputer data base management
system®, Proc. 2nd Int. Conf. on
Distributed Computing Systems,
Paris, I981I, pp. 2II-217

M.J. Carey,"Granularity hierar-
chies in concurrency control",
Proc. ACM SIGACT-SIGMOD Symp. on
Principle of Database Systems,
Atlanta. I983,pp. I56-165

W. Cellary,"Resource allocation in
computer systems - an attempt at a
global approach", Wydawnictwo Poli
techniki Poznanskiej. Poznan. I98I
(in polish)

S. Ceri, S. Owicki,"On the use of
optimistic methods for concurrency
control in distributed databases",
Proc. 6th Berkeley Workshop on
Distributed Data Management and
Conputer Networks, Berkeley, 1962
K.P. Eswaran, J.N. Gray, R.A.Lorie
1.L. Traiger,"The notion of con-
sistency and predicate locks in a
database system", Comm. ACM, vol.
I9, no. II, 1976, pp. 624-633
Jd. Gray,"A transaction model®
Res. Rep. RJ 2895, 1980

J. Gray."Transaction concept:
virtues and limitations", Proc.
7th Int. Conf. on Very Large Data
Bases, Cannes, I9€I,pp. I44-I54
V.D. Gligor, S.H. Shettuck,"On
deadlock detection in distributed
systens", IEEL Trans. Software
Eng., vol. SE-6, no. 5, I980,pp.
435-440

G.S. Ho, C.V. Rananoorthy.
"Protocols for deadlock detection
in distributed database systems",
IEEE Trans. Software Eng., vol.
SE~8, no. 6, 1982,pp. 554-557
5.8, Isloor, T.A. Marsland,"The
deadlock problem: an overview",
IEEE Computer. I980,pp.55-78

J.R. Jagannatan, R. Vasudevan,
"Comrents on protocols for dead-
lock detection in distributed
database systeus", IEEE Trans.
Software Eng., vol. SE-9, no. 3,
I1983,pp. 37I-37I ,

W.H. Kohler,"A survey of techni-
ques for synchronization and re-
covery in decentralized conputer
systens", Computing Surveys, vol.

, IBH

I4

15

16

18

I9

20

21

22

23

24

25

26

27

I3, no. 2, I98I,pp. I49-183

H.F. Korth, "Locking primitives
in a database system", Journal of
the ACM, vol. 30, no. I, I983
H.T. Kung, C.H. Papadimitriou,
"An optimality theory of database
concurrency control%, Proc. ACM
SIGMOD Int. Conf. on Management
of Data, 1979,pp.116-I126

H.T. Kung, J.T. Robinson, "On
optimistic methods for concur-
rency control®, ACM Trans. Data-
base Syst., vol. 6, no. 2, I98I,
pp. 213-226

D.A. Menasce, R.R. Muntz, "Lock-
ing and deadlock detection in
distributed data bases", IEEE
Trans. Software Eng., vol. SE-5,
no. 3, 1979,pp. 195-201

J.G. Mitchell, J. Dion, "A conm-
parison of two network based file
servers", Comm, ACH, vol., 25, no.
&, 1982,pp.233-245

T. Morzy, "Ordered-transaction
approach to performance evalua-
tion of concurrency control al-
gorithms for distributed database
systens®, Proc. Int. Conf. on
Management of Distributed Data
Prgcessing. Paris, 1982,pp. 253~
26

T. Morzy, "Concurrency control
in distributed database systems",
Ph. D. thesis, Inst. of Control
Eng., Technical Univ. of Poznan,
1983 (in polish)

J.E.B. Moss, "Nested transactions
an approach to reliable distri-
buted computing", Ph. D. thesis,
MIT, ICS/TR-260, 198

R. 6bermack, "Giobal deadlock
detection algorithm", IBI!M Res.
Rep. RJ 2845, I980

C¢.H. Papadinitriou, "The seria-
lizability of concurrent data-
base updates", Journal of the
égg, vol., 26, no. 4, 1979,pp.63I-
C.H. Papadimitriou, P. Kanellakis
"On concurrency control by
multiple versions", Proc. ACM
SIGACT-SIGHOD Symp. on Principle
of Database Systems, 1982, pp.
76-~-82

D.P. Reed, "Nacing and synchroni-
zation in a decentralized com=-
puter system®, Ph, D. thesis, MIT
ICS/TR-205, 1978

J.T. Robinson, "Design of con-~
currency control for transaction
processing systens", Ph., D.
thesis, Conputer Sc. Dept.
Carnegie-llellon, Pittsburgh,I982
D.J. Rosenkrantz, R.E. Stearns,
P.li. Lewis, “"Systen level con~

126

28

29

31

32

currency control for distributed
database systems", ACM Trans.
Database Syst., vol. I, no. 2,
1978,pp.178-198

G. Schlageter, "Optimistic
methods for concurrency control
in distributed database systems",
Proc. 7th Int. Conf. on Very Large
?;ga Bases, Cannes, I98I,pp. I125-
P.M. Schwarz, A.Z. Spector,
"Synchronizing shared abstract
types", Tech. Rep. CMU-CS-83-163,
1983

M. Stonebraker, "Concurrency con-
trol and consistency of multiple
copies of data in distributed
%NGRES",IIDgE grans. Software

nge., vol. SE-5, no. 3, 1979 .
188 194 ’ s 79,pp
L. Svobodova, "File servers for
network-based distributed systems"
Tech. Rep. IBI1 Zurich, Ruschlikon,
RZ 1187, 1982
M. Yannakakis, "Serialigzability
by locking". Journal of the ACH,
vol. 30, no. 2, I984,pp. 227-244

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and /or special permis-
sion from the Endowment.

