
Lookixq with Provontion of Cralio and Infinite
Rortarting in Diatributod Database Byetome

Wojcioch Collary and Tadousz Moray

Institute of Control Engineering
Technical University of Poznan

Poznan, POLAND

ABSTBACT

A new solution to the cyclic res-
tarting and infinite restarting pro-
blems for locking schemes in Distri-
buted Database Systems (DDBSE) is
presented. The solution proposed is
based on the data marking mechanism,
which ensures the completion of each
transaction in the system. The solu-
tion is fully distributed. It only
requires information locally access-
ible on each site of the DDBS, and it
intervenes into transaction processing
only in the case of real danger of
cyclic and/or infinite restarting.
Simulation has shown that this solu-
tion significantly reduces the number
of transaction restarts in DDBSs
using locking schemes, and thus con-
siderably improves DDBS performance.

I. Introduction

Two general goals of concurrence
control in transaction-based Distributed
Database Systems (DDBSS) are: (I) to
preserve database consistency, and (2)
to guarantee the completion of each
transaction submitted to the system in
finite time. Let us note that both these
goals concern consistency in the wide
6cnse. The first one concerns the con-
sistency of data stored in the database.
The second one concerns the consistency
of the database with respect to the
external world which it reflects. To
clarify this problem, let us consider
the situation when a transaction updat-

a bank account can never be comule-
t'% (for some reasons which will be ex-
plcined later). The data stored in the
database are consistent among themselves
but the database is not consistent with
respect to the external world since

money was taken from or put into the
account, but the account was not
updated.

The commonly accepted solution to
the concurrency control in distributed
databases is the use of locking schemes
[I, 6, 7, 13, 21, 321. It has been
proved that among locking schemes, the
Two-Phase Locking (2PL) scheme is the
best one for general distributed data-
base ssxtems admitting data dependent
transactions44 which can modify any
data item they access [Is, 32). The 2PL
scheme preserves database consistency,
but does not guarantee the conpletion
of each transaction in finite time, and
it should thus be supplemented by sone
special algorithms that do this.

To Guarantee the conpletion of
each transaction in finite time, we nust
protect each transaction from four kinds
of phenomena which can prevent its com-
pletion, namely: deadlock, permanent
blocking, cyclic restarting and infinite
restartin&

Deadlock occurs when two or tlore
transactions wait forever for each
other.

Permanent blocking occurs when a
transaction waits forever for data
lockinS because of a steady strear; of
other transactions whose lock requests
are always accepted before its lock
request.

Cyclic restarting occurs when two

---e-B ----mm 4 By a data dependent transaction, we
mean one for which, in general, not
all of the set of data items accessed
is known at the beginning of the tran-
saction processing because it is de-
termined during; transaction proccssint

2 based upon data accessed earlier.
The last two phenomena are also known
under the following nazes: dyiia;;ic
deadlock, livelock, permanent res-
tarting, cyclic restart, restartinj
forever.

Proceedings of VLDB 85, Stockholm 115

or more transactions always cause the
abortion of each other.

Infinite restarting occurs when a
transaction requesting a data lock is
always aborted because of a steady
stream of other transactions whose lock
requests are always accepted before its
lock request.

It is easy to notice some symmet-
ries between these phenomena. First,
deadlock and cyclic restarting concern
a set of transactions whose lock
requests are contradictory in some sense
while permanent blocking and infinite
restarting concern transactions which
are permanently postponed because of
Ilbad" characteristics, in comparison
with those of other transactions conti-
nuously arriving.

Second, deadlock and permanent
blocking can occur when unlimited wait-
ing is allowed in the case of lock in-
ComDatibility, while cvclic and infinite
restarting can occur when unlimited num-
ber of abortions are allowed.

In the literature, the most atten-
tion was paid to the deadlock problem.
There are two general approaches to
this problem in DDBS, namely: explicit
detection and recovers. and prevention.

There have been several deadlock
detection protocols suggested, both cen-
tralized and distributed, which differ
from one another in the algorithms used
to locate directed cycles in the so
called decand graph representing the
global state of all transactions in
progress in the system [I, 4, IO, II,I3,
17, 22, 301. However. due to the huge
number of system resources (data lock
units), data replication and the inhe-
rent communication delays in distribu-
ted computer systems. it is quite dif-
ficult to construct and maintain the
consistent demand graph for the whole
distributed transaction system. Indeed,
it was shown in 19. 123, that most of
the distributed deadlock detection
protocols proposed to date are incorrect
Even assuming the improvement of these
protocols, their very poor performance
renders them impractical for DDBSs.

Prevention is the alternative
approach to the deadlock problem. The
simplest deadlock prevention strategy
consists of the abortion of a transac-
tion requesting a data lock in any case
of its inconpatibilitv with the locks
already granted. The aborted transac-
tion is rolled back (i.e., all its
locks are preempted and released)
before it is restarted. A somewhat more
sophisticated deadlock prevention stra-
tegy allows the transaction to wait a
prespecified time period (called time-
out) before being aborted [I, 2, 7, 8,

13, 311. Let us note that these strate-
gies also prevent permanent blocking.

Another prevention strategy, used
in such distributed systems as XDFS and
EWES is based on time-limited breakable
locks 118. 31). A transaction that has
some of its locks "brokenl', will be
aborted if it tries to commit broken
locks, which of course prevents poten-
tial deadlock.

Summarizing, for the solution of
the deadlock problem in the DDBS, a ver-
sion of the prevention strategv using
abortion is usually adopted, because of
its simplicity in comparison with the
deadlock detection, the control using
only the information locally available
at the DDBSs'sites, and the simultaneous
prevention of permanent blocking.

However, as was mentioned above?
the use of the abortion as the principal
mechanism of deadlock and permanent
blocking prevention provokes cyclic and/
or infinite restarting, which sre total-
ly unacceptable as well [I, 4, 9, II,
20, 26, 273. Thus, it is necessary to
introduce some strategies for the pre-
vention of these phenomena to the DDBS
concurrency control.

There are some known solutions to
the problems of cyclic and infinite res-
tarting in DDBSs. The most inportent
group of methods is based on priority
schemes.

The best known priority schemes are
\!ait-Die (k/D) and WoundGiait (i?(i) both
proposed by Rosenkrsntz et al. [I, 13,
271, in which both waiting and abortion
are used. These schemes are free from
deadlock and cyclic restarting. However,
they are not free from permanent block-
ing and infinite restarting'l

Another solution is used in the
XDFS system [181, where the additional
intention-write lock mode is introduced
to the set of basic lock modes to reduce
the likelihood of a cyclic and infinite
restarting. Such a solution considera-
bly reduces the probability of cyclic
restarting, but does not eliminate it.
Moreover, this solution does not elimi-
nate infinite restarting.

r

This results from the fact that, in
general, in locking algorithms the
requirements of the strict concurren-
cy control assumed in the original
proposition of \lD and :s"i: (27) are not
preserved. Additionai mecha.nisrJs are
needed to restrict the concurrent
reading of the data items and thus
avoid the above problems. However, t!le
performance of the lockint; al-orithns
then becomes very low [IS, 20 0 .

116

A simple, but rather radical solu-
tion to the infinite restarting problem
consists of cutting off the stream of
new transactions initiated in the system.
In other words, after the detection of a
repeatedly restarted transaction, the
requests of new transactions arriving to
the svstem are suspended until after it
reaches its commit point [16, 261. This
is equivalent to wrltt-locking the
entire database, and thus. this method
can be used only if infinite restarting
occurs very rarely.

Summarizing, there has, until now,
been no method for preventing transac-
tions from all of: deadlock, permanent
blocking, cyclic end infinite restart-
ing, and which does not considerably
reduce the level of concurrency. The
most complete proposal up to date are
those using priority schemes. However,
the main disadvantage of these methods
is that they always intervene in tran-
saction processing, whether there is a
real danger of unacceptable phenomena
or not, thus reducing the level of con-
currency end DDBS performance.

In this paper. we propose a new,
simple and efficient cure for all the
phenomena listed above, which intervenes
only in the case when there is a real
danger of them, thus keeping the level
of concurrency in the DDBS high. Kore-
over, we show. that the application of
this method can improve the total DDBS
performance. The method is fully distri-
buted and it only needs information lo-
cally available at DDBS sites and does
not need any extra inter-site communi-
cation.

We use abortion after the prespeci-
fied time-out, in order to eliminate in-
definite waiting and thus prevent the
system fron deadlock and permanent
blocking, and we propose data iten nerk-
ing as an approach for preventing of
transactions from cyclic and infinite
restarting. To this end, the restart
indicator is attached, to each transac-
tion initiated in the system. This de-
fines the admissible number of transac-
tion restarts, above which a transaction
is treated as restarting infinitely.
When such a transaction is detected,
the system, according to our method,
reserves all data items needed by it in
such a way that it will be completed
with ninicurr system perfornance cost.
The nean response time to a transaction
and the mean number of transaction res-
tarts were used as the system perfor-
mance measures.

The paper is organized as follows.
Section 2 contains the basic definitions

of the DDBS model adopted. In Section 3,
the proposed method for the prevention
of cyclic and infinite restarting is
described. In Section 4, the results of
the simulation experiments are discus-
sed. The performance of the proposed
method is compared with classical 2PL.
This section also contains the discus-
sion of the choice of the appropriate
value of restart indicator, which con-
siderably influences the performance of
the presented method. Section 5 con-
tains conclusions.

2. A node1 of distributed database
system

2.1. Basic definitions
We consider a distributed system

as a collection of sites interconnected
by a communication network and control-
led by a Distributed Database i+.nagement
System (DDBIU). A Distributed Database
(DDB), formally, is defined as
DDB=(ST, L, D), where ST=(ST
is a collection of sites,

a t;r&p;e

L G'~'~et?'
of logical data items called the logical
database,
data items

and D is a set of physical
called the physical database.

We assume, according to the above
definition, 8 two-level DDB model. At
the higher level of abstraction (i.e.,
from the user point of view), DDB is
represented by the set of logical data

nay be rela-
tions, files, records, etc. Each logical
data item may be represented by a set
of one or more (replicated) physical co-
pies stored at different sites of the
DDBS. The physical copies of logical
data item X. are denoted x.
X. Each $hgsical data i&i; $!!$'bi*'
r@&sented by one or more physical
units of access (e.g., pages of virtu-
al memory). For simplicity, in this
paper, we will assume the so called
page-level access, i.e., the page is
assumed to be a unit of locking. In
practice, this assumption is usually
net [31].

The set of all physical data items

& ik,"Dl?B at
physi-

the lower level of abstraction. Hence-
forth, by "data iten" we will rrean
physical data itec.'Pdysical database D
is the application-oriented i::ple;.ze:Lta-
tion of L, for a i;iveh DDBS hardylaze
Configuration. Each site of DDi3: acco:..-

nodates the subset of the phvsicai
database D called the Local Database
(LD).

117

Data items are operated on by
transactions consisting of read and
write operations and local computations.
The l*transactionU means a physical
transaction here, not a logical one (i.
e., a transaction after compilation and
optimization).

In this paper, we assume the gene-
ral multi-step transaction model [20,
241, in which transactions may be data-
dependent. Moreover, a transaction is
not necessarily a sequence of opera -
tions, but rather consists of (sequen-
tial and/or concurrent) subtransactions
executed concurrently at different
sites of the DDBS. A set of transac-
tions residin, in the DDBS is denoted
T =(T , ,.... F %I l

Each site of the DDBS may contain
two software modules: a Transaction
Manager (TM), which initiates and
supervises transaction processing, and
a Data Manager (DM), which manages and
controls access to a local database at
a given site. Each LD is controlled by
a single DM, which accepts subtransac-
tions fron TNs and is responsible for
the concurrency control and recovery in
its local database.

2.2. Transaction processing
Let us now briefly describe the

general transaction processing schene
in accordance with 2PL in order to
point out the possibility of cyclic and
infinite restarting.

Our 2PL realization is similar to
the one presented by Moss 1211. Locking
is implemented by the TMs, in coopera-
tion with the DMs which contain lock
managers. In a particular system, Tl\ls
and DMs nay be specialized computers,
as for example: workstations or servers
in the client/server model [18, 311.
The TN responsible for a transaction's
processing issues subtransactions to
the appropriate DMs in response to con-
nands froc the transaction. Each sub-
transaction is a sequence of read and/
or write requests to the local data-
base. Tho T1.I issues two additional
requests: connit and abort. Commit
tells the DFI that: the transaction has
terninated, all of its data items
should be pernanently reflected in the
local database, and all of its locks
should be released. Abort tells the Di;
that: the transaction has terminated
abnornally, all changes prepared by the
transaction should be undone, and all
of its locks should be released.

Data lock management is realized

by lock managers encapsulated in DIG.
For simplicity. we assume that only two
basic lock modes are used b a lock
manager: read lock mode (LB 3 and write
lock mode (LW). However, rather than
setting onlg read and write locks on
data items, DM can exploit the seman-
tics of operations to achieve increased
concurrency using type-specific locking
[I% 291.

With each data item x, (i.e., with
each page) the DM associates a data lock
record, denoted by dir(x). A data lock
record is dynamically created when a
data item is first locked, and then de-
stroyed when a data item 1s unlocked.
The structure of a data lock record is
shown in Fig. 2.1.

For each transaction Ti, which
requests access to data item x, we indi-
cate the transaction identifier and the
re uested
LW x). 4

lock mode - Ti:LB(x) or Ti :
Two transaction lists are

associated with each data lock record,
namely:

OL - the owner list of the data itec
lock, and WL - the waiter list for the
data item lock. If a read or write
request to data iten x cannot be gran-
ted, due to the incompatibility of locks,
it is placed on WL. For each transac-
tion placed on NL, a tine-out is
defined. If a transaction request fror:
!jL cannot be granted within its tine-
out period, then it has to be aborted.
Deadlock and perr;anent blocking are
avoided because aborted transactions
release their locks. This solution,
however, may lead to either the cyclic
or infinite restarting problem.

Let us consider the following
example to illustrate the possibility
of cyclic restarting phenonenon.

Example I

Let us consider the transaction
set r =(T,, Tz, T~ls) such that

readset(writeset((x),
readset(writeset((y),
readset(writeset((2).

Let us assue the following con-
current execution of2:

x:Tl A&(x)T, :L'ii;(x)

9: T2 d&(y)T, :E(y)

2:T3.I&z).....T..Lij(z)

118

; DATA INDEX ;

tpzsr pointer to the new data item
vu~uc (prewritten version)

Fig. 2.1. Data lock record etructure

read - lock
assignments

T,: g(x)
x:

T2 11
abort m&art abort nstart

Y:

0 - initiation or restart of a
transaction

I - transaction abort
0 - time-out

/vv\ - data locking
Y - communication

FiF;. 2.2. An example of cyclic restarting

119

--
where LR(LW) means read(write) lock
requests, and LII(L1;') means read(write)
lock assignment me above execution
leads to deadlock. After the expiration
of time-outs, transactions T,, Te and
TJ are rolled back and restarted again.
The above situation may possibly repeat-
ing forever. This simple example of
cyclic restarting of transactions T,, T2
and T3 is illustrated in Fig. 2.2, .

3. Locking with prevention of cyclic
and infinite restarting

We are interested in the design of
a cyclic and infinite restarting preven-
tion method in which the control deci-
sions are completely distributed and
inter-site communication is maximally
limited. In particular, we set the fol-
lowina design goals:
(I)

(2)

The solGti& to the cyclic and in-
finite restarting should not un-
necessrily restrict data accessibi-
lity. It should also not affect the
processing of transactions if the
nentioned phenomena do not occur.
The solution proposed cannot lead
to the deterioration of system per-
formance, (e.g., to the increase of
the mean response time).
The proposed solution ought to be
easily implemented, particularly in
2PL, and ought to have a low run-
tire overhead.

Our method fulfills the require-
ments mentioned above. It involves two
modifications to the basic locking
mechanism.

The first one consists of introdu-
cing the so called data marking nechan-
isn which is applied if a repeatedly
restarted transaction has been encoun-
tered. We will now describe this nechan-
1 s c

Each transaction Ti initially
receives a unique identifying tinestamp:

TS(Ti). Transaction timestanps define
the total ordering of transactions resi-
ding in the system. We assune that the
transaction tines-tamp is kept by a
transaction, even if it has been rolled
back and restarted.

For each transaction Ti initiated
in the system, we define the restart
indicator, denoted by r(Ti). If the
number of restarts of transaction Ti
during its processing exceeds r(Ti).
then transaction Ti is considered to be
involved in either cvclic or infinite
restarting.

With each data lock record dir(x),
we associate a data-mark(x) (cf. Fig.

2.1.). We assume the values of the data
marks are eaual to +w for all no rark-
ed data items.

Whenever transaction Tr is detec-
ted as having restarted repeatedly it
marks all the data items necessary for
its completion'/. Data marking consists
of the assignment of the transaction Tr
timestamp TS(Tr> to the data mark.
Data marking is realized according to
the following scheme:

if data-mark(x) > TS(Tr>
then (3.1)

data-mark(x) .- TS(Tr)

The second modification to the
basic locking concurrency control
algorithm consists of the introduction
of the locking precondition, which is
called and tested whenever a data iten
lock is requested.

The locking precondition is
defined as follows.

Locking precondition
Transaction Ti is allowed to lock
data item x if and only if

TS(T,) ,C data-rimk(x) (3.2)

Note that according to the above
definition, an access request of tran-
saction T for data iten x can be ,ran-
ted (i.e., T may lock data item x F if
and only if both of the following con-
ditions are fulfilled:
(I) TS(T) 4 data-mark(x);
(2) the lock mode requested for tran-

saction T is compatible with lock
mode of dir(x).

Let the modified 2PL algorith::,
with marking as a mechanism of prcve:l-
tion of cyclic and infinite restartin;,
be denoted by 2PLIG. It is fairly easy
to prove the correctness of the 2?LI:.

Theorem:
The 2PLI1 is correct in the sense

that serializability is guaranteed, ald
each transaction is conpleted in finite
tine.

Proof Sketch:
The basic 2PL is well know11 to be

' fisrking transaction will be denoted
by TF

correct in the sense of serializability
[6, 321. Thus, to prove the first part
of the theorem, it suffices to show
that 2PLM only permits accesses to data
itens which would be permitted by 2PL.
This fact is obvious and follows imme-
diately from the conditions (I) and (2)
presented above.

To prove the second part of the
theorem, it is sufficient to show that
problems of deadlock, permanent block-
inf2, cyclic and infinite restarting are
correctly resolved. Let us note that no
deadlock and permanent blocking will
last indefinitely, because of the abor-
tion. Cyclic and infinite restarting
are resolved by data-marking. The data
marking defines a priority scheme, in
which the priorities of transactions
are defined by their timestamps. This
priority scheme guarantees that marked
transaction Tf with the highest priori-
ty (i.e., the oldest one) may reserve
all the data items needed for its com-

P
letion. Thus, after some finite tine
and perhaps some restarts needed for

the termination or abortion of transac-
tions which currently own the locks of
data iter;s marked by transaction Tr >,

Tr will be successfully conpleted. As
we assumed, each restarted transaction
retains its old tinestamp. Thus, the
priority of each transaction Tr in-
creases with the number of completed
transactions and after a finite time,
transaction Tr reaches the highest
priority in the system. Therefore, nei-
ther cyclic nor infinite restarting
cannot occur in the system. m

Let us note that the serialization
order of transactions for 2PLK is
doubly defined. When cyclic and in-
finite restarting do not occur in the
system, and no transaction marks data,
the serialization order is determined
by the commit points of transactions
(i.e., in the same manner as in the 2PL
[I, 6,321). In the case when cyclic and
or infinite restarting often occur, the
serialization order of transactions is
deternined by the order of the tine-
stamps of the marked transactions (si-
milarly to the timestemp ordering
approach [I]).

Let us consider the following
example to illustrate the processing of
2PLi;.

Example 2
Let us consider the transaction

set T from Example I. We assune that
TS(T,)<TS(T2)< TS(T3). We have shown
that concurrent processing ofr nay

lead to cyclic restarting. Now, we will
show how the cyclic restarting from
Example I will be resolved by 2PLI.1.

Whenever the DDBKS detects that the
number of T,, II? and T3 restarts exceed
the restart indicator value then it
requires them to mark data (we then de-
note them as marking transactions T7.T:.
T$). During the next restart cvcle,
transactions TT, Ts, Tgmark all mauest-
ed data items.
The following assignments are realized:

data-mark(x)- TS(Tl")
data-mark(y) -TS(T;)
data-mark(z)-TS(TT)

Now. after the generation of the same
requests as in Example I:

x: T:: B(x).....
y: T;: z(y)
z: Tl;: a(z)

only transactions Tr and Ti obtain ac-
cesses to data items x and y due to the
fulfillment of precondition (3.2):

TS(T:) ,c data-mark(x)
TS(Tz) d data-mark(y)

Transaction T$ does not fulfill the
locking precondition (3.2).

FurtherLore. let transactions T?

?$:Thfz) and Tr: m(x). Only zhe'ec-
enerate the write requeetsa-'

cess request
TS(T:

of Tt is accepted, since
4

T;: i!m
data-mark(z); while the request

(x) is placed on the OL for data
item x. After commitment and tercination
of T*,

1 >
data iten x is unlocked, data-

mark x is set to +oo and x nay be ac-
cessed by T;. Then Tr runs to co-rpletion
and unlocks data item y. Transactions
T,, Te, T3 sre realized correctly. The
serialization order detercined by 2PLK
is the following:

T, < T2 4 Tg
where < means here the precedence
relation. n

4. Performance evaluation of 2PLM
In this section, the results of the

performance evaluation of 2PLH are
presented and COnpaD?d with 2PL. In
order to evaluate the perforuance of
2PLI3, a special DDBS simulator was con-
structed. The entire process of messace
exchage between the TIGs and D&s ~2s

121

simulated for locking and marking, as
described in Section 2.2 and 3.

The nain aim of the simulation
experiment was to give the answer to the
ouestion concerning the reduction of
data item accessibility implied by the
locking precondition (3.2). We were
interested in how the locking precondi-
tion (3.2) influenced the DDBS perfor-
name.

The following assumptions were
made:

t 3
(3)

(4)

(5)

(6)

(7)

(8)

(9)

(IO)

(II)

(12)

(13)

(14)

(15)

the DDBS contained 5 sites;
there were 500 data items unifoy?ly
distributed over the DDBS sites ;
the size of each data item was IO
units, each unit corresponding to
transmission packet;
each site concurrently processed 5
transactions? so the degree of
parallelism in the DDBS was 25;
references to data items were uni-
formly distributed over all of them;
the write-set of a transaction was
not necessarily contained in its
read-set;
there was one restart indicator r,
comnon for all transactions;
transaction size was defined as the
number of data items accessed by the
transaction over total number of
data items in the DDBS;
transaction coefficient of selecti-
vity for a data item x, was defined
as the ratio of the size of the
result of a transaction operation on
x to the size of x, and was ass&Ted
to be from the range (0.1 - 1.0);

mean packet transmission time
between any pair of DDBS sites was
COnStS.tlt;
data volume transmission time was
proportional to its Size;
message transmission time was equal
to packet transmission time;
the network was assumed to be con-
pletely reliable and unbounded (i.
e., transmission times did not
depend on network loading);
in order to obtain one point of the
curve, at least 100 transactions
had to be completed;
because of 2PL, we only took into
account those simulations for which
neither cyclic nor infinite res-
tarting occurred i

‘T”“““”
Let us explain that the number of data
items was restricted to 500 because
the pheno;lena examined here concerns
only frequently accessed data itens as
for exar-iple directories,indices etc.,
which are not numerous in real DDBSs.

(16)

Fig.
that
2PIlN

the mean response time to a tran-
saction, and the mean number of
transaction restarts were selected
as the DDBS performance measures.

Simulation results are shown in
4.1 and Fig. 4.2. Let us first note
the performance of both 2PL and
heavily depends on transaction -

size. It follows from the fact that the
increase of the mean transaction size
cause the considerable increase in the
number of lock incompatibility conflicts
between transactions. Thus, a very
significant increase in the mean
response time and mean number of re-
starts versus transaction size are ob-
served in Fig. 4.1 and Fig. 4.2.Y

As it can be seen from Fig. 4.1
and Fig. 4.2, for small mean transac-
tion size, the performance of 2PLI.1 is
the same as that of 2PL. It means that
for small mean transaction size. the
data marking mechanism does not affect
the processing of transactions, which
are processed strictly according to 2PL.
On the other hand, the performance of
both algorithms differs considerably
with increasing mean transaction size.
followed by the increasing number of
transaction conflicts. This neans that
the data marking mechanism starts to
schedule transactions.

As can be seen from the presented
curves, the performance of 2PLI.i depends
heavily on the choice of the restart
indicator value. The appropriate choice
of the restart indicator value may sig-
nificantly improve the efficiency of
2PLM, which then provides higher per-
formance than 2PL. It means that data
marking ensures not only the correct
resolution of cyclic and infinite res-
tarting problems, but may also consi-
derably improve the overall DDBS per-
formance, despite some data iten acces-
sibility restrictions. This fact can be
explained in the following way.

In a DDBS running under 2PL, a
number of transactions can be involved
in cyclic or infinite restsrtini;. These
transactions are characterized by an
excessive number of restarts and a long
response time. Cutting off the cycle of
transaction restarting early, and ther,
executing then strictly accordins to
their tinestmps, we significantly
reduce their response times. This con-

2 Sinilar results, regarding; 2Pi.,, were

obtained by Gray [7,8]. Gray asserts
that transaction conflicts are a
function of the square of the neau
transaction size.

122

MEAN RESPONSE TIME

2Pi. ALGORITHM 0
PPLM ALGORITHM

I- = 10 0
r = 15 X

r = 20 Cl
f = 25 0

0
x

0
OV

MEAN TRANSACTION

SIZE [%I
I

lo 20 30

FiG. 4.1. Mean response tine for 2PL!,I and 2PL algorithms
versus transaction size for different values
of the restart indicator.

2PL ALGORITHM 0
2PLH ALGORITHM

r - 10 0
I- * 15 X
r = 20 El
r =25 V

MEAN NUMBER OF
TRANSACTION RESTARTS

20 --

0

X
6 --

0 0
10 -- lx7

l 0

5 -- fl!P TV

MEAN TRANSACTION
SIZE [Yh]

w
lo 20 30

Fig. 4.2. Hean number of transaction restarts for 2PI&i
and 2PL algorithm versus transaction size
for different values of the restart indicator.

124

tributes to the improvement of the mean
DDBS response time.

Of course, a trade off occurs bet-
ween the reduction of the response
times of repeatedly restarted transac-
tions and the restriction of some data
items accessibility, which is followed
by sane increase in restart numbers and
the response times of other transac-
tions.

If, for a given system loading,
the restart indicator value is too
small, then the number of transactions
marking data becomes high and data
accessibility is severely restricted.
The level of concurrency in the systen
then decreases unnecessarily, because
many transactions sre processed sequen-
tially.

On the other hand, if the restart
indicator value is too great, then both
the suppression of repeated restarting
and the completion of the transactions
concerned is unnecessarily delayed.

An interesting relationship bet-
ween the appropriate restart indicator
value.for 2PLI: and the mean number of
transaction restarts in a DDBS using
2PL can be drawn from the detailed ana-
lysis of the sinulation results presen-
ted. It appears that for a given system
loading, a nearly maximal performance
is ob

F
ained when the restart indicator

is se- to the Liean nmber of transac-
tion restarts in a DDBS running under
2PL.

5. Conclusions

The solution to the cyclic and in-
finite restarting problems proposed in
this paper fulfills the design require-
ments stated in Section 3. In particu-
lhr, it affects the processing of tran-
sactions only in the case of a real
danger of cyclic or infinite restarting,
and can be easily implemented in DDBSs.
!;ore over, because of the reduction of
the total number of transaction res-
tarts, the overall DCBZ performance is
improved.

Finalljr, we would like to point
out that the infinite restx+in,-
proble;: concerns not only the locking
approach to the concurrency control in
DDBSs, but also the validation and
tinestarlp ordering approaches [I, 5,I3,
16, 25, 26, 311. A prevention method
sicilhn to that presented in this paper
can be used to solve this problem.

References

I

2

3

4

5

6

7

8

9

IO

II

12

13

P.A. Bernstein, N. Goodman,"Con-
currency control in distributed
database systtis",Computing Sur-
;;ys2;01. 13, no. 2, 1981, pp*

P. Bouchet, A. Chesnais, J.M.
Feuvre, G. Joaier, A. Kurinckx,"
PEPIN: An experimental multi-
microcomputer data base nsnagement
system", Proc. 2nd Int. Conf. on
Distributed Computing Systems,
Paris, 1981, pp. 211-217
M.J. Carey,"Granularity hiersr-
chies in concurrency control",
Proc. ACM SIGACT-SIGMOD S.ymp. on
Principle of Database Systems,
Atlanta, 1983,vp. 156-165
W. Cellarv,"Resource allocation in
computer systems - an attempt at a
global approach", Wydawnictwo Poli
techniki Poznanskiej, Poznan. 1981
(in polish)
S. Ceri, S. Owiclci,"On the use of
optimistic methods for concurrency
control in distributed databases",
Proc. 6th Berkeley Workshop on
Distributed Data Management and
Computer Networks, Berkeley, 1982
K.P. Eswaran, J.N. Gray, R.A.Lorie
I.L. Traiger, "The notion of con-
sistency and predicate locks in a
database system". Comm. ACM, vol.
19, no. II, 1976, pp. 624-633
J. Gray,"A transaction model", IBIi
Res. Rep. RJ 2895? 1980
J. Gra~.~~Transaction concept:
virtues and limitations", Proc.
7th Int. Conf. on Very Large Data
Bases, Cannes, 1981,pp. 144-154
V.D. Gligor, S.H. Shattuck,"On
deadlock detection in distributed
systensll, IEEE Trans. Software
Ew., vol. SE-6, no. 5, 1980,pp.
435-440
G.S. Ho, C.V. iiamaoorthy,
l~l?notocols for deadlock detection
in distributed database syste;;:.sl',
IEEE Trans. Software Eng., vol.
SE-8, no. 6, 1982,pp. 554-557
S.S. Isloor, T.A. I&rsland,"The
deadlock problem: an overview",
IEEE Computer. 198O,pp.58-78
J.R. Jagannatan, R. Vasudevan,
llComments on protocols for dead-
lock detection in distributed
database systems", IEEE Trans.
Software Eng., vol. SE-g, no. 3,
1983.w. 371-371
W.H. Kohler,"A survey of techni-
ques for synchronization and re-
covery in decentralized cor:puter
systenst', Computing Surveys, vol.

125

I4

15

16

I7

18

19

20

21

22

23

24

25

26

27

13, no. 2, 1981,pp. 149-183
H.F. Korth, llLocking primitives
in a database system", Journal of
the ACM, vol. 30, no. I, 1983
H.T. Kung, C.H. Papadimitriou,
IIAn optinality theory of database
concurrency control", Proc. ACM
SIGMOD Int. Conf. on Management
of Data, 1979,pp.I16-126
H.T. Kung, J.T. Robinson, IIOn
optimistic methods for concur-
rency control~~, ACM Trans. Data-
base Syst., vol. 6, no. 2, 1981,
pp. 213-226
D.A. Menasce, R.R. Muntz, "Lock-
ing and deadlock detection in
distributed data bases", IEEE
Trans. Software Eng., vol. SE-5,
no. 3, 1979,pp. 195-201
J.G. Mitchell, J. Dion, "A com-
parison of two network based file
servers", Cotnm. ACM, vol. 25, no.
%, 1982,pp.233-245
T. Morzy, "Ordered-transaction
approach to performance evalua-
tion of concurrency control al-
gorithns for distributed database
systems", Proc. Int. Conf. on
Management of Distributed Data
Pryessing, Paris, 1982,pp. 253-

T. Morzy, "Concurrency control
in distributed database systems",
Ph. D. thesis, Inst. of Control
Eng., Technical Univ. of Poznan,
1983 (in polish)
J.E.B. Moss, "Nested transactions
an approach to reliable distri-
buted ConputinG", Ph. D. thesis,
MIT I&X/T%260 1981
R. bbermack, "Global deadlock
detection algorithm", IBM Res.
Rep. RJ 2845, 1980
C.H. Papadinitriou, "The seria-
lizability of concurrent data-
base updates", Journal of the
ACM, vol. 26, no. 4, 1979,pp.631-
653
C.H. Papadinitriou, P. Kanellakis
"On concurrency control by
multiple versionsll, Proc. ACM
SIGACT-SIGMOD Smp. on Principle
of Database Systens, 1982, pp.
76-82
D.P. Reed, "NaL;inf; and synchroni-
zation in a decentralized con-
puter system", Ph. D. thesis, MIT
ICS/TR-205, 1978
J.T. Robinson, "Design of con-
currency control for transaction
processing systeI1sll, Ph. D.
thesis, Conputer SC. Dept.
Carnegie-Mellon, Pittsburgh,1982
D.J. Rosenkrsntz, R.E. Stearns,
P.Ii, Lewis, "Systen level con-

28

29

30

31

32

currency control for distributed
database systemsI', ACM Trans.
Database Syst., vol. I, no. 2,
1978,pp.I78-I98
G. SchlPgeter, "Optimistic
methods for concurrency control
in distributed database system",
Proc. 7th Int. Conf. on Very Large
Data'Bases,
130

Cannes, 1981,pp. 125-

P.M. Schwarz, A.Z. Spector,
"Synchronizing shared abstract
types", Tech. Rep. CMU-CS-83-163,
1983
M. Stonebraker, "Concurrency con-
trol and consistency of multiple
copies of data in distributed
INGRES", IEEE Trans. Software
En&, vol. SE-5, no. 3, 1979,pp.
I88-194
L. Svobodova, "File servers for
network-based distributed system"
Tech. Rep. IBll Zurich, Ruschlikon,
RZ 1187, 1982
M. Yannakskis, "Serializabilitv
by lockingI'. Journal of the ACM,
~01. 30, no. 2, I984,pp. 227-244

Permission ta copy witboat fee aU or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and tht titlt
of the pablication and its date appcu, and notict is given that copy
ing is by pcrmiwion of the Very Large Data Base Endowment. To
copy othcrwiee, or to republish, requires a fee and/or qtcial pcrmis-
&on born the Endowment.

126

