
The Private Workspace Model Feasibility
and Applications to

2PL Performance Improvements

Israel Gold, Oded Shmueli and Micha Hofri.

Computer Science Department
Technion - Israel Institute of Technology

Haifa, 32OOOIsrael

Abst?-act
In the private workspace model of concurrency con-

trol the transaction manager, TM, maintains a pr%ate
workspace for each transaction. Data items accessed by
a transaction, regardless of access mode, are cached in
this workspace. At transaction commit time updates are
made permanent in the database.

This paper addresses two basic issues. First, the
feasibility of the model is exhibited by introducing a
relatively straightforward and efficient parallel commti
phase algorithm in which no I/O operations are associ-
ated with a critical section of the TM. Second, by simula-
tion experiments, a concurrency control method in
which readers use certification whereas writers use 2PL
and do not wait for readers is shown to usually outper-
form the “standard” 2PL method within the private
workspace context. The detailed physical model used in
the simulation captures the basic properties of the
private workspace idea.

1. Introduction

This paper addresses two basic issues.
First, we demonstrate that concurrency con-
trol methods developed under the private
workspace assumption can be matched with an
efficient recovery management procedure.
Second, a “non-standard” concurrency control
method is shown to usually outperform the
“standard” 2PL method within the private
workspace context.

Many centralized concurrency control algo-
rithms have been proposed. A large portion of
these algorithms are based, to one degree or
another, on the Two Phase Locking method
(2PL) [ESWA’76] in which blocking is used to
synchronize confiicting transactions. Others
rely on methods which allow conflicting tran-
sactions to run concurrently and use transac-
tion restart in cases where inconsistent
updates to the database could result [BADALi’g,
KUNG81]. These methods are called
Certification methods because they either
abort a transaction or certify that a transac-
tion may perform additional processing or
commit.

In the private workspace model of con-
currency control the transaction management
component 0 f a database management system
(DBMS) maintains a private workspace for each
transaction. Data items accessed by a transac-
tion, regardless of the access mode, are
cached in this workspace. At transaction com-
mit time updates are made permanent in the
database. Two major advantages follow from
the fact that writing new values into the
private workspaces of transactions does not
affect the database state. First, a transaction
restart may not cause cascading restarts.
Second, the Concurrency Control has complete
freedom in choosing how to synchronize
con6icting transactions. This facilitates the
construction of correct concurrency control
algorithms which concurrently employ both
blocking and transaction restart for synchron-
izing conflicting transactions. This leads to the
notion of an Integrated Concurrency Control
Algorithm (ICCA) which is concurrently
employs several rw and several ww synchroni-
zation techniques (the notion of a synchroniza-
tion technique is introduced in [BERNal]).

ICCA algorithms based on 2PL and
Certification synchronization techniques were
presented in [BORAL84]. ICCA advantages
depend on transactions using a private
workspace and on using Serialization Graph
based synchronization techniques which only
detect actual conflicts (i.e., those affecting
serialization) among transactions (as opposed
to possible conflicts as done by the optimistic
method in [KUNG81]). To complicate matters,
some ICCAs use Commit Time Synchronization
(CTS) to ensure that committing a transaction
does not cause database inconsistencies.

The commit procedure presented in this
paper relies on an atomic tite phase. The
effect is not a disk access but the placement of
the Write operations on appropriate queues.
Once the transaction’s Write operations are

Proceedings of VLDB 85, Stockholm 192

issued, another transaction trying to read an
updated item will obtain the correct result,
either from the disk or from a buffer. The end
results of this procedure is a faster commit
phase. Complications arise in integrating the
idea of an atomic write phase with CTS and a
recovery mechanism. On one hand, the CTS
and the atomic write phase must be executed
in a critical section in order to preserve the
integerity of CTS. In order to perform the
commit as fast as possible, no Read operation
should take place during this critical section
so that it is actually a critical section of the
entire DBMS. On the other hand, committing a
transaction (which involves I/O operations)
must take place only after the CTS and before
issuing the Writes. Performing I/O operations
in a critical section may slow the system con-
siderably.

The proposed parallel commit phase algo-
rithm performs I/O operations outside a criti-
cal section while still detecting only “real” seri-
alization conflicts. Even in those cases where
no CTS is necessary, the algorithm enhances
performance by queuing commit record writ-
ing requests on a commit queue. All transac-
tions blocked by the committing transaction,
which is not yet actually committed, may
resume. Only one outstanding commit request
of an updating transaction on the commit
queue is allowed. A transaction is completed
as soon as its commit record is known to reside
in stable storage.

A substantial comparative simulation study
was conducted in order to determine the
advantages of private workspace based con-
currency control algorithms. Three important
aspects of the simulation need be pointed out.
First, we model a CPU bound system with
infinite parallel I/O capability. Second,
because we are mainly interested in con-
currency control aspects, the influence of any
buffer and memory management issues is fac-
tored out in the simulation. Tiiird, as the space
of possible work environments (as defined by
transaction workloads) is enormous, an alter-
native testing method was sought. We have
decided to characterize work environments by
their effect on transactions’ blocking rate and
system resource utilization. This substantially
reduced the number of e,xperiments.

The experiments conducted were designed
t-investigate the performance of 2PL relative
to a concurrency control method (ICC@ in
which readers (queries) use certification (Seri-
alization Graph Checking) whereas writers
(updating transactions) use 2PL and do not
wait for readers. The results show that the

ICCA method tested is (almost) always at least
as good as 2PL. In environments with high data
contention and no system resource contention
(i.e., low to high CPU utilization), the JCCA
method performs significantly better. For
transactions using 2PL the algorithm modeled
is similar to the “ordinary” 2PL with a deferred
updates recovery mechanism [GRAY781.

Various concurrency control algorithms
have been compared in an attempt to evaluate
their operational merit. The studies range
from the purely abstract [PAPA791 to the more
realistic (where such measures as system
throughput and the cost of the concurrency
control mechanism are taken into account)
[AGRA83, CARE83, GALL82, LIK82, PEIN83,
ROB182, TAY84]. Our results confirm some pre-
viously observed phenomena. In particular,
certain effects of high data contention
predicted in [TAY84] and of high resource utili-
zation (by [CARE831 in the case of I/O
resources), were observed.

The paper is organized thus. In Section 2
an overview of the Private Workspace Model is
presented. In Section 3 we exhibit the feasibil-
ity of the model by presenting a general Paral-
lel Commit Phase algorithm thereby integrat-
ing the concurrency control and recovery sub-
systems. Section 4 describes the simulation
model and the performance experiments con-
ducted. Conclusions appear in Section 5.

2. The Private Workspace Model

In the private workspace moo!el of con-
currency control a private workspace is allo-
cated to each active transaction. In this
workspace the transaction caches its previ-
ously read data items and those data values
written by the transaction during its execu-
tian. At transaction commit time, its updates
are made permanent in the database. A simi-
lar model has been previously used in [BERN81 ,
KUNGBl].

Following the system model proposed in
[BERNBl,BERN83], a centralized database
management system may be decomposed into
three components: a transaction manager
Pm a data manager (DM) and data storage.
The storage consists of a stable storage, a DX
buffer and a TM workspace. Stable storage
survives system failures (models a disk). It is
divided into fixed size physical pages, it has an
(almost) unlimited capacity and is relatively
slow. The DM buffer and TM workspace model a
limited capacity fast main memory which does
not survive system failures. The database con-
sists of a set of logical pages stored in a por-

193

tion of the stable storage called the stable
d&abase. Other portions of stable storage,
called transactions’ vitiuai workspaces, are
used to store copies of transactions’ updates
for recovery purposes. Users interact with the
DBMS by executing programs called tramac-
ttins. From a transaction’s viewpoint the
database consists of a collection of logical &a
items denoted I... , X,Y,Z 1. Transactions issue
requests to read and write data items from the
database. For simplicity of the model we
assume that the granularity of a data item is a
page and thus any reference to a data item is a
reference to some logical database pagel.

Transactions communicate with the TM and
the TM communicates with the DM. The DM is
responsible for managing the database (i.e.,
accessing and modifying data). The TM con-
trols interactions between transactions and
the database and is charged with concurrency
control and recovery functions. It receives the
requests issued by the transactions and
controls the order in which these are received
by the DM. Two data manipulation operations
are recognized by the DM: DM-READ(X) -- in
which data item X is read; and DMJRITE(X,
NEW-YALUE) -- in which NEWJALUE is assigned
to data itemX in the database.

The TM-DM communication is as follows.
The DM receives a stream of operations queued
by the TM. On a DMREAD operation, the DM
installs the desired item in the private
workspace of the appropriate transaction and
notifies the TM upon completion. Similarly, on
a DMJVRITE operation, the DM moves the
desired item which is fetched from the
appropriate transaction private workspace to
stable storage; it notifies the TM upon comple-
tion. The DM may execute several operations
concurrently provided it preserves the order oj’

conflicting operations.
The TM maintains a private workspace for

each active transaction in which copies of data
items read or written by the transaction are
kept. All references to data items in the
private workspace are made through the TM.
From the TM point of view, a transaction exe-
cutes four types of requests: TRANS, READ,
WRITE, and SNART. Actions taken by the TM
upon receipt of these requests are detailed
below.

’ In case the granularity of a data item is smaller
than a page the TM can effectively compute the page in
which any given data item is stored. Thus, any request
for reading or writing a data item can be effectively
translated into a request for reading or updating a logi-
cal database page.

TRANS: The TM initializes a private workspace
for the transaction.

READ(X): If X already exists in the private
workspace then its value is returned
to the transaction and no DMREAD is
issued. Otherwise, the TM issues a
DMREAD(X) operation to the DM.
When the current value of X is
installed by the DM in the
transaction’s private workspace, the
TM is notified and the value is for-
warded to the transaction.

WRITE(X,NEWJALUE): NEWYALUE is a value to
be assigned to X. The TM executes a
PREJVRITE(X,NEWJALUE) operation
into the transaction’s private
workspace. If a copy of X exists in
the private workspace then this has
the effect of updating the previous
value of X in the private workspace to
NEWJALUE. Otherwise, X is created
in the workspace with the value
NEWYALUE. Note that a PREJVRITE
operation does not alter any value in
the item database. The PREJVRITE
operation may be used as a synchron-
ization primitive (see [BORAL84]).

SNART: The transaction is restarted by the TM
if committing it (by making its
updates permanent in the database)
will result in an inconsistent state.
Otherwise, the TM issues .a DM-WRITE
operation for every item X previously
referenced by a PREJRITE opera-
tion. This has the effect of installing
the last update to X in the private
workspace as a permanent value in
the item database. All the
transaction’s DM-WRITEs are exe-
cuted atomically; after all have been
issued the transaction is complete.

A transaction execution is divided into two
phases. In the Execution Phase (similar to the
read phase in [KUNG~~]) the transaction reads
values from the database, performs various
computations and writes results into its
private workspace. In the .Commit Phase,
(similar to the validation and write phases in
[KUNG81]) which takes place after the transac-
tion finishes all computations, the transaction
first goes through a (possibly empty) Commit
Fime Synchronization (CTS) to ensure that
committing it causes no inconsistencies, and
then it issues a (possibly empty) sequence

194

DMWRITE operations (which instructs the DM
to update the database). The Commit Phase
should be atomic? In the next section we
present a physical implementation of the com-
mit procedure. A transaction Ti may be rss-
turteo! by the TM any time before a DmITE
has been executed on its behalf. The effect of
restarting Ti is to obliterate its private
workspace and to treat it as a new incoming
transaction.

2.1. TheTransactionPanagerModel
Two data structures are required by the TM

for its operation. The Serialization Graph (SG)
represents a precedence relation among
conflicting transactions. The Indicators Table
(IT) maintains the database access history. A
node in SG represents an active or a commit-
ted transaction. An edge (Ti, Tj) in SG indi-
cates that in any possible computationally
equivalent serial execution order, transaction
Ti precedes transaction Tj. SG is used to
represent all such precedence relationships
whether they originated from blocking in 2PL
or from the detection of a conflict in a
Certification algorithm.

There is an entry in IT for every data item
that has been accessed. An entry consists of
several pairs of the form <INDICATOR, TRAN-
SACTION IDENTIFIER>; each pair identifies a
transaction that accessed the data item and
its access mode (Read or Write). No restriction
is placed on the number and/or type of pairs
in an entry associated with a data item. The
concurrency control mechanism interprets the
pairs and decides how to use that information.

There are three types cf indicators allowed
in a pair <I, TlD>:

(1)

(2)

(3)

An r&&c&or indicates that a DM_READ
operation was executed on this item on
behalf of transaction TID.
A p&.&utor indicates that a PREJRITE
operation was executed on this item on
behalf of active transaction TID. (During
the commit phase, all p-indicators associ-
ated with a transaction are converted into
c-indicators.)
A cindicator indicates that a DM-WRITE
operation was executed on this data item
on behalf of committed transaction TID.
A TRANS request causes the TM to add a

node to SG representing the new transaction.

’ The actual implementation of the commit pro-
cedure need not be atomic as long as it appears atomic
to the outside world.

A READ or a WRITE request received by the
TM undergoes a (possibly empty) zuuiting
phase; then a (possibly empty) synchroniza-
tin phase followed by execution of the
request. In the waiting phase, a transaction
using 2PL is forced to wait until some other
transactions which “hold” conflicting indicators
on the same data item have completed execut-
ing. Edges are appropriately added to SG in
order to reflect the precedence relation
imposed by blocking. A transaction using
Certification is allowed to continue immedi-
ately to the synchronization phase. In this
phase, the request is synchronized with
coticting operations from other transactions.
This may result in restarting the issuing tran-
saction or in continuing execution. Edges are
appropriately added to SG in order to reflect
the precedence relation imposed by executing
this request. Request execution includes
appending the appropriate indicator to IT and
issuing the appropriate DM-READ or PREWRITE
operation.

A SNART request triggers the commit
phase of the transaction as described in the
previous section. In this phase all the
transaction’s p-indicators are converted into
c-indicators. Information in IT and SG about a
committed transaction remains in these data
structures as long as the node representing it
in SG is not a root node, i.e. it has at least one
incoming edge. All traces of a restarted tran-

saction are removed from both SG and IT, i.e.
the node representing a restarted transaction
in SG is removed together with all its incoming
and outgoing edges. All pairs detailing
accesses made by the restarted transaction
are removed from IT.

2.2. TheDataManagerMode!
The DM functions similarly to a back-end

database processor. It receives a serializable
schedule of DM-READ and DMWRITE operations
which is output by the TM and it processes it
on a First Come First Served (FCFS) basis. To
take advantage of its parallel I/O processing
capability, the DM may execute non-conflicting
operations in parallel. However, under the
serializability constraints it must execute
conflicting operations serially (i.e., one must
complete before the other begins) in the order
output by the TM 3. This may be implemented

’ The TM may use a certification algorithm in which
serializable conflicting DM operations are scheduled im-
mediately one after the other without waiting for DM
response. It is up to the TM to decide whether to post-
pone the scheduling of a new DM operation before an old
conflicting one has been acknowledged.

195

by associating a queue of requests with each
“active” data item.

The DM buffer is divided into page frames
of size -equal to that of a stable storage page.
The DM handles all stable database I/O (and
other portions of stable storage I/O) through
its buffer. The DM may operate in two modes.
It may force a page write (resp. read) from
(resp. into) the buffer into (resp. from) stable
storage or it may use some buffer management
strategy as described below. If possible,
DMJEAD(X) returns data item X directly from
the buffer; otherwise, an empty page frame is
selected and loaded by a desired stable data-
base page.

A DKWRITE(X,NEWJALUE) overwrites page
X if it is in the buffer; otherwise, an empty
page frame is selected and NEWJALUE is sim-

ply moved into the bufIer4. At some later time
the DM may write the page to the stable data-
base. A page involved in a DM-WRITE operation
must be pinned (see [LlND?9]) in the buffer for
the duration of the update. This prevents
transferring it to stable database before the
update is completed. The DM is allowed to
select and write to the stable database any
non-empty unpinned page. The DM may use
any page replacement algorithm.

3. Parallelism of the Commit Phase
The main difficulty in practically using the

private workspace model lies in attaining an
efficient implementation of the atomic commit
phase. Complications arise in integrating the
idea of an atomic write phase with CTS and a
recovery mechanism. On one hand, the CTS
and the atomic write phase must be executed
in a critical section in order to preserve the
integerity of CTS (see discussion in section
3.2). The commit should be performed as fast
as possible, therefore no DM-READ operations
should take place during this critical section
which makes it a critical section of the entire
DBMS. On the other hand, committing a tran-
saction (which involves I/O operations) must
take place only after the CTS and before issu-
ing the DMJRITEs. Performing I/O operations
in a critical section may slow the system con-
siderably. In this section a paruUe1 commit
phuse algorithm which only performs I/O
operations outside a critical section together
with a recovery procedure is proposed.

4 If data item granularity is smaller than a page then
a DMJRITE(X) operation fetches the stable database
page containing X into the buffer. Otherwise, an empty
page frame is selected and replaced by the desired
sta.ble database page.

3.1. Supporting Atomic Commit
Supporting atomic commit means reaching

a well defined commit point during transaction
execution. If a system failure occurs before
that point then the transaction’s effects will
eventually be undone and if a system failure
effects will eventually be installed in the data-
base and its system status would be ‘com-
pleted’. In the private workspace model, the
installment of a transaction’s updates is
deferred until the TM decides to commit the
transaction. Thus, achieving the property of
atomic .commitment may be done by requiring
that either all or none of a transaction’s
DMJVRITE operations are processed.

Atomic commitment is done in two phases”
[LAMPi’6, GRAY’?%]. Let Ti be a committing
transaction. After Ti is vali&zted by the CTS,
the first phase of commit begins. In this phase
the TM &es not issue Ti’s DMJRITE operations
directly. Rather, it instructs the DM to force
the post-images of those data item values writ-
ten into Ti ‘S private workspace out to Ti’s tir-
tual workspace on stable storage, followed by
an additional commit record. Only during the
seconclphase, does the TM issue the DMJVRITE
operations for data items in Ti’s private
workspace. These operations instruct the DM to
update the database.

In the event of a system failure, all tran-
sactions’ virtual workspaces are inspected. If
a commit record is detected for a given (tran-
saction) workspace, then its post-images are
reinstalled in the database; otherwise, the
workspace is discarded. In order to ensure
that the post-images of data items will be rein-
stalled in transactions commit order, each
transaction, upon :reaching its commit point, is
assigned a Transaction Commit Number
(TCN), which is part of the commit record. For
reasons which will be discussed later, each
data item X in the database is associated with
both the transaction identifier (X.tid) and the
TCN (X.tcn) of the last transaction which has
updated it.

6 This is simikz to the two@.c..se commit algorithm
used in distributed databases.

196

3.2 A Parallel Commit Phase Algorithm

A transaction’s Commit Piulse takes place
after it has finished its Execution Phase. Dur-
ing this phase the TM must complete three
tasks. First, the (possibly empty) CTS which
ensures that committing the transaction will
not cause any database inconsistencies.
Second, the (possibly empty) commit pro-
cedure which ends by issuing the transaction’s
DMJVRITE operations and the conversion of its
p-indicators into c-indicators. Third, a (possi-
bly empty) cleanup phase in which the transac-
tion is removed from SG and IT. The term
“commit phase” is somewhat misleading since
the phase includes the possibility of restarting
the transaction. A transaction is completed as
soon as its commit record is known to reside in
stable storage. The basic commit phase pro-
cedure is given in Figure 1.

procedure BasicConunitPhase(Ti)
bm

certify <- CTS(Ti);
if certify then
be’

r l fhtphaseofcommit*)
V X E Writeset send JIM a request to force out

the post-image of X to Ti’s virtualworkspace;
Waits for DM “Ready to Commit” message;

TCN C- TCN+l; (* get new commit number *)

send DM a request to force out
a commit record to Ti’s virtual workspace;

wait for DM “committed” message;
send a completion message to Ti;

(’ second phase of commit l)
V X E Writeset do

bm
X.tid <- T. ; X.tcn <- TCN;
execute I!MJv~zITE(X);

end
convert Ti’s p-indicators into c-indicators;

end

P cleanup Pl== ‘1

if certify then remove T. from SG and IT

end
else RESTART($);

Figure 1. Basic Commit Phase Procedure.

If the BasicCommitPhase procedure is exe-
cuted in a critical section of the TM then,
clearly, the database is kept consistent. In
general, executing it in parallel is incorrect as
the following scenarios demonstrate.

Consider a committing transaction Ti
requiring CTS. The subtle point is that Ti’s CTS
would only be partially correct. At the time Ti
is validated by CTS there may be another con-
currently executing transaction Tj which has
completed its Execution Phase but has not yet
completed its ‘first commit phase. Ti’s ww
conflicts with Tj may not be resolved smce Tj
has not yet executed its second phase of com-
mit and does not yet own its c-indicators. If T.
subsequently commits and issues its DMJVRITI!
operations before Ti does, database incon-
sistencies may result.

In certain cases7 the CTS for updating tran-
sactions is a priori guaranteed to be success-
ful It seems that in such cases it is not essen-
tial to exactly record ww conflicts. However,
consider a reader executing in parallel which
uses SG checking. To properly synchronize
this reader the TM must have all the ww infor-
mation; otherwise, some conflicts affecting
serialization will go undetected.

One way to overcome these problems is by
enclosing the Ti’s second commit phase, pre-
ceded by an additional CTS, in a critical sec-
tion of the TM. This is implemented by the
ParallelCommitPhase procedure shown in Fig-
ure 2. The critical section is enclosed by
” << ” and ” >> “. Note that this is a criti-
cal section of the DBMS during which any
access to the database is biocked as opposed
to the critical section in [KUNG81] which
applies only to committing transactions and
allows execution of DM-READ operations in
parallel.

* A wait frees the TM to serve other transactions; Ti
is eligible for TM service when the wait condition holds.

’ e.g. the WZPL algorithm in [GOLDBS].

197

procedure ParallelCommitPhase(T~)
he

(’ fir&phase of commit *)

P preliminary Commit Time Synchronization *)
certify <- CTS(Ti);
if certify then
begin

V X E Writeset send DM a request to force out
the post-image of X to Ti’s virtual workspace;

wait for DM “Ready to Commit” message;

(* secondphase of commit j

(’ second phase Commit Time Synchronization *)
<< certify <- CTS(Ti);

if certify then
mm

TCN C- TCN+1; (* get new commit number *)

send DM a request to force out
a commit record to T*‘s virtual workspace;

wait for DM “committed”message;
send a completion message to Ti;

V X E Writeset do
bf4@

X. tid <- T. ; X.tcn C- TCN;
execute I)bcJyRJTEl(X);

end
convert Ti’s p-indicators into c-indicators;

end >>
end

(* cleanup phaSe 9

if certify then remove T* from SG and IT
else RESTART($):

end

Figure 2. Parallel Commit Phase Procedure

Given the ParallelCommitPhase procedure,
consider a transaction Ti having a large wri-
teset. After Ti is validated by the preliminary
CTS, the TM begins forcing Ti ‘s post-images to
disk. Throughout this phase, Ti is in “doubt”
since it may be restarted later by the CTS of
the second phase. In order to decrease the
probability that a transaction which requires
CTS would be restarted during its commit
phase, it might prove beneficial to force out
the transaction’s post-images to disk during its
Execution Phase. This eliminates the time
interval in which a committing transaction is in
“doubt”. Naturally, the above is not required
for transactions whose CTS is empty or is a
priori successful.

3.3. An Improved Parallel Commit Phase

The ParalIelCommitPhase procedure (Fig-
ure 2) has a severe limitation resulting from
associating an I/O operation with a critical sec-
tion (of the TM). To improve the situation the
I/O operation associated with forcing out the
commit record should be moved outside the
critical section thereby speeding up commit-
ment. This may be implemented by queuing
commit record writing requests, in TCN order,
on a dedicated COMMIT QUEUE. This queue is
serially processed by the DM on a FCFS basis.

The latter suggested optimization may
result in some certified transactions (possibly)
updating the database before their commit
record has reached stable storage, i.e., before
they were a&.~~Lly committed. The possibility
of “dirtying” the database need not worry us if
only a??& certified non-committed writer
(updating transaction) at a time is allowed.
This is achieved by preventing new writers
from entering their second phase of commit
until the current committing writer’s commit
record is in stable storage. In case of a system
failure the database is restored into a con-
sistent state by reinstalling the post-images of
the transactions which have affected it in com-
mit order (i.e., in TCN order).

Procedure RECOVERY implements system
restart (see Figure 3). The main difficulty lies
in fmding the TCN of the certified non-
committed writer which has affected the stable
.database (if one exists). The TCN of a commit-
ted transaction is simply found by locating its
commit record. The TCN of the certified non-
committed writer Ti is found as follows. For
each active transaction Ti, each data item X
appearing in its virtual workspace is read from
the stable database. If Ti was the last transac-
tion to tiect X then Ti has (de facto) commit-
ted; its TCN is found in X.tcn. If Ti’s TCN can-
not be found then its virtual workspace may be
discarded (since Ti has not affected the stable
database).

It may happen that readers (queries) which
do not update the database and are not
required (for recovery reasons) to own a com-
mit record, may violate database consistency
by reading “uncommitted’ data items. For
example, let Ti .be the current non-committed
writer whose DMBRITE operations have
already been issued by the TM. Suppose tran-
saction Tj has managed to read a data item
updated by T. (the value may be served from
the DM buffer 3 and has completed successfully
before a system failure. If the failure occurs
before Ti’s commit record has reached stable
storage and bef.ore Ti has affected the stable

198

database, then Ti’s effects will eventually be
undone. Thus Tj has seen a value which never
existed. However, had we required that Tj be
committed ajter Ti then this problem would
disappear as both transactions would be res-
tarted.

‘The above leads to a general solution for
readers that possibly read “uncommitted’
values written by a certified non-committed
writer. Readers are required to queue a null
commit request (which need not involve any
I/O) onto the COMMIT QUEUE. A reader com-
pletes only after its null commit request is
dequeued. Thus, a reader can commit only
&er the writers it has read from have
committed. The ImprovedParallelCommit-
Phase procedure below incorporates the above
ideas.

Currently there can be at most one pend-
ing commit request of an updating transaction
on the COMMIT QUEUE. Therefore new writers
cannot commit until the current committing
writer’s commit record is known to be in stable
storage. This restriction may be removed
resulting in more parallelism and increased
overhead. The idea is to require each updating
transaction (which might “dirty” the database)
to write to stable storage (in addition to its
post-images) the set of pairs (X. tid, X. ten) for
each data item X read by the transaction dur-
ing its Execution Phase. Practically, this set is
usually small since the TCNs of transactions
which *have already committed need not be
included; these TCNs can be determined by
inspecting the TCN of the transaction heading
the COMMIT QUEUE. Procedure RECOVERY is

procedure hnprovedParallelCommitPhase(Ti)
begin

(’ flE3t $lham of commit l)
certify <- CTS(Ti);
if certify then

procedure RECOVERY
h?w

AL <- 1 Ti) Ti has a virtual workspace 1; CL <- # ;

(’ add to CL all paiR (Ti ,Ti ‘S TCN)
such that Ti has adected the database *)

begin -
V X E Writeset send DM a request to force out

-the post-image of X to Ti’s virtual workspace;
wait for-DM “Ready to Commit” message;

if Ti is a writer then wait until
cur_cornm.titin.g~tier is known to be committed;

(* gecondphase of commit l)

V TtEALdo
bein

t l 8ddTi t.oCLifitisknowntobecommitted l)
if 3commit-record(Ti) then begin

ten C- Ti’s TCN found in the commit-record;
CL <- CL u (Ti, ten);

end else
t-a

<+C certify <- CI’S(Ti);
if certify then
btv$Q

(* NO I/Ois associated with this phase *)

(* Add Ti to CL if it is a certifkd noncommitted
tmnsactionwhich has atkcted the database;
otherwise discard it l)

ten <- null;
if Ti is a writer then

cm_committhg-+n-iter <- Ti :
TCN <- TCN+l; (* get new commit number *)
Enqueue Ti’s commit request on the COMMIT QUEUE;
V X E Wmteset(Ti) do

begin

V X E Writeset(Ti) do begin
DMBEA.D(X);
if X.tid=T; then ten C- X.tcn;

end
I

if ten = null then discard Ti’s virtual workspace

end (* of else 3
else CL <- CL u (Ti, ten);

end
X&id <-‘I’. ; X.tcn <- TCN;
execute IJMJRITE(X);

end
convert Ti% p-indicators into c-indicators; (* reatore the database to a consistent state by

end >> reinstalliag the post-images of transactions
end inCLinTCNorder

renmve T. from SG and IT;
weit for D Ex “committed’ message:
Ti is known to be committed;
send a completion message to Ti;

end

sort the pairs (T., ten) of CL in ascending tan order:
V (Ti, ten) E h in the sorted order do

V X E Writeset(Ti) dobegin
X.tid <- T; ; X.tcn <- ten:
DMJVRIT@):

end; (* of%COVERY *)

else RESTART(
end

Figure 3. Improved Parallel Commit Phase Recovery Procedure at Sytem Restart

199

modified by adding to CL the pairs (X.tid,
X.tcn) “seen” by an updating transaction. This
guarantees that a transaction whose updates
affected the database will eventually be
reo!one. The additional benefit of the above
idea is the ability to “batch’ several commit
record writing requests which divides the com-
mit operation I/O cost over several transac-
tionG.

4. Performance Experiments
This section describes the simulation

experiments comparing the performance of
2PL with that of a concurrency control method
in which readers use Certification, writers use
2PL and writers do not wait for readers. For
transactions using 2PL the algorithm is similar
to the “ordinary” 2PL with a deferred updates
recovery mechanism [GRAYY~]. Central to our
simulation approach is a detailed simulation
model of a centralized database management
system with a fixed number of transaction pro-
cessors originating transactions.

4.1. The Simulation Model
In the simulation model, aspects that are

not directly related to transaction manage-
ment are ignored. Therefore, we did not con-
sider the cost of process communication, nor
did we concern ourselves with buffer (or
memory) management issues. This was done so
that observed differences in results can be
directly attributed to the differences in the
concurrency control mechanisms employed.
Our model assumes unlimited memory and
some fixed cost is associated with concurrency
control and various system services.

4.1.1. The Logical Model
The .logical structure of the model is illus-

trated by Figure 4. It is derived from a distri-

Fiiure 4. DBMS Logical Structure

buted database management system architec-
ture model [BERNSl]. The model consists of
four logical components: Transaction Proces-
sors (TPs), a Concurrency Controller (CC), a
Data Manager (DM) and a Database.

8 The i&a of “batching” commit records is pointed
out in [WlLKBl].

.

Transaction l3-ocessors (TPS)
A TP models a terminal or a user process

which produces one transaction at a time.
Each TP waits for some think time, executes a
transaction and waits again before initiating
another transaction, The think time controls
the arrival rate of transactions.

When a transaction is initiated by a TP it is
assigned a .script consisting of the data items
that it has to -read and write during its execu-
tion. First, it performs startup processing
tasks such as transaction analysis, authentica-
tion and other preliminary steps. Once this
phase is complete the transaction executes a
sequence of local processing and database
reqzlests bracketed by TRANS and SNART
requests signaling the start and the end of the
transaction, respectively. Local processing
models the transaction work associated with
each data item. Database requests are queued
on the CC request queue.

Concurrency Control (CC)
The CC models a process which synchron-

izes the execution of transactions. It accepts
requests which are queued by transactions,
performs concurrency control functions and
forwards service requests to the DM. We
assume that the private workspaces and data
structures required by the CC are maintained
in primary memory and thus the CC does no
I/O.

The CC continuously processes requests
dequeued from its request queue. Let Ti be
the transaction which is currently served by
the CC. Upon Ti’s TRANS request, the CC per-
forms tra72StXttin initialization functions
including private workspace management
tasks and private workspace allocation for Ti.
A TRANS request is always granted.

Upon a READ or a WRITE request, the CC
performs (a possibly empty) conflict analysis
as dictated by the concurrency control method
used to synchronize Ti. If the request is
granted, the CC executes a DM-READ or a
PREAVRITE operation on behalf of Ti. In an
operation mode in which Ti’s post-images
should be forced to disk during its Execution
Time, the PREAVRITE operation is also inter-
preted as a request for DM processing. If the
CC decides to block Ti, then the transaction is
inserted into the wait queue for the data item
it has requested. If at some later point in time
the CC unblocks Ti, then Ti is put on the @nt

200

of the request queue ! If the CC decides to res-
tart Ti , then a-cleanup operation is performed
and Ti is enqueued on (the back of) the request
queue after a certain restart delay period.
The purpose of this delay is to allow the tran-
sactions with which Ti has conflicted to finish
before Ti is restarted.

A SNART request triggers the commit
phase of transaction Ti; it is implemented by
the parallel commit phase algorithm given in
Figure 3. The commit phase begins with the
(possibly empty) CTS which ensures that com-
mitting Ti will cause no database inconsisten-
cies. Once Ti is validated and is ready to co-m-
mit, i.e., it has already completed its first
phase of the two phase commit protocol (which
is always true for readers), the CC executes all
the concurrency control functions required to
commit Ti. These include: the issuing of Ti ‘s
DMXOMMIT operation (which instructs the DM
to force Ti’s commit record out to disk), issu-
ing Ti’s DM-JVRITF operations, the conversion
of Ti’s p-indicators into c-indicators and (pos-
sibly) removing Ti from SG and IT. Ti is com-
mitted and completed as soon as its
DMXOMMIT operation has been processed by
the DM.

If Ti has not written its post-images to disk
prior to issuing its WART request, then, follow-
ing the preliminary CTS, Ti is not yet ready to
commit. In this case the CC must first execute
DM2OST operations. These instruct the DM to
force Ti’s post-images out to disk. Then, the CC
must wait until the DM responds with a “Ready
To Commit” message and only then can it start
with the second phase of the commit pro-
cedure.

Data Manager (DM)
The DM models a process which manages

the data, performing functions which are simi-
lar to those performed by a back-end database
processor. The DM accepts the DM-READ,
DMJVRITE, DMXOMMIT, PRFJVRITE and
DM2OST operations queued by the CC.
DM2EAD and DMJVRITE operations are queued
on special dedicated queues and are processed

a Ti is given higher priority over other transactions
in the request queue in order to minimize the possibility
of starvation.

by the PwallelizerJu algorithm. Since no
buffer management is modeled, each DM-READ
operation implies an I/O service. If there are
two consecutive pending DM2RITE operations
for a data item, the first one is discarded.
DMXOMMIT operations are queued on a dedi-
cated COMMIT QUEUE and are processed on a
FCFS basis (readers’ DMXOMMIT operations
involve no I/O; they are processed by simply
removing them from the queue). PRGWRITE
and DM-POST operations are executed immedi-
ately upon arrival, concurrently with all other
DM operations. Each service by the DM
involves a certain CPU processing followed pos-
sibly by an I/O processing.

4.1.2. Transaction State Diagram

Using the above description of the TP, CC
and DM components, the transaction state
diagram given in Figure 5 is derived. This
diagram presents the sequence of logical
states through which a transaction passes dur-
ing its execution.

Each logical state is associated with a
request for CPU service followed by a possible
request for I/O service. STARTUP CPU and I/O,
and LOCAL CPU and I/O represent service
requests on behalf of a TP process. CCinit,
CCconflict, CCcleanup, CT-Synch and CCcommit
represent CPU service requests on behalf of
the CC process while DM CPU and I/O
represent service requests on behalf of the DM
process.

DMcpu and DMio are the CPU and I/O costs
associated with the DM random& reading or
writing a data item. For the sake of clarity we
give different names to the parameters DMcpu
and PREJVRITEcpu, although they actually
have identical values. This also holds for the
parameters DMio and PREJRITEio.
DMPOSTcpu and DMJOSTio model the CPU and
I/O costs associated with the DM con.secutiW
writing of post-images to a transaction’s virtual
workspace. DM-POSTio consists of the virtual
workspace access time (associated only with
the first writing in a sequence) and the post-
image transfer time (associated with each

lo To accommodate the DM parallel I/O processing
capability a new system component, the Parallelizer, is
introduced. The Pardlelizer converts the serialized
schedule output by the CC into a paTdlelized schedule
in which no conflicting operations are scheduled con-
currently, i.e.. it enables the execution of non-
conflicting operations in parallel while maintaining the
serial execution order of conflicting operations. If the
Parallelizer is not a standard system component, then it
may be straightforwardly constructed.

201

Figure 5. Transaction State Diagram

post-image). The parameter RESTARTdelay
determines the period of time for which the CC
delays a transaction before restarting it. For
simplicity all these parameters represent con-
stant values rather than stochastic ones.
Finally, the THINKtime parameter is the mean
of an exponential time distribution which
models TP thinking time.

TBIWNALS

6a

ti

A summary of the parameters used to
determine the delay time or request service
time at each logical state is given in Table 3.
All parameter values are specified in mil-
liseconds.

4.1.3. ThePhysical Model

The logical model described in the previous
section utilizes two physical resources, CPU
and I/O devices (disks). Some use of these
resources is associated with each CPU or I/O
service in the transaction logical state
diagram. The physical setting is a collection of
terminals, a CPU server and an I/O server as
shown in Figure 6. The CPU server has three
queues servicing requests for the CC, the DM
and the ‘I%.

The I/O server is assumed to haire an
in@zite pamLie processing capability and
hence does not block transaction execution.
This critical assumption is made in order to

Processor SharinS Tl’ QUEUE

u
PARALLEL l/O QUEUE

Figure 6 - DBMS Physical Model

202

model the real world situation in which the sys-
tem is CPU bound and I/O utilization is low.
Otherwise, transaction response time would
mostly measure I/O queuing delays and hence
differences between concurrency control algo-
rithms would be difficult to detect (as prelim-
inary experiments showed).

There may be pending service requests in
all CPU queues. In such a case, CC requests
are given first priority, DM requests are given
second priority and TP requests are given the
lowest priority. This policy approximately
models a priority based system in which CC
services are executed atomically at highest
priority, lower priority is given to the DM and
the lowest priority is identically given to all the
TFs. Service in the CPU CC Queue and the CPU
DM Queue is provided on a FCFS basis while
service in the TP CPU Queue is provided using
the processor sharing policy; the latter may be
seen as a limiting case of the common Round
Robin scheduling policy.

4.2. Experimental Setup
The -experiments presented here were

designed to investigate the performance of 2PL
relative to a concurrency control method,
named ICCAlll, in which readers use
Certification (Serialization Graph Checking)
whereas writers use 2PL and do not wait for
readers. Since the relative performance of the
algorithms depends on the conJ?ict rate among
the transactions, we have decided to vary the
amount of data contention by fudng the data-
base size and then varying the number of con-
currently executing transactions. In the
experiments the database size was fixed at
1024 data items and the Multi Programming
Level (MPL) ranged from 16 to 128 TPs.

The duration of an experiment run is
defined by a run count parameter which is the
number of transactions that must be commit-
ted before the experiment is halted. For each
MPL value the simulation is initiated for a run
count of 1000 during which no statistics are
collected. The simulation is continued for a
run count of 10000 during which statistics are
gathered.

I1 Using the ICCA terminology in [BORAL64] this con-
currency control method is defined as:

ICCAl = (t 2PLET-rw,CERT-ET-rw 1 ,
1 2PL-ET-ww j,
F:if Ti is a reader then

Cert-ET-W X BPL-ET-m
else

BPL-ET-NV X 2PLET-ww)

Five transaction classes were considered:
short writers, short readers, medium writers,
medium readers and long sequential readers
(see Table 1).

Short Writers unif(4,6)
Short Readers unif(4,6)
Medium Writers Llllif(6,12)
Medium Readers unif(6,12)
Long Readers seq(62,66)

unif(2,4) 0.50

unif(4.6) 0.50

Table 1. Transactions Classes

The readset size of short transactions is uni-
formly distributed in the range [4,6] and the
readset is assigned by randomly selecting data
items without replacement from the entire
database. The writeset size for short writers is
uniformly distributed in the range [2,4] and
data items for the writeset are first selected
from the readset with probability 0.50 (for
each data item in the readset), and then the
rest of the items are uniformly selected from
the entire database. The readset and the wri-
teset distributions for medium transactions
are similarly defined. To form a script, the
readset and the writeset are interleaved ran-
domly under the constraint that if a transac-
tion reads and writes the same data item then
the read request must precede the write
request in the transaction script. The readset
-size of long sequential readers is uniformly
-selected in the range [62,66] and the readset is
assigned a random collection of adjacent data
items.

The transaction classes in Table 1 model
transactions which result from precompiled
programs. Therefore, the system parameters
used in the experiments (see Table 4) display
no startup I/O, no local I/O, low startup CPU
and short local CPU processing time. It is
assumed that the writing of post-images to
disk takes place during the commit phase.

203

4.3. Experiments and Results

In designing the experiments we were
faced with the unpleasant fact that the number
of possible experiments, involving various tran-
saction workloads, is enormous. However, we
have noticed that experiments may be charac-
terized by their eflect on the system work
environment rather than by transaction work-
loads. This effect may be measured by the
blocking rate of transactions and by the sys-
tem resaurce utilization. The space of possi-
bilities is define1 d by table 2.

Experimental

lihvirwnment

Blocking Rate

low

high

Data
Contention

Resource Utilization

Resource
Contention

exp 1. 1 exp 4. /

I exp 2. I exp3.

Table 2 - Experimental Environment for 2PL.

Notice that the effect of each experiment span
one or more table entries. So, to reliably cover
the table, only a small number of experiments
is needed; we have designed 4 experiments
which cover the interesting entries of Table 2.

Experiment 1 represents a mix of short
and long transactions (see Table 5). The
moderate arrival rate implies that by increas-
ing the MPL, 2PL moves from a low blocking
rate and low CPU utilization environment into a
high blocking rate and high CPU utilization
environment. Experiment 2 represents the
same mix of transactions as experiment 1 but
with a higher arrival rate (see Table 6). Thus,
by increasing the MPL, 2PL moves from a high
blocking rate and low CPU utilization environ-
ment into an environment with data contention
and high CPU utilization. Experiment 3
represents a mix of medium length transac-
tions with high arrival rate (see Table 7). So, by
increasing the MPL, 2PL moves from a high
blocking rate and high CPU utilization environ-
ment into an environment with data contention
and CPU contention. Experiment 4 represents
a mix of short transactions with high arrival
rate (see Table 8). So, by increasing the MPL,

2PL moves from a low blocking rate and high
CPU utilization environment into a high block-
ing rate and CPU contention environment.

These results suggest that with no CPU
contention the blocking phenomenon is dom-
inant and restarts are cheap. ICCAl makes
better use of the CPU by letting readers use
certification; the number of blocked transac-
tions and the waiting time are reduced which
leads to a significant improvement in transac-
tion response time and throughput. These
observations may be verified by the perfor-
mance tables of experiments 1 and 2 (Table 5
and 6). Note that the 2PL performance degra-
dation seems to be caused by the increased
blocking rate rather than by the increased res-
tart rate. This may be seen from the fact that
long readers with a higher number of restarts
outperform long readers with a lower number
of restarts as long as the former do not enter
the CPU contention area.

Under high CPU contention, restart is
expensive and it becomes a dominant factor.
As the MPL increases, ICCAl can no longer take
advantage of the decreased blocking rate since
waiting due to blocking is replaced by
increased waiting for CPU service. This
explains the observations in experiment 4
where 2PL performs almost as well as ICCAl.
The significant improvement in the perfor-
mance of ICCAl in experiment 3 starts as soon
as 2PL approaches the trashing area and is due
to the reduced number of restarted transac-
tions.

5. Conclusions

The feasibility of private workspace based
concurrency control mechanisms is exhibited
by presenting an efficient parallel commit
phase algorithm in which no I/O is associated
with a critical section of the Transaction
Manager. The use of post-images for recovery
purposes and the placement of the commit
record writing requests on a commit queue
dances performance. Immediately after

queuing its commit request and issuing its
updates a committing transaction may release
all transactions blocked by it. The transaction
is completed as soon as its commit record is
known to reside in stable storage (read-only
transactions must also queue a null commit
request which induces no I/O activity).

In order to demonstrate the performance
advantages of private workspace based con-
currency control mechanisms, “ordinary” 2PL
was compared to an ICCA method in which
readers (queries) use certification (Serializa-

204

tion Graph Checking) and writers (updating
transactions) use 2PL and are never blocked
by readers. The results of the experiments
conducted show that the ICCA method tested is
usually superior to the ordinary 2PL. In an
environment with high data contention and no
system resource contention (i.e., low to high
CPU utilization), the ICCA method performs
significantly better. The results suggest that
with no CPU contention blocking is dominant
and restart cost is cheap. On the other hand,
when there is high CPU contention restart is
expensive and it becomes a dominant factor.

These results confirm some previously
observed phenomena; in particular, the effects
of high data contention predicted in [TAY84].
There, restarting a transaction upon conf%ct
offers a method for overcoming the disadvan-
tages of blocking in 2PL. It also confirms the
effect of high I/O resource utilization where
transaction restarts have a more negative
effect on throughput than blocking (stated in
[CARE83]). In the simulation model the choice
of I/O with infinite parallel processing capabil-
ity seems to capture (current) reality. Many of
today’s mainframe systems with multiple I/O
channels tend to be CPU bound.

6. References

[AGRABS] Agrawal R, “Concurrency Control and
Recovery in Multiprocessor Database Machines:
Design and Performance Evaluation”, fiD
Disscrrtation, University of Wisconsin, (1933).

[BADAL79] Badal D., “Correctness of Concurrency Con-
trol and Implications in Distributed Database”,
F+oc. COMPSAC Qnf., Chicago Ill., (1979).

[BERNB~] Bernstein P.A. and N. Goodman, “Concurrency
Control in Distributed Database Systems”,
Com@ng Sw~~eys, Vol. 13, No. 2, (19El).

[BERNBS] Bernstein P.A.. N. Goodman and V. Hadzilacos,
“Recovery Algorithms for Database Systems”,
Technical Report, T&104X3. Aiken Computation
Laboratory, Harvard University, (1963).

[BORAL64] Boral H. and I. Gold., “Towards a Self-
Adapting Centralized Concurrency Control
Algorithm”, ACM SIGMOD, Vol. 14, No. 2. (1964).

[CAF@%S] Carey M.J., “Modeling and Evaluation of Data-
base Concurrency Control Algorithms”, m
Disssvtntion. University of California Berkeley,
(1983).

[ESWA76] Eswaran K-P.. J.N. Gray, RA. Lorie, and I.L.
Traiger. “The Notions of Consistency and Predi-
cate hocks in a Database System”, Cbrnmuni-
cafians of the ACM, VoL 19, No. 11, (1976).

Control Performance
ALD Dksertation, University of

[GOLll85] Gold I. and H. Boral, “The Power of The Private
Workspace Model”, Submitted for publication,
(1985).

[GRAY75]tfz; J., “Notes on Database Operating Sys-
in Opera&g .S&stems: h Adurmced

Cou&, Springer-Verlag, (1973).

[KfJNGBl] Kung H.T. and J.T. Robinson, “On Optimistic
Methods for Concurrency Control”, ACM TODS,
Vol. 6, No. 2, (1961).

[LAMP761 tipson B. and H. Sturgis, “Crash Recovery in
a Distributed Data Storage System”, Tech.
Rep., fimlDllter Science tab., xmoz m. &to
Iha-h Cbntar, Palo Alto, calif., (1975).

[LIN62] Lin W. and J. Nolte, “Distributed Database Con-
trol and Allocation: Semi-Annual Report”,
Technical Report, CZ4, Cambridge, Mas-
sachuaetts. (1962).

[LlND79] Lindsay B.G. et aL, “Notes on Distributed Data-
bases”,
(1979).

IBM Research Report, No. RJ2571,

[PAPA791 Papadimitriou C.H., “The Serializability of Con-
current Database Updates”, Jaanal of the
ACM, Vol. 26, No. 4, (1979).

[PEIN63] Peinl P. and A. Reuter., “Empirical Comparison
of Database Concurrency Control Schemes”,
Rvc. International Umference on Verg Large
Databases, Florence, Italy. pp. 97-103 (1983).

[ROB1621 Robinson J.T., “Experiments with Transaction
Processing on a Multi-Microprocessor”, IBM
Research Report, No. RC9725, T.J. Watson
Research Center, (1962).

[TAY~M] Tay Y.C., “A Mean Value Performance Model for
Locking in Databases”, PIrD I?issertation, Har-
vard University, (1964).

[WDKB~] Wilkinson W.K., “Database Concurrency Control
and Recovery in Local Broadcast Networks”,
PUI Dissertation, University of Wisconsin,
(1931).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di.
rect rommenial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis.
sion from the Endowment.

205

r

cc

Df!d

class x of MPL
I

Short Writers 1 50.0
Short Readers 1 37.5
Lone Readers 1 12.5

I

Short Writers 1 50.0
Short Readers 1 37.5
Low Readers 1 12.5

Experiment 1 Classes Mix. Experiment 2 Classes Mix.

halllder Dt!lB%iptiOIl

THINKtime
STARTUPcpu
STARTUPio
LocALcpu
LlocALIio

mean exponential TP think time
CPU time for transaction startup
I/O time for transaction SteWtUp
CPU time for transaction local processing
f/O time for transaction local processing

ccinlt
CCcoIlfQct
CCcommit
CCcleanup
REASTARTdelay

CC CPU time for transaction initialization
CC CPU time for request ConfIict analysis
CC CPU time for committing a transaction
CC CPU time for transaction cleanup
transaction delay time before restart

DMcpu
DMio
PRFJRITEcpu
PReWRITEio
DKPOSTcpu
DU’OSTio

DM CPU time for reading/writing a data item
DM I/O time for reading/writing a data item
DM CPU time for writing a post-image at Execution Time
DM I/O time for writing a post-image at Execution Time
DM CPU time for writing a post-image at Commit Time
DM I/O time for writing a post-image at Commit Time

DUOMHITcpu
DMJOMMITio

disk access time + post-image transfer time
DM CPU time for writing a commit record
DM I/O time for writing a commit record

Table 3. System Parameters

System Parametem

Table 4. Experiments Parameters Setup

Experiment 3 Classes Mix. Experiment 4 Classes Mix.

206

4 . t1.-zmm -a AExCr~wtandLmgT “am
I

-II- S

conuntd
trM/rSC.

1.X3
2.96
4.38
L.BB
6.86
7.7 1
7.21
7.02

rtvzitara
Ras. Time

mseo.

313.9
410.3
4n.a
695.1
790.3

1293.0
2iKCi.l

I

Commtd
trM./8aC.

Flea. Time
maec.

Commtd
trM/rrSC.

0.28
0.64
0.61
1.02
1.35
1.43
1.33
1 17

176.8
107.4
195.0
210.5
240.2
333.0
512.0

Rest-
arted

1.17
2.30
3.43
4.57
5.86
8.74
7.06
R.05

Res. Time
maec.

2106.6
2231 .o
2240.5
2446.9
2626.1
9527.1
5526.2

y’ul-I
33 1.00 0.14

T iii%

-ii-

ii
64

ii
112
l2e.

Commtd
tran/SW.

Res. Time
Inaec.

251.9
256.0
264.4
274.6
295.2
353.3
462.0
il’L&z_

1.53
2.98 I9 179.6

.a
‘0 I I

1
164.5
191.7 ::

4.51
6.02
7.46
8.98

10.06 L
Table 5 - Experiment 1 Performance Tables.

Rest- Commtd
arted trSll/SeC.

mean

II

utili-
size 7ation

27 41
59

E
ii

207
vu1 256
883

9092.3 1666 10.30
14131.7 2976 9.a4

360.2
502.4
702.5

1266.6
2169.4
4085.0

165.6
1993
234.1
sec.6
596.3
916.2

2 T A

f
a

0.43
0.8 1
1.13
1.30
1.25
1.09

2191.5
2309. i
2647.1
aa 1
5303.7
8744.3

2.23

6.37 7.62
6.45
6.48
7.36
5.09

91

Commtd Res. mme
tran/aec. msec.

Commtd
tmn/sec.

R.N. Time
-. I

L
RI?& Commtd
arted tran hec

mIJ

utili-
7Ation

0.25
0.50
0.73
0.93
1.00
1.00
1.00

Res. Time
msec.

Rest- // meem
arted size

170.1
189.2
210.3
295.8
570.6

1018.9
1391.5
1749.5

2201.1
2441.2
2624.4
3514.6
8960.9

19542 a
51360.6
64966&

256.5
269.4
297.2
411.2
788.8

1406.3
1996.9
2676.5

2.23
4.47
8.59
0.76
9.97

10.14
10.67
11 90

2.67
5.75
6.53

10.98
12.14
12.39
12.34

11

ij:

::
131
216

Table 6 - Experiment 2 Performance Tables.

T T T Res. Time Rest-
InBec. m-ted

598.1
026.1

2414.4
5396.5

11645.6
27412.4
55943.6

l4m.e

iit
1316
2416
3688
4855
4993

Res. Time
IllBW.

meml
/I

lltili-
kiss Betion

Commtd
trBn/Bec.

Rest-
Brted

r
Res. Time Rest-

mBec. arted

454.1
717.9

1522.9
2473.5
3477.1
4082.4
4937.9

2
1365

Comtd
trBll/BCSC.

10.96
18.56
19.08
18.30
17.63
17.49
17.46
iak

,I

1.62 II 0.54 5.20
6.26

5.70
10.30
12.07
13.94
14.59

360.3
549.3

1005.4
1387.2
1732.5

:A
67

119
216
229
252

9.55 0.84
11.45 0.99
25.21 0.96 L 39.89 0.98
50.97 0.99
66.34 0.99

7.0 1
4.06

3904
5164

iz

16.05
16.64

1995.7
2977.4

iii%

18
32
48

it
oa

112
lix!.

Res. Time Rest- mean
UlBS?C. erted

II
Bize

427.7
655.2

1400.2
2196.6
2901.1
2503.1
4020.8
4507&

Table ‘7 - Experiment 3 Performance Tables.

iii%

-iif
32
48

iii
96

112
la

T w
lltili-
SBtion

a

Rest-

II

Commtd
arted tmnhec.

Res. Time Rest-
UlWX. arted

18
29
62

153
254
415
535

meen
size trM/sec.

6.33
12.22
15.62
15.32
14.70
14.03
13.32 I

13.11
25.45

-0.39
0.76
0.98
1.00
1.00
1.00
1.00

224.0
289.1
456.6
818.5

1386.4
1908.6
2409.1

1.06
1.21
1.67
3.23
6.50

11.70
19.59

iii%

18

ii

2
ea

112
128

isir
Utib Betian
Tz

0.76
0.98
1.00
1.00
1.00
1.00

a rtwrilen
Res. Time

264.0
307.6
534.8

1062.0
1692.5
2349 .a
3109.8 I

mean
size

Rest-
arted

21
38
68

122
234
309
413

Jlfi

Rest- Ccrnmtd
tmul ht?C.

13.24
25.59
33.03
33.60
33.47
33.45
39.58
33.64

Res. Time Rest-
UlSW2. arted

Res. Time
UIBW.

165.2
217.4
383.7
767.4

1156.4
1508.7
1607.4

arted

i

:.
5
5

G-

6.62
13.25
17.29
la.11
16.60
19.04
19.97
21.4L

6.42
12.28
15.74
15.49
14.87
14.41
13.61

1.04
1.13
1.36
2.16
3.51
5.67
9.86

14.66 1
Table 8 - Experiment 4 Performance Tables.

208

