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Abst?-act 
In the private workspace model of concurrency con- 

trol the transaction manager, TM, maintains a pr%ate 
workspace for each transaction. Data items accessed by 
a transaction, regardless of access mode, are cached in 
this workspace. At transaction commit time updates are 
made permanent in the database. 

This paper addresses two basic issues. First, the 
feasibility of the model is exhibited by introducing a 
relatively straightforward and efficient parallel commti 
phase algorithm in which no I/O operations are associ- 
ated with a critical section of the TM. Second, by simula- 
tion experiments, a concurrency control method in 
which readers use certification whereas writers use 2PL 
and do not wait for readers is shown to usually outper- 
form the “standard” 2PL method within the private 
workspace context. The detailed physical model used in 
the simulation captures the basic properties of the 
private workspace idea. 

1. Introduction 

This paper addresses two basic issues. 
First, we demonstrate that concurrency con- 
trol methods developed under the private 
workspace assumption can be matched with an 
efficient recovery management procedure. 
Second, a “non-standard” concurrency control 
method is shown to usually outperform the 
“standard” 2PL method within the private 
workspace context. 

Many centralized concurrency control algo- 
rithms have been proposed. A large portion of 
these algorithms are based, to one degree or 
another, on the Two Phase Locking method 
(2PL) [ ESWA’76] in which blocking is used to 
synchronize confiicting transactions. Others 
rely on methods which allow conflicting tran- 
sactions to run concurrently and use transac- 
tion restart in cases where inconsistent 
updates to the database could result [BADALi’g, 
KUNG81]. These methods are called 
Certification methods because they either 
abort a transaction or certify that a transac- 
tion may perform additional processing or 
commit. 

In the private workspace model of con- 
currency control the transaction management 
component 0 f a database management system 
(DBMS) maintains a private workspace for each 
transaction. Data items accessed by a transac- 
tion, regardless of the access mode, are 
cached in this workspace. At transaction com- 
mit time updates are made permanent in the 
database. Two major advantages follow from 
the fact that writing new values into the 
private workspaces of transactions does not 
affect the database state. First, a transaction 
restart may not cause cascading restarts. 
Second, the Concurrency Control has complete 
freedom in choosing how to synchronize 
con6icting transactions. This facilitates the 
construction of correct concurrency control 
algorithms which concurrently employ both 
blocking and transaction restart for synchron- 
izing conflicting transactions. This leads to the 
notion of an Integrated Concurrency Control 
Algorithm (ICCA) which is concurrently 
employs several rw and several ww synchroni- 
zation techniques (the notion of a synchroniza- 
tion technique is introduced in [BERNal]). 

ICCA algorithms based on 2PL and 
Certification synchronization techniques were 
presented in [BORAL84]. ICCA advantages 
depend on transactions using a private 
workspace and on using Serialization Graph 
based synchronization techniques which only 
detect actual conflicts (i.e., those affecting 
serialization) among transactions (as opposed 
to possible conflicts as done by the optimistic 
method in [KUNG81]). To complicate matters, 
some ICCAs use Commit Time Synchronization 
(CTS) to ensure that committing a transaction 
does not cause database inconsistencies. 

The commit procedure presented in this 
paper relies on an atomic tite phase. The 
effect is not a disk access but the placement of 
the Write operations on appropriate queues. 
Once the transaction’s Write operations are 
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issued, another transaction trying to read an 
updated item will obtain the correct result, 
either from the disk or from a buffer. The end 
results of this procedure is a faster commit 
phase. Complications arise in integrating the 
idea of an atomic write phase with CTS and a 
recovery mechanism. On one hand, the CTS 
and the atomic write phase must be executed 
in a critical section in order to preserve the 
integerity of CTS. In order to perform the 
commit as fast as possible, no Read operation 
should take place during this critical section 
so that it is actually a critical section of the 
entire DBMS. On the other hand, committing a 
transaction (which involves I/O operations) 
must take place only after the CTS and before 
issuing the Writes. Performing I/O operations 
in a critical section may slow the system con- 
siderably. 

The proposed parallel commit phase algo- 
rithm performs I/O operations outside a criti- 
cal section while still detecting only “real” seri- 
alization conflicts. Even in those cases where 
no CTS is necessary, the algorithm enhances 
performance by queuing commit record writ- 
ing requests on a commit queue. All transac- 
tions blocked by the committing transaction, 
which is not yet actually committed, may 
resume. Only one outstanding commit request 
of an updating transaction on the commit 
queue is allowed. A transaction is completed 
as soon as its commit record is known to reside 
in stable storage. 

A substantial comparative simulation study 
was conducted in order to determine the 
advantages of private workspace based con- 
currency control algorithms. Three important 
aspects of the simulation need be pointed out. 
First, we model a CPU bound system with 
infinite parallel I/O capability. Second, 
because we are mainly interested in con- 
currency control aspects, the influence of any 
buffer and memory management issues is fac- 
tored out in the simulation. Tiiird, as the space 
of possible work environments (as defined by 
transaction workloads) is enormous, an alter- 
native testing method was sought. We have 
decided to characterize work environments by 
their effect on transactions’ blocking rate and 
system resource utilization. This substantially 
reduced the number of e,xperiments. 

The experiments conducted were designed 
t-investigate the performance of 2PL relative 
to a concurrency control method (ICC@ in 
which readers (queries) use certification (Seri- 
alization Graph Checking) whereas writers 
(updating transactions) use 2PL and do not 
wait for readers. The results show that the 

ICCA method tested is (almost) always at least 
as good as 2PL. In environments with high data 
contention and no system resource contention 
( i.e., low to high CPU utilization), the JCCA 
method performs significantly better. For 
transactions using 2PL the algorithm modeled 
is similar to the “ordinary” 2PL with a deferred 
updates recovery mechanism [ GRAY781. 

Various concurrency control algorithms 
have been compared in an attempt to evaluate 
their operational merit. The studies range 
from the purely abstract [PAPA791 to the more 
realistic (where such measures as system 
throughput and the cost of the concurrency 
control mechanism are taken into account) 
[AGRA83, CARE83, GALL82, LIK82, PEIN83, 
ROB182, TAY84]. Our results confirm some pre- 
viously observed phenomena. In particular, 
certain effects of high data contention 
predicted in [TAY84] and of high resource utili- 
zation (by [CARE831 in the case of I/O 
resources), were observed. 

The paper is organized thus. In Section 2 
an overview of the Private Workspace Model is 
presented. In Section 3 we exhibit the feasibil- 
ity of the model by presenting a general Paral- 
lel Commit Phase algorithm thereby integrat- 
ing the concurrency control and recovery sub- 
systems. Section 4 describes the simulation 
model and the performance experiments con- 
ducted. Conclusions appear in Section 5. 

2. The Private Workspace Model 

In the private workspace moo!el of con- 
currency control a private workspace is allo- 
cated to each active transaction. In this 
workspace the transaction caches its previ- 
ously read data items and those data values 
written by the transaction during its execu- 
tian. At transaction commit time, its updates 
are made permanent in the database. A simi- 
lar model has been previously used in [BERN81 , 
KUNGBl]. 

Following the system model proposed in 
[BERNBl,BERN83], a centralized database 
management system may be decomposed into 
three components: a transaction manager 
Pm a data manager (DM) and data storage. 
The storage consists of a stable storage, a DX 
buffer and a TM workspace. Stable storage 
survives system failures (models a disk). It is 
divided into fixed size physical pages, it has an 
(almost) unlimited capacity and is relatively 
slow. The DM buffer and TM workspace model a 
limited capacity fast main memory which does 
not survive system failures. The database con- 
sists of a set of logical pages stored in a por- 

193 



tion of the stable storage called the stable 
d&abase. Other portions of stable storage, 
called transactions’ vitiuai workspaces, are 
used to store copies of transactions’ updates 
for recovery purposes. Users interact with the 
DBMS by executing programs called tramac- 
ttins. From a transaction’s viewpoint the 
database consists of a collection of logical &a 
items denoted I... , X,Y,Z 1. Transactions issue 
requests to read and write data items from the 
database. For simplicity of the model we 
assume that the granularity of a data item is a 
page and thus any reference to a data item is a 
reference to some logical database pagel. 

Transactions communicate with the TM and 
the TM communicates with the DM. The DM is 
responsible for managing the database (i.e., 
accessing and modifying data). The TM con- 
trols interactions between transactions and 
the database and is charged with concurrency 
control and recovery functions. It receives the 
requests issued by the transactions and 
controls the order in which these are received 
by the DM. Two data manipulation operations 
are recognized by the DM: DM-READ(X) -- in 
which data item X is read; and DMJRITE(X, 
NEW-YALUE) -- in which NEWJALUE is assigned 
to data itemX in the database. 

The TM-DM communication is as follows. 
The DM receives a stream of operations queued 
by the TM. On a DMREAD operation, the DM 
installs the desired item in the private 
workspace of the appropriate transaction and 
notifies the TM upon completion. Similarly, on 
a DMJVRITE operation, the DM moves the 
desired item which is fetched from the 
appropriate transaction private workspace to 
stable storage; it notifies the TM upon comple- 
tion. The DM may execute several operations 
concurrently provided it preserves the order oj’ 

conflicting operations. 
The TM maintains a private workspace for 

each active transaction in which copies of data 
items read or written by the transaction are 
kept. All references to data items in the 
private workspace are made through the TM. 
From the TM point of view, a transaction exe- 
cutes four types of requests: TRANS, READ, 
WRITE, and SNART. Actions taken by the TM 
upon receipt of these requests are detailed 
below. 

’ In case the granularity of a data item is smaller 
than a page the TM can effectively compute the page in 
which any given data item is stored. Thus, any request 
for reading or writing a data item can be effectively 
translated into a request for reading or updating a logi- 
cal database page. 

TRANS: The TM initializes a private workspace 
for the transaction. 

READ(X): If X already exists in the private 
workspace then its value is returned 
to the transaction and no DMREAD is 
issued. Otherwise, the TM issues a 
DMREAD(X) operation to the DM. 
When the current value of X is 
installed by the DM in the 
transaction’s private workspace, the 
TM is notified and the value is for- 
warded to the transaction. 

WRITE(X,NEWJALUE): NEWYALUE is a value to 
be assigned to X. The TM executes a 
PREJVRITE(X,NEWJALUE) operation 
into the transaction’s private 
workspace. If a copy of X exists in 
the private workspace then this has 
the effect of updating the previous 
value of X in the private workspace to 
NEWJALUE. Otherwise, X is created 
in the workspace with the value 
NEWYALUE. Note that a PREJVRITE 
operation does not alter any value in 
the item database. The PREJVRITE 
operation may be used as a synchron- 
ization primitive (see [BORAL84]). 

SNART: The transaction is restarted by the TM 
if committing it (by making its 
updates permanent in the database) 
will result in an inconsistent state. 
Otherwise, the TM issues .a DM-WRITE 
operation for every item X previously 
referenced by a PREJRITE opera- 
tion. This has the effect of installing 
the last update to X in the private 
workspace as a permanent value in 
the item database. All the 
transaction’s DM-WRITEs are exe- 
cuted atomically; after all have been 
issued the transaction is complete. 

A transaction execution is divided into two 
phases. In the Execution Phase (similar to the 
read phase in [KUNG~~]) the transaction reads 
values from the database, performs various 
computations and writes results into its 
private workspace. In the .Commit Phase, 
(similar to the validation and write phases in 
[KUNG81]) which takes place after the transac- 
tion finishes all computations, the transaction 
first goes through a (possibly empty) Commit 
Fime Synchronization (CTS) to ensure that 
committing it causes no inconsistencies, and 
then it issues a (possibly empty) sequence 
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DMWRITE operations (which instructs the DM 
to update the database). The Commit Phase 
should be atomic? In the next section we 
present a physical implementation of the com- 
mit procedure. A transaction Ti may be rss- 
turteo! by the TM any time before a DmITE 
has been executed on its behalf. The effect of 
restarting Ti is to obliterate its private 
workspace and to treat it as a new incoming 
transaction. 

2.1. TheTransactionPanagerModel 
Two data structures are required by the TM 

for its operation. The Serialization Graph (SG) 
represents a precedence relation among 
conflicting transactions. The Indicators Table 
(IT) maintains the database access history. A 
node in SG represents an active or a commit- 
ted transaction. An edge (Ti, Tj ) in SG indi- 
cates that in any possible computationally 
equivalent serial execution order, transaction 
Ti precedes transaction Tj. SG is used to 
represent all such precedence relationships 
whether they originated from blocking in 2PL 
or from the detection of a conflict in a 
Certification algorithm. 

There is an entry in IT for every data item 
that has been accessed. An entry consists of 
several pairs of the form <INDICATOR, TRAN- 
SACTION IDENTIFIER>; each pair identifies a 
transaction that accessed the data item and 
its access mode (Read or Write). No restriction 
is placed on the number and/or type of pairs 
in an entry associated with a data item. The 
concurrency control mechanism interprets the 
pairs and decides how to use that information. 

There are three types cf indicators allowed 
in a pair <I, TlD>: 

(1) 

(2) 

(3) 

An r&&c&or indicates that a DM_READ 
operation was executed on this item on 
behalf of transaction TID. 
A p&.&utor indicates that a PREJRITE 
operation was executed on this item on 
behalf of active transaction TID. (During 
the commit phase, all p-indicators associ- 
ated with a transaction are converted into 
c-indicators.) 
A cindicator indicates that a DM-WRITE 
operation was executed on this data item 
on behalf of committed transaction TID. 
A TRANS request causes the TM to add a 

node to SG representing the new transaction. 

’ The actual implementation of the commit pro- 
cedure need not be atomic as long as it appears atomic 
to the outside world. 

A READ or a WRITE request received by the 
TM undergoes a (possibly empty) zuuiting 
phase; then a (possibly empty) synchroniza- 
tin phase followed by execution of the 
request. In the waiting phase, a transaction 
using 2PL is forced to wait until some other 
transactions which “hold” conflicting indicators 
on the same data item have completed execut- 
ing. Edges are appropriately added to SG in 
order to reflect the precedence relation 
imposed by blocking. A transaction using 
Certification is allowed to continue immedi- 
ately to the synchronization phase. In this 
phase, the request is synchronized with 
coticting operations from other transactions. 
This may result in restarting the issuing tran- 
saction or in continuing execution. Edges are 
appropriately added to SG in order to reflect 
the precedence relation imposed by executing 
this request. Request execution includes 
appending the appropriate indicator to IT and 
issuing the appropriate DM-READ or PREWRITE 
operation. 

A SNART request triggers the commit 
phase of the transaction as described in the 
previous section. In this phase all the 
transaction’s p-indicators are converted into 
c-indicators. Information in IT and SG about a 
committed transaction remains in these data 
structures as long as the node representing it 
in SG is not a root node, i.e. it has at least one 
incoming edge. All traces of a restarted tran- 

saction are removed from both SG and IT, i.e. 
the node representing a restarted transaction 
in SG is removed together with all its incoming 
and outgoing edges. All pairs detailing 
accesses made by the restarted transaction 
are removed from IT. 

2.2. TheDataManagerMode! 
The DM functions similarly to a back-end 

database processor. It receives a serializable 
schedule of DM-READ and DMWRITE operations 
which is output by the TM and it processes it 
on a First Come First Served (FCFS) basis. To 
take advantage of its parallel I/O processing 
capability, the DM may execute non-conflicting 
operations in parallel. However, under the 
serializability constraints it must execute 
conflicting operations serially (i.e., one must 
complete before the other begins) in the order 
output by the TM 3. This may be implemented 

’ The TM may use a certification algorithm in which 
serializable conflicting DM operations are scheduled im- 
mediately one after the other without waiting for DM 
response. It is up to the TM to decide whether to post- 
pone the scheduling of a new DM operation before an old 
conflicting one has been acknowledged. 
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by associating a queue of requests with each 
“active” data item. 

The DM buffer is divided into page frames 
of size -equal to that of a stable storage page. 
The DM handles all stable database I/O (and 
other portions of stable storage I/O) through 
its buffer. The DM may operate in two modes. 
It may force a page write (resp. read) from 
(resp. into) the buffer into (resp. from) stable 
storage or it may use some buffer management 
strategy as described below. If possible, 
DMJEAD(X) returns data item X directly from 
the buffer; otherwise, an empty page frame is 
selected and loaded by a desired stable data- 
base page. 

A DKWRITE(X,NEWJALUE) overwrites page 
X if it is in the buffer; otherwise, an empty 
page frame is selected and NEWJALUE is sim- 

ply moved into the bufIer4. At some later time 
the DM may write the page to the stable data- 
base. A page involved in a DM-WRITE operation 
must be pinned (see [LlND?9]) in the buffer for 
the duration of the update. This prevents 
transferring it to stable database before the 
update is completed. The DM is allowed to 
select and write to the stable database any 
non-empty unpinned page. The DM may use 
any page replacement algorithm. 

3. Parallelism of the Commit Phase 
The main difficulty in practically using the 

private workspace model lies in attaining an 
efficient implementation of the atomic commit 
phase. Complications arise in integrating the 
idea of an atomic write phase with CTS and a 
recovery mechanism. On one hand, the CTS 
and the atomic write phase must be executed 
in a critical section in order to preserve the 
integerity of CTS (see discussion in section 
3.2). The commit should be performed as fast 
as possible, therefore no DM-READ operations 
should take place during this critical section 
which makes it a critical section of the entire 
DBMS. On the other hand, committing a tran- 
saction (which involves I/O operations) must 
take place only after the CTS and before issu- 
ing the DMJRITEs. Performing I/O operations 
in a critical section may slow the system con- 
siderably. In this section a paruUe1 commit 
phuse algorithm which only performs I/O 
operations outside a critical section together 
with a recovery procedure is proposed. 

4 If data item granularity is smaller than a page then 
a DMJRITE(X) operation fetches the stable database 
page containing X into the buffer. Otherwise, an empty 
page frame is selected and replaced by the desired 
sta.ble database page. 

3.1. Supporting Atomic Commit 
Supporting atomic commit means reaching 

a well defined commit point during transaction 
execution. If a system failure occurs before 
that point then the transaction’s effects will 
eventually be undone and if a system failure 
effects will eventually be installed in the data- 
base and its system status would be ‘com- 
pleted’. In the private workspace model, the 
installment of a transaction’s updates is 
deferred until the TM decides to commit the 
transaction. Thus, achieving the property of 
atomic .commitment may be done by requiring 
that either all or none of a transaction’s 
DMJVRITE operations are processed. 

Atomic commitment is done in two phases” 
[LAMPi’6, GRAY’?%]. Let Ti be a committing 
transaction. After Ti is vali&zted by the CTS, 
the first phase of commit begins. In this phase 
the TM &es not issue Ti’s DMJRITE operations 
directly. Rather, it instructs the DM to force 
the post-images of those data item values writ- 
ten into Ti ‘S private workspace out to Ti’s tir- 
tual workspace on stable storage, followed by 
an additional commit record. Only during the 
seconclphase, does the TM issue the DMJVRITE 
operations for data items in Ti’s private 
workspace. These operations instruct the DM to 
update the database. 

In the event of a system failure, all tran- 
sactions’ virtual workspaces are inspected. If 
a commit record is detected for a given (tran- 
saction) workspace, then its post-images are 
reinstalled in the database; otherwise, the 
workspace is discarded. In order to ensure 
that the post-images of data items will be rein- 
stalled in transactions commit order, each 
transaction, upon :reaching its commit point, is 
assigned a Transaction Commit Number 
(TCN), which is part of the commit record. For 
reasons which will be discussed later, each 
data item X in the database is associated with 
both the transaction identifier (X.tid) and the 
TCN (X.tcn) of the last transaction which has 
updated it. 

6 This is simikz to the two@.c..se commit algorithm 
used in distributed databases. 
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3.2 A Parallel Commit Phase Algorithm 

A transaction’s Commit Piulse takes place 
after it has finished its Execution Phase. Dur- 
ing this phase the TM must complete three 
tasks. First, the (possibly empty) CTS which 
ensures that committing the transaction will 
not cause any database inconsistencies. 
Second, the (possibly empty) commit pro- 
cedure which ends by issuing the transaction’s 
DMJVRITE operations and the conversion of its 
p-indicators into c-indicators. Third, a (possi- 
bly empty) cleanup phase in which the transac- 
tion is removed from SG and IT. The term 
“commit phase” is somewhat misleading since 
the phase includes the possibility of restarting 
the transaction. A transaction is completed as 
soon as its commit record is known to reside in 
stable storage. The basic commit phase pro- 
cedure is given in Figure 1. 

procedure BasicConunitPhase(Ti) 
bm 

certify <- CTS(Ti); 
if certify then 
be’ 

r l fhtphaseofcommit*) 
V X E Writeset send JIM a request to force out 

the post-image of X to Ti’s virtualworkspace; 
Waits for DM “Ready to Commit” message; 

TCN C- TCN+l; (* get new commit number *) 

send DM a request to force out 
a commit record to Ti’s virtual workspace; 

wait for DM “committed” message; 
send a completion message to Ti; 

(’ second phase of commit l ) 
V X E Writeset do 

bm 
X.tid <- T. ; X.tcn <- TCN; 
execute I!MJv~zITE(X); 

end 
convert Ti’s p-indicators into c-indicators; 

end 

P cleanup Pl== ‘1 

if certify then remove T. from SG and IT 

end 
else RESTART($); 

Figure 1. Basic Commit Phase Procedure. 

If the BasicCommitPhase procedure is exe- 
cuted in a critical section of the TM then, 
clearly, the database is kept consistent. In 
general, executing it in parallel is incorrect as 
the following scenarios demonstrate. 

Consider a committing transaction Ti 
requiring CTS. The subtle point is that Ti’s CTS 
would only be partially correct. At the time Ti 
is validated by CTS there may be another con- 
currently executing transaction Tj which has 
completed its Execution Phase but has not yet 
completed its ‘first commit phase. Ti’s ww 
conflicts with Tj may not be resolved smce Tj 
has not yet executed its second phase of com- 
mit and does not yet own its c-indicators. If T. 
subsequently commits and issues its DMJVRITI! 
operations before Ti does, database incon- 
sistencies may result. 

In certain cases7 the CTS for updating tran- 
sactions is a priori guaranteed to be success- 
ful It seems that in such cases it is not essen- 
tial to exactly record ww conflicts. However, 
consider a reader executing in parallel which 
uses SG checking. To properly synchronize 
this reader the TM must have all the ww infor- 
mation; otherwise, some conflicts affecting 
serialization will go undetected. 

One way to overcome these problems is by 
enclosing the Ti’s second commit phase, pre- 
ceded by an additional CTS, in a critical sec- 
tion of the TM. This is implemented by the 
ParallelCommitPhase procedure shown in Fig- 
ure 2. The critical section is enclosed by 
” << ” and ” >> “. Note that this is a criti- 
cal section of the DBMS during which any 
access to the database is biocked as opposed 
to the critical section in [KUNG81] which 
applies only to committing transactions and 
allows execution of DM-READ operations in 
parallel. 

* A wait frees the TM to serve other transactions; Ti 
is eligible for TM service when the wait condition holds. 

’ e.g. the WZPL algorithm in [GOLDBS]. 
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procedure ParallelCommitPhase(T~) 
he 

(’ fir&phase of commit *) 

P preliminary Commit Time Synchronization *) 
certify <- CTS(Ti); 
if certify then 
begin 

V X E Writeset send DM a request to force out 
the post-image of X to Ti’s virtual workspace; 

wait for DM “Ready to Commit” message; 

(* secondphase of commit j 

(’ second phase Commit Time Synchronization *) 
<< certify <- CTS(Ti); 

if certify then 
mm 

TCN C- TCN+1; (* get new commit number *) 

send DM a request to force out 
a commit record to T*‘s virtual workspace; 

wait for DM “committed”message; 
send a completion message to Ti; 

V X E Writeset do 
bf4@ 

X. tid <- T. ; X.tcn C- TCN; 
execute I)bcJyRJTEl(X); 

end 
convert Ti’s p-indicators into c-indicators; 

end >> 
end 

(* cleanup phaSe 9 

if certify then remove T* from SG and IT 
else RESTART($): 

end 

Figure 2. Parallel Commit Phase Procedure 

Given the ParallelCommitPhase procedure, 
consider a transaction Ti having a large wri- 
teset. After Ti is validated by the preliminary 
CTS, the TM begins forcing Ti ‘s post-images to 
disk. Throughout this phase, Ti is in “doubt” 
since it may be restarted later by the CTS of 
the second phase. In order to decrease the 
probability that a transaction which requires 
CTS would be restarted during its commit 
phase, it might prove beneficial to force out 
the transaction’s post-images to disk during its 
Execution Phase. This eliminates the time 
interval in which a committing transaction is in 
“doubt”. Naturally, the above is not required 
for transactions whose CTS is empty or is a 
priori successful. 

3.3. An Improved Parallel Commit Phase 

The ParalIelCommitPhase procedure (Fig- 
ure 2) has a severe limitation resulting from 
associating an I/O operation with a critical sec- 
tion (of the TM). To improve the situation the 
I/O operation associated with forcing out the 
commit record should be moved outside the 
critical section thereby speeding up commit- 
ment. This may be implemented by queuing 
commit record writing requests, in TCN order, 
on a dedicated COMMIT QUEUE. This queue is 
serially processed by the DM on a FCFS basis. 

The latter suggested optimization may 
result in some certified transactions (possibly) 
updating the database before their commit 
record has reached stable storage, i.e., before 
they were a&.~~Lly committed. The possibility 
of “dirtying” the database need not worry us if 
only a??& certified non-committed writer 
(updating transaction) at a time is allowed. 
This is achieved by preventing new writers 
from entering their second phase of commit 
until the current committing writer’s commit 
record is in stable storage. In case of a system 
failure the database is restored into a con- 
sistent state by reinstalling the post-images of 
the transactions which have affected it in com- 
mit order (i.e., in TCN order). 

Procedure RECOVERY implements system 
restart (see Figure 3). The main difficulty lies 
in fmding the TCN of the certified non- 
committed writer which has affected the stable 
.database (if one exists). The TCN of a commit- 
ted transaction is simply found by locating its 
commit record. The TCN of the certified non- 
committed writer Ti is found as follows. For 
each active transaction Ti, each data item X 
appearing in its virtual workspace is read from 
the stable database. If Ti was the last transac- 
tion to tiect X then Ti has (de facto) commit- 
ted; its TCN is found in X.tcn. If Ti’s TCN can- 
not be found then its virtual workspace may be 
discarded (since Ti has not affected the stable 
database). 

It may happen that readers (queries) which 
do not update the database and are not 
required (for recovery reasons) to own a com- 
mit record, may violate database consistency 
by reading “uncommitted’ data items. For 
example, let Ti .be the current non-committed 
writer whose DMBRITE operations have 
already been issued by the TM. Suppose tran- 
saction Tj has managed to read a data item 
updated by T. (the value may be served from 
the DM buffer 3 and has completed successfully 
before a system failure. If the failure occurs 
before Ti’s commit record has reached stable 
storage and bef.ore Ti has affected the stable 
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database, then Ti’s effects will eventually be 
undone. Thus Tj has seen a value which never 
existed. However, had we required that Tj be 
committed ajter Ti then this problem would 
disappear as both transactions would be res- 
tarted. 

‘The above leads to a general solution for 
readers that possibly read “uncommitted’ 
values written by a certified non-committed 
writer. Readers are required to queue a null 
commit request (which need not involve any 
I/O) onto the COMMIT QUEUE. A reader com- 
pletes only after its null commit request is 
dequeued. Thus, a reader can commit only 
&er the writers it has read from have 
committed. The ImprovedParallelCommit- 
Phase procedure below incorporates the above 
ideas. 

Currently there can be at most one pend- 
ing commit request of an updating transaction 
on the COMMIT QUEUE. Therefore new writers 
cannot commit until the current committing 
writer’s commit record is known to be in stable 
storage. This restriction may be removed 
resulting in more parallelism and increased 
overhead. The idea is to require each updating 
transaction (which might “dirty” the database) 
to write to stable storage (in addition to its 
post-images) the set of pairs (X. tid, X. ten) for 
each data item X read by the transaction dur- 
ing its Execution Phase. Practically, this set is 
usually small since the TCNs of transactions 
which *have already committed need not be 
included; these TCNs can be determined by 
inspecting the TCN of the transaction heading 
the COMMIT QUEUE. Procedure RECOVERY is 

procedure hnprovedParallelCommitPhase(Ti) 
begin 

(’ flE3t $lham of commit l ) 
certify <- CTS(Ti); 
if certify then 

procedure RECOVERY 
h?w 

AL <- 1 Ti ) Ti has a virtual workspace 1; CL <- # ; 

(’ add to CL all paiR (Ti ,Ti ‘S TCN) 
such that Ti has adected the database *) 

begin - 
V X E Writeset send DM a request to force out 

-the post-image of X to Ti’s virtual workspace; 
wait for-DM “Ready to Commit” message; 

if Ti is a writer then wait until 
cur_cornm.titin.g~tier is known to be committed; 

(* gecondphase of commit l ) 

V TtEALdo 
bein 

t l 8ddTi t.oCLifitisknowntobecommitted l ) 
if 3commit-record(Ti) then begin 

ten C- Ti’s TCN found in the commit-record; 
CL <- CL u (Ti, ten); 

end else 
t-a 

<+C certify <- CI’S(Ti); 
if certify then 
btv$Q 

(* NO I/Ois associated with this phase *) 

(* Add Ti to CL if it is a certifkd noncommitted 
tmnsactionwhich has atkcted the database; 
otherwise discard it l ) 

ten <- null; 
if Ti is a writer then 

cm_committhg-+n-iter <- Ti : 
TCN <- TCN+l; (* get new commit number *) 
Enqueue Ti’s commit request on the COMMIT QUEUE; 
V X E Wmteset(Ti) do 

begin 

V X E Writeset( Ti ) do begin 
DMBEA.D(X); 
if X.tid=T; then ten C- X.tcn; 

end 
I 

if ten = null then discard Ti’s virtual workspace 

end (* of else 3 
else CL <- CL u (Ti, ten); 

end 
X&id <-‘I’. ; X.tcn <- TCN; 
execute IJMJRITE(X); 

end 
convert Ti% p-indicators into c-indicators; (* reatore the database to a consistent state by 

end >> reinstalliag the post-images of transactions 
end inCLinTCNorder 

renmve T. from SG and IT; 
weit for D Ex “committed’ message: 
Ti is known to be committed; 
send a completion message to Ti; 

end 

sort the pairs (T., ten) of CL in ascending tan order: 
V (Ti, ten) E h in the sorted order do 

V X E Writeset( Ti) dobegin 
X.tid <- T; ; X.tcn <- ten: 
DMJVRIT@): 

end; (* of%COVERY *) 

else RESTART( 
end 

Figure 3. Improved Parallel Commit Phase Recovery Procedure at Sytem Restart 
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modified by adding to CL the pairs (X.tid, 
X.tcn) “seen” by an updating transaction. This 
guarantees that a transaction whose updates 
affected the database will eventually be 
reo!one. The additional benefit of the above 
idea is the ability to “batch’ several commit 
record writing requests which divides the com- 
mit operation I/O cost over several transac- 
tionG. 

4. Performance Experiments 
This section describes the simulation 

experiments comparing the performance of 
2PL with that of a concurrency control method 
in which readers use Certification, writers use 
2PL and writers do not wait for readers. For 
transactions using 2PL the algorithm is similar 
to the “ordinary” 2PL with a deferred updates 
recovery mechanism [GRAYY~]. Central to our 
simulation approach is a detailed simulation 
model of a centralized database management 
system with a fixed number of transaction pro- 
cessors originating transactions. 

4.1. The Simulation Model 
In the simulation model, aspects that are 

not directly related to transaction manage- 
ment are ignored. Therefore, we did not con- 
sider the cost of process communication, nor 
did we concern ourselves with buffer (or 
memory) management issues. This was done so 
that observed differences in results can be 
directly attributed to the differences in the 
concurrency control mechanisms employed. 
Our model assumes unlimited memory and 
some fixed cost is associated with concurrency 
control and various system services. 

4.1.1. The Logical Model 
The .logical structure of the model is illus- 

trated by Figure 4. It is derived from a distri- 

Fiiure 4. DBMS Logical Structure 

buted database management system architec- 
ture model [BERNSl]. The model consists of 
four logical components: Transaction Proces- 
sors (TPs), a Concurrency Controller (CC), a 
Data Manager (DM) and a Database. 

8 The i&a of “batching” commit records is pointed 
out in [WlLKBl]. 

. 

Transaction l3-ocessors (TPS) 
A TP models a terminal or a user process 

which produces one transaction at a time. 
Each TP waits for some think time, executes a 
transaction and waits again before initiating 
another transaction, The think time controls 
the arrival rate of transactions. 

When a transaction is initiated by a TP it is 
assigned a .script consisting of the data items 
that it has to -read and write during its execu- 
tion. First, it performs startup processing 
tasks such as transaction analysis, authentica- 
tion and other preliminary steps. Once this 
phase is complete the transaction executes a 
sequence of local processing and database 
reqzlests bracketed by TRANS and SNART 
requests signaling the start and the end of the 
transaction, respectively. Local processing 
models the transaction work associated with 
each data item. Database requests are queued 
on the CC request queue. 

Concurrency Control (CC) 
The CC models a process which synchron- 

izes the execution of transactions. It accepts 
requests which are queued by transactions, 
performs concurrency control functions and 
forwards service requests to the DM. We 
assume that the private workspaces and data 
structures required by the CC are maintained 
in primary memory and thus the CC does no 
I/O. 

The CC continuously processes requests 
dequeued from its request queue. Let Ti be 
the transaction which is currently served by 
the CC. Upon Ti’s TRANS request, the CC per- 
forms tra72StXttin initialization functions 
including private workspace management 
tasks and private workspace allocation for Ti. 
A TRANS request is always granted. 

Upon a READ or a WRITE request, the CC 
performs (a possibly empty) conflict analysis 
as dictated by the concurrency control method 
used to synchronize Ti. If the request is 
granted, the CC executes a DM-READ or a 
PREAVRITE operation on behalf of Ti. In an 
operation mode in which Ti’s post-images 
should be forced to disk during its Execution 
Time, the PREAVRITE operation is also inter- 
preted as a request for DM processing. If the 
CC decides to block Ti, then the transaction is 
inserted into the wait queue for the data item 
it has requested. If at some later point in time 
the CC unblocks Ti, then Ti is put on the @nt 
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of the request queue ! If the CC decides to res- 
tart Ti , then a-cleanup operation is performed 
and Ti is enqueued on (the back of) the request 
queue after a certain restart delay period. 
The purpose of this delay is to allow the tran- 
sactions with which Ti has conflicted to finish 
before Ti is restarted. 

A SNART request triggers the commit 
phase of transaction Ti; it is implemented by 
the parallel commit phase algorithm given in 
Figure 3. The commit phase begins with the 
(possibly empty) CTS which ensures that com- 
mitting Ti will cause no database inconsisten- 
cies. Once Ti is validated and is ready to co-m- 
mit, i.e., it has already completed its first 
phase of the two phase commit protocol (which 
is always true for readers), the CC executes all 
the concurrency control functions required to 
commit Ti. These include: the issuing of Ti ‘s 
DMXOMMIT operation (which instructs the DM 
to force Ti’s commit record out to disk), issu- 
ing Ti’s DM-JVRITF operations, the conversion 
of Ti’s p-indicators into c-indicators and (pos- 
sibly) removing Ti from SG and IT. Ti is com- 
mitted and completed as soon as its 
DMXOMMIT operation has been processed by 
the DM. 

If Ti has not written its post-images to disk 
prior to issuing its WART request, then, follow- 
ing the preliminary CTS, Ti is not yet ready to 
commit. In this case the CC must first execute 
DM2OST operations. These instruct the DM to 
force Ti’s post-images out to disk. Then, the CC 
must wait until the DM responds with a “Ready 
To Commit” message and only then can it start 
with the second phase of the commit pro- 
cedure. 

Data Manager (DM) 
The DM models a process which manages 

the data, performing functions which are simi- 
lar to those performed by a back-end database 
processor. The DM accepts the DM-READ, 
DMJVRITE, DMXOMMIT, PRFJVRITE and 
DM2OST operations queued by the CC. 
DM2EAD and DMJVRITE operations are queued 
on special dedicated queues and are processed 

a Ti is given higher priority over other transactions 
in the request queue in order to minimize the possibility 
of starvation. 

by the PwallelizerJu algorithm. Since no 
buffer management is modeled, each DM-READ 
operation implies an I/O service. If there are 
two consecutive pending DM2RITE operations 
for a data item, the first one is discarded. 
DMXOMMIT operations are queued on a dedi- 
cated COMMIT QUEUE and are processed on a 
FCFS basis (readers’ DMXOMMIT operations 
involve no I/O; they are processed by simply 
removing them from the queue). PRGWRITE 
and DM-POST operations are executed immedi- 
ately upon arrival, concurrently with all other 
DM operations. Each service by the DM 
involves a certain CPU processing followed pos- 
sibly by an I/O processing. 

4.1.2. Transaction State Diagram 

Using the above description of the TP, CC 
and DM components, the transaction state 
diagram given in Figure 5 is derived. This 
diagram presents the sequence of logical 
states through which a transaction passes dur- 
ing its execution. 

Each logical state is associated with a 
request for CPU service followed by a possible 
request for I/O service. STARTUP CPU and I/O, 
and LOCAL CPU and I/O represent service 
requests on behalf of a TP process. CCinit, 
CCconflict, CCcleanup, CT-Synch and CCcommit 
represent CPU service requests on behalf of 
the CC process while DM CPU and I/O 
represent service requests on behalf of the DM 
process. 

DMcpu and DMio are the CPU and I/O costs 
associated with the DM random& reading or 
writing a data item. For the sake of clarity we 
give different names to the parameters DMcpu 
and PREJVRITEcpu, although they actually 
have identical values. This also holds for the 
parameters DMio and PREJRITEio. 
DMPOSTcpu and DMJOSTio model the CPU and 
I/O costs associated with the DM con.secutiW 
writing of post-images to a transaction’s virtual 
workspace. DM-POSTio consists of the virtual 
workspace access time (associated only with 
the first writing in a sequence) and the post- 
image transfer time (associated with each 

lo To accommodate the DM parallel I/O processing 
capability a new system component, the Parallelizer, is 
introduced. The Pardlelizer converts the serialized 
schedule output by the CC into a paTdlelized schedule 
in which no conflicting operations are scheduled con- 
currently, i.e.. it enables the execution of non- 
conflicting operations in parallel while maintaining the 
serial execution order of conflicting operations. If the 
Parallelizer is not a standard system component, then it 
may be straightforwardly constructed. 
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Figure 5. Transaction State Diagram 

post-image). The parameter RESTARTdelay 
determines the period of time for which the CC 
delays a transaction before restarting it. For 
simplicity all these parameters represent con- 
stant values rather than stochastic ones. 
Finally, the THINKtime parameter is the mean 
of an exponential time distribution which 
models TP thinking time. 

TBIWNALS 

6a 

ti 

A summary of the parameters used to 
determine the delay time or request service 
time at each logical state is given in Table 3. 
All parameter values are specified in mil- 
liseconds. 

4.1.3. ThePhysical Model 

The logical model described in the previous 
section utilizes two physical resources, CPU 
and I/O devices (disks). Some use of these 
resources is associated with each CPU or I/O 
service in the transaction logical state 
diagram. The physical setting is a collection of 
terminals, a CPU server and an I/O server as 
shown in Figure 6. The CPU server has three 
queues servicing requests for the CC, the DM 
and the ‘I%. 

The I/O server is assumed to haire an 
in@zite pamLie processing capability and 
hence does not block transaction execution. 
This critical assumption is made in order to 

Processor SharinS Tl’ QUEUE 

u 
PARALLEL l/O QUEUE 

Figure 6 - DBMS Physical Model 
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model the real world situation in which the sys- 
tem is CPU bound and I/O utilization is low. 
Otherwise, transaction response time would 
mostly measure I/O queuing delays and hence 
differences between concurrency control algo- 
rithms would be difficult to detect (as prelim- 
inary experiments showed). 

There may be pending service requests in 
all CPU queues. In such a case, CC requests 
are given first priority, DM requests are given 
second priority and TP requests are given the 
lowest priority. This policy approximately 
models a priority based system in which CC 
services are executed atomically at highest 
priority, lower priority is given to the DM and 
the lowest priority is identically given to all the 
TFs. Service in the CPU CC Queue and the CPU 
DM Queue is provided on a FCFS basis while 
service in the TP CPU Queue is provided using 
the processor sharing policy; the latter may be 
seen as a limiting case of the common Round 
Robin scheduling policy. 

4.2. Experimental Setup 
The -experiments presented here were 

designed to investigate the performance of 2PL 
relative to a concurrency control method, 
named ICCAlll, in which readers use 
Certification (Serialization Graph Checking) 
whereas writers use 2PL and do not wait for 
readers. Since the relative performance of the 
algorithms depends on the conJ?ict rate among 
the transactions, we have decided to vary the 
amount of data contention by fudng the data- 
base size and then varying the number of con- 
currently executing transactions. In the 
experiments the database size was fixed at 
1024 data items and the Multi Programming 
Level (MPL) ranged from 16 to 128 TPs. 

The duration of an experiment run is 
defined by a run count parameter which is the 
number of transactions that must be commit- 
ted before the experiment is halted. For each 
MPL value the simulation is initiated for a run 
count of 1000 during which no statistics are 
collected. The simulation is continued for a 
run count of 10000 during which statistics are 
gathered. 

I1 Using the ICCA terminology in [BORAL64] this con- 
currency control method is defined as: 

ICCAl = ( t 2PLET-rw,CERT-ET-rw 1 , 
1 2PL-ET-ww j, 
F:if Ti is a reader then 

Cert-ET-W X BPL-ET-m 
else 

BPL-ET-NV X 2PLET-ww ) 

Five transaction classes were considered: 
short writers, short readers, medium writers, 
medium readers and long sequential readers 
(see Table 1). 

Short Writers unif(4,6) 
Short Readers unif(4,6) 
Medium Writers Llllif(6,12) 
Medium Readers unif(6,12) 
Long Readers seq(62,66) 

unif(2,4) 0.50 

unif(4.6) 0.50 

Table 1. Transactions Classes 

The readset size of short transactions is uni- 
formly distributed in the range [4,6] and the 
readset is assigned by randomly selecting data 
items without replacement from the entire 
database. The writeset size for short writers is 
uniformly distributed in the range [2,4] and 
data items for the writeset are first selected 
from the readset with probability 0.50 (for 
each data item in the readset), and then the 
rest of the items are uniformly selected from 
the entire database. The readset and the wri- 
teset distributions for medium transactions 
are similarly defined. To form a script, the 
readset and the writeset are interleaved ran- 
domly under the constraint that if a transac- 
tion reads and writes the same data item then 
the read request must precede the write 
request in the transaction script. The readset 
-size of long sequential readers is uniformly 
-selected in the range [62,66] and the readset is 
assigned a random collection of adjacent data 
items. 

The transaction classes in Table 1 model 
transactions which result from precompiled 
programs. Therefore, the system parameters 
used in the experiments (see Table 4) display 
no startup I/O, no local I/O, low startup CPU 
and short local CPU processing time. It is 
assumed that the writing of post-images to 
disk takes place during the commit phase. 
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4.3. Experiments and Results 

In designing the experiments we were 
faced with the unpleasant fact that the number 
of possible experiments, involving various tran- 
saction workloads, is enormous. However, we 
have noticed that experiments may be charac- 
terized by their eflect on the system work 
environment rather than by transaction work- 
loads. This effect may be measured by the 
blocking rate of transactions and by the sys- 
tem resaurce utilization. The space of possi- 
bilities is define1 d by table 2. 

Experimental 

lihvirwnment 

Blocking Rate 

low 

high 

Data 
Contention 

Resource Utilization 

Resource 
Contention 

exp 1. 1 exp 4. / 

I exp 2. I exp3. 

Table 2 - Experimental Environment for 2PL. 

Notice that the effect of each experiment span 
one or more table entries. So, to reliably cover 
the table, only a small number of experiments 
is needed; we have designed 4 experiments 
which cover the interesting entries of Table 2. 

Experiment 1 represents a mix of short 
and long transactions (see Table 5). The 
moderate arrival rate implies that by increas- 
ing the MPL, 2PL moves from a low blocking 
rate and low CPU utilization environment into a 
high blocking rate and high CPU utilization 
environment. Experiment 2 represents the 
same mix of transactions as experiment 1 but 
with a higher arrival rate (see Table 6). Thus, 
by increasing the MPL, 2PL moves from a high 
blocking rate and low CPU utilization environ- 
ment into an environment with data contention 
and high CPU utilization. Experiment 3 
represents a mix of medium length transac- 
tions with high arrival rate (see Table 7). So, by 
increasing the MPL, 2PL moves from a high 
blocking rate and high CPU utilization environ- 
ment into an environment with data contention 
and CPU contention. Experiment 4 represents 
a mix of short transactions with high arrival 
rate (see Table 8). So, by increasing the MPL, 

2PL moves from a low blocking rate and high 
CPU utilization environment into a high block- 
ing rate and CPU contention environment. 

These results suggest that with no CPU 
contention the blocking phenomenon is dom- 
inant and restarts are cheap. ICCAl makes 
better use of the CPU by letting readers use 
certification; the number of blocked transac- 
tions and the waiting time are reduced which 
leads to a significant improvement in transac- 
tion response time and throughput. These 
observations may be verified by the perfor- 
mance tables of experiments 1 and 2 (Table 5 
and 6). Note that the 2PL performance degra- 
dation seems to be caused by the increased 
blocking rate rather than by the increased res- 
tart rate. This may be seen from the fact that 
long readers with a higher number of restarts 
outperform long readers with a lower number 
of restarts as long as the former do not enter 
the CPU contention area. 

Under high CPU contention, restart is 
expensive and it becomes a dominant factor. 
As the MPL increases, ICCAl can no longer take 
advantage of the decreased blocking rate since 
waiting due to blocking is replaced by 
increased waiting for CPU service. This 
explains the observations in experiment 4 
where 2PL performs almost as well as ICCAl. 
The significant improvement in the perfor- 
mance of ICCAl in experiment 3 starts as soon 
as 2PL approaches the trashing area and is due 
to the reduced number of restarted transac- 
tions. 

5. Conclusions 

The feasibility of private workspace based 
concurrency control mechanisms is exhibited 
by presenting an efficient parallel commit 
phase algorithm in which no I/O is associated 
with a critical section of the Transaction 
Manager. The use of post-images for recovery 
purposes and the placement of the commit 
record writing requests on a commit queue 
dances performance. Immediately after 

queuing its commit request and issuing its 
updates a committing transaction may release 
all transactions blocked by it. The transaction 
is completed as soon as its commit record is 
known to reside in stable storage (read-only 
transactions must also queue a null commit 
request which induces no I/O activity). 

In order to demonstrate the performance 
advantages of private workspace based con- 
currency control mechanisms, “ordinary” 2PL 
was compared to an ICCA method in which 
readers (queries) use certification (Serializa- 
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tion Graph Checking) and writers (updating 
transactions) use 2PL and are never blocked 
by readers. The results of the experiments 
conducted show that the ICCA method tested is 
usually superior to the ordinary 2PL. In an 
environment with high data contention and no 
system resource contention (i.e., low to high 
CPU utilization), the ICCA method performs 
significantly better. The results suggest that 
with no CPU contention blocking is dominant 
and restart cost is cheap. On the other hand, 
when there is high CPU contention restart is 
expensive and it becomes a dominant factor. 

These results confirm some previously 
observed phenomena; in particular, the effects 
of high data contention predicted in [TAY84]. 
There, restarting a transaction upon conf%ct 
offers a method for overcoming the disadvan- 
tages of blocking in 2PL. It also confirms the 
effect of high I/O resource utilization where 
transaction restarts have a more negative 
effect on throughput than blocking (stated in 
[CARE83]). In the simulation model the choice 
of I/O with infinite parallel processing capabil- 
ity seems to capture (current) reality. Many of 
today’s mainframe systems with multiple I/O 
channels tend to be CPU bound. 
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r 

cc 

Df!d 

class x of MPL 
I 

Short Writers 1 50.0 
Short Readers 1 37.5 
Lone Readers 1 12.5 

I 

Short Writers 1 50.0 
Short Readers 1 37.5 
Low Readers 1 12.5 

Experiment 1 Classes Mix. Experiment 2 Classes Mix. 

halllder Dt!lB%iptiOIl 

THINKtime 
STARTUPcpu 
STARTUPio 
LocALcpu 
LlocALIio 

mean exponential TP think time 
CPU time for transaction startup 
I/O time for transaction SteWtUp 
CPU time for transaction local processing 
f/O time for transaction local processing 

ccinlt 
CCcoIlfQct 
CCcommit 
CCcleanup 
REASTARTdelay 

CC CPU time for transaction initialization 
CC CPU time for request ConfIict analysis 
CC CPU time for committing a transaction 
CC CPU time for transaction cleanup 
transaction delay time before restart 

DMcpu 
DMio 
PRFJRITEcpu 
PReWRITEio 
DKPOSTcpu 
DU’OSTio 

DM CPU time for reading/writing a data item 
DM I/O time for reading/writing a data item 
DM CPU time for writing a post-image at Execution Time 
DM I/O time for writing a post-image at Execution Time 
DM CPU time for writing a post-image at Commit Time 
DM I/O time for writing a post-image at Commit Time 

DUOMHITcpu 
DMJOMMITio 

disk access time + post-image transfer time 
DM CPU time for writing a commit record 
DM I/O time for writing a commit record 

Table 3. System Parameters 

System Parametem 

Table 4. Experiments Parameters Setup 

Experiment 3 Classes Mix. Experiment 4 Classes Mix. 
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Table 8 - Experiment 4 Performance Tables. 
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