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Abstract: 

Although the goals and means of rule- 
based and data-based systems are too different 
to be fully integrated at the present time, it 
seems appropriate to investigate a closer in- 
tegration of language constructs and a better 
cooperation of execution models for both kinds 
of approaches. 

In this paper we propose a new language 
construct called constructor that allows the 
definition of new relations from existing ones 
by means of recursion. The constructor is 
semantically defined by the least Axed point of 
a set expression and blends well both with a 
strongly typed modular programming language 
and with a relational calculus query formalism. 
Moreover, it is shown to provide expressive 
power at least equivalent to the declarative se- 
mantics of PROLOG while avoiding some disad- 
vantages of it, for example, poor modularity 
and infinite loops. Furthermore, the construc- 
tor is set-oriented thus allowing more efficient 
implementation techniques than those avail- 
able through proof-theoretic methods typical 
of a rule-based approach. 

1. Introduction 
Combining the semantic capabilities of 

rule-based knowledge representation and rea- 
soning systems with the efficiency-oriented 
mechanisms for query result construction and 
transaction processing in large shared DBMS 
has been the focus of much recent research 
[Kers 841. Apart from the possibility of defining 
a completely new architecture for “knowledge 
base management systems”, the solutions pro- 
posed so far can be interpreted as extreme 
points in a continuum of coupling strategies. 
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Researchers propose either to replace one sys- 
tem completely by the other [ScWa 841 - the 
end points of the spectrum - or to couple 
current expert systems langua es 

‘j 
(most not- 

ably, PROLOG [Java 841, [Zani 84 ) with existing 
DBMS interfaces - 
history. 

the cutting point defined by 

We believe, along with a number of other 
researchers [Smith 841. [Ullm 841, that a cou- 
pling strategy is preferable to fully integrated 
solutions. Because of the different stress on 
representation efficiency between 
Knowledge Represliiation (KR) and Database 
(DB) research [MyBr 851. little is ained (and 
unnecessary complexity is incurred f by putting 
all capabilities into one system. In contrast, a 
coupling architecture allows each subsystem to 
evolve independently and to offload the recon- 
ciliation task to separate coupling tools 
[Jark 841. 

Given that coupling is necessary, the ques- 
tion remains what the capabilities of each of 
the partners should be. While in the short run 
there is a clear economic incentive to leave ex- 
isting systems as they are [Java 843, nothing 
indicates that the optimal division of labour 
between the deductive capabilities of rule- 
based systems and the selective power of data- 
based systems will remain where it has been 
historically - at the point of ‘relational com- 
pleteness’ as defined by [Codd ‘721. 

The question of exactly what ca abilities 
should be added to the DBMS is open. P Ullm 841 
proposes an architecture using ‘capture rules’ 
that define useful extended DBMS capabilities. 
The present paper follows a similar approach 
but investigates the problem from the 
viewpoint of integrated database programming 
languages rather than from a PROLOG perspec- 
tive. Since database programming languages 
handle first-order queries as well as functions, 
iteration and recursion, they provide a frame- 
work powerful enough to implement any first- 
order derivation based on sets of facts. Current 
query optimization strategies, however, do not 
‘.ake advantage of the relationships among the 
:orresponding sequence of queries. Efficiency 
jecomes the responsibility of the programmer. 

‘Work done at the Graduate School of Business Ad- 
ninistration. New York University 
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Rather than enhancing a query optimizer 
directly in order to handle multiple related 

this paper studies special-purpose 
?tfiE:e constructs that capture higher-level 
data definition and operation and are easily 
recognizable by a compiler. To provide the 
necessary framework, section 2 reviews the da- 
tabase programming language DBPL which in- 
tegrates relational data structures and tran- 
sactions with the programming language 
MODULA-2 [Wirth 831. 

The main focus of the paper is the detailed 
analysis of a DBPL extension called constructor 
whit-h has evolved from the selector concept in- 
troduced in 1MaReSc 841. While selectors allow 
the definition of selected subrelation variables, 
constructors expand existing relations. Con- 
structors implement recursion using an equa- 
tional fixed point semantic. We introduce con- 
structors in sections 2 and 3, and show how to 
integrate the tuple relational calculus con- 
cepts of negation and universal quantification 
into this framework. Moreover, we demonstrate 
that our proposal provides expressive power at 
least equivalent to PROLOG’s clause-order in- 
dependent declarative semantics yet remains 
faithful to the spirit of typed, procedural data- 
base pro ramming lan u&es, 
lSchm 77 or Adanlex Smith 811. In addition. 7 4 

such as Pascal/R 

our proposal elir&at& PROLOG’s problem of 
infinite loops which arises because of the im- 
plementation via backtracking [Covi 831. 

The database programming language en- 
vironment also inspires particular implementa- 
tion and optimization strategies since it is fre- 
quently used for implementing higher level da- 
tabase interfaces. In section 4 we interpret 
constructed relations as an extension to 
range-nested expressions [JaKo 831, and out- 
line a three-level compilation and optimization 
framework. 

2. Types. Relations, and Predicates 

The impact of logic on computing - from 
early data processing in the fifties to modern 
computer science - can hardly be overestimat- 
ed. 

In the field of programming logic marks 
the step from machine-oriented coding to algo- 
rithmic programming. High level languages 
provide conditional statements and boolean 
expressions, use propositions for data type 
definition, and depend crucially on predicates 
for the specification of language semantics and 
for reasoning about programs [Gries El], 
[Hehn 841. 

In the area of data modelling, the degree 
to which predicates are utilized allows a dis- 
tinction between early reference-oriented data 
models and those that capture more of the re- 
lationships defined by the application seman- 
tics. 

2.1. Data Types and Predicates 
If “a type is a precise characterization of 

structural and behavioural properties which a 
collection of entities (actual or potential) all 
share . ..‘I [Deut 811, the formalism by which 
those properties can be characterized decides 
upon the power of a type calculus. 

Currently prevalent procedural program- 
ming languages only allow type definitions 
based on restricted propositional logic. Take, 
for example, the following Ada subtype 
definition: 

partidtype IS RANGE l..lOO. 

which is equivalent to the domain predicate 
(lop AND ps100) and defines the domain set 

pstidtype 
( EACH p IN integer: lrp AND pMl0 1 . 

The expressiveness of the type calculus in high 
level languages corresponds closely with that of 
the expression and statement part of these 
languages. As a consequence any action to be 
taken to assure type properties can be ex- 
pressed directly in the language. A type check- 
er can produce run time code in the source 
language to assure, for example, type correct- 
ness of an integer expression, ix, which is to be 
assigned to a variable, p, of partidtype: 

IF (lsix) AND (ix~1001 
THEN p:-ix 
ELSE <exception> . 

Programmers reduce the possibility of run time 
exceptions by acquiring sufficient information 
on rhs-expressions through inductive reasoning 
about assignment chains and subtype 
definitions (and so do clever compilers). 

Approaches to programming that are more 
concerned about correctness allow for the 
definition of additional program properties by 
so-called annotations. Ada annotations, for ex- 
ample, can be specified in the metalanguage 
ANNA [Krie 841. and Ada programs can be pro- 
ven formally correct with respect to their 
specification. The meta language ANNA allows 
full first-order assertions, while the object 
language Ada is restricted to propositional log- 
ic. An Ada subtype definition, for example, 
primetype, can be fully specified by the follow- 
ing ANNA annotation [Krie 841: 

primetype IS integer 11 
WHERE p IN primetype -=> 

ALL n IN integer 
((l<n AND ncp) =-> p ROD n l 0). 

defining the domain set 
pr imetype 

I EACH p IN integer: 
ALL n IN integer 

((l<n AND n<p) -=> p II00 n * 011 . 
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2.2. Predicates in Database hnguagea 
Database models such as the relational 

model are very concerned about data integrity; 
they go beyond programming languages, there- 
fore, in the sense that they provide the expres- 
siveness of first-order logic directly through re- 
lational languages. 

On the expression level, the request for 
“relational completeness” [Codd 721 of query 
languages is essentially met by allowing full 
first-order predicates, p(r....), as selection 
predicates in relational expressions: 

reltype (EACH r IN ret: pk....)). 

On the type or schema level, the role of predi- 
cates can be exemplified best by comparing a 
Pascal-like set-type definition 

settype - SET OF elementtype. 

with a relation-type definition. 
The legal values of a relation are also sets 

of elements; they have to meet, however, the 
additional constraint that some attribute (or a 
collection of attributes) serves as a key, i.e., 
has a unique value amongst all the elements of 
a relation: 

reltype - SET OF elementtype Ii 
WHERE ret IN reltype ==> 

ALL rl.r2 IN ret 
(rl. key-r2. keu 9-B rl=r2). 

The key constraint is essential to relational 
data modelling since only unique keys can 
serve as element identifiers as required, for ex- 
ample, for the construction of higher relation- 
ships between elements. Relational languages, 
therefore, directly support the above class of 
annotated set-type definitions by a data struc- 
ture relation that allows for type definitions 
equivalent to the previous one: 

reltype - RELATION key OF elementtype. 

For each assignment of a relational expression, 
rex, to a variable, rel, of reltype. the relational 
type checker has to perform a test equivalent 
to 

IF ALL x1.x2 IN rex 
( xl.key-x2.key -=> xl-x2 1 

THEN re 1: =rex 
ELSE <exception> . 

2.3. Predicative Support for Relations: Selec- 
tors and Constructors 

The key constraint is, of course, not the 
only condition one would like to have main- 
tained automatically on a database. Take, for 
example, a relation NorthSouth- containing 
city pairs such that the first element is located 
immediately to the north of the second one, i.e. 
with no city in between: 

TYPE citutype - RECORD 
ci tyid: ci tyidtype: 
size: integer: 

END; ’ ’ 

cl tyret - RELATION cltyid OF citytype: 
northsouthrel - 

RELATION north.south OF 
RECORD 

north,eouth: cl tuldtype 
END: 

VAR Cities: cityrel: 
NorthSouth- : northsouthrel . 

For example, NorthSouth- may 
following tuples: 

north south 
-------------------- 
Oslo F Lensburg 
Flensburg Hunich 
Stockho Lm Gdanek 
Gdansk Vi enna 
Helsinki Wi lna 
Hun i ch Rome 

contain the 

Since the attributes, north and south, of the 
NorthSouth- relation are supposed to relate 
cities, they have to refer to elements in the re- 
lation Cities. The corresponding referential in- 
tegrity constraint can be expressed by anno- 
tating the type of the NorthSouth- relation: 

VAR NorthSouth-0: northeouthrel i i 
WHERE r IN NorthSouth- ==> 

SOHE rl.r2 IN Cities 
(r.north=rl.cityidI AND 

fr.south-r2.cityidi. 

In a relational language such a constraint can 
be enforced by a conditional which controls as- 
signment of relational expression, rex, to the 
NorthSouth- relation: 

IF ALL x IN rex 
(SOHE rl.r2 IN Cities 

(x.north=rl.citgid AND 
x.south=r2.cityidl I 

THEN NorthSouth-0:~rex 
ELSE <exception> . 

In expecting frequent use of relations in such 
“conditional patterns”, the database program- 
ming language DBPL [ScMa 831, [MaReSc 841 
provides an abstraction mechanism for such 
patterns through the notion of a selector. Re- 
ferential integrity on relations of type north- 
southrel, for example, can be maintained by 

SELECTOR ref int FOR Ret: northeouthrelo: 
BEGIN EACH r IN Ret: 

SOHE rl.r2 IN Cities 
tr.north=rl.ci tyid AN0 
r.south=r2.ci tuidi 

END refint . 

An assignment to a selected relation variable, 
for example, 
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NorthSouth- [ref intl :- rex. 

is defined to be equivalent to the above condi- 
tional assignment to the full relation variable 
NorthSouth-0. 

In summary, selectors “factor out” condi- 
tions on relations, represent them uniformally. 
and make them available to all database sys- 
tem components that have to reason about 
programs and data (such as query optimizer, 
concurrency manager, and integrity subsys- 
tem). The selector concept is illustrated in 
Fig. 1. 

Fact blat ion: +-------------+ 
Ral 

Figure 1: Selectors and Relations 

While selectors provide support when data 
elements are to be excluded from a relation 
there is also a need for supporting the contrary 
- when additional derived data objects are to 
be included into a relation. 

For example, a relation, NorthSouth- 1, 
can be defined that relates - based on the data 
in relation NorthSouth- - two cities if and 
only if there is at most one city in between. 
An annotated definition of relation North- 
South- 1 would read as follows: 

VAR NorthSouth-1: northsouthrel i i 
WHERE (r IN NorthSouth- ==T 

r IN Nort%outhJi 
AND frl.r2 IN NorthSouth- --> 

trl.south=rZ.north 9-s 
crl.north.r2.south> 

IN NorthSouth- . 

In a relational language the value of such a re- 
lation, NorthSouth-1, can be denoted by a 
query expression in terms of predicates over 
the NorthSouth- relation: 

northsouthrel 
f EACH r IN NorthSouth-0: TRUE. 

<rl.north,rZeouth> OF 
EACH rl.r2 IN NorthSouth-0: 

rl.south-r2.north 1. 

In anticipating the frequent use of relations in 
such “expressional patterns” this paper pro- 
poses an abstraction mechanism for such pat- 
terns based on the notion of a constructor. 

As an example, the northsouth- l- 
relationship based on relations of type north- 
southrel can be constructed by 

CONSTRUCTOR northsouth-l 
FOR Rel:northrouthreL 0: northsouthrel: 

BEGIN EACH r IN Ret: TRUE, 
<rl.north.r2.south> OF 

EACH rl.r2 IN Ret: 
rl.eouth&.north 

END northsouth-l. 

The value of a constructed variable, for exam- 
ple, 

NorthSouth- (northsouth-1) 

is deflned to be equal to the value of the above 
relational expression of type northsouthrel. 
For the above example value of NorthSouth-0, 
this constructor application constructs the 
pairs: 

north south 
-------------------- 
Oslo F Lensburg 
F Lensburg i’iuni ch 
Stockho Lm Gdansk 
Gdansk V 1 enna 
Helsinki Wi Lna 
flun 1 ch Rome 

Oslo flun i ch 
F Lensburg Rome 
Stockholm Vienna 

In the same sense that selectors isolate 
the constraints imposed on selected relations, 
constructors factor out the rules that define 
the elements in constructed relations. The idea 
is illustrated in Fig. 2. 

Constructed +------------+ 
Relation Relic) I 

I 

h 
I 

I I 
+I-------------I+ Fact 

II 
i I Relation: 
II Rel 

+I---------I+ 

I I I 

I ” I 
+-------------+ 

Figure 2: Constructor and Relations 

In the subsequent section the basic issues 
of constructor semantics are discussed with 
emphasis on recursive constructor definition 
and constructor convergence. 
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3. Relation Constructors 

In this section we discuss the notion of a 
constructor in more detail. We first provide 
some examples based on the relations intro- 
duced in section 2, and then deAne the seman- 
tics of recursive constructors formally. Con- 
structors are then compared with other ap- 
proaches to rule and fact management. 
3.1. Recursive Constructors 

The above simple constructor, north- 
south-l, representing all city pairs with at 
most one city in between on the way south, can 
be generalized to a sequence of constructors, 
northsouth-n, representing all pairs of cities 
with at most n cities in between on the way 
south. 

CONSTRUCTOR northsouth-n 
FOR Rel:northsouthr~10: northsouthrel: 

BEGIN EACH r IN Ret: TRUE. 
<rl.north.r2.south>-OF 

EACH rl IN Ret. 
EACH r2 IN Ret Inorthsouthg-li: 

(rl.south=r2.northi 
END northsouth,n . 

For the definition of a constructor, northsouth. 
representing all city pairs separated by an ar- 
bitrary number of cities on the way south, we 
utilize simple recursion: 

CONSTRUCTOR northsouth 
FOR Rel:northsouthrelO: northsouthrel: 

BEGIN EACH r IN Rel: TRUE, 
<rl.north.r2.south> OF 

EACH rl IN Ret. 
EACH r2 IN Relinorthsouthi: 

(rl.south=r2.northl 
END northsouth. 

Intuitively, the value of a constructed relation 
NorthSouth- Tnorthsouthl 

can be seen as the limit of the sequence of con- 
structor applications 

NorthSouth- inorthsouthgi 

The details of constructor semantics are given 
in section 3.2. 

Since the sequence in our example is 
monotonic, the limit exists and can be imple- 
mented by a finite loop using a relation vari- 
able, NorthSouth: 

NorthSouth := ii: 
REPEAT 

OLdNorthSouth := NorthSouth: 
NorthSouth :- 

(EACH r IN NorthSouth-0:TRUE. 
<rl.north.r2.eouth> OF 

EACH rl IN NorthSouth-0. 
EACH r2 IN OLdNorthSouth: 

rl.south=rZ.north i 
UNTIL OldNorthSouth = NorthSouth . 

Assuming that the variable NorthSouth- con- 
tains the same pairs as given in section 2.3, the 
constructor application 

NorthSouth- (northsouth) 

constructs the following pairs: 
north south 
-------------c------ 
OS Lo F Lensburg 
Flensburg Munich 
Stockho Lm Gdansk 
Gdansk V i enna 
Helsinki Wi Lna 
ilun i ch Rome 

Oslo Hunich 
F Lensburg Rome 
Stockholm Vienna 

Oslo Rome 

The relational expression 
(cr. south> OF 
EACH r IN NorthSouth- Inorthsouthi : 

r.north=*Stockholm”i 

computes the set 
(Gdansk. Vi enna) 

To give an example of mutual recursion, we 
introduce a second relation between cities con- 
taining all city pairs such that the first element 
is located immediately to the west of the 
second one: 

TYPE uesteastrel = 
RELATION west.east OF 

RECORD 
uest,east: ci tyidtype 

END: 
VAR WestEast-0: uesteastrel . 

We are interested in the cities which can be 
reached by first going south and by first going 
east (for the sake of simplicity, we ignore the 
directions north and west). We define two mu- 
tually recursive constructors for this task, 
namely southfirst and eastfirst: 

CONSTRUCTOR southfirst 
FOR Ret: northsouthrel 

(Param:ueeteastreL):northsouthreL: 
BEGIN 

EACH r IN Ret: TRUE, 
<rl.north.r2.south* OF 

EACH rl IN Ret. 
EACH r2 IN Ret (southf irst (Param) i : 

rl.south=r2.north. 
<rl.north.r2.east> OF 

EACH rl IN Ret. 
EACH t-2 IN Param Ieastf irst (Ret)) : 

rl.south=r2.uest 
END southf irst: 
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CONSTRUCTOR eastfirst 
FOR Ret: uesteaetrel 

~Psram:northsouthreLl:uesteastreL: 
BEGIN 

EACH r IN Ret: TRUE, 
<rI.weet.r2.east> OF 

EACH rl IN Rel. 
EACH r2 IN Ret ieastf irst (Paam)) : 

rl.eastw2.uest. 
<rl.uest.r2.southr OF 

EACH rl IN Rel. 
EACH r2 IN Paam isouthf irst(Rell1: 

rl.east=r2.north 
END eastfirst . 

We can apply both constructors to the relations 
NorthSouth- and WestEast- as follows: 

NorthSouth- (southf irst (WestEastJl)l 
and 

WestEast- (eastf irst (NorthSouth-01) . 

The values of these mutually recursive con- 
structed relations are defined by the limits of 
mutually defined sequences; again, the details 
are given in section 3.2. 
Since the sequences are monotonic, the limits 
exist and can be implemented by the following 
loop using the auxiliary variables, Southfirst 
and Eastfirst, for the values of the constructed 
relations: 

Eastfirst:-0: Southfirst:=iii 
REPEAT 

0Ldeast:dastf irst: 
OLdsouth:-Southf irst: 
Southf irst:= 

southfirst,fct(Oldsouth,Oldeasti; 
Eastf irst :- 

eastf irst,fct ( OLdsouth.OLdeastl 
UNTIL Oldeast-Eastfirst AND 

OLdsouth=Southf irst . 

southfirst-fct and eastfirst-fct are relation- 
valued functions based on the definition of the 
constructors, southfirst and eastflrst. 
For example, the variable WestEast- is 
defined as 

east west 
-------------------- 
OS Lo Stockho In 
Stockholm Helsinki 
Helsinki Len i nwad 
F tensbura Gdansk 
Gdanek - Wi Lna 
Hun i ch Vienna . 

NorthSouth- is defined as in section 2.3. 
The application of the constructors gives the 
following relations: 

eouthf irst: 
I 

north south 
------------------- 
Oslo F Lensburg i 
F Lensburg Huni ch 
;;i;;o Lm Gdansk I 

V 1 enna 
Helsinki Wi Lna I 
tiun i ch Rome 

I 
Oslo Hunich i 
F Lensburg Rome 
Stockholm Vienna I 
Oslo Gdansk 1 
F Lensburg V 1 enna 
Stockho Lm W i Lna I 

OSLO Rome ! 
Oslo Vi enna 
Oslo Wi Lna 

eaetf iret: 

east west 

Oslo Stockho Lm 
Stockholm Helsinki 
Helsinki Leningrad 
F Lensburg Gdansk 
Gdansk Wi Lna 
ilun i ch V i enna 

Oslo Helsinki 
Stockholm Leningrad 
F Lensburg W i Lna 
OS Lo Gdansk 
Stockholm Wi Lna 
F Lensburg Vi enna 

OS Lo Len1 ngrad 
OS Lo Wi Ins 
OS Lo V 1 enna 

If we want to start in a particular city, we can 
write the corresponding selectors as follows: 

SELECTOR southfrom 
FOR Rel:northsouthrel fci ty:ci tyidtypel: 

BEGIN 
EACH r IN Ret: r.north - city 

END southfrom: 

SELECTOR eastfrom 
FOR Rel:uesteastrel (citu:cituidtuoel: - - -. 

BEGIN 
EACH r IN Ret: r.ueet = city 

END eastfrom. 

We can apply these selectors by 
NorthSouth- isouthf irst (WestEast-01) 

[southfrom (“0s Lo”1 I 

giving the pairs 
north south 

F Lensburg 
Hun i ch 

OS Lo Gdanek 
Oslo Rome 
Oslo V i enna 
Oslo Wi lna 

and 
WestEast- ieastfirst(NorthSouth-Oil 

Ieastfromf”Flensburg”l1 

giving the pairs 
ueet east 

F Lensburg Gdansk 
F Lensburg W i Lna 
Flensburg Vienna . 

In most applications it is obvious to which 
relation a constructor is to be applied (for ex- 
ample, NorthSouth-0) and which relations are 
to serve as arguments (for example, 
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WestEast-0). In a few cases, however, this 
choice may be difficult and the programmer 
may prefer to start with an empty relation (for 
example, if the constructor is based on a join 
of several base relations rather than growing 
out of a single one). 

3.2. Formal Constructor Semantics 
In general, a database program may con- 

tain a large number, m, of mutually dependent 
constructors: 

CONSTRUCTOR c, 
FOR Rel,: reltype, (...): resulttype,; 

BEGIN 
f, t..., appWl,I. . ..* awWI.J 

END c,; 

CONSTRUCTOR c, 
FOR Rel,: reltype, (...): resulttype,; 

BEGIN 
f, t..., applyc,,~~ . . . . appbc,,) 

END c, , 

where each applyc,., is a (possibly recursive) 
constructor application of the form Rel {c(...){. 
Rel is a relation name known in the context of 
f,. and c is one of our c,. If,] is a relational cal- 
culus expression. To simplify indexing, we 
rename our constructor applications applyc,J 
to apply,, . . . . apply,, r=n, +...+ n,. 
We impose the following restriction on the re- 
cursive constructor applications in the con- 
structor definitions: The parameters pi, . . . . p,, 
in the constructor application Rellc(p,. . . ..p.,)] 
are not allowed to depend on the recursion. 
This means that the constructor applications 
remain the same throughout the recursion. 
The semantics of a constructor application 

apply,, = Actrel I c( (...)], 
on an actual relation Actrel, is defined as fol- 
lows: 
We construct 1 +l functions 

g0( apply0, apply,, ...# awh 1 
. 

fat apply0, apply,. . . . . apply, ); 
function g, is constructed by taking the func- 
tion f,, which corresponds to the constructor in 
the application apply,, and replacing all formal 
parameters by their actual values. 
We define 

w-W0 = II (i=O,l....J) 
apph+~ = gIbplyOb . . . . applyA 

and compute the limits: 

apply1 = F-y apply,b. 

The value of constructor application 
Actrel { c, (...) 1 

is given by apply,. 

Of course this definition makes sense only 
if the limit of the above sequences exists. If the 
functions f, are monotonic, we have apply,,0 c 
apply,,,, and therefore, by induction, apply,, c 
apply,*+,. Because all relations are based on 
finite domains, there must be a step j such that 
appb6d = apply,,,,. If, therefore, the f, are 
monotonic, the limits exist and are reached 
after a finite number of steps. It can be shown 
[ChHa 821 that the functions f, are monotonic 
if their predicates are free of negation and 
universal quantifiers. 

Note that, according to [AhUl 791 and 
[Tars 331, we compute the least Axed point of 
the system of equations 

apply, = go (apply,, . . . . apply,) 
. . . 
apply1 = gI hvlyos -‘I apph). 

A program for computing the limits can be 
written in the same way as for our examples in 
3.1. 

3.3. Negation and Universal Quantification 
Database languages such as DBPL and 

Pascal/R [Schm 771 allow universal 
quantification of element variables as well as 
negation of relational predicates. However, 
constructors containing negation and universal 
quantification may be meaningless because the 
limit of the fixed point computation may not 
exist, as, for example, in 

CONSTRUCTOR nonsense 
FOR Ret: anytupe 0: anytype: 

BEGIN EACH r IN Ret: 
NOT (r IN Ret (nonsense) 1 

END nonsense. 

The iteration yields 

L/e1 
II 

and has obviously no limit. 
There are, however, meaningful construc- 

tor definitions with negation and universal 
quantification, and the DBPL compiler will 
recognize a subclass thereof, defined by the 
so-called positivity constraint. Let us start 
with auxiliary definitions: 
Definition: Names appearing under NOT and ALL 
Let f be a DBPL expression. 
A name n is said to appear under ALL if f is of 
the form 

f = . ALL r IN exp (p(r ,... )) . 
and n appears in exp. 
A name n is said to appear under NOT if f is of 
the form 

f = NOT fact . 
and n appears in the subexpression fact. 



Note that these definitions may be nested, i.e., 
a name may appear under several ALLs and 
NOTs. In 

ALL r IN exp (p(r,...)) 
a name n appearing in p(r,...) but not in exp is 
not considered to appear under this ALL. 
Definition: positivity of a DBPL expression 
Let f(Rel,, . . . . REL,,) be a DBPL expression. 
f is said to satisfy the pozitivity constraint if 
each occurrence of Rel, appears under an even 
total number of negations and universal 
quantifiers. 

The idea of positive expressions is similar 
to ‘safe’ expressions in [Ullm 621 by which the 
definition of inAnite relations in relational cal- 
culus expressions is avoided. 
Ia-: 
Each DBPL expression f(Rel,, . . . . Rel,) that 
satisfies the positivity constraint is monotonic 
in all its arguments. 
Proof Sketch: 
Change f as follows: Replace range-coupled 
quantifiers by their one-sorted version 
[JaKo 631: 
* ALL riN Rel (pred(r,...)) = 

ALL r (NOT(r IN Rel) OR pred(r,...)) 
SOME r IN Rel (nred(r....)) = 

SOME r (r IN‘Rel AfiD pred(r,...)) 
The result is that we have replaced each oc- 
currence of Rel, under a universal quantifier by 
an occurrence under NOT. Thus, if the number 
of ALLs plus the number of NOTs over each oc- 
currence of Rel give an even total, we now have 
an even number of NOTs over each occu:‘cnce 
Rel of a Rel,. However, if this is the case, we can 
remove the negations, using generalized deMor- 
gan and distribution laws to move all NOTs as 
far into the expression (i.e. to the right) as 
possible and applying the double negation law 
NOT(NOT(pred)=pred. The resulting expression 
will be monotonic in all its arguments. 

A similar lemma is given in [ChHa 6~1. For 
simplicity, the DBPL compiler accepts only con- 
structors satisfying the positivity constraint. It 
should be noted, however, that there are non- 
monotonic constructors for which the limit of 
the fixed point computation exists. The follow- 
ing example is derived from [Hehn 643: 

TYPE car&-et - RELATION . . . OF 
RECORD number: CARDINAL END: 

CONSTRUCTOR strange 
FOR Baserel: cardret 0: cardrel: 

BEGIN EACH r IN Baserel: 
NOT SOME 8 IN Baaerel (strange) 

(r.number-s.number+l) 
END strange . 

Let Rel = 10, 1, 2. 3, 4. 5, Sj. The computation 
of Rel {strangej through the iteration 

b.1,2.3.4,6.6j 

I 

!!$3.4.5.61 

0:2,4,5,6j 
0.2,41 
0,2,4,6j 

10,2,4,6j 
ktc. 

has the limit !0,2,4,6j. 
Examples like this one, however, look artificial 
and are much more difficult for the program- 
mer and compiler to understand than the sim- 
ple positivity constraint; they are, therefore, 
not allowed in DBPL. 

3.4. Options for Fixpoint Enhancements in Da- 
tabase Programming 

In this subsection we summarize the op- 
tions for expressing the Least Fixpoint Opera- 
tor semantics in a database programming 
language like DBPL. For database programming 
languages we distinguish six possibilities to in- 
clude fixpoint operations. Our constructor ap- 
proach can be seen as the seventh alternative. 
- Programm iteration; 
- Recursive boolean functions and pro- 

cedures; 
- Specialized LFP operators; 
- Equational relation variable declarations; 
- Views as relation-valued functions; 
- Logic Programming. 

The first two options have long been avail- 
able in early languages such as Pascal/R 
fSchm771 althoueh they have not received 
much attention there. The programs for com- 
puting the limits in section 3.1 may serve as ex- 
amples of this approach. Similar effects can 
also be achieved using recursive functions (to 
generate recursive relations or to test member- 
ship recursively). Both methods share the 
problem of too much generality since the pro- 
grammer can write anything into the loop or 
the function body; this severely limits query 
optimization. Moreover, the end of the loop or 
the recursion has to be programmed manually 
which gives us the problem of infinite loops and 
infinite recursion. 

Query-by-example [Zloo 771 was one of the 
first systems to contain a specialized operator 
for transitive closure. More recently, the query 
language QUEL has been augmented with an 
operator l which can extend any QUEL com- 
mand with the semantics “to repeat the com- 
mand forever” [Kung 641. [IoShWo 641. [EmEm- 
Do 641 combine a similar approach with view- 
oriented concepts as described below. While 
some algebraic optimization of such language 
extensions is possible [Kung 641, the approach 
is essentially procedural and does not seem to 
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fit well into a calculus-oriented language. 
Equational relation deilnition bears a 

close resemblance to relation definition by 
constructors. However, instead of constructing 
relations explicitly from conventionally typed 
variables, the type concept itself can- be -ex- 
tended to allow imnlicit relation definition bv 
using a set of constraining conditions: 

VAR NorthSouth-0: northsouthrel: 
NorthSouth: 

northeouthrel 
I EACH r IN NorthSouth-0: TRUE, 

<rl.north.rZ.southr OF 
EACH rl IN NorthSouthJl. 
EACH r2 IN NorthSouth: 

rl.south=r2.north 1 . 

The work on equational constraint expressions 
[Morg 841 follows a similar approach. 

A number of researchers have proposed 
parameterized view definitions for quer 
language extensions (e.g.. [MaReSc 84 , f 
[EmEmBo 841). From a programming language 
standpoint, views can be interpreted in two 
different ways. If relations are considered as 
generalized tables or arrays, these structures 
seem to be adequately handled by selectors 
and constructors. If relations are considered 
as sets, views can be considered as relation- 
valued functions. Since recursive functions are 
available in modern programming languages, 
the extension to relation-valued functions 
would be small, for example: 

FUNCTION northsouth 
(Current:northsouthrel): northsouthrel: 

VAR New: northsouthrel: 
BEGIN 

Neu := I EACH r IN Current: TRUE. 
<c. nor th. d. south> OF 
EACH c.d IN Current: 

t. south=d.north 1: 
IF Neu = Current 
THEN RETURN Current 
ELSE RETURN northsouth 

END northsouth: 
.e. 
Nor thSouth : - northsouth(NorthSouth-0). 

However, as previously discussed, functions are 
too general to be optimized efficiently. Of 
course, if used in a pure query language en- 
vironment such as SQL, relation-valued func- 
tions can be restricted to only define 
parameterized views and thus may not raise 
the problems present in tightly integrated da- 
tabase programming languages. 

One of the most important areas closely 
related to our work is that on logic program 
ming as exemplified by PROLOG (e.g. [ClMe 811). 
Based on Horn clauses, the programming 
language PROLOG (without cut, fail and nega- 
tion) can be shown to be equivalent to a data 
base quer 

r 
langua e with the least fixed point 

operator ChHa 82 f As far as the language ex- 
tensions proposed in this paper are concerned, 

we have the following lemma: 

hlUM: 

The constructor mechanism is as powerful as 
function-free PROLOG without cut, fail, and ne- 
gation. 
Proof sketch: Horn clauses are precisely 
representable by applying a single fixed point 
operator to a positive existential query 
[ChHa 821. Furthermore, mutual recursion can 
be replaced by a single fixed point operator by 
moving the mutual recursion into the argu- 
ments [AhUl 791. Any query representable in 
function-free Horn clauses, therefore, is also 
representable by the constructor mechanism. 

As far as negation is concerned, our ap- 
proach assumes a closed world [Reit 781 and is 
guaranteed to terminate because of positivity. 
It is not, therefore, directly comparable with 
PROLOG’s NOT. However, it seems to be more 
practical because the problem of infinite loops 
is eliminated. 

4. Compilation and Optimization of Construc- 
tors 

In this section we investigate the imple- 
mentation of constructors and the optimiza- 
tion of queries in which constructed relations 
appear. Constructed relations are interpreted 
asa generalization of the range-nested expres- 
sions of IJaKo 831. First. we studv the comoila- 
tion of queries over constructed-relations’into 
queries over base relations; certainly the most 
interesting part of this is the handling of re- 
cursion. Then we discuss the optimization of 
such queries. Rather than adding to the long 
list of specialized techniques for recursion op- 
timization, we present a three-level framework 
tailored to the database programming environ- 
ment in which such techniques can be integrat- 
ed. For space reasons, details must be left to a 
forthcoming paper. 

[JaKo 831 introduced a concept of range 
nesting for relational calculus expressions. Ba- 
sically, it allows the substitution of relational 
expressions for range relations in queries using 
the following rules: 
NL: (EACH r IN R: predl AND pred2) 

<==> 
(EACH r IN (EACH r’ IN R: predll: pred2) 

N2: SOVE r IN R (predl AND pred2) 
<*=, 

SOVE r IN (EACH r’ IN A: predl) (pred2) 

N3: ALL r IN R (NOT(pred1) OR predilf 
<--> 

ALL r IN (EACH r’ IN R: predl) (pred2) 

Selected and constructed relations can be 
interpreted as methods to name such extended 
range expressions. If we want to follow the <== 
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direction in order to understand and optimize 
a query in terms of base relations, the question 
becomes by which predicate predl to replace 
the constructed relation. Consider the expres 
sion 

(EACH r IN Rel konstr): predk)) 

Clearly, the easiest solution is to compute 
Relfconstrl exhaustively bv all least fixed 
points of related constructor definitions and 
then test pred(r). However, propagating the 
constraints given by pred(r) into the construc- 
tor definition may considerably reduce query 
evaluation costs. A case-by-case analysis of 
various constructor types will demonstrate how 
this can be done. Assume Arst that the 
definition of constr does not contain any con- 
structed variable, i.e. 
base relations. 

constr works only on 

Case 1 (Selector): The constructor definition 
contains a single relational expression (no un- 
ion) with a single free variable. In this case the 
transformation rules Nl to N3 apply directly, 
possibly in conjunction with a projection on 
the target attributes. 
Case! 2 (Join): The constructor definition con- 
tains a single relational expression but possibly 
more than one variable. In this case substitute 
r.f in pred(r) by x.g if x.g appears in the posi- 
tion f of the constructor’s target list (possibly 
with renaming). 
Case 3 (Union): The constructor definition is a 
union of relational expressions. If pred(r) 
satisfies the positivity constraint, treat each of 
these relational expressions separately and let 
the result be the union of the expression 
values. 

If the tuple variable whose range expres- 
sion is constructed is existentially or universal- 
ly quantified, the above rules apply in a similar 
fashion, corresponding to rules N2 and N3. The 
rules actually present just a minor generaliza- 
tion of [Ston 751. 

Consider now the case that the construc- 
tor definition does contain constructed rela- 
tions. The naive application of the above rules 
would give an infinite derivation sequence in 
the case of recursive constructors. Adapting a 
strategy described in [Naqv 841, [Venk 841, a 
finite representation of this infinite sequence 
can be devised from which appropriate least 
fixed point computations can be generated. 
Due to space limitations, we can only sketch 
the algorithm here, using the constructor 
northsouth as an example. 
1. Augment each constructor definition by 

introducing a new tuple variable ranging 
over the result relation of the constructor: 

EACH res IN Ret (northsouth): 
SORE r IN Ret (r=res) OR 
SOME rl IN ReL.SOflE r2 IN Relfnorthsouth) 

(rl.north-res.north) AND 
b-2. south-res. south) AND 
(rl.south=rZ.north) 

2. Construct a quant graph for each thus 
augmented expression. A quant graph 
represents a relational calculus query 
[JaKo 831; it has a node for each tuple 
variable with its range definition and a 
directed arc in quantifier direction (out- 
side in) for each join term and each en- 
forced quantifier sequence. 

3. The reader may have noticed that, as stat- 
ed, the above expression and quant graph 
are not yet equivalent to the previously 
defined constructor semantics since they 
ignore the distinction between the two 
different occurrences of RelInorthsouthj; 
i.e., the range relation of the variable res 
is one recursion step further than the 
range relation of r2. (Indeed, [AhUl 791 
shows that an equivalent pure relational 
calculus expression cannot exist). To ex- 
press this relationship, we construct 
directed arcs from each quantified node 
with a constructed range relation (in the 
example: r2) to the corresponding con- 
structor definition (i.e. res in the exam- 
ple). We have now constructed the 
equivalent of a clause interconnectivity 
graph [Sick 761. The extended quant 
graph for the above example is given in 
Fig. 3. 

4. Evaluate each component as follows. For 
acyclic subgraphs, replace the constructor 
definitions by subqueries on base relations 
and optimize as 
[Jark 841. 

described, e.g.. in 
Most cyclic subgraphs 

correspond to recursion (for exceptions 
such as tautologies see [Sick 761). We can 
now apply any standard algorithm, i.e., 
LFP computation of the related construc- 
tor definitions, recursive calls of iterative 
procedures [HeNa 841, or tuple-at-a-time 
cycling [McSh 811; or we can attempt to 
employ capture rules [Ullm 841 to detect 
special cases such as those described in 
[Schn 781, [MiNi 831, [Fron 841. 
Applying this method at query evaluation 

time may be quite expensive if many construct- 
ed relations are defined. Our optimization stra- 
tegy tries to move many of these tasks into the 
compilation phase; this is even more important 
in a database programming language than in 
an interactive query language because compi- 
lation is usually decoupled from execution. 
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+------------------------------+ 
] EACH res IN Ret fnorthsouth) I+----------; 
+------------------------------+ 

I 
rem. north ] AND res. south 

I 
res I rl.;orth 1 i rl.siuth 

V V V I 
+--------+ +---------+ +-----------------+ 

SE 1 
1 SOtIE rl 1 rl.south= 1 EACH r2 IN 

e I IN Rel l----------al Ralfnorthsouthl 1 
+--------+ +---------+ rz.north +-----------------+ 

Figure 3: Extended quant graph 

On the other hand, database programming 
languages are frequently used to implement 
higher-level interfaces and, therefore, contain 
only incompletely specified query forms rather 
than full queries. These observations lead to a 
three-level strategy in the optimization of the 
system that makes full use of the degrees of in- 
formation available to different phases of the 
DBPL compiler and to the run time support sys- 
tem. 

On the type checking level the compiler 
performs an analysis of the individual con- 
structor definitions and their relationships. For 
example, this phase contains the positivity test 
within the constructor definition. It also con- 
structs a rough version of the extended quant 
graphs described above. In terms of optimiza- 
tion, one major purpose of this is to partition 
the set of constructor definitions in discon- 
nected subgraphs that can always be processed 
separately. 

This partitioning can be done by stepwise 
refinement. A first version of the graph would 
mention relation and constructor names alone. 
If some of the remaining partitions are still 
very large, they could then be refined to an in- 
termediate level that, e.g., distinguishes 
between free and bound variables [Ullm 841. 

On the query compilation level the com- 
piler looks at the query forms appearing in the 
database program. These query forms may use 
range relations that apply constructors to base 
relations, selected relations, or constructed re- 
lations. The compiler can now instantiate the 
appropriate constructor definition graphs and 
complete the construction of full extended 
quant graphs for each query. If such a graph 
contains a recursive cycle, the compiler can 
generate an appropriate version of the fixed 
point algorithm [HeNa 841, [Ullm 841. For non- 
recursive queries, full compilation and optimi- 
zation are performed. 

Recursion optimization can be based on 
the algorithms given in section 3.1. using 
Bayer’s Delta-Transformation concept 
[Baye 851. The main idea is to use loops for im- 
plementing recursion which work only on the 
increments of the recursively defined relations 

in each iteration. Of course, this is not always 
possible, e.g., in case the join of two recursively 
defined relations is to be performed in another 
recursively deAned relation. [Baye 831 shows, 
however, that even then it is feasible to extract 
precisely those subexpressions that may pro- 
duce new values for the recursively defined re- 
lations. 
In the southfirst and eastfirst constructors of 
section 3.1. only the increments are needed to 
compute the least fixed points, stored in vari- 
ables Deltasouth and Deltaeast: 

Southfirst : = NorthSouthJI: 
Eastf irst : - WestEastJi: 
Deltasouth := Southf irst: 
Deltaeast := Eastf irst: 
REPEAT 

Hsouth :- (<rl.north.r2.south> OF 
EACH rl IN NorthSouth-0. 

EACH r2 IN Deltasouth: 
rl.south=r2.north. 

<rl.north.r2.east> OF 
EACH rl IN NorthSouth-0. 

EACH r2 IN Deltaeast: 
rl. south=r2.uestI : 

Heas t :- I<rl.uest.r2.east> OF 
EACH rl IN WestEastJi. 

EACH r2 IN Deltaeast: 
rl.east=r2.uest. 

<rl.uest,r2.south> OF 
EACH rl IN WestEast,0. 

EACH r2 IN Deltasouth: 
rl. east=r2. north) : 

Oeltasouth :- Hsouth: 
Deltaeast :- Heast: 

unlonGouthflrst.Deltasouth.booll); 
union(Eastfirst. Deltaeast. boot2) 

UNTIL boo11 AND boot2. 

where the procedure 
unionhl.deltarel.bool) 

is defined as: 
boot:= (deltaret c ret): 
t-et := fret U deltaret). 
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Note that in this implementation we cannot use 
the condition 

(Deltasouth= 0 1 AND (Deltaeast-0 1 

as the terminating condition because there 
may be tuples that are generated over and over 
again, for example, if, say, one of the base re- 
lations contains a cycle. The loop, therefore, 
terminates if both Delta-relations do not con- 
tain new tuples. 

Thus far, we ignore that constructor and 
selector definitions may contain parameters. In 
the case where these are constant values in 
restrictive terms of the constructor definition 
or associated query. we can represent this si- 
tuation by defining an appropriate selector. 
This selector will provide a logical or even phy- 
sical access path for instantiations of the 
parameters. A logical access path is a compiled 
procedure with dummy constants [HeNa 841. A 
physical access path actually materializes a re- 
lation corresponding to the query with the con- 
stants used as variables and partitions it ac- 
cording to the different constant values. Clear- 
ly a physical access path would be generated 
only in case of heavy query usage since unres- 
tricted constructed relations may be very 
large. Maintenance of such access paths also 
becomes very expensive [ShTZ 841. 

If the parameters are of type relation, they 
may be instantiated at run time with con- 
structed relations, possibly leading to a con- 
nection among previously independent sub- 
graphs. At compilation time, this case will only 
permit partial logical access paths to be gen- 
erated. 

Finally, the run time support subsystem of 
query processing must help in the evaluation of 
fully instantiated queries. In some cases this 
will mean simply the execution of the compiled 
database programs. In the case of selectors 
generated at compile time, physical access 
paths may be generalized and utilized. In the 
case of relation parameters, it may mean the 
integration of pieces of precompiled definitions 
into meaningful database programs. A major 
advantage of the DBPL environment over, say, a 
PROLOG environment is that all of these tasks 
can be formulated elegantly with the existing 
language tools and are executed in a set- 
oriented constructive fashion rather than by 
tuple-oriented theorem proving. 

5. Conclusion 

Relational database systems are based on 
first-order logic and provide, within that 
framework, solutions for many technical prob- 
lems with data-intensive applications, such as 
query optimization, concurrency management, 
and data distribution. While AI-oriented sys- 
tems have traditionally emphasized issues of 

knowledge representation and reasoning, their 
future applications will require database sup- 
port for problems originating from large-scale 
fact and rule management. 

We argue that the DBMS should remain 
responsible for as much efficient mass- 
processing of data as possible, whereas the AI 
system should retain the responsibility for the 
more subtle tasks, such as handling open 
worlds (i.e., incomplete knowledge and non- 
monotonic reasoning) for which intelligent and 
frequently problem-specific heuristics are 
needed since the problem in general is compu- 
tationall intractable or even undecidable 
[BrLe 841 The proposed extension of the rela- 
tional approach handles nested and recursive 
rule definition and evaluation adequately and 
efficiently. In an orthogonal approach to data 
model extension we investigate object struc- 
tures that allow nested and recursive structure 
definition and component selection [Lame 841, 
[LaMuSc 841, [ScLi 851. 

In [LiScJa 851 we demonstrate how recur- 
sive data structures can be used for construc- 
tor representation, thus allowing for the 
definition, update, and querying of large con- 
structor bases. These approaches are con- 
sidered as first steps towards integrated fact 
and rule base management utilizing advanced 
relational database technology. 
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