
Data Conhuctort~ On the Integration of Rules and Relations

Matthias Jarkel. Volker Linnemann, Joachim W. Schmidt

Fachbereich Informatik
Johann Wolfgang Goethe-Universitiit

Postfach 11 19 32
D-6000 Frankfurt/Main 11. West Germany

Abstract:

Although the goals and means of rule-
based and data-based systems are too different
to be fully integrated at the present time, it
seems appropriate to investigate a closer in-
tegration of language constructs and a better
cooperation of execution models for both kinds
of approaches.

In this paper we propose a new language
construct called constructor that allows the
definition of new relations from existing ones
by means of recursion. The constructor is
semantically defined by the least Axed point of
a set expression and blends well both with a
strongly typed modular programming language
and with a relational calculus query formalism.
Moreover, it is shown to provide expressive
power at least equivalent to the declarative se-
mantics of PROLOG while avoiding some disad-
vantages of it, for example, poor modularity
and infinite loops. Furthermore, the construc-
tor is set-oriented thus allowing more efficient
implementation techniques than those avail-
able through proof-theoretic methods typical
of a rule-based approach.

1. Introduction
Combining the semantic capabilities of

rule-based knowledge representation and rea-
soning systems with the efficiency-oriented
mechanisms for query result construction and
transaction processing in large shared DBMS
has been the focus of much recent research
[Kers 841. Apart from the possibility of defining
a completely new architecture for “knowledge
base management systems”, the solutions pro-
posed so far can be interpreted as extreme
points in a continuum of coupling strategies.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and ita date appear, and notice is given that copy.
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Researchers propose either to replace one sys-
tem completely by the other [ScWa 841 - the
end points of the spectrum - or to couple
current expert systems langua es

‘j
(most not-

ably, PROLOG [Java 841, [Zani 84) with existing
DBMS interfaces -
history.

the cutting point defined by

We believe, along with a number of other
researchers [Smith 841. [Ullm 841, that a cou-
pling strategy is preferable to fully integrated
solutions. Because of the different stress on
representation efficiency between
Knowledge Represliiation (KR) and Database
(DB) research [MyBr 851. little is ained (and
unnecessary complexity is incurred f by putting
all capabilities into one system. In contrast, a
coupling architecture allows each subsystem to
evolve independently and to offload the recon-
ciliation task to separate coupling tools
[Jark 841.

Given that coupling is necessary, the ques-
tion remains what the capabilities of each of
the partners should be. While in the short run
there is a clear economic incentive to leave ex-
isting systems as they are [Java 843, nothing
indicates that the optimal division of labour
between the deductive capabilities of rule-
based systems and the selective power of data-
based systems will remain where it has been
historically - at the point of ‘relational com-
pleteness’ as defined by [Codd ‘721.

The question of exactly what ca abilities
should be added to the DBMS is open. P Ullm 841
proposes an architecture using ‘capture rules’
that define useful extended DBMS capabilities.
The present paper follows a similar approach
but investigates the problem from the
viewpoint of integrated database programming
languages rather than from a PROLOG perspec-
tive. Since database programming languages
handle first-order queries as well as functions,
iteration and recursion, they provide a frame-
work powerful enough to implement any first-
order derivation based on sets of facts. Current
query optimization strategies, however, do not
‘.ake advantage of the relationships among the
:orresponding sequence of queries. Efficiency
jecomes the responsibility of the programmer.

‘Work done at the Graduate School of Business Ad-
ninistration. New York University

Proceedings of VLDB 85, Stockholm 227

Rather than enhancing a query optimizer
directly in order to handle multiple related

this paper studies special-purpose
?tfiE:e constructs that capture higher-level
data definition and operation and are easily
recognizable by a compiler. To provide the
necessary framework, section 2 reviews the da-
tabase programming language DBPL which in-
tegrates relational data structures and tran-
sactions with the programming language
MODULA-2 [Wirth 831.

The main focus of the paper is the detailed
analysis of a DBPL extension called constructor
whit-h has evolved from the selector concept in-
troduced in 1MaReSc 841. While selectors allow
the definition of selected subrelation variables,
constructors expand existing relations. Con-
structors implement recursion using an equa-
tional fixed point semantic. We introduce con-
structors in sections 2 and 3, and show how to
integrate the tuple relational calculus con-
cepts of negation and universal quantification
into this framework. Moreover, we demonstrate
that our proposal provides expressive power at
least equivalent to PROLOG’s clause-order in-
dependent declarative semantics yet remains
faithful to the spirit of typed, procedural data-
base pro ramming lan u&es,
lSchm 77 or Adanlex Smith 811. In addition. 7 4

such as Pascal/R

our proposal elir&at& PROLOG’s problem of
infinite loops which arises because of the im-
plementation via backtracking [Covi 831.

The database programming language en-
vironment also inspires particular implementa-
tion and optimization strategies since it is fre-
quently used for implementing higher level da-
tabase interfaces. In section 4 we interpret
constructed relations as an extension to
range-nested expressions [JaKo 831, and out-
line a three-level compilation and optimization
framework.

2. Types. Relations, and Predicates

The impact of logic on computing - from
early data processing in the fifties to modern
computer science - can hardly be overestimat-
ed.

In the field of programming logic marks
the step from machine-oriented coding to algo-
rithmic programming. High level languages
provide conditional statements and boolean
expressions, use propositions for data type
definition, and depend crucially on predicates
for the specification of language semantics and
for reasoning about programs [Gries El],
[Hehn 841.

In the area of data modelling, the degree
to which predicates are utilized allows a dis-
tinction between early reference-oriented data
models and those that capture more of the re-
lationships defined by the application seman-
tics.

2.1. Data Types and Predicates
If “a type is a precise characterization of

structural and behavioural properties which a
collection of entities (actual or potential) all
share . ..‘I [Deut 811, the formalism by which
those properties can be characterized decides
upon the power of a type calculus.

Currently prevalent procedural program-
ming languages only allow type definitions
based on restricted propositional logic. Take,
for example, the following Ada subtype
definition:

partidtype IS RANGE l..lOO.

which is equivalent to the domain predicate
(lop AND ps100) and defines the domain set

pstidtype
(EACH p IN integer: lrp AND pMl0 1 .

The expressiveness of the type calculus in high
level languages corresponds closely with that of
the expression and statement part of these
languages. As a consequence any action to be
taken to assure type properties can be ex-
pressed directly in the language. A type check-
er can produce run time code in the source
language to assure, for example, type correct-
ness of an integer expression, ix, which is to be
assigned to a variable, p, of partidtype:

IF (lsix) AND (ix~1001
THEN p:-ix
ELSE <exception> .

Programmers reduce the possibility of run time
exceptions by acquiring sufficient information
on rhs-expressions through inductive reasoning
about assignment chains and subtype
definitions (and so do clever compilers).

Approaches to programming that are more
concerned about correctness allow for the
definition of additional program properties by
so-called annotations. Ada annotations, for ex-
ample, can be specified in the metalanguage
ANNA [Krie 841. and Ada programs can be pro-
ven formally correct with respect to their
specification. The meta language ANNA allows
full first-order assertions, while the object
language Ada is restricted to propositional log-
ic. An Ada subtype definition, for example,
primetype, can be fully specified by the follow-
ing ANNA annotation [Krie 841:

primetype IS integer 11
WHERE p IN primetype -=>

ALL n IN integer
((l<n AND ncp) =-> p ROD n l 0).

defining the domain set
pr imetype

I EACH p IN integer:
ALL n IN integer

((l<n AND n<p) -=> p II00 n * 011 .

228

2.2. Predicates in Database hnguagea
Database models such as the relational

model are very concerned about data integrity;
they go beyond programming languages, there-
fore, in the sense that they provide the expres-
siveness of first-order logic directly through re-
lational languages.

On the expression level, the request for
“relational completeness” [Codd 721 of query
languages is essentially met by allowing full
first-order predicates, p(r....), as selection
predicates in relational expressions:

reltype (EACH r IN ret: pk....)).

On the type or schema level, the role of predi-
cates can be exemplified best by comparing a
Pascal-like set-type definition

settype - SET OF elementtype.

with a relation-type definition.
The legal values of a relation are also sets

of elements; they have to meet, however, the
additional constraint that some attribute (or a
collection of attributes) serves as a key, i.e.,
has a unique value amongst all the elements of
a relation:

reltype - SET OF elementtype Ii
WHERE ret IN reltype ==>

ALL rl.r2 IN ret
(rl. key-r2. keu 9-B rl=r2).

The key constraint is essential to relational
data modelling since only unique keys can
serve as element identifiers as required, for ex-
ample, for the construction of higher relation-
ships between elements. Relational languages,
therefore, directly support the above class of
annotated set-type definitions by a data struc-
ture relation that allows for type definitions
equivalent to the previous one:

reltype - RELATION key OF elementtype.

For each assignment of a relational expression,
rex, to a variable, rel, of reltype. the relational
type checker has to perform a test equivalent
to

IF ALL x1.x2 IN rex
(xl.key-x2.key -=> xl-x2 1

THEN re 1: =rex
ELSE <exception> .

2.3. Predicative Support for Relations: Selec-
tors and Constructors

The key constraint is, of course, not the
only condition one would like to have main-
tained automatically on a database. Take, for
example, a relation NorthSouth- containing
city pairs such that the first element is located
immediately to the north of the second one, i.e.
with no city in between:

TYPE citutype - RECORD
ci tyid: ci tyidtype:
size: integer:

END; ’ ’

cl tyret - RELATION cltyid OF citytype:
northsouthrel -

RELATION north.south OF
RECORD

north,eouth: cl tuldtype
END:

VAR Cities: cityrel:
NorthSouth- : northsouthrel .

For example, NorthSouth- may
following tuples:

north south

Oslo F Lensburg
Flensburg Hunich
Stockho Lm Gdanek
Gdansk Vi enna
Helsinki Wi lna
Hun i ch Rome

contain the

Since the attributes, north and south, of the
NorthSouth- relation are supposed to relate
cities, they have to refer to elements in the re-
lation Cities. The corresponding referential in-
tegrity constraint can be expressed by anno-
tating the type of the NorthSouth- relation:

VAR NorthSouth-0: northeouthrel i i
WHERE r IN NorthSouth- ==>

SOHE rl.r2 IN Cities
(r.north=rl.cityidI AND

fr.south-r2.cityidi.

In a relational language such a constraint can
be enforced by a conditional which controls as-
signment of relational expression, rex, to the
NorthSouth- relation:

IF ALL x IN rex
(SOHE rl.r2 IN Cities

(x.north=rl.citgid AND
x.south=r2.cityidl I

THEN NorthSouth-0:~rex
ELSE <exception> .

In expecting frequent use of relations in such
“conditional patterns”, the database program-
ming language DBPL [ScMa 831, [MaReSc 841
provides an abstraction mechanism for such
patterns through the notion of a selector. Re-
ferential integrity on relations of type north-
southrel, for example, can be maintained by

SELECTOR ref int FOR Ret: northeouthrelo:
BEGIN EACH r IN Ret:

SOHE rl.r2 IN Cities
tr.north=rl.ci tyid AN0
r.south=r2.ci tuidi

END refint .

An assignment to a selected relation variable,
for example,

229

NorthSouth- [ref intl :- rex.

is defined to be equivalent to the above condi-
tional assignment to the full relation variable
NorthSouth-0.

In summary, selectors “factor out” condi-
tions on relations, represent them uniformally.
and make them available to all database sys-
tem components that have to reason about
programs and data (such as query optimizer,
concurrency manager, and integrity subsys-
tem). The selector concept is illustrated in
Fig. 1.

Fact blat ion: +-------------+
Ral

Figure 1: Selectors and Relations

While selectors provide support when data
elements are to be excluded from a relation
there is also a need for supporting the contrary
- when additional derived data objects are to
be included into a relation.

For example, a relation, NorthSouth- 1,
can be defined that relates - based on the data
in relation NorthSouth- - two cities if and
only if there is at most one city in between.
An annotated definition of relation North-
South- 1 would read as follows:

VAR NorthSouth-1: northsouthrel i i
WHERE (r IN NorthSouth- ==T

r IN Nort%outhJi
AND frl.r2 IN NorthSouth- -->

trl.south=rZ.north 9-s
crl.north.r2.south>

IN NorthSouth- .

In a relational language the value of such a re-
lation, NorthSouth-1, can be denoted by a
query expression in terms of predicates over
the NorthSouth- relation:

northsouthrel
f EACH r IN NorthSouth-0: TRUE.

<rl.north,rZeouth> OF
EACH rl.r2 IN NorthSouth-0:

rl.south-r2.north 1.

In anticipating the frequent use of relations in
such “expressional patterns” this paper pro-
poses an abstraction mechanism for such pat-
terns based on the notion of a constructor.

As an example, the northsouth- l-
relationship based on relations of type north-
southrel can be constructed by

CONSTRUCTOR northsouth-l
FOR Rel:northrouthreL 0: northsouthrel:

BEGIN EACH r IN Ret: TRUE,
<rl.north.r2.south> OF

EACH rl.r2 IN Ret:
rl.eouth&.north

END northsouth-l.

The value of a constructed variable, for exam-
ple,

NorthSouth- (northsouth-1)

is deflned to be equal to the value of the above
relational expression of type northsouthrel.
For the above example value of NorthSouth-0,
this constructor application constructs the
pairs:

north south

Oslo F Lensburg
F Lensburg i’iuni ch
Stockho Lm Gdansk
Gdansk V 1 enna
Helsinki Wi Lna
flun 1 ch Rome

Oslo flun i ch
F Lensburg Rome
Stockholm Vienna

In the same sense that selectors isolate
the constraints imposed on selected relations,
constructors factor out the rules that define
the elements in constructed relations. The idea
is illustrated in Fig. 2.

Constructed +------------+
Relation Relic) I

I

h
I

I I
+I-------------I+ Fact

II
i I Relation:
II Rel

+I---------I+

I I I

I ” I
+-------------+

Figure 2: Constructor and Relations

In the subsequent section the basic issues
of constructor semantics are discussed with
emphasis on recursive constructor definition
and constructor convergence.

230

3. Relation Constructors

In this section we discuss the notion of a
constructor in more detail. We first provide
some examples based on the relations intro-
duced in section 2, and then deAne the seman-
tics of recursive constructors formally. Con-
structors are then compared with other ap-
proaches to rule and fact management.
3.1. Recursive Constructors

The above simple constructor, north-
south-l, representing all city pairs with at
most one city in between on the way south, can
be generalized to a sequence of constructors,
northsouth-n, representing all pairs of cities
with at most n cities in between on the way
south.

CONSTRUCTOR northsouth-n
FOR Rel:northsouthr~10: northsouthrel:

BEGIN EACH r IN Ret: TRUE.
<rl.north.r2.south>-OF

EACH rl IN Ret.
EACH r2 IN Ret Inorthsouthg-li:

(rl.south=r2.northi
END northsouth,n .

For the definition of a constructor, northsouth.
representing all city pairs separated by an ar-
bitrary number of cities on the way south, we
utilize simple recursion:

CONSTRUCTOR northsouth
FOR Rel:northsouthrelO: northsouthrel:

BEGIN EACH r IN Rel: TRUE,
<rl.north.r2.south> OF

EACH rl IN Ret.
EACH r2 IN Relinorthsouthi:

(rl.south=r2.northl
END northsouth.

Intuitively, the value of a constructed relation
NorthSouth- Tnorthsouthl

can be seen as the limit of the sequence of con-
structor applications

NorthSouth- inorthsouthgi

The details of constructor semantics are given
in section 3.2.

Since the sequence in our example is
monotonic, the limit exists and can be imple-
mented by a finite loop using a relation vari-
able, NorthSouth:

NorthSouth := ii:
REPEAT

OLdNorthSouth := NorthSouth:
NorthSouth :-

(EACH r IN NorthSouth-0:TRUE.
<rl.north.r2.eouth> OF

EACH rl IN NorthSouth-0.
EACH r2 IN OLdNorthSouth:

rl.south=rZ.north i
UNTIL OldNorthSouth = NorthSouth .

Assuming that the variable NorthSouth- con-
tains the same pairs as given in section 2.3, the
constructor application

NorthSouth- (northsouth)

constructs the following pairs:
north south
-------------c------
OS Lo F Lensburg
Flensburg Munich
Stockho Lm Gdansk
Gdansk V i enna
Helsinki Wi Lna
ilun i ch Rome

Oslo Hunich
F Lensburg Rome
Stockholm Vienna

Oslo Rome

The relational expression
(cr. south> OF
EACH r IN NorthSouth- Inorthsouthi :

r.north=*Stockholm”i

computes the set
(Gdansk. Vi enna)

To give an example of mutual recursion, we
introduce a second relation between cities con-
taining all city pairs such that the first element
is located immediately to the west of the
second one:

TYPE uesteastrel =
RELATION west.east OF

RECORD
uest,east: ci tyidtype

END:
VAR WestEast-0: uesteastrel .

We are interested in the cities which can be
reached by first going south and by first going
east (for the sake of simplicity, we ignore the
directions north and west). We define two mu-
tually recursive constructors for this task,
namely southfirst and eastfirst:

CONSTRUCTOR southfirst
FOR Ret: northsouthrel

(Param:ueeteastreL):northsouthreL:
BEGIN

EACH r IN Ret: TRUE,
<rl.north.r2.south* OF

EACH rl IN Ret.
EACH r2 IN Ret (southf irst (Param) i :

rl.south=r2.north.
<rl.north.r2.east> OF

EACH rl IN Ret.
EACH t-2 IN Param Ieastf irst (Ret)) :

rl.south=r2.uest
END southf irst:

231

CONSTRUCTOR eastfirst
FOR Ret: uesteaetrel

~Psram:northsouthreLl:uesteastreL:
BEGIN

EACH r IN Ret: TRUE,
<rI.weet.r2.east> OF

EACH rl IN Rel.
EACH r2 IN Ret ieastf irst (Paam)) :

rl.eastw2.uest.
<rl.uest.r2.southr OF

EACH rl IN Rel.
EACH r2 IN Paam isouthf irst(Rell1:

rl.east=r2.north
END eastfirst .

We can apply both constructors to the relations
NorthSouth- and WestEast- as follows:

NorthSouth- (southf irst (WestEastJl)l
and

WestEast- (eastf irst (NorthSouth-01) .

The values of these mutually recursive con-
structed relations are defined by the limits of
mutually defined sequences; again, the details
are given in section 3.2.
Since the sequences are monotonic, the limits
exist and can be implemented by the following
loop using the auxiliary variables, Southfirst
and Eastfirst, for the values of the constructed
relations:

Eastfirst:-0: Southfirst:=iii
REPEAT

0Ldeast:dastf irst:
OLdsouth:-Southf irst:
Southf irst:=

southfirst,fct(Oldsouth,Oldeasti;
Eastf irst :-

eastf irst,fct (OLdsouth.OLdeastl
UNTIL Oldeast-Eastfirst AND

OLdsouth=Southf irst .

southfirst-fct and eastfirst-fct are relation-
valued functions based on the definition of the
constructors, southfirst and eastflrst.
For example, the variable WestEast- is
defined as

east west

OS Lo Stockho In
Stockholm Helsinki
Helsinki Len i nwad
F tensbura Gdansk
Gdanek - Wi Lna
Hun i ch Vienna .

NorthSouth- is defined as in section 2.3.
The application of the constructors gives the
following relations:

eouthf irst:
I

north south

Oslo F Lensburg i
F Lensburg Huni ch
;;i;;o Lm Gdansk I

V 1 enna
Helsinki Wi Lna I
tiun i ch Rome

I
Oslo Hunich i
F Lensburg Rome
Stockholm Vienna I
Oslo Gdansk 1
F Lensburg V 1 enna
Stockho Lm W i Lna I

OSLO Rome !
Oslo Vi enna
Oslo Wi Lna

eaetf iret:

east west

Oslo Stockho Lm
Stockholm Helsinki
Helsinki Leningrad
F Lensburg Gdansk
Gdansk Wi Lna
ilun i ch V i enna

Oslo Helsinki
Stockholm Leningrad
F Lensburg W i Lna
OS Lo Gdansk
Stockholm Wi Lna
F Lensburg Vi enna

OS Lo Len1 ngrad
OS Lo Wi Ins
OS Lo V 1 enna

If we want to start in a particular city, we can
write the corresponding selectors as follows:

SELECTOR southfrom
FOR Rel:northsouthrel fci ty:ci tyidtypel:

BEGIN
EACH r IN Ret: r.north - city

END southfrom:

SELECTOR eastfrom
FOR Rel:uesteastrel (citu:cituidtuoel: - - -.

BEGIN
EACH r IN Ret: r.ueet = city

END eastfrom.

We can apply these selectors by
NorthSouth- isouthf irst (WestEast-01)

[southfrom (“0s Lo”1 I

giving the pairs
north south

F Lensburg
Hun i ch

OS Lo Gdanek
Oslo Rome
Oslo V i enna
Oslo Wi lna

and
WestEast- ieastfirst(NorthSouth-Oil

Ieastfromf”Flensburg”l1

giving the pairs
ueet east

F Lensburg Gdansk
F Lensburg W i Lna
Flensburg Vienna .

In most applications it is obvious to which
relation a constructor is to be applied (for ex-
ample, NorthSouth-0) and which relations are
to serve as arguments (for example,

232

WestEast-0). In a few cases, however, this
choice may be difficult and the programmer
may prefer to start with an empty relation (for
example, if the constructor is based on a join
of several base relations rather than growing
out of a single one).

3.2. Formal Constructor Semantics
In general, a database program may con-

tain a large number, m, of mutually dependent
constructors:

CONSTRUCTOR c,
FOR Rel,: reltype, (...): resulttype,;

BEGIN
f, t..., appWl,I. . ..* awWI.J

END c,;

CONSTRUCTOR c,
FOR Rel,: reltype, (...): resulttype,;

BEGIN
f, t..., applyc,,~~ appbc,,)

END c, ,

where each applyc,., is a (possibly recursive)
constructor application of the form Rel {c(...){.
Rel is a relation name known in the context of
f,. and c is one of our c,. If,] is a relational cal-
culus expression. To simplify indexing, we
rename our constructor applications applyc,J
to apply,, apply,, r=n, +...+ n,.
We impose the following restriction on the re-
cursive constructor applications in the con-
structor definitions: The parameters pi, p,,
in the constructor application Rellc(p,.p.,)]
are not allowed to depend on the recursion.
This means that the constructor applications
remain the same throughout the recursion.
The semantics of a constructor application

apply,, = Actrel I c((...)],
on an actual relation Actrel, is defined as fol-
lows:
We construct 1 +l functions

g0(apply0, apply,, ...# awh 1
.

fat apply0, apply,. apply,);
function g, is constructed by taking the func-
tion f,, which corresponds to the constructor in
the application apply,, and replacing all formal
parameters by their actual values.
We define

w-W0 = II (i=O,l....J)
apph+~ = gIbplyOb applyA

and compute the limits:

apply1 = F-y apply,b.

The value of constructor application
Actrel { c, (...) 1

is given by apply,.

Of course this definition makes sense only
if the limit of the above sequences exists. If the
functions f, are monotonic, we have apply,,0 c
apply,,,, and therefore, by induction, apply,, c
apply,*+,. Because all relations are based on
finite domains, there must be a step j such that
appb6d = apply,,,,. If, therefore, the f, are
monotonic, the limits exist and are reached
after a finite number of steps. It can be shown
[ChHa 821 that the functions f, are monotonic
if their predicates are free of negation and
universal quantifiers.

Note that, according to [AhUl 791 and
[Tars 331, we compute the least Axed point of
the system of equations

apply, = go (apply,, apply,)
. . .
apply1 = gI hvlyos -‘I apph).

A program for computing the limits can be
written in the same way as for our examples in
3.1.

3.3. Negation and Universal Quantification
Database languages such as DBPL and

Pascal/R [Schm 771 allow universal
quantification of element variables as well as
negation of relational predicates. However,
constructors containing negation and universal
quantification may be meaningless because the
limit of the fixed point computation may not
exist, as, for example, in

CONSTRUCTOR nonsense
FOR Ret: anytupe 0: anytype:

BEGIN EACH r IN Ret:
NOT (r IN Ret (nonsense) 1

END nonsense.

The iteration yields

L/e1
II

and has obviously no limit.
There are, however, meaningful construc-

tor definitions with negation and universal
quantification, and the DBPL compiler will
recognize a subclass thereof, defined by the
so-called positivity constraint. Let us start
with auxiliary definitions:
Definition: Names appearing under NOT and ALL
Let f be a DBPL expression.
A name n is said to appear under ALL if f is of
the form

f = . ALL r IN exp (p(r ,...)) .
and n appears in exp.
A name n is said to appear under NOT if f is of
the form

f = NOT fact .
and n appears in the subexpression fact.

Note that these definitions may be nested, i.e.,
a name may appear under several ALLs and
NOTs. In

ALL r IN exp (p(r,...))
a name n appearing in p(r,...) but not in exp is
not considered to appear under this ALL.
Definition: positivity of a DBPL expression
Let f(Rel,, REL,,) be a DBPL expression.
f is said to satisfy the pozitivity constraint if
each occurrence of Rel, appears under an even
total number of negations and universal
quantifiers.

The idea of positive expressions is similar
to ‘safe’ expressions in [Ullm 621 by which the
definition of inAnite relations in relational cal-
culus expressions is avoided.
Ia-:
Each DBPL expression f(Rel,, Rel,) that
satisfies the positivity constraint is monotonic
in all its arguments.
Proof Sketch:
Change f as follows: Replace range-coupled
quantifiers by their one-sorted version
[JaKo 631:
* ALL riN Rel (pred(r,...)) =

ALL r (NOT(r IN Rel) OR pred(r,...))
SOME r IN Rel (nred(r....)) =

SOME r (r IN‘Rel AfiD pred(r,...))
The result is that we have replaced each oc-
currence of Rel, under a universal quantifier by
an occurrence under NOT. Thus, if the number
of ALLs plus the number of NOTs over each oc-
currence of Rel give an even total, we now have
an even number of NOTs over each occu:‘cnce
Rel of a Rel,. However, if this is the case, we can
remove the negations, using generalized deMor-
gan and distribution laws to move all NOTs as
far into the expression (i.e. to the right) as
possible and applying the double negation law
NOT(NOT(pred)=pred. The resulting expression
will be monotonic in all its arguments.

A similar lemma is given in [ChHa 6~1. For
simplicity, the DBPL compiler accepts only con-
structors satisfying the positivity constraint. It
should be noted, however, that there are non-
monotonic constructors for which the limit of
the fixed point computation exists. The follow-
ing example is derived from [Hehn 643:

TYPE car&-et - RELATION . . . OF
RECORD number: CARDINAL END:

CONSTRUCTOR strange
FOR Baserel: cardret 0: cardrel:

BEGIN EACH r IN Baserel:
NOT SOME 8 IN Baaerel (strange)

(r.number-s.number+l)
END strange .

Let Rel = 10, 1, 2. 3, 4. 5, Sj. The computation
of Rel {strangej through the iteration

b.1,2.3.4,6.6j

I

!!$3.4.5.61

0:2,4,5,6j
0.2,41
0,2,4,6j

10,2,4,6j
ktc.

has the limit !0,2,4,6j.
Examples like this one, however, look artificial
and are much more difficult for the program-
mer and compiler to understand than the sim-
ple positivity constraint; they are, therefore,
not allowed in DBPL.

3.4. Options for Fixpoint Enhancements in Da-
tabase Programming

In this subsection we summarize the op-
tions for expressing the Least Fixpoint Opera-
tor semantics in a database programming
language like DBPL. For database programming
languages we distinguish six possibilities to in-
clude fixpoint operations. Our constructor ap-
proach can be seen as the seventh alternative.
- Programm iteration;
- Recursive boolean functions and pro-

cedures;
- Specialized LFP operators;
- Equational relation variable declarations;
- Views as relation-valued functions;
- Logic Programming.

The first two options have long been avail-
able in early languages such as Pascal/R
fSchm771 althoueh they have not received
much attention there. The programs for com-
puting the limits in section 3.1 may serve as ex-
amples of this approach. Similar effects can
also be achieved using recursive functions (to
generate recursive relations or to test member-
ship recursively). Both methods share the
problem of too much generality since the pro-
grammer can write anything into the loop or
the function body; this severely limits query
optimization. Moreover, the end of the loop or
the recursion has to be programmed manually
which gives us the problem of infinite loops and
infinite recursion.

Query-by-example [Zloo 771 was one of the
first systems to contain a specialized operator
for transitive closure. More recently, the query
language QUEL has been augmented with an
operator l which can extend any QUEL com-
mand with the semantics “to repeat the com-
mand forever” [Kung 641. [IoShWo 641. [EmEm-
Do 641 combine a similar approach with view-
oriented concepts as described below. While
some algebraic optimization of such language
extensions is possible [Kung 641, the approach
is essentially procedural and does not seem to

234

fit well into a calculus-oriented language.
Equational relation deilnition bears a

close resemblance to relation definition by
constructors. However, instead of constructing
relations explicitly from conventionally typed
variables, the type concept itself can- be -ex-
tended to allow imnlicit relation definition bv
using a set of constraining conditions:

VAR NorthSouth-0: northsouthrel:
NorthSouth:

northeouthrel
I EACH r IN NorthSouth-0: TRUE,

<rl.north.rZ.southr OF
EACH rl IN NorthSouthJl.
EACH r2 IN NorthSouth:

rl.south=r2.north 1 .

The work on equational constraint expressions
[Morg 841 follows a similar approach.

A number of researchers have proposed
parameterized view definitions for quer
language extensions (e.g.. [MaReSc 84 , f
[EmEmBo 841). From a programming language
standpoint, views can be interpreted in two
different ways. If relations are considered as
generalized tables or arrays, these structures
seem to be adequately handled by selectors
and constructors. If relations are considered
as sets, views can be considered as relation-
valued functions. Since recursive functions are
available in modern programming languages,
the extension to relation-valued functions
would be small, for example:

FUNCTION northsouth
(Current:northsouthrel): northsouthrel:

VAR New: northsouthrel:
BEGIN

Neu := I EACH r IN Current: TRUE.
<c. nor th. d. south> OF
EACH c.d IN Current:

t. south=d.north 1:
IF Neu = Current
THEN RETURN Current
ELSE RETURN northsouth

END northsouth:
.e.
Nor thSouth : - northsouth(NorthSouth-0).

However, as previously discussed, functions are
too general to be optimized efficiently. Of
course, if used in a pure query language en-
vironment such as SQL, relation-valued func-
tions can be restricted to only define
parameterized views and thus may not raise
the problems present in tightly integrated da-
tabase programming languages.

One of the most important areas closely
related to our work is that on logic program
ming as exemplified by PROLOG (e.g. [ClMe 811).
Based on Horn clauses, the programming
language PROLOG (without cut, fail and nega-
tion) can be shown to be equivalent to a data
base quer

r
langua e with the least fixed point

operator ChHa 82 f As far as the language ex-
tensions proposed in this paper are concerned,

we have the following lemma:

hlUM:

The constructor mechanism is as powerful as
function-free PROLOG without cut, fail, and ne-
gation.
Proof sketch: Horn clauses are precisely
representable by applying a single fixed point
operator to a positive existential query
[ChHa 821. Furthermore, mutual recursion can
be replaced by a single fixed point operator by
moving the mutual recursion into the argu-
ments [AhUl 791. Any query representable in
function-free Horn clauses, therefore, is also
representable by the constructor mechanism.

As far as negation is concerned, our ap-
proach assumes a closed world [Reit 781 and is
guaranteed to terminate because of positivity.
It is not, therefore, directly comparable with
PROLOG’s NOT. However, it seems to be more
practical because the problem of infinite loops
is eliminated.

4. Compilation and Optimization of Construc-
tors

In this section we investigate the imple-
mentation of constructors and the optimiza-
tion of queries in which constructed relations
appear. Constructed relations are interpreted
asa generalization of the range-nested expres-
sions of IJaKo 831. First. we studv the comoila-
tion of queries over constructed-relations’into
queries over base relations; certainly the most
interesting part of this is the handling of re-
cursion. Then we discuss the optimization of
such queries. Rather than adding to the long
list of specialized techniques for recursion op-
timization, we present a three-level framework
tailored to the database programming environ-
ment in which such techniques can be integrat-
ed. For space reasons, details must be left to a
forthcoming paper.

[JaKo 831 introduced a concept of range
nesting for relational calculus expressions. Ba-
sically, it allows the substitution of relational
expressions for range relations in queries using
the following rules:
NL: (EACH r IN R: predl AND pred2)

<==>
(EACH r IN (EACH r’ IN R: predll: pred2)

N2: SOVE r IN R (predl AND pred2)
<*=,

SOVE r IN (EACH r’ IN A: predl) (pred2)

N3: ALL r IN R (NOT(pred1) OR predilf
<-->

ALL r IN (EACH r’ IN R: predl) (pred2)

Selected and constructed relations can be
interpreted as methods to name such extended
range expressions. If we want to follow the <==

235

direction in order to understand and optimize
a query in terms of base relations, the question
becomes by which predicate predl to replace
the constructed relation. Consider the expres
sion

(EACH r IN Rel konstr): predk))

Clearly, the easiest solution is to compute
Relfconstrl exhaustively bv all least fixed
points of related constructor definitions and
then test pred(r). However, propagating the
constraints given by pred(r) into the construc-
tor definition may considerably reduce query
evaluation costs. A case-by-case analysis of
various constructor types will demonstrate how
this can be done. Assume Arst that the
definition of constr does not contain any con-
structed variable, i.e.
base relations.

constr works only on

Case 1 (Selector): The constructor definition
contains a single relational expression (no un-
ion) with a single free variable. In this case the
transformation rules Nl to N3 apply directly,
possibly in conjunction with a projection on
the target attributes.
Case! 2 (Join): The constructor definition con-
tains a single relational expression but possibly
more than one variable. In this case substitute
r.f in pred(r) by x.g if x.g appears in the posi-
tion f of the constructor’s target list (possibly
with renaming).
Case 3 (Union): The constructor definition is a
union of relational expressions. If pred(r)
satisfies the positivity constraint, treat each of
these relational expressions separately and let
the result be the union of the expression
values.

If the tuple variable whose range expres-
sion is constructed is existentially or universal-
ly quantified, the above rules apply in a similar
fashion, corresponding to rules N2 and N3. The
rules actually present just a minor generaliza-
tion of [Ston 751.

Consider now the case that the construc-
tor definition does contain constructed rela-
tions. The naive application of the above rules
would give an infinite derivation sequence in
the case of recursive constructors. Adapting a
strategy described in [Naqv 841, [Venk 841, a
finite representation of this infinite sequence
can be devised from which appropriate least
fixed point computations can be generated.
Due to space limitations, we can only sketch
the algorithm here, using the constructor
northsouth as an example.
1. Augment each constructor definition by

introducing a new tuple variable ranging
over the result relation of the constructor:

EACH res IN Ret (northsouth):
SORE r IN Ret (r=res) OR
SOME rl IN ReL.SOflE r2 IN Relfnorthsouth)

(rl.north-res.north) AND
b-2. south-res. south) AND
(rl.south=rZ.north)

2. Construct a quant graph for each thus
augmented expression. A quant graph
represents a relational calculus query
[JaKo 831; it has a node for each tuple
variable with its range definition and a
directed arc in quantifier direction (out-
side in) for each join term and each en-
forced quantifier sequence.

3. The reader may have noticed that, as stat-
ed, the above expression and quant graph
are not yet equivalent to the previously
defined constructor semantics since they
ignore the distinction between the two
different occurrences of RelInorthsouthj;
i.e., the range relation of the variable res
is one recursion step further than the
range relation of r2. (Indeed, [AhUl 791
shows that an equivalent pure relational
calculus expression cannot exist). To ex-
press this relationship, we construct
directed arcs from each quantified node
with a constructed range relation (in the
example: r2) to the corresponding con-
structor definition (i.e. res in the exam-
ple). We have now constructed the
equivalent of a clause interconnectivity
graph [Sick 761. The extended quant
graph for the above example is given in
Fig. 3.

4. Evaluate each component as follows. For
acyclic subgraphs, replace the constructor
definitions by subqueries on base relations
and optimize as
[Jark 841.

described, e.g.. in
Most cyclic subgraphs

correspond to recursion (for exceptions
such as tautologies see [Sick 761). We can
now apply any standard algorithm, i.e.,
LFP computation of the related construc-
tor definitions, recursive calls of iterative
procedures [HeNa 841, or tuple-at-a-time
cycling [McSh 811; or we can attempt to
employ capture rules [Ullm 841 to detect
special cases such as those described in
[Schn 781, [MiNi 831, [Fron 841.
Applying this method at query evaluation

time may be quite expensive if many construct-
ed relations are defined. Our optimization stra-
tegy tries to move many of these tasks into the
compilation phase; this is even more important
in a database programming language than in
an interactive query language because compi-
lation is usually decoupled from execution.

236

+------------------------------+
] EACH res IN Ret fnorthsouth) I+----------;
+------------------------------+

I
rem. north] AND res. south

I
res I rl.;orth 1 i rl.siuth

V V V I
+--------+ +---------+ +-----------------+

SE 1
1 SOtIE rl 1 rl.south= 1 EACH r2 IN

e I IN Rel l----------al Ralfnorthsouthl 1
+--------+ +---------+ rz.north +-----------------+

Figure 3: Extended quant graph

On the other hand, database programming
languages are frequently used to implement
higher-level interfaces and, therefore, contain
only incompletely specified query forms rather
than full queries. These observations lead to a
three-level strategy in the optimization of the
system that makes full use of the degrees of in-
formation available to different phases of the
DBPL compiler and to the run time support sys-
tem.

On the type checking level the compiler
performs an analysis of the individual con-
structor definitions and their relationships. For
example, this phase contains the positivity test
within the constructor definition. It also con-
structs a rough version of the extended quant
graphs described above. In terms of optimiza-
tion, one major purpose of this is to partition
the set of constructor definitions in discon-
nected subgraphs that can always be processed
separately.

This partitioning can be done by stepwise
refinement. A first version of the graph would
mention relation and constructor names alone.
If some of the remaining partitions are still
very large, they could then be refined to an in-
termediate level that, e.g., distinguishes
between free and bound variables [Ullm 841.

On the query compilation level the com-
piler looks at the query forms appearing in the
database program. These query forms may use
range relations that apply constructors to base
relations, selected relations, or constructed re-
lations. The compiler can now instantiate the
appropriate constructor definition graphs and
complete the construction of full extended
quant graphs for each query. If such a graph
contains a recursive cycle, the compiler can
generate an appropriate version of the fixed
point algorithm [HeNa 841, [Ullm 841. For non-
recursive queries, full compilation and optimi-
zation are performed.

Recursion optimization can be based on
the algorithms given in section 3.1. using
Bayer’s Delta-Transformation concept
[Baye 851. The main idea is to use loops for im-
plementing recursion which work only on the
increments of the recursively defined relations

in each iteration. Of course, this is not always
possible, e.g., in case the join of two recursively
defined relations is to be performed in another
recursively deAned relation. [Baye 831 shows,
however, that even then it is feasible to extract
precisely those subexpressions that may pro-
duce new values for the recursively defined re-
lations.
In the southfirst and eastfirst constructors of
section 3.1. only the increments are needed to
compute the least fixed points, stored in vari-
ables Deltasouth and Deltaeast:

Southfirst : = NorthSouthJI:
Eastf irst : - WestEastJi:
Deltasouth := Southf irst:
Deltaeast := Eastf irst:
REPEAT

Hsouth :- (<rl.north.r2.south> OF
EACH rl IN NorthSouth-0.

EACH r2 IN Deltasouth:
rl.south=r2.north.

<rl.north.r2.east> OF
EACH rl IN NorthSouth-0.

EACH r2 IN Deltaeast:
rl. south=r2.uestI :

Heas t :- I<rl.uest.r2.east> OF
EACH rl IN WestEastJi.

EACH r2 IN Deltaeast:
rl.east=r2.uest.

<rl.uest,r2.south> OF
EACH rl IN WestEast,0.

EACH r2 IN Deltasouth:
rl. east=r2. north) :

Oeltasouth :- Hsouth:
Deltaeast :- Heast:

unlonGouthflrst.Deltasouth.booll);
union(Eastfirst. Deltaeast. boot2)

UNTIL boo11 AND boot2.

where the procedure
unionhl.deltarel.bool)

is defined as:
boot:= (deltaret c ret):
t-et := fret U deltaret).

237

Note that in this implementation we cannot use
the condition

(Deltasouth= 0 1 AND (Deltaeast-0 1

as the terminating condition because there
may be tuples that are generated over and over
again, for example, if, say, one of the base re-
lations contains a cycle. The loop, therefore,
terminates if both Delta-relations do not con-
tain new tuples.

Thus far, we ignore that constructor and
selector definitions may contain parameters. In
the case where these are constant values in
restrictive terms of the constructor definition
or associated query. we can represent this si-
tuation by defining an appropriate selector.
This selector will provide a logical or even phy-
sical access path for instantiations of the
parameters. A logical access path is a compiled
procedure with dummy constants [HeNa 841. A
physical access path actually materializes a re-
lation corresponding to the query with the con-
stants used as variables and partitions it ac-
cording to the different constant values. Clear-
ly a physical access path would be generated
only in case of heavy query usage since unres-
tricted constructed relations may be very
large. Maintenance of such access paths also
becomes very expensive [ShTZ 841.

If the parameters are of type relation, they
may be instantiated at run time with con-
structed relations, possibly leading to a con-
nection among previously independent sub-
graphs. At compilation time, this case will only
permit partial logical access paths to be gen-
erated.

Finally, the run time support subsystem of
query processing must help in the evaluation of
fully instantiated queries. In some cases this
will mean simply the execution of the compiled
database programs. In the case of selectors
generated at compile time, physical access
paths may be generalized and utilized. In the
case of relation parameters, it may mean the
integration of pieces of precompiled definitions
into meaningful database programs. A major
advantage of the DBPL environment over, say, a
PROLOG environment is that all of these tasks
can be formulated elegantly with the existing
language tools and are executed in a set-
oriented constructive fashion rather than by
tuple-oriented theorem proving.

5. Conclusion

Relational database systems are based on
first-order logic and provide, within that
framework, solutions for many technical prob-
lems with data-intensive applications, such as
query optimization, concurrency management,
and data distribution. While AI-oriented sys-
tems have traditionally emphasized issues of

knowledge representation and reasoning, their
future applications will require database sup-
port for problems originating from large-scale
fact and rule management.

We argue that the DBMS should remain
responsible for as much efficient mass-
processing of data as possible, whereas the AI
system should retain the responsibility for the
more subtle tasks, such as handling open
worlds (i.e., incomplete knowledge and non-
monotonic reasoning) for which intelligent and
frequently problem-specific heuristics are
needed since the problem in general is compu-
tationall intractable or even undecidable
[BrLe 841 The proposed extension of the rela-
tional approach handles nested and recursive
rule definition and evaluation adequately and
efficiently. In an orthogonal approach to data
model extension we investigate object struc-
tures that allow nested and recursive structure
definition and component selection [Lame 841,
[LaMuSc 841, [ScLi 851.

In [LiScJa 851 we demonstrate how recur-
sive data structures can be used for construc-
tor representation, thus allowing for the
definition, update, and querying of large con-
structor bases. These approaches are con-
sidered as first steps towards integrated fact
and rule base management utilizing advanced
relational database technology.

References

[AhUl 791
Ah0,A.V.; Ul1manJ.D.: Universality of Data
Retrieval Languages, 6th ACM Symp. on
Principles of Programming Languages, San
Antonio, Texas, January 1979

[Baye 851
Bayer,R.: Query Evaluation and Recursion
in -Deductive batabase Systems, Institut
fiir Informatik Technische Universitiit
Miinchen January 1985

[BrLe 841
Brachman,R.; Levesque,H.J.: What Makes a
Knowledge Base Knowledgable - A View of
Databases from the Knowledge Level, in
[Kers 841, 30-39

[BrMp&l, L
, . .; Mylopoulos,J.; Schmldt,J.W.

(eds.): On Conceptual Modelling. Perspec-
tives from Artificial Intelligence, Data-
bases, and Programming Languages,
Springer Verlag, 1984

[ChHa 821
Chandra.A.K.: Hare1.D.: Horn Clauses and
the Fixpoint Query Hierarchy, ACM Sympo-
sium on Principles of Database Systems,
Los Angeles, 1982, 158-163

[ClMe 811
C1ocksin.W.F.; Mellish,C.S.: Programming in

238

PROLOG, Springer Verlag 1981
[Codd 721

Codd,E.F.: Relational Completeness of Data
Base Sublaneuaees. in R. Rustin (ed.): Data
Base Systems, &entice Hall, Englewood
Cliffs, NJ, 1972, 65-98

[Covi 851
CovingtonMA.: Eliminating Unwanted
LOODS in PROLOG. ACM SIGPLAN Notices
20,i (Jan. lo&), 26-26

[Deut 811
Deutsch,L.P.: Summary of Workshop Ses-
sion on Types, in Brodie,M.L.; Zilles,S.
(eds.): Proc. Workshop on Data Abstrac-
tion, Databases, and Conceptual Modelling.
SIGPLAN Notices, Vol. 16. No. 1, January
1981, p. 49

[EmEmDo 841
van Emde Boas-Lubsen,H.; van Emde
Boas,P.; Doedens,C.F.J.: Extending a Rela-
tional Database With Logic Programming
Facilities, IBM INS-Development Center, TR
13.195. Uithorn, The Netherlands, 1984

[Fron 841
Fronhoefer,B.: Heuristics For Recursion
lmorovement. Proc. 6th ECAI. Pisa. 1984.
577-500

[GaMN 841
Gallaire,H.; Minker,J.; Nicolas,J.M.: Logic
and Databases: A Deductive Approach,
Comp. Surveys, Vo1.16, No.2, June 1984.
153-185

[Gries 811
Gries.D.: The Science of Programming,
Springer Verlag, 1981

[Hehn 841
Hehner,E.C.R.: The Logic of Programming,
Prentice-Hall International, 1984

[HeNa 841
Henschen,L.J.; Naqui,S.A.: On Compiling
Queries in Recursive First-Order Data-
bases, JACM Vol.31, No.1, January 1984.
47-85

[IoShWo 841
Ioannidis,Y.; Shinkle,L.L.; Wong,E.: Enhanc-
ing INGRES with Deductive Power, in
[Kers 841, 847-850

[Jark 84]
Jarke.M.: External Semantic Query
Simplification: A Graph-theoretic Apl
oroach and Its Imolementation in PROLOG.
in [Kers 841 1

jJaKo 831
Jarke.M.; Koch,J.: Range Nesting: A Fast
Method to Evaluate Quantified Queries,
Proc. ACM SIGMOD Conf., San Jose, C,:,
196-206

[Java 841
Jarke,M.; Vassi1iou.Y.: Coupling Expert
Systems and Database Management Sys-
tems, in Reitman,W.R. (ed.): Artificial lntel-

ligence Applications for Business,
Ablex,Norwood.NJ, 65-85

[Kers 841
Kerschberg,L. (ed.): Proceedings of the
First International Workshop on Expert
Database Systems, Kiawah Island, South
Carolina, October 1984

[Krie 641
Krieg-Brueckner,B.: Types in the Program-
ming Language Ada, in [BrMySc 841, 385-
410

[Kung 841
Kung,R.M.; HansonE.; Ioannadis,Y.;
Sellis,T.; Shapiro,L.; Stonebraker,M.:
Heuristic Search in Data Base Systems, in
[Kers 843, 96-107

[Lame 841
Lamersdorf,W.: Recursive Data Models for
Non-Conventional Database Applications,
Proc. Intern. IEEE Conference on Data En-
gineering, Los Angeles, April 1984

[LaM~%!4fslorf W. Mi.iller,G.; Schmidt.J.W.:
Language iupport for Office Modelling.
Proc. 10th VLDB Conf.. Singapore, August
1984, 280-290

[LiScJa 851
LinnemannV.; Schmidt,J.W.; Jarke,M.: In-
tegrated Fact and Rule Management Based
on Relational Technology, Workshop on
Knowledge Base Management Systems,
Crete, Greece, June 24-26,1985

[“aRi% !?] Schmidt J W. Reimer M.: Data
Selection, Sharing: and Access Control in a
Relational Scenario, in [BrMySc 841, 41 l-
436

[MaMaJo 841
Marque-Pucheu,G.; Martin-Gal1ausiaux.J.;
J0mier.G.: Interfacing PROLOG and Rela-
tional Data Base Management Systems, in
G.Gardarin; E.Gelenbe (eds.): New Direc-
tions for Databases, Academic Press, 1984

[McSh 811
McKay,D.P.; Shapir0,S.C.: Using Active In-
terconnectivity Graphs for Reasoning with
Recursive Rules, Proc. 7th IJCAI,
Vancouver.BC, 368-374

[MiNi 831
Minker.J.; Nicolas.J.-M.: On Recursive Ax-
ioms in Deductive Databases, Inform. Sys-
tems Vol. 8. No. 1, 1983. 1-13

[Morg 841
M0reenstern.M.: Constraint Eauations: De-
claritive Expression of Constraints With
Automatic Enforcement, Proc. 10th VLDB
Conf., Singapore, August 1984, 291-300

[MyBr 851
Mv1o~ou1os.J.: Br0die.M.L.: AI and Data-
base;: Semantic Versus Computational
Theories of Information Systems, in
Ariav,G.; CliffordJ. (eds.): New Directions

for Database Systems, Ablex, Nor-wood, N.J.
1985

[Naqv 841
Naqvi,S.A.: PROLOG and Relational Data-
bases. A Road to Data-intensive Expert
Systems, in [Kers 841

[Reit 781
Reiter,R.: On Closed World Data Bases, in:
Gal1aire.H.: Minker.J.: Loeic and Data
Bases, Pie&m Press-1978. 5%76

[Schm 771
Schmidt.J.W.: Some High-level Language
Constructs for Data of Type Relation, ACM
TODS 23 (1977), 247-261

[Schn 781
Schnorr,C.P.: An Algorithm for Transitive
Closure With Linear Expected Time, SIAM
Journal of Computing 7:2. 127-133

[U1l?J~an J D) . .: Implementation of Logical
Query Languages for Databases,
STAN-CS-64-1000, Stanford,Ca. 1964

Report

[Venk 841
VenkenR.: A PROLOG Meta-Interpreter for
Partial Evaluation and Its Application To
Source-To-Source Transformation and
Query Optimization, Proc. 8th ECAI, Pisa,
1984,91- 100

. Programming in MODULA-2,

[Zani 841
Zaniolo,C.: Prolog: A Database Query
Language for All Seasons, in [Kers 841, 63-
73

[Zloof 771
[ScLi 851

Schmidt,J.W.; Linnemann,V.: Higher Level
Relational Objects, British National
Conference on Data Bases, Keele, Great
Britain, July 1985

[ScMa 831
Schmidt,J.W.; Mall,M.: Abstraction Mechan-
isms for Database Programming. Proc. SIG-
PLAN Symp. on Progr&nming Gnguage Is-
sues in Software Systems, San Francisco,
June 1983, 83-93

[ScWa 641
Sciore,E.; Warren,D.S.: Towards an In-
tegrated Database-PROLOG System, in
[Kers 641. 801-814

[ShTZ 841
Shmueli,O.; Tsur,S.; Zfirah,H.: Rule Sup-
port in PROLOG, in [Kers 841

[Sick 761
Sicke1.S.: A Search Technique for Clause
Interconnectivity Graphs, IEEE Transac-
tions on Computers C25:8, 823-834

[Smith 811
Smith.J.M.: Fox.S.: Landers.T.: Reference
Manual for Adaplex, CCA, Cambridge,
Mass., January 1981

[Smith 841
Smith,J.M.: Expert Database Systems: A
Perspective, in [Kers 841

[Ston 751
Stonebraker,M.: Implementation Of In-
tegrity Constraints and Views By Query
Modification, Proc. ACM SIGMOD Conf.. San
Jose, Ca, 1975, 65-78

[Tars 551
Tarski.A.: A Lattice Theoretical Fixpoint
Theorem and its Applications, Pacific J.
Mathematics 5:2, June 1955, 265-309

[Ullm 821
Ul1manJ.D.: Principles of Database Sys-
tems, Computer Science Press, 2nd ed.
1982

Zloof,M.M.: Query-by-Example: a Database
Language, IBM Syst. J. 16:4 (1977), 324-343

240

