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Abstract 

When logic programming is used for database 
access, there is a need to improve the backtracking 
behaviour of the interpreter. Rather than putting on 
the programmer the onus of using extra-logical 
operators such as cul to improve performance, we 
show that some uses of the cut can be automated by 
inferring them from functional dependencies. This 
requires some knowledge of which variables are 
guaranteed to be bound at query execution time; we 
give a method for deriving such information using 
data flow analysis. 

1. Introduction 

There has been much recent interest in the use 
of logic programming languages for database access 
[e.g. JCV,D,SW,U]. Some of this work deals with 
the integration of existing or future database systems 
with the logic programming component; another 
approach, and the one we pursue here, is simply to 
take a widely available logic programming system, 
such as Prolog [CM], and try to use it for database 
access without any further modification. It is clear 
that there are many limitations in such an approach, 
as discussed for example in [BJ]; but there are also 
advantages. For applications where the databases 
are small, or for quick prototyping of larger applica- 
tions, or for interactive queries where data access is 
localized and the database can be held in virtual 
memory, the use of a widely available language such 
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as Prolog makes for systems which are easy to build 
and maintain and easy to port. 

However, as Warren reported [W], the rigid 
backtracking behaviour of Prolog is inadequate even 
for relatively undemanding database applications. 
The logic programming community is well aware of 
this problem and several proposals for sefecrive back- 
tracking exist [BP,PP,KM]. In practice, Prolog sys- 
tems provide a control primitive called cut that gives 
the programmer some say in how backtracking is 
handled. But the use of the cut or other extra-logical 
control operators makes programs less declarative 
and more procedural, partially defeating the goals of 
logic programming. In this paper we propose to use - 
declarative information providedby the programmer 
in the form of functional dependencies to automate 
the insertion of cuts. While this does not cover all 
uses of the cut, we think it is a step in the right 
direction. Our approach differs from the work on 
selective backtracking cited above in that it requires 
no changes to the Prolog interpreter and can be 
implemented in a preprocessor. 

For example, suppose we have a database with 
the following predicates: 

capital(A,C) : the capital of country A is city C 
hq(X,C): company X is headquartered at city C 
sales(X,S): company X sells S million dollars a year 

We are interested in those countries whose capital 
cities are headquarters for some company that has 
more than 100 million a year sales: 

big(C) - capital(CX), hq(Y,X), sales(YS), S> 100. 

Now suppose we try to evaluate the query 

bigfusa) 
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with the usual Prolog backtracking mechanum. First, 
the capital predicate will be evaluated, binding X to 
“Washington”. Suppose there is only one company 
with headquarters in Washington, and its sales are 
only 1 million. When S> 100 fails, the Prolog inter- 
preter will backtrack to try to find another sales 
figure for this company; when in turn this fails, it 
will backtrack again and, failing to find another 
company with headquarters in Washington, it will 
try to find another capital of the U.S.A. Many ver- 
sions of Prolog provide a control operator called cuz, 
denoted “l”, that lets the programmer avoid these 
unnecessary attempts to re-satisfy predicates that 
cannot be re-satisfied. For example, we could write 

big(C) - a(CX), hq(YX), sales(YS), S> J-0(?. 
atCX) - capital(CX),!. 

The effect of the cut in the a clause is to prevent 
the interpreter from trying to re-satisfy a if any goal 
to the right of it in the big clause fails. We can apply 
the same transformation to the safes predicate and 
obtain 

big(C) - a(CSr),hqfYX),Q(Y.S), S> 100. 
atCX) - capital(CX),!. 

$fYS) + sales(Y $),!. 

However, there is still one serious source of 
inefficiency in the backtracking behaviour of this 
program. Suppose there are 100 companies with sales 
over 100 million headquartered in Paris; then the 
query 

big(france),big(usa) 

will re-satisfy big(jrance) 100 times before failing. 
Again, the cut is helpful in avoiding this as follows: 

big(C) - atCX),yfYXS). 
YfYXS) - hqfYX),$fYS). S> 100, .‘. 

with a and p defined as before. The cut at the end 
of the y clause means that, once a country has been 
proven big, the interpreter will not try to re-prove 
this in a different way. 

What started as a clean logical definition of big 
countries has become, through the introduction of 
cuts, a complex program that can only be understood 
procedurally. In this paper we propose to automate 
this process by using functional dependency 

statements to infer where cuts can be inserted. For 
example, the introduction of a and p is allowed by 
the fact that in cupital(CX), C functionally deter- 
mines X, and in sales(YS), Y functionally determines 
S. We would like the program to be written as fol- 
lows: 

cupitaf(CX): C- X 
sales(YS): Y- S 
big(C) - capital(C,X),hq(Y,X),sales(YS)S> 100. 

and let the system produce the improved version. 
The method we present handles the introduction of 
a and l3, but not of y; this is actually the problem of 
decomposition into independent subqueries that 
Warren solved in [WI. 

Note that, even though the functional depen- 
dency hq(YX):Y - X holds, we have not used it. The 
reason is that hq(YX) is invoked with the Y variable 
free and the X variable bound; if sales(Y,S) fails, it 
is in fact necessary to backtrack and find another 
binding for Y, that is, another company with head- 
quarters in city X. In fact, the introduction of a 
and l3 preserves the meaning of the program only if 
we are using big as a test, rather than as a generator. 
For example, if the query is 

big W 1 

where W is a variable, and it happens that the first 
country that appears in the capital predicate is usa, 
then the answer will be empty. Thus the application 
of our method requires some knowledge of which 
variables are guaranteed to be bound on invocation 
of each predicate. We use data flow analysis tech- 
niques to obtain this knowledge statically. 

In the next section, we formalize the concepts 
above. In Section 3, we present the cut-insertion pro- 
cess and show its correctness. In Section 4, we give 
a method for computing the information on binding 
of variables that is required by the cut-inserter. 

2. Definitions 

2.1. Logic Programming 

A program P is a sequence of Horn clauses 
Cl,.... C,. Each Ci is of the form 
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where k 2 0, and each Xi is either a variable or a 
constant. The left hand side of the clause is also 
called its head. We assume a function-free language. 
We also assume that every xi appears on the right 
hand side or it is a constant. In our examples, predi- 
cates that do not appear in the head of any clause 
are assumed to be database pedicures wholly defined 
by ground clauses. A program can be viewed as a 
first-order theory by interpreting “.- ” as logical 
implication and universally quantifying all variables. 

A query is an atomic formula 

+ :G(zp . . . JJ 
.- 

where each Zi is either a variableor a constant. The 
meaning of P on query d, is 

P(&) = {<ct,. * . ,cp > I Ci is a constant Vi 

and Pl=G(ct, . . . ,c,,)}. 

2.2. Prolog 

The Prolog programming language [CM] pro- 
vides a practical implementation of logic program- 
ming. A Prolog interpreter attempts to compute the 
meaning of program P on query r$ by applying the 
following procedure. Construct a tree whose nodes 
are sequences of atomic formulae, called goofs. The 
root of the tree is 4. Suppose a node contains the 
goal CL,, . . . , Z,, > , and there is a clause 

Cj :A c B,, . . . ,B, 

in P such that A “matches” Lt, or, more formally, A 
can be unified with Lt using unifier 8. Then the 
node has a child labelled with 

<8(B1), . . . .8(B,),8(L2), . . . ,e(L,)>. 

The children of a node are ordered according to the 
value of i in Cj. There are three kinds of branches 
in the tree: Success branches are those that end in a 
leaf labelled with the empty goal; fuilure branches 
end in a leaf whose leftmost literal cannot be unified 
with the left hand side of any clause; and infinite 

branches do not terminate. 

The Prolog interpreter searches this tree in 
depth-first order; whenever a leaf at the end of a 
successful branch is reached, the composition of all 
the substitutions 0 applied in the path from the root 
to this leaf is applied to the original query and the 
result is output. We will denote the result of this 
computation by 

pr (P,fb)* 

It can be shown that the above procedure is sound, 
that is, Pr (P,+) C P(+) for function-free programs 
[L]. However, it is not complete; that is, there are 
cases where the search procedure does not terminate 
and fails to find successful leaves that exist in the 
tree. 

2.3. The cut operator 

The cur operator, denoted by “l”, may appear 
anywhere on the right hand side of a clause. Cut is 
treated as the constant true, but it also has the fol- 
lowing side effect on the de@-first search pro- 
cedure. Suppose a failure branch is found in a sub- 
tree whose root node r starts with a cut. Let v be 
the lowest ancestor of r that does not contain a cut; 
then the whole subtree rooted at v is considered 
visited by the search procedure and it is not 
searched further. Note that, if the part of the tree 
that is not searched does not contain a success 
branch, the cut does not make the interpreter miss 
any answers that would be found without the cut. 
However, if the omitted part of the tree contained 
some infinite branches, the presence of the cut might 
cause some additional sound answers to be found, 
because the interpreter will avoid those infinite 
paths. 
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2.4 Functional DtptrPdtntits 

A fwtcrionaf dependency is a statement of the 
form A(xt,. . .,x,):x,,. . . . ‘xi,- xj6 The appear- 
ance of this functional dependency in program P 
means that if two tuples of predicate A agree on the 
i,‘th arguments, lls;k sp, then they also agree on 
the j th argument. In all that follows we assume our 
programs and databases satisfy the given set of func- 
tional dependencies; questions of how to enforce this 
constraint are outside the scope of this paper. 

- -- 

2.5. Binding Rulea 

A binding rule b for program P is a statement 
of the form 

A:i * lr...,Q. 

where A is an n-ary predicate that appears on the 
left hand side of some clause of P, and k 5; n. We 
say that P runs under b if in every execution of P, 
predicate A is invoked with the f,‘th, . . . . i,‘th argu- 
ments bound to constants. An input rule r for pro- 
gram P is a statement of the same form as a binding 
rule. We say that P runs under input rule I if when- 
ever P is run with goal A (xt, . , . ,xn), all the argu- 
ments xi*, . . . . xi, are constants. 

An input rule is a constraint provided by the 
programmer; it gives the system some information 
on how certain predicates will be used as goals. 
Given some input rules, it is possible to infer from 
them binding rules. Consider the following example 

EXAMPLE 1: Let P be the program below, that 
computes the transitive closure T of a binary rela- 
tion E: 

Cl: T (X,Y) - E(X.Y). 
C2: T fX,Y) - EfXZMfZJ’). 

C, will also have the first argument bound. lt follows 
that P will run under binding rule T :l. This in turn 
implies that it will run under binding rule E :l, 
because E always inherits its first argument from T . 

On the other hand, consider program Q: 

C,: T(X,Y) - E(X,Y). 
C2: T(X,Y) - TfZJ’bWZ). 

Note that this is logically equivalent to program P. 
From the same input rule, T :l, no binding rules can 
be inferred. In particular, Q will not run under bind- 
ing rule T :l, because the invocation of T in C2 will 
be with a free variable as first argument. 

Given a set of input rules I for program P, we 
say I implies binding rule b if whenever P is run 
under every input rule in I it necessarily runs under 
binding rule b. We will defer the problem of com- 
puting an approximation to the binding rules implied 
by a given set of input rules until Section 3. 

3. Inserting cuts _ 

Our method inserts a cut after a literal if the 
functional dependencies imply that the bound vari- 
ables for that literal functionally determine every 
variable in the literal that is used further to its right 
or that appears in the head of the clause. The idea 
is that backtracking to this literal again cannot make 
any difference in what happens to the right of it, 
since all free variables that are “live” must take 
exactly the same values again. We can show that the 
method is correct in the sense that the modified pro- 
gram computes at least all the tuples that the origi- 
nal one computed for the same query.? 

We shall use the following notation: 

A- B +*),...B !i (I,) . . . . , B, (x,). 
Suppose we are given the input rule 

is equivalent to 
T:l 

that is, we are told that this program will be used to 
compute all nodes reachable from a given fixed node. 
Since Z will always be bound to some constant after 
executing E (X ,Z ), we know the invocation of T in 

‘f------ ----_.---- 
Is some canes. the moditlcd program may achmIIy compute nar tuplcs than 

the original one, while remaining sound. 
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where cc is a predicate appearing nowhere else.. 

Given program P, input rules I, and set of func- 
tional dependencies F , let C, be 8 clause 

Let {zt,..., zp} be the set of variables that appear 
among the yij 'S and also appear as some Ye) for k > i 
or as some xl, * that is, the variables that appear both 
3:: arguments of Bi and either to the right of it or as 
arguments to the left hand side of the clause. Sup- 
pose that the input rules I implgthe binding-rule 

Bi :jl,. . . ,jq 

and the functional dependencies F imply the func- 
tional dependency 

Then replace Bi in clause Cl by B 4. 

This transformation can be shown correct in the 
following sense (we omit the proof to save space). 

THEOREM 1: Let PI be the result of applying the 
transformation above to program P. Then for any 
query 4 that satisfies the input rules I, 

Pr(P,4) CPr(P44) c P(4) 

EXAMPLE 2: Consider the program for comput- 
ing transitive closure from Example 1, but aug- 
mented with a functional dependency that constrains 
the relation to be a function: 

Efx,rj : x- Y. 
T(X,Y) - E(X,Y). 
TfX,Y) - EfXZh TfZ,Y). 

Suppose the input rule, as in Example 1, is T : 1, 
which implies the binding rules T : 1 and E : 1. Then 
the transformation can be applied to both clauses of 

the program, producing: 

T(X,Y) - E!(X.Y). 
TfX.Y) - E!fXZ), TfZ,V 

Intuitively, what our transformations have done is to 
take advantage of the fact that any node related to a 
given fixed node can be found by following the edges 
of E without backtracking. 

EXAMPLE 3: Consider the following program P, 
where a projecr (p ,m,c) tuple means employee c 
works for project p and manager m 
P* 

manages project 

project ( p , m, e) : p - m 
project ( p , m, c) : c - p 
project ( Turing, Ric, Jim). 
project (Turing, Ric. Sreve). 
salary (Ric, SOK). 
$igproj ( p ) - projectf p. m. 4. 

salatyfm, s), 
s> SOK. 

Suppose the input rule given is 
bigproj predicate defines those 

bigproj : 1. The 
projects whose 

manager makes more than 5OK. Suppose a query 
that satisfies the input rule, such as 

bigproj(Turing) 

is posed. After we find that Jim does work for pro- 
ject Turing but the project manager’s salary is not 
greater than 5OK, there is no need to look for other 
managers of project Turing, since the functional 
dependency tells us there are no others. Our 
transformation lets us replace project by projecr ! to 
reflect this fact. 

Note that the potential payoff in the last exam- 
ple is greater than that of the previous one. In the 
example above, we avoid examining every employee 
that works on a project once we determine that the 
project does not meet the query criteria. It is 
interesting to point out that the potential payoff 
comes from the inefficiency introduced by the data- 
base design: the project predicate is not in Boyce- 
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Codd Normal Form. 

It is also interesting to look at the case where 
the arguments of a predicate do not appear any- 
where to its right. Even if there are no functional 
dependencies, the method can be applied according 
to our definition. 

EXAMPLE 4: Consider the query “6rtd an 
employee who makes more than 20K and works for 
a department that sells something”: 

am (c) - de@ fe, 4, 
sells fd, P), 
salary fe, s), 
s> ZOK. 

Note that the variables in the sells literal do not 
appear to its right nor to the left of the arrow; 
therefore we can replace sells by sells!. The effect 
of this transformation is that, if an employee’s salary 
is not greater than 20K, we are not going to recheck 
his salary for each product sold by his department. 
Thus our method solves as a special case the “deep 
backtracking” problem mentioned by [SW]. It is also 
similar to the decomposition into independent sub- 
problems described in [WI. 

4. Computing the Binding Rules 

Given a set of input rules I for a program P we 
would like to compute the set of binding rules b 
such that I implies b. However, as is common in 
data flow analysis problems, this is impossible. In 
proof, suppose we want to test whether an arbitrary 
Turing machine, say the m th one, halts on the empty 
tape. Then we can write the following program: 

q(x) - P(X). 

4fM - T,,, , pfzJ. 

where T, is a predicate that succeeds if the m th 
Turing machine halts on the empty tape; otherwise 
the evaluation of T,,, does not terminate. Then the 
input rule q : 1 implies the binding rule p : I if and 
only if the Turing machine does not halt. 

For this reason, we compute instead a subset of 
all the binding rules implied by a set of input rules, 

by assuming that all hteraks tuat appear tn 8 clause 
actually get invoked in some execution, Fox our pur- 
poses, it is safe to compute a subset, since the fewer 
binding rules we have, the fewer transformations we 
can apply to our program. 

Given a program P and set of input rules I, we 
construct a graph G as follows. For each n-ary 
predicate A appearing in P, G has n vertices 
labelled At, AZ, . . . . A,. If A also appears as the head 
of some clause in P, G has n additional vertices 
labelled Af, for 15 i 5 n. These are called the I- 
vertices. There is also one special node, labelled ,I m 

An edge from A, to Bj in G intuitively means 
that the i th argument of A will be bound only if the 
j th argument of B is. There are three types of 
edges: 

1) If predicate A appears as head of a clause, there 
is an edge from Ai to A,! for each 15 is n . 

2) If a clause has head A and an occurrence of 
some predicate B in its body, and the j th argu- 
ment of A is also the i th argument of B, and is 
not an argument to any predicate -appearing 
before B in the body, thm there isan edge 
from B,- to Aj. 

3) If A occurs in the body of a clause and its ith 
argument is the leftmost occurrence of a vari- 
able in the clause, then there is an edge from A, 
to “I. Figure 1 shows the graph for the transi- 
tive closure program of Example 1. 

Let 6 be the acyclic condensation of G. Mark 
all A,! nodes such that the input rule P :i is in I. 
Now repeat exhaustively the following process: mark 
any non-l node if all its successors are marked. The 
following theorem shows that this method computes 
a subset of the binding rules implied by I. 

THEOREM 2: For each component C of 6 that 
is marked by the algorithm, and each A, c C, 1 
implies the binding rule A :i . 

EXAMPLE 5: Let us apply the algorithm to the 
graph in Figure 1, with the single input rule T :I. 
Since the graph is acyclic (except for the T2 self- 
loop), its acyclic condensation is itself. By the given 
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E’t l 

G 

Pigore 1 
input rule, we mark T{. It follows that T 1 and Et 
also get marked, and no other nodes. The result is 
that binding rules T : 1 and E : 1 are implied. 
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