
Functional Dependencies in Logic Programs

Alberta 0. Mend&on

Computer Systems Research Institute
University of Toronto

Toronto, Canada MSS lA4

Abstract

When logic programming is used for database
access, there is a need to improve the backtracking
behaviour of the interpreter. Rather than putting on
the programmer the onus of using extra-logical
operators such as cul to improve performance, we
show that some uses of the cut can be automated by
inferring them from functional dependencies. This
requires some knowledge of which variables are
guaranteed to be bound at query execution time; we
give a method for deriving such information using
data flow analysis.

1. Introduction

There has been much recent interest in the use
of logic programming languages for database access
[e.g. JCV,D,SW,U]. Some of this work deals with
the integration of existing or future database systems
with the logic programming component; another
approach, and the one we pursue here, is simply to
take a widely available logic programming system,
such as Prolog [CM], and try to use it for database
access without any further modification. It is clear
that there are many limitations in such an approach,
as discussed for example in [BJ]; but there are also
advantages. For applications where the databases
are small, or for quick prototyping of larger applica-
tions, or for interactive queries where data access is
localized and the database can be held in virtual
memory, the use of a widely available language such

Perlrrission to copy without fee all or part of this material is
tenanted provided that the copies are not made or distributed for die
reel commercial advantage. t,hc VLI)U copyright notice and the title
of the publication and its dat.e appear, and notice i given that copy-
iul: is by permission of the Very Large Uata Base Endowment. ‘I’o
copy (,(hrrwiue, or to republish, require* a fee and/or sperial per&-
siou from the F’ndowmrut.

as Prolog makes for systems which are easy to build
and maintain and easy to port.

However, as Warren reported [W], the rigid
backtracking behaviour of Prolog is inadequate even
for relatively undemanding database applications.
The logic programming community is well aware of
this problem and several proposals for sefecrive back-
tracking exist [BP,PP,KM]. In practice, Prolog sys-
tems provide a control primitive called cut that gives
the programmer some say in how backtracking is
handled. But the use of the cut or other extra-logical
control operators makes programs less declarative
and more procedural, partially defeating the goals of
logic programming. In this paper we propose to use -
declarative information providedby the programmer
in the form of functional dependencies to automate
the insertion of cuts. While this does not cover all
uses of the cut, we think it is a step in the right
direction. Our approach differs from the work on
selective backtracking cited above in that it requires
no changes to the Prolog interpreter and can be
implemented in a preprocessor.

For example, suppose we have a database with
the following predicates:

capital(A,C) : the capital of country A is city C
hq(X,C): company X is headquartered at city C
sales(X,S): company X sells S million dollars a year

We are interested in those countries whose capital
cities are headquarters for some company that has
more than 100 million a year sales:

big(C) - capital(CX), hq(Y,X), sales(YS), S> 100.

Now suppose we try to evaluate the query

bigfusa)

Prcjreedings crf VLDE 85, Stockholm 324

with the usual Prolog backtracking mechanum. First,
the capital predicate will be evaluated, binding X to
“Washington”. Suppose there is only one company
with headquarters in Washington, and its sales are
only 1 million. When S> 100 fails, the Prolog inter-
preter will backtrack to try to find another sales
figure for this company; when in turn this fails, it
will backtrack again and, failing to find another
company with headquarters in Washington, it will
try to find another capital of the U.S.A. Many ver-
sions of Prolog provide a control operator called cuz,
denoted “l”, that lets the programmer avoid these
unnecessary attempts to re-satisfy predicates that
cannot be re-satisfied. For example, we could write

big(C) - a(CX), hq(YX), sales(YS), S> J-0(?.
atCX) - capital(CX),!.

The effect of the cut in the a clause is to prevent
the interpreter from trying to re-satisfy a if any goal
to the right of it in the big clause fails. We can apply
the same transformation to the safes predicate and
obtain

big(C) - a(CSr),hqfYX),Q(Y.S), S> 100.
atCX) - capital(CX),!.

$fYS) + sales(Y $),!.

However, there is still one serious source of
inefficiency in the backtracking behaviour of this
program. Suppose there are 100 companies with sales
over 100 million headquartered in Paris; then the
query

big(france),big(usa)

will re-satisfy big(jrance) 100 times before failing.
Again, the cut is helpful in avoiding this as follows:

big(C) - atCX),yfYXS).
YfYXS) - hqfYX),$fYS). S> 100, .‘.

with a and p defined as before. The cut at the end
of the y clause means that, once a country has been
proven big, the interpreter will not try to re-prove
this in a different way.

What started as a clean logical definition of big
countries has become, through the introduction of
cuts, a complex program that can only be understood
procedurally. In this paper we propose to automate
this process by using functional dependency

statements to infer where cuts can be inserted. For
example, the introduction of a and p is allowed by
the fact that in cupital(CX), C functionally deter-
mines X, and in sales(YS), Y functionally determines
S. We would like the program to be written as fol-
lows:

cupitaf(CX): C- X
sales(YS): Y- S
big(C) - capital(C,X),hq(Y,X),sales(YS)S> 100.

and let the system produce the improved version.
The method we present handles the introduction of
a and l3, but not of y; this is actually the problem of
decomposition into independent subqueries that
Warren solved in [WI.

Note that, even though the functional depen-
dency hq(YX):Y - X holds, we have not used it. The
reason is that hq(YX) is invoked with the Y variable
free and the X variable bound; if sales(Y,S) fails, it
is in fact necessary to backtrack and find another
binding for Y, that is, another company with head-
quarters in city X. In fact, the introduction of a
and l3 preserves the meaning of the program only if
we are using big as a test, rather than as a generator.
For example, if the query is

big W 1

where W is a variable, and it happens that the first
country that appears in the capital predicate is usa,
then the answer will be empty. Thus the application
of our method requires some knowledge of which
variables are guaranteed to be bound on invocation
of each predicate. We use data flow analysis tech-
niques to obtain this knowledge statically.

In the next section, we formalize the concepts
above. In Section 3, we present the cut-insertion pro-
cess and show its correctness. In Section 4, we give
a method for computing the information on binding
of variables that is required by the cut-inserter.

2. Definitions

2.1. Logic Programming

A program P is a sequence of Horn clauses
Cl,.... C,. Each Ci is of the form

325

where k 2 0, and each Xi is either a variable or a
constant. The left hand side of the clause is also
called its head. We assume a function-free language.
We also assume that every xi appears on the right
hand side or it is a constant. In our examples, predi-
cates that do not appear in the head of any clause
are assumed to be database pedicures wholly defined
by ground clauses. A program can be viewed as a
first-order theory by interpreting “.- ” as logical
implication and universally quantifying all variables.

A query is an atomic formula

+ :G(zp . . . JJ
.-

where each Zi is either a variableor a constant. The
meaning of P on query d, is

P(&) = {<ct,. * . ,cp > I Ci is a constant Vi

and Pl=G(ct, . . . ,c,,)}.

2.2. Prolog

The Prolog programming language [CM] pro-
vides a practical implementation of logic program-
ming. A Prolog interpreter attempts to compute the
meaning of program P on query r$ by applying the
following procedure. Construct a tree whose nodes
are sequences of atomic formulae, called goofs. The
root of the tree is 4. Suppose a node contains the
goal CL,, . . . , Z,, > , and there is a clause

Cj :A c B,, . . . ,B,

in P such that A “matches” Lt, or, more formally, A
can be unified with Lt using unifier 8. Then the
node has a child labelled with

<8(B1),8(B,),8(L2), . . . ,e(L,)>.

The children of a node are ordered according to the
value of i in Cj. There are three kinds of branches
in the tree: Success branches are those that end in a
leaf labelled with the empty goal; fuilure branches
end in a leaf whose leftmost literal cannot be unified
with the left hand side of any clause; and infinite

branches do not terminate.

The Prolog interpreter searches this tree in
depth-first order; whenever a leaf at the end of a
successful branch is reached, the composition of all
the substitutions 0 applied in the path from the root
to this leaf is applied to the original query and the
result is output. We will denote the result of this
computation by

pr (P,fb)*

It can be shown that the above procedure is sound,
that is, Pr (P,+) C P(+) for function-free programs
[L]. However, it is not complete; that is, there are
cases where the search procedure does not terminate
and fails to find successful leaves that exist in the
tree.

2.3. The cut operator

The cur operator, denoted by “l”, may appear
anywhere on the right hand side of a clause. Cut is
treated as the constant true, but it also has the fol-
lowing side effect on the de@-first search pro-
cedure. Suppose a failure branch is found in a sub-
tree whose root node r starts with a cut. Let v be
the lowest ancestor of r that does not contain a cut;
then the whole subtree rooted at v is considered
visited by the search procedure and it is not
searched further. Note that, if the part of the tree
that is not searched does not contain a success
branch, the cut does not make the interpreter miss
any answers that would be found without the cut.
However, if the omitted part of the tree contained
some infinite branches, the presence of the cut might
cause some additional sound answers to be found,
because the interpreter will avoid those infinite
paths.

326

2.4 Functional DtptrPdtntits

A fwtcrionaf dependency is a statement of the
form A(xt,. . .,x,):x,,. . . . ‘xi,- xj6 The appear-
ance of this functional dependency in program P
means that if two tuples of predicate A agree on the
i,‘th arguments, lls;k sp, then they also agree on
the j th argument. In all that follows we assume our
programs and databases satisfy the given set of func-
tional dependencies; questions of how to enforce this
constraint are outside the scope of this paper.

- --

2.5. Binding Rulea

A binding rule b for program P is a statement
of the form

A:i * lr...,Q.

where A is an n-ary predicate that appears on the
left hand side of some clause of P, and k 5; n. We
say that P runs under b if in every execution of P,
predicate A is invoked with the f,‘th, i,‘th argu-
ments bound to constants. An input rule r for pro-
gram P is a statement of the same form as a binding
rule. We say that P runs under input rule I if when-
ever P is run with goal A (xt, . , . ,xn), all the argu-
ments xi*, xi, are constants.

An input rule is a constraint provided by the
programmer; it gives the system some information
on how certain predicates will be used as goals.
Given some input rules, it is possible to infer from
them binding rules. Consider the following example

EXAMPLE 1: Let P be the program below, that
computes the transitive closure T of a binary rela-
tion E:

Cl: T (X,Y) - E(X.Y).
C2: T fX,Y) - EfXZMfZJ’).

C, will also have the first argument bound. lt follows
that P will run under binding rule T :l. This in turn
implies that it will run under binding rule E :l,
because E always inherits its first argument from T .

On the other hand, consider program Q:

C,: T(X,Y) - E(X,Y).
C2: T(X,Y) - TfZJ’bWZ).

Note that this is logically equivalent to program P.
From the same input rule, T :l, no binding rules can
be inferred. In particular, Q will not run under bind-
ing rule T :l, because the invocation of T in C2 will
be with a free variable as first argument.

Given a set of input rules I for program P, we
say I implies binding rule b if whenever P is run
under every input rule in I it necessarily runs under
binding rule b. We will defer the problem of com-
puting an approximation to the binding rules implied
by a given set of input rules until Section 3.

3. Inserting cuts _

Our method inserts a cut after a literal if the
functional dependencies imply that the bound vari-
ables for that literal functionally determine every
variable in the literal that is used further to its right
or that appears in the head of the clause. The idea
is that backtracking to this literal again cannot make
any difference in what happens to the right of it,
since all free variables that are “live” must take
exactly the same values again. We can show that the
method is correct in the sense that the modified pro-
gram computes at least all the tuples that the origi-
nal one computed for the same query.?

We shall use the following notation:

A- B +*),...B !i (I,) , B, (x,).
Suppose we are given the input rule

is equivalent to
T:l

that is, we are told that this program will be used to
compute all nodes reachable from a given fixed node.
Since Z will always be bound to some constant after
executing E (X ,Z), we know the invocation of T in

‘f------ ----_.----
Is some canes. the moditlcd program may achmIIy compute nar tuplcs than

the original one, while remaining sound.

327

where cc is a predicate appearing nowhere else..

Given program P, input rules I, and set of func-
tional dependencies F , let C, be 8 clause

Let {zt,..., zp} be the set of variables that appear
among the yij 'S and also appear as some Ye) for k > i
or as some xl, * that is, the variables that appear both
3:: arguments of Bi and either to the right of it or as
arguments to the left hand side of the clause. Sup-
pose that the input rules I implgthe binding-rule

Bi :jl,. . . ,jq

and the functional dependencies F imply the func-
tional dependency

Then replace Bi in clause Cl by B 4.

This transformation can be shown correct in the
following sense (we omit the proof to save space).

THEOREM 1: Let PI be the result of applying the
transformation above to program P. Then for any
query 4 that satisfies the input rules I,

Pr(P,4) CPr(P44) c P(4)

EXAMPLE 2: Consider the program for comput-
ing transitive closure from Example 1, but aug-
mented with a functional dependency that constrains
the relation to be a function:

Efx,rj : x- Y.
T(X,Y) - E(X,Y).
TfX,Y) - EfXZh TfZ,Y).

Suppose the input rule, as in Example 1, is T : 1,
which implies the binding rules T : 1 and E : 1. Then
the transformation can be applied to both clauses of

the program, producing:

T(X,Y) - E!(X.Y).
TfX.Y) - E!fXZ), TfZ,V

Intuitively, what our transformations have done is to
take advantage of the fact that any node related to a
given fixed node can be found by following the edges
of E without backtracking.

EXAMPLE 3: Consider the following program P,
where a projecr (p ,m,c) tuple means employee c
works for project p and manager m
P*

manages project

project (p , m, e) : p - m
project (p , m, c) : c - p
project (Turing, Ric, Jim).
project (Turing, Ric. Sreve).
salary (Ric, SOK).
$igproj (p) - projectf p. m. 4.

salatyfm, s),
s> SOK.

Suppose the input rule given is
bigproj predicate defines those

bigproj : 1. The
projects whose

manager makes more than 5OK. Suppose a query
that satisfies the input rule, such as

bigproj(Turing)

is posed. After we find that Jim does work for pro-
ject Turing but the project manager’s salary is not
greater than 5OK, there is no need to look for other
managers of project Turing, since the functional
dependency tells us there are no others. Our
transformation lets us replace project by projecr ! to
reflect this fact.

Note that the potential payoff in the last exam-
ple is greater than that of the previous one. In the
example above, we avoid examining every employee
that works on a project once we determine that the
project does not meet the query criteria. It is
interesting to point out that the potential payoff
comes from the inefficiency introduced by the data-
base design: the project predicate is not in Boyce-

328

Codd Normal Form.

It is also interesting to look at the case where
the arguments of a predicate do not appear any-
where to its right. Even if there are no functional
dependencies, the method can be applied according
to our definition.

EXAMPLE 4: Consider the query “6rtd an
employee who makes more than 20K and works for
a department that sells something”:

am (c) - de@ fe, 4,
sells fd, P),
salary fe, s),
s> ZOK.

Note that the variables in the sells literal do not
appear to its right nor to the left of the arrow;
therefore we can replace sells by sells!. The effect
of this transformation is that, if an employee’s salary
is not greater than 20K, we are not going to recheck
his salary for each product sold by his department.
Thus our method solves as a special case the “deep
backtracking” problem mentioned by [SW]. It is also
similar to the decomposition into independent sub-
problems described in [WI.

4. Computing the Binding Rules

Given a set of input rules I for a program P we
would like to compute the set of binding rules b
such that I implies b. However, as is common in
data flow analysis problems, this is impossible. In
proof, suppose we want to test whether an arbitrary
Turing machine, say the m th one, halts on the empty
tape. Then we can write the following program:

q(x) - P(X).

4fM - T,,, , pfzJ.

where T, is a predicate that succeeds if the m th
Turing machine halts on the empty tape; otherwise
the evaluation of T,,, does not terminate. Then the
input rule q : 1 implies the binding rule p : I if and
only if the Turing machine does not halt.

For this reason, we compute instead a subset of
all the binding rules implied by a set of input rules,

by assuming that all hteraks tuat appear tn 8 clause
actually get invoked in some execution, Fox our pur-
poses, it is safe to compute a subset, since the fewer
binding rules we have, the fewer transformations we
can apply to our program.

Given a program P and set of input rules I, we
construct a graph G as follows. For each n-ary
predicate A appearing in P, G has n vertices
labelled At, AZ, A,. If A also appears as the head
of some clause in P, G has n additional vertices
labelled Af, for 15 i 5 n. These are called the I-
vertices. There is also one special node, labelled ,I m

An edge from A, to Bj in G intuitively means
that the i th argument of A will be bound only if the
j th argument of B is. There are three types of
edges:

1) If predicate A appears as head of a clause, there
is an edge from Ai to A,! for each 15 is n .

2) If a clause has head A and an occurrence of
some predicate B in its body, and the j th argu-
ment of A is also the i th argument of B, and is
not an argument to any predicate -appearing
before B in the body, thm there isan edge
from B,- to Aj.

3) If A occurs in the body of a clause and its ith
argument is the leftmost occurrence of a vari-
able in the clause, then there is an edge from A,
to “I. Figure 1 shows the graph for the transi-
tive closure program of Example 1.

Let 6 be the acyclic condensation of G. Mark
all A,! nodes such that the input rule P :i is in I.
Now repeat exhaustively the following process: mark
any non-l node if all its successors are marked. The
following theorem shows that this method computes
a subset of the binding rules implied by I.

THEOREM 2: For each component C of 6 that
is marked by the algorithm, and each A, c C, 1
implies the binding rule A :i .

EXAMPLE 5: Let us apply the algorithm to the
graph in Figure 1, with the single input rule T :I.
Since the graph is acyclic (except for the T2 self-
loop), its acyclic condensation is itself. By the given

320

E’t l

G

Pigore 1
input rule, we mark T{. It follows that T 1 and Et
also get marked, and no other nodes. The result is
that binding rules T : 1 and E : 1 are implied.

Acknowledgements

Thanks to Peter Wood for his helpful com-
ments.

References

WI

WI

PI

[JCVI

D-1

[~I

m

M. Brodie and M. Jarke, ‘On Integrating Logic
Programming and Databases,” Proc. First Int’l
Workshop on Expert Database Systems, 1984,
40-62.
M. Bruynoogbe and LM. Pereira, ‘Deduction
Revision by Intelligent Backtracking,” in Impfc-
menrutionr of Prolog, J. Campbell (cd.), Ellis-
Horwood, 1984.
W.F. Clocksin and C.S. Mellish, ‘Programming
in Prolog,” Springer-Verlag, 1981.
V. Dabl, “On Database Systems Development
through Logic: ACM TODS 7:1, March 1982,
102-123.
M. Jarke, J. Clifford, and Y. Vassiliou, “An
Optimizing Prolog Front-End to a Relational
Query System: Proc. ACM SIGMOD 1984,
2%306.
J.W. Lloyd, Foundations of Logic Programming,
Springer-Verlag, 1984.
M. Kohli and J. Minker, intelligent Control
Using Integrity Constraints,” Proc. AAAI
Conference, 1983, pp. 202-205.

L.M. Pereira and A. Porto, “Selective

[SW

WI

[WI

Backttackingg in tigic Programming, Yc. Clark
and S.-A. Tamlund (eds.), Academic Press,
1982.
E. Sciore and D.S. Warren, “Towards an
Integrated Database-Prolog System,” Proc. First
Int’l Workshop on Expert Database Systems,
1984,801.815.
J.D. Ullman, ‘Implementation of Logical Query
~o~;~~ for Databases,’ Proc. ACM SIG-

D.H.D. Warren,
Interactive

‘Efficient Processing of
Relational Database Queries

Expressed in Logic: VLDB 1981,272-281.

330

