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The I/O bottleneck r 
problem in architectures hat have b:enmp?oT T 

esents 

posed to zmplement hard database operatzons 
such as join and 
that solutions to t K 

rejection. It is recognized 
is problem cannot be based 

on new database machine architectures alone 
if satis actory 
attaine d 

performance 
A case in point is * ?ii 

oak are to be 
u&rated b the 

comparison ?u? a in- 
stream 

of cellular/associa.tive 

t 
ipeline based architectures. A metho- 

dology ased on a global order pr;~~~in.g annd 
dynamic partitioning is 
relevance of this approach to tE solution of the 
I/O bottleneck problem is demonstrated 
through the eflicient parallel processin of the 
join and proJection operations. FEna y, B this 
m.ethooToLogy is incorpoTated into a s eci c 
database machine architecture; name y, he iv 
RAP.3 database machine. The Dartittinina 
strateg has beenprevioustyproue;to be S-I&~- 
rior to he other known methods. Y 

1.OINTRODUCXON 
Historically, the bottlenecks besetting the 

Von-Neumann architectures were primarily 
remedied by introducing parallelism and/or 
pipelining to support decentralized 
of both numeric and non-numeric % 

recessing 
ata How- 

ever, the centralized processing nature of the 
architecture was not the only cause of 
bottlenecks. Indeed, other sources included the 
semantic ga 
hand and R 

s existing between the problems at 
t e architecture, which could not 

handle high level programmi 
the location based addressing. yin 

concepts, and 
is latter prob- 

lem resulted in the maintenance of various 
access paths to allow associative reference 
which could not be supported directly other- 
Wk. 
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In the area of database management sys- 
tems, the roblems outlined above have finally 
led to deve P opment of database machines based 
on parallel architectures, the majority of which 
are associative, These machines 
level data languages geared towar CQ 

rovide high 
s direct sup- 

port of one or more data models, and because 
of their associativity, eliminate the access path 
problems. These features help close the seman- 
tic gap of the Von Neumann architecture. 

The “Y? 
research in database machines 

has broug t orth a variety of architectures 
and their performance assessments. The field 
has finally matured to realize the importance of 
the I/O bottleneck problem [Ozkarahan, 19831 
which has so far plagued all the architectures 
which implement hard database operations 
such as the binary relational algebra operation 
of join and the unary operation projection. At 
first we have seen numerous proposals such as 
in-stream pipelined processing, multiprocessor 
architectures connected in a tree network 
which offered sublinear communication paths, 
and finally those based on the hi 

f 
h density of 

FJGy PI desi ns found t e rescue in 
bits an cf 

and the Tll 
/or circuits into a chip; 

‘gher the crammability the higher 
went the hopes for a solution. 

After these efforts, the researchers have 
come to recognize that there is no simple archi- 
tecture solution to the problem of mapping an 
arbitrary large memory space to a finite one 

1 
such as the memory of a database machine). 
n other words, we are realizing that efficient 

support of a virtual address space cannot 
come through the brute force approach of 
building larger and more clever architectures. 
Clearly, the problem lies elsewhere. Indeed, the 
effect of the I/O bottleneck 

P 
roblem can be 

reduced through the design o efficient parti- 
tioning of the data space in such a way as to 
exploit both clustering and parallel processing. 
In the rest of the paper we start. first by corn- 
paring the basic database machine arclutec- 
tures and their relative performance in join. 
Then, we introduce a dynamic, order reserv- 
ing partitioned file structure and show K ow one 
can exploit such an or anization in database 
machines. Finally, we 5 emonstrate how one 
can utilize this partitioning in database opera- 
tions by demonstrating the processing of hard 
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operations of join and projection. 

20 DATABASEl MACHINE ARCHl’TECT- 

and therefore make them the topic of our dis- 
cussions. In the former, we have parallel pro- 
cessors (cells) that make up the database 
machine whereas in the latter the architecture 
is geared towards in-stream processing (e.g., 
searching, sorting) in pipeline. In the latter 
cate 
can % 

ory although the sort and search engines 
e connected in a network and operate con- 

currently, the entire purpose is to achieve I/O 
s nchronous 
T-l 

e.g., as high as 3 Mbytes/set 
c annel speed f processing. 

The ar ument in the in-stream architec- 
tures has % een that they can bring down the 
join complexity of the nested-loop based archi- 
tectures from O(n2), for n data items or tuples 
(i.e., relation cardinalit 
portional to nlogn by t K 

) to a scale that is pro- 
e virtue of sorting. At 

this point we can 
5; 

oint out the followin about 
‘oin processing an 
1 

database machines. % ‘ested 
oop ‘oin processing and sort-merge based join 

(hijn w c can be the typical way how a join is pro- 
cessed in a uniprocessor) are the two distmct 
ways of performing join in database architec- 
tures. In a resident database, that is if the 
entire database can be kept m the database 
machine memory, the ‘oin complexity can be 
kept as low as O(L). This is due to 
associative/parallel search within the database 
machine. In nonresident databases however this 
complexity reaches O(n2) due to I/O bottleneck 
(i.e., the bottleneck caused by excessive and 
repetitive paging/staging of data into the 
database machine). This complexity cannot be 
blamed on the t e of the database machine or 
the nested loop a gorithm however. Despite the Yp 
desi n of numerous architectures, the I/O 
bott eneck f remains the major shortcoming. 
Before we talk about the sort-merge based join 
let us point out that the performance of join in 

the cellular/associative systems with resident 
database is su 

L 
‘oin due to O(n P 

erior to the sort-merge based 
complexity of the former which 

enefits from parallelism and associativity. The 
sort-merge jam, which is the typical way of 
doing a join m a uniprocessor, has a theoretical 
complexity of c.n.logn where the very lar e value 
of the constant c makes such a join in easible. 
The in-stream and pi 

P 

to alleviate this 
elined architectures he1 

8 
rob em b P 

of searchers an sorters t ic 
utilizing a networ i: 

at operate in pipe- 
line. These architectures are also not immune 
to the I/O bottleneck problem because, at best, 
they have been demonstrated to keep pace with 
the channel speed. This s 
channel bandwidth, there ore, the performance P 

eed is limited by the 

of in-stream architectures is also limited unless 
further parallelism is exploited. We can quote 
the following relationships from [Ozkarahan, 
19851: 

O(ig- + t,~logN) : O((IscAN + tlo). ,” 2, 
Ii 

(1) 

where 
N = number of data items (i.e., tuples, relation 
cardinalitv) 
n = nu-tiber of pye;;;;ors (cells 
cellular/associative 
machine) 

(i.e., dat2asZ 

= time to process one data item in a serial 
krocessor 
hAN = time to complete processing (i.e., one 
memory scan or cycle) in the 
cellular/associative device 
txo = paging time to load data in the 
cellular/associative device 
40 = channel bandwidth in the in-stream dev- 
ices 
p = number of parallel in-stream devices 
RIO = read/write time a unit of data, includin 
seek time, in a secondary rriemory device sue a 
as disk 
AC= average number of attributes (on which 
fast access path structures are kept) updated 
in an operation 
S = average number of values updated in an 
attribute update 
WU = proportion of updates with respect to 
overall transaction volume 

In the above complexity expressions, 
expression (1) represents an in-stream archi- 
tecture on the left and a nonresident 
cellular/associative architecture on the right 
for a join operation. As can be noticed, the cel- 
lular architecture is thrashing due to I/O 
bottleneck. The assumed join model is the 
nested-loop algorithm. In expression (2) w-e 
show the needed duplication of in-stream archi- 
tecture to build parallelism so that the left 
side of the expression becomes less than 01 
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equal to the cellular counterpart on the right. 
Expression (3) must be added to the previous 
corn lexity expressions if any one or both of the 
data ase g machines represented by these 
expressions resort to access paths (as opposed 
to full associativity) in their operations. In 
other words for correct modeling of perfol- 
mance we should not ignore the e ensive 
operation of access ath maintenance. 2 
sion (4) assumes arc %I ‘tee tural enhancem%ei? 
the form of cache memory to provide staging to 
be overla 
ing. In t R 

ped with database machine process- 

overla 
‘s case,. only the maximum of the 

R 
ped quantities in both sides will deter- 

mine t e complexity. 
As to the choice of architecture, the archi- 

tect has to determine the cost of each architec- 
ture in view of the variables that will remain 
fixed in the above expressions and substituting 
alternatives for the remainder and computing 
the cost at the .desired level of the 
E;i;e relationship between the left an z 

erfor- 
right 

In the following, we will present an order 
preserving d namic space partitionin 

Ix 8 
scheme 

that can e ante the in-stream an cellular 
architectures discussed above. More 
specifically, the partitioning to be 

rr 
resented 

will impact the values of p and n for the 
respective architectures. The degree with which 
p or Fis effected will not be the same however. 
We will come back to this issue after we present 
our partitioning scheme. 

3.0 DYNAMIC AND ORDER PRESERVING PARI’I- 
TIONING 

Various partitioning methodologies ma be 

g 
m-sued to enhance the performance of B ata- 
ase machines including semantic clustering, 

sorting, hash based filtering, hash based clus- 
tering, coarse indexing, in-stream filtering, file 
segmentation, and staging/ a ing that exploits 
locality of references I? Oz arahan, 19851. 
Semantic clustering emphasizes the conceptual 
modelin 

fl 
task. At this level, the concern is 

about t e choice of attributes composing a 
record type or the terms assigned to describe 
documents in unformatted databases. The 
other types of partitioning deal with the ph si- 
cal partitioning of the data space. Unlike ot i er 
schemes proposed so far to deal with data par- 
titionin the method presented and also 
referre 5 to as The Interpolation Based Grid .PiLe 
[Ouksel, 1984a] is clearly a multidimensional 
partitioning structure in the strict sense which 
offers very efficient filtering, clustering, and 
global sorting capabilities. In varyin 
relates to extendible (dynamic) a 

degrees, it 
ashing, B- 

trees, dynamic multipa in , 
B-trees, K-D-B trees, mu ti or uni) dimensional “1f 

multidimensional 

linear and /or dynamic hashing, interpolation 
based index mamtenance, and the grid file-- 
refer to [Ouksel and Scheuermann, 19831 for 
references and detailed comparisons. However, 
;ger;artitioning methodology described below 

sigmficant advantages. Logically, it 

corresponds to a dynamically maintained and 
order preserving direct file organization. Some 
characteristics and advantages 
g;tit.o;$ methodology are: ( 

rovided by this 

ai 
P rom this. pojnt 

refer to it as DYOP Partitaonang 
which stands for Dynamic Order Preserving Par- 
titioning.) 

Search time is constant (typically two, 
one for the directory and one for the 
data file). 
Directory and data file have identical 
structures and search characteristics. 
i;e;;vrflow buckets or chaining are 

Directory and data file partitions can be 
stored anywhere because their file 
addresses are kept in the directory 
(directories can expand into a multi 
level hierarchy). 
No distributed free space needs to be 
kept in the directory and the data file. 

b) 

4 

4 

4 

to [Ouksel, 19&a], [ Ouksel, 1985b]. 4%e’%% 
The DYOP artitioning methodolo ’ 

partitioning methodology is illustrated below by 
exhibiting the behavior of the data file and the 
directory through repeated insertions of data 
records. 

3.1 DYOP Data File 
The data file can be envisioned as an n- 

dimensional space where each dimension 
corresponds to an attribute A, (~i<n-1, n being 
the number of attributes (fields) in a tuple 
(record). This means that search space 
corresponding to the relation (file) will be the 
carteslan product of the domains underlying 
the attributes. For clarity we shall restrict our 
structure to the two dimensional case (i.e., 
DOxDl, not necessarily distinct, for the attri- 
butes A0 and A,). A record r will correspond to a 
vector r = (vo, v1 ) in the search s ace where vo, 
1/I are the values taken from t e K 
domains 

respective 
D and D The data file is the set of 

partitions P or but ets) t obtained through the 
repeated subdivision of the search space. Again, 
for simplicity, we shall assume a partition size 
of 2 records. Let us start with a data file con- 
taini only two records hence a si 
tion. Yhl 

le parti- 
‘s is shown in Figure l(a) w ere % the 

number of the only partition zero is indicated in 
the lower left corner. In the file the partitions 
are numbered in the order in which they are 
created. In the figure the axes correspond to 
domains and the su erscripted domain vari- 
ables (0:) represent t K e current set of possible 
coordinates which are later used to build the 
directory. As will be shown later, the file system 
can be considered as a hierarchy of directories 
since the data file and the directory have the 
same structure. The data file is considered as 
the lowest level directory and thereby explain- 
ing the superscript zero. 

Now if we insert a third record into the file 
an overflow will occur and the partition must be 
split along one of the dimensions (or inter- 
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Fgure 1. The data file 

changeably, along one axis or coordinate). We 
shall adopt a cyclic order 
the splitting axis (others w 

olicy for choosing 
R ‘ch permit a ran- 

dom choice are discussed in 
Hence, we will split partition # L 

Ouksel, 19831). 
along Do. This 

s 
r 

lit will be made by halving the ordered range 
o D,, values hence maintaining the linear order 
within each resulting half. At this point since a 
single partition corres 
of domain Do the sp it will occur at 1 DoI / r 

onds to the entire ran e 
5 . 

According1 , 
5 

all those records whose v. is less 
than I DoI / will remain in partition #0 while all 
those up I DoI 12 will be assigned to a new parti- 
tion, partition #l. Figure l(b) shows the split. 
The partitions are numbered 0 and 1 and so are 
the coordinates of the partitions (i.e., while 
they were both 0 in Figure l(a), after the split, 
the Do subranges are numbered 0 and 1). As 
shown in Figure l(c), another insertion into par- 

tition #1 will cause it to split, but this time 
along D1 according to the cyclic order of split 
axes. We must emphasize here that a split of a 
given partition along a given axis trig 

B 
ers the 

implicit splits alon the same axis o all the 
other partitions. T k ‘s type of s lit is termed 
implicit because no physical P sp its occur. The 
pur ose of this strategy is to 
uni ormity that will permit P E 

rovide logical 
t e systematic 

numbering of partitions presented later. That is 
a unique mapping will exist between the coordi- 
nates of a 
The split ta R 

artition and its assigned number. 
es place in a linear order where all 

partitions are split in the order they are impli- 
citly or e 
numbering T 

licitly created. Apart from their 
owever, there is no other effect on 

the im licitly split (i.e., unconcerned) parti- 
tions. & ey will only be identified as implicit 
partitions and stored in (i.e., physically 
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assigned to) a common e 
referred to as the embed “a 

licit partition. This is 
ing of implicit parti- 

tions in explicit ones. While Figure l(c) shows 
implicit splitting and linear numberin 
tit and explicit partitions, Figure 
only the explicit partitions. 

1 d) shows 4 
of imp& 

I! 
2, 

Consider adding a fifth record into partition 
Partition #2 will still remain implicit 

ecause the insertion did not cause partition 

in 
0, in which partition #2 is embedded, to split. 

other insertion into the same partition re 
it 

ion 
will make partition #2 explicit. And this will ap- 
pen without triggering another round of splits 
m the search s ace 
a previous P $ sp it). 

i.e., it will only account for 

increase in the ma 
his prevents unnecessar 

8 
nitude of coordinates whit ic 

in turn keeps the irectory simple and smaller. 
If we continue with insertions some partitions 
will require splittin , 
tion #3 in Fi ure 1 

as is the case with parti- 

time the f 
f e). In the cyclic order, this 

sp it occurs along D,,. However, the 
split will occur either at l&,1 /4 for those 
records whose voclDol /2 or at 31Do /4 for those 
records whose v+)Dol 12. Figurznld 1 e) shows the 
linear artition 

s 
s litting 

igure l(f) s R 
numbering 

whereas ows only the explicit par- 
titions. As can be seen in Figure l(e), the split 
along a dimension is propagated to all the 
other partitions along the dimension even 
though only 
creates the a cf 

artition #3 has overflown. This 
ditional implicit partitions of 4, 5, 

and 6. Note also that the linear numbering of 
partition numbers is satisfied within the split 
axis as the major order and then within the 
other axis as the minor order (i.e., the order of 
partitions is 4, 5, and then 6). 

In our partition assignment scheme we 
assign the lowest number to an explicit parti- 
tion which may contain multiple implicit parti- 
tions (e.g., Pi,, Pi,, ,.., 4) so that the assignment 
can be shown as Pi,& Pi , Pi,, . , Pi. where esm. 
and m is the total nurnger of partitions in the 
data file. We say that the implicit partitions Pizv 
f+ . . . . Pi. are embedded in the explicit partition 
pil, 

3.2 DYOP Directory 
As we mentioned earlier DOD and 0: indicate 

* 

x(10.1) 

r(ll.1) 

the sets of coordinates along the axes of the 
data file. Accordi 
represents the coor Y 

ly, the vector rO=(@,dp) 
inates, in binary form, of 

partitions in the data file. For example, in Fig- 
ure l(f) (10,l) represents the two coordinates of 
partition #3 while the one associated with parti- 
tion #0 is (00,O). The directory is made up of 
records which store coordinates of the data file 

E 
artitions. The length of any ,O is determined 
y the number of splits taken p ace 4 along 0,". In 

the following we show the construction of the 
directory for the data file example illustrated 
above. As we already know the data and direc- 
tory file structures are identical; however, 
since we can store more directory records in a 

constitute the basis for the 2nd level directory 
in the same wa the first level direct0 
from the data x x 

is built 
e. We stop building hig er level 

directories when the number of partitions in 
the hi 
ing at B 

hest level directory is e ual to one. Look- 
igure 2(a) we see that t Ti e directory par- 

titian #0 needs to be split because the partition 
size is 3. The split starts al0 

“a 
the D&' axis. The 

linear order in the range of t e split axis must 
be preserved in the same way as in the data file. 
Therefore, when we split alon 000, those 
records whose coordinate i.e., Db prefixes are 

6 t a 1 (i.e., 10, 11 correspon ing to ‘gher values 
in the range are moved to a new partition. This 
is illustrate d in Figure 2(b) where the new parti- 
tion is numbered 1. 
According to our directory structure, the direc- 
tory record (10, 1 
f?le partition #l wil 1 

which represents the data 
itself be addressed as (l,O), 

i.e., directory partition #l, in the higher level 
directory. In general ~~=(dt, d:, . . . . @-,) 
represents the coordinate vector of the hth 
level where o&<mazh and #=p(@-l.hh) for %i~n, 
where n is the number of dimensions, and 

Figure 2. The directory 

362 

(b) 



~z%mazh where p(s,l) denotes the prefix of 
length z of binary string S. Note that no records 
are kept in the directory for the implicit data 
8le partitions because as we will show later we 
can determine the explicit partitions embed- 
ding the implicit ones without additional direc- 
tory accesses. 

The DYOP partitioning scheme is inspired 
from the Inter 

A 
Burkhard, 19 31 iii 

olation Based Index Maintenance 
or the Grid File [Nievergelt, 

interberger, and Sevcik, 19841. However, the 
structure that ultimately emerged is different. 
This is becauife DWFh CO;~~JES atv~d~esu-able 
properties their 
shortcomings. In the Interpolation-Based Index 
Maintenance no directory is needed and splits 
in the data file are delayed by adding overflow 
chains to file partitions. And when splitting 
becomes necessary, all partitions are s lit 
including those non-overflowing ones. In t ‘s R 
scheme the space growth is worse than that of 
DYOP partitioning and furthermore overflow 
chaining deteriorates search time. In the rid 
file, the directory space requirement is at % est 
a super-linear function and at worst an 
exponential function of the number of records. 
In DYOP however, the restriction to split only 
overflowing partitions uarantees a linear func- 
tion. The differences % etween the DYOP parti- 
tioning and the other related organizations we 
have mentioned at the be 
damental and documente 8 

inning are more fun- 
in detail in Ouksel, 

L 1983a-J. It is important to note that unli e mul- 
tike structures such as K-D trees or K-D tries, 
DYO$ is symmetric with respect to any of the 
attributes. Moreover, the directory structure 
has the same organizational pro erties as the 
data file; hence it also takes a CQ vantage of all 
the benefits. 

3.3 Storage Addressing of DYOP Partitions 
Due to the linear order of splittin of the 

implicit and ex 
a 

licit partitions in the D ItI P files, 
we are able to 
unique number-i 

educe a mapping which allows a 

a record 7’s (r= Y 
of partitions. In the data fle, 

vD, vl, . . . . v,-,)) ith component 
vi will have a relative position zi = vi / 10% ; in the 
correspondi 

3 
ordered set 0,. As we know, this 

record 7 will e represented in the director b 
the coordinate vector dC= 
gives us the coordinates o ! 

d$, dp, . . . . &L1) wl2cX 
the partition storing 

the data record 7. These coordinates are given 
by : 

4” = b,.2Lp] for 0535X-l (5) 

To compute &“, it suffices to know the number 
of splits ho, occurred along the 0," axis. This in 
turn can be determined as follows: Let 1 be the 
number of times the whole search space has 
been split. If the splitting order was c clic \fay 
it can be expressed as ~O,n+rn imp yin Y 
&O=LO + 1 s 
LKilm an l? 

lits occurred along axis i sue ?I that 
LO splits along axis i such that 

m<i<n-1. That is, at a given time we may not 
have completed the full round of splits along all 
the axes involved and some axes will remain 
unsplit for the current cycle. Let also 6; for 
~j<ll (where 1’ also corresponds to the binary 

string le th of the prefix of the ith coordinate) 
be the jt binary digit of dp. Then the number Y% 
of the partition storing the data record 7 can be 
obtained from : 

where Go = 
Lo+1 if [KiS;n 
Lo othmwise (6) 

The 
f: 

artition number M does not 
&TX;ntia e between explicit and. implicit par- 

. Because implicit partitions are not 
represented directly in the directory we must 
have a way of mapping coordinates of implicit 
partitions to the same directory partition 
representing the explicit partition in which the 
given im licit one is embedded. Only in this way 
can the irectory search be resolved by a si B le 
access. This is accomplished by the use of t “a e 
same M function. This time, it is used to find the 
directory artition which contains the coordi- 
nates of t R e exnlicit data fle nartition embed- 
ding the implicfi target partitions. The following 
relationshios have been shown to hold for the 
DYOP partiiioning: 

If II represents a partition number then all 
the partition numbers for the partitions that 
may possibly contain partition II is given by: 

&&., . l&, is the binary representation of n 

If we re resent the coordinates of an impli- 
cit and exp icit partition at the hth level direc- P 
tory, res ectively, 

cf 
by ~-~l and rhz, then there 

exists an integer k such that: 

p(~~,Lf")=p(~~,Lf+~) for h<k<m.uzh andSign-1 

This is a consequence of the previous rela- 
tionship. The explicit artition number M(rheJh ) 
is stored at the (h+l P th level directory whose 
partition number can also be obtained by rhl. 

3.4 A Retrlevel Example 
Given a record r = (vo, vl, . . . , v,-,) and the 

number of times the entire search space has 
been split (i.e., r=~.(n-l)+m) we must determine 
the address a0 where the record r is stored. To 
do that we must determine the following: 
a) 
b) 

c) 

d) 

Compute r. 
Compute T*, r2, . . . . r”-‘, stop when you 
obtain a directory consisting of a single 
partition (i.e., ri = (0,O)) which corresponds 
to the top directory. 

number is M (rmarh- , 
Search top directory p?$)ion whose 

u-i mam 
memory to obtain the address =,-h-z of the 
partition whose number is M (rmnzhm2, I~-*) 
or the one it is embedded in. 
Search lower level directories from k = 
maxh - 2 to 1. In each search, search the 
partition at the address a, for the address 
associated with partition M(rk-l,lk-‘) or the 
one it is embedded in. 
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1). 
The number of file accesses will be O(maxh- 

Let US assume that we want to retrieve 
record r = 
Dl=80, 1°=3, 1 t 

37500,lO) 
~2, 

and that Do = 50000, 
and 12=0. Our search s ace is 

two dimensional, maxh=3, and the level 3 direc- 

After this we determine the partition 
number M(r2,12) of the to level dg;tory which 
comes out as M( O,g)=O. ’ number 
corresponds to a 2 in main memory. At this 
address we determine al, the address of the 

artition Y(rl,Z1) or the 
!ii (7l.Z’) evaluates to 1. R 

artition embedding it. 
the lower level direc- 

tory we search the partition at the address a, 
for the partition whose number is calculated to 
be ~.f(rO,1O)=5, or the one it is embedded in. The 
address a0 found at this oint corresponds to 
the address of the data le partition in which R 
the record r=(37500,10) is stored. The trees 
shown in Figure 3 abstract the s lits that took 
place al0 
see the sp its in the lower directory and in Fig- T 

the dimensions. In P igure 3(a) we 

ure 3 
data iii 

b) we see the splits that took place in the 
e. Each level in the trees corresponds to 

a split along an axis. If the splits, which 
preserve order, are labeled with 0 and 1 along 
the branches of an ordered binary tree, then 
the binary string formed by concatenating the 
branches along the path from the leaf associ- 
ated with a partition to the root would give US 
partition number(s) we have determined by 
using M in expression (6). ln the figures, those 
partitions are circled at the leaves and the 
paths are indicated in bold. 
4.0 PARTITIONING F’OR DATABASE MACHINES 

Although DYOP partitioning is used for 
direct addressed files, we can adapt it for space 
partitioning in database machines. The only 
parameter to vary will be the partition size 

which will be very large in the case of database 
machines. To give an example, consider RAP.3 
database machine which is a cellular associative 
device. Each cell of RAP.3 machine has a cell 
memory capacity of 1 to 2 me abytes. There- 
fore each load of a 16 cell I&& .3 device will 
require database chunks of 16 to 32 megabytes. 
Each chunk will be a DYOP partition. 

If we consider an in-stream architecture we 
need not make partition size that large. How- 
ever, a small artition size will have adverse 
effect on data s andwidth provided by archive 
stora e 
disk % 

(e.g., disk(s)). In the case of a singIe 
rive, the larger the partition the higher 

will be the bandwidth because of continuous 
read out from contiguous disk locations. The 
smaller the partition the lower is the bandwidth 
because of frequently intervening disk seeks 
between partition accesses. To overcome that 
we may devise an interleavin p a d 

lexin scheme b using multi e disks. There- 
; and/or multi- 

ore, t e type of atabase mat ine architecture 
will determine the partitioning strategy; how- 
ever, multiple disks will be preferable regard- 
less of the type of architecture. 

We can compare DYOP partitioning with the 
other similar methodolo ies. S 

fl P 
eciflcally, if we 

take the 
the GRAC 

artitioning by ash c ustering used in 
t architecture the following comparis- 

ons can be made. First let us describe the 
GRACE method. Figure 4 shows this method. 

As can be seen from the figure, in GRACE 
the data are not filtered but tagged with hash 
codes which scatter in space. Afterwards, com- 
patible codes are gathered and distributed to 
various modules to absorb the nonuniform vari- 
ation in the generation of hash codes. 

In DYOP partitioning, because the global 
order is 
Figure 4 a), P 

reserved the space reduction shown in 
which is a logical picture, is also 

preserved physically. This allows us to filter off 
the outer incompatible regions of the data 
space and therefore greatly alleviates the 
problems of insufficient bandwidth and/or 
memory space eithe 
More specifically, the 

sions (1) through (4) 

to the linearing effect of join space reduction 
and order preservin 
words, because of or cf 

partitioning. In other 
er a partition will not be 

joined with incompatible partitions. We will 
show how to utilize DYOP partitioning in join 

0 4 2610 37 

(4 (b) 

Figure 3. Split directions and partition numbers 
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Relation S 

A 

Relation HASH 

El- 
(a) Join space reduction 

MEMORY 
UODCLES 

4. Hash based 
and rejection after we take a brief look at the 
RAP.5 architecture. 

5.0 RAP.3 ARCHITECTURE 
The RAP.3 database machine [Ozkarahan, 

1982, 19851 has evolved from its 
which were called RAP.1 and R A? 

redecessors 
.2. Basically, 

RAP.3 adapted controllable memories (latest 
version of It used RAM’s) to be used in the cell 
memory and mapped its cellular structure into 
a two dimensional parallelism. The result was 
to bring the parallelism of the cellular struc- 
ture down to a modest value by compensatin 
the decrease in cell parallelism with intra-ce ff 
parallelism. In other words, each cell is made 
up of arallel subcells where each subcell has 
the f L!i 1 functionality of a cell.This intra-cell 

E 
arallelism enabled us to replace the specially 
ardwired logic with commercial microproces- 

sors and firmware based uery execution. The 
net effect was not a slow 8 own, because of the 
two dimensional parallelism, but corn lete elim- 
ination of all ossible rigidities and imitations 

R 
P 

imaginable wit the RAP. 1 or RAP.2 designs. Fig- 
ure 5(a) shows the overail RAP.3 system archi- 
Eyecgd Fi 

.Ti 
ure 5(b) shows the internals of a 
e following concepts should be 

noted: The RAP.3 system does not believe in 
the “backend slave” concept, but rather 
believes in GPNV (general purpose nonnumeric 

a network of com- 
indirect database 

alternative to it in 
and therefore the need for space par- 

titioning, in-stream filteri 
processmg) staging by t ‘e use of cache “a 

overlapped (with 

memories and processor-memory swap switch. 
That is, the cell processors must be able to 
switch between active and cache memories. 
While an active memory is processed, the cache 
must be staged in at the background and at the 
swapping point the roles of active and cache 
memories must be interchanged. In Figure 

~0 yxo 
* p 0 

b) 

clustering in GRACE 
5(b), each subcell has enough local memory (8~ 
bytes) to hold a tu 

B 
le, 

such as the sorte 
the query code, and data 

contents of a batched tran- 
saction operands or source relation ‘oin attri- 
bute values in a semi-join (CROSS-MA l4K ) opera- 
tion. The DMA is a specially built hardware that 
eliminates I/O polling by the subcell micropro- 
cessors so that these processors either process 
their tuple contents or sit in a wait state until 
awakened by the DMA to continue processing in 

h actuality the wait state seldom occurs with t e 
exce tion of start-up) 

R 
The RAP.3 database 

mat ‘ne has a universal instruction set and also 
“hardware macros” for some operations such as 
projection, cross-mark (semi-join) execution, 
and batched transaction processing. In the next 
section we will demonstrate the use of DYOP 
partitioning in conjunction with the RAP.3 
architecture and its hardware macros for doing 
join and projection operations. 
6.0 JOIN AND PROJECTION WlTH PARTITIONING 

Below, we describe the use of DYOP to 
implement the join and projection operations. 
More elaborate algorithms concerning these 
binary relational database operations and oth- 
ers such as the ine ualit join and the m-way 
join are treated in [&se{ 1985b]. In the sank 

;k,$ h 
the inherent parallel properties of the 
sc eme is demonstrated through the 

design of parallel algorithms to execute these 
relational database operations independently of 
any specific architecture. 

6.1 Equijoin 
The join methodology we will describe here 

is 
f 

eneral i.e., can be used both for semi-join 
an join. The difference comes in the wa parti- 
tions are processed in the database mat x ine. If 
we assume two relations R and S with cardinali- 
ties N and M to be joined and if b, represents 
partition size, then it is shown in [Ouksel, 
1985a] that R and S will be mapped into approx- 
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imately ER and Es pages where 
Figure 6. Join processing 

plished at once on the two attributes composing 

ER=$oge and Es=$ge (e =2.718) 
the relations. In the figure, rectangles in boid 
enclose the results of selections and the second 
narrow rectangle in the S relation indicates 

Let us further assume that R and S were region of space that is corn atibie with that of 
previously reduced by selection operations the selected area in R. We s R ould only compare 
whose results are enclosed in the space del- partitions of compatible regions between the 
ineated by the rectangles shown in Figure 6 for relations to do the join operation. In the follow- 
both R and S. The area enclosing the results of ing, we enumerate the possibilities in join pro- 
a selection is rectangular because the relations cessing. 
are assumed to be binar 

? 
in this exam le and 

the key is corn osite. 
R 

he area wo up d have 
been a hypercu if the relations were com- 

CASE 1: A partition is fully contained in the 
e 

posed of more than two attributes. In this 
example, both join and intersection are accom- 

selected region of the relation. An example to 
this is partition 0 in relation S and its 
corresponding (compatible) partitions o,, o,, o,, 



and o9 in R. As can be noticed in the 
coordinates, partition 0 in S covers a lar er 
region which is e uivalent to the sum of t 
fbeuLopartitions in ifi 

gh e 
. The approach in join would 

a) Subdivide larger partition (here parti- 
tion 0 in S) into smaller partitions that 
are equal in size to the size of partitions 
in the other relation with finer partition 
size (here R relation). 

b) S?;“,,;mrn atible partition pairs (i.e., 
Ff and one from S) to database 

machine to be joined. Here we assume 
that artition sizes are chosen such 
that t R ey can both fit in the database 
machine memory. This join will be 
accomplished in one pass because DYOP 
partitioning preserves order so that 
compatible tuples will net be scattered 
in space. 

C) Repeat the operation until all compati- 
ble partition pairs from the relations 
are sent to be joined in the database 
machine. 

In (a) we mentioned subdividing partition 0 
in S into ~OJO:,O~~,Ogl 
{o~.o~.o~,o~{ in R. Again t h 

to be joined with 
e join will be between 

compatible pairs (i.e., Otf*& , . . . . 04~~ ). Here we 
will assume that the VLSI filter in the RAP.3 
architecture will identify 0,’ through Od in 0 in 
the data stream during staging by looki 
the high order bits of attribute values and p IT 

at 
ace 

them in their respective places in the cache 
memory prior to processing. 

CASE 2: The 
tained in the 

artitions are not entirely con- 
se ected regions of the relations. P 

Example of this partition #l in S which 
corresponds to partitions lo, I,, 12, and l3 in R. 
Here in both relations the tuples falling out of 
the selected re 
be filtered out % 

ions in the partitions must first 
efore they are sent for join in 

the database machine. A ain as indicated 
above, duri 
decompose t “a 

staging, the lfi SI filter can both 
e larger partition #l from S and 

filter out the irrelevant tuples from the decom- 
posed partitions on the way to the cache, ivin 
us first the set l ld, I:, lb, 1,1{ and then [I f B 1, 1: 
Q’, lS’{ on the fl 7. The single primes indicate 
decomposition w ‘le A double primes indicate 
subsequent filtering that are both accomplished 
~t;~h,eenVLSI filter. Therefore;. 1°F join lrill be 

1g1y. 
the pairs: 10* Id’, , 12* l2 , and 

At the end of each join dispatch, the RAP.3 
machine will perforrn its parallel join according 
to its algorithm, described in the related refer- 
ences, which will not be re 
ever, we will discuss the RAJ 

eated here. How- 
.3 parallel projec- 

tion macro following the projection example 
due to its natural compatibility with DYOP par- 
titioning. 

6- 2 Projection 
Projection operation re uires sorted rela- 

tion for efficient processing.. t should be noted P 
that while DYOP partitioning preserves global 
order among partitions in the multidimensional 

search s 
sorted. Pp 

ace, data within a partition are not 
lso m cases where implicit partitions 

are embedded in an explicit partition the expli- 
cit partition will be unordered both within and 
between implicit partitions. Consider Figure 7. 
If we want values of A0 ordered within A,, then 

ti 
ulling out explicit 

P 
artition #O, indicated by 

old rectangle, will fa 1 out of sequence because 
we should scan coordinate 00 of A, along A~ fist 
before we can pull coordinate 01 (i.e., implicit 
partitions 8, and 20). This means we need sort- 
mg within a partition whether or not it contains 
implicit partitions. There is no difference. in the 
case of having implicit partitions, however, sim- 

PK 
1 because an explicit partition’s size is fixed 
t at is the partition has not grown enough to 

be split). 
Let us show projection b 

ure i’. Projection on A0 of i( 
referring to Fig- 
means that the 

duplicates must be searched in the following 
groupings: 

?I, 
0,8,2,10], [16,20,18,22], . . . . i25,29,27,31] 
e addresses in each group are computed by 

using the two nested loops: 
Al 9 

Figure 7. Projection of R(Ao, A,) on A0 
one varying along axis A0 
the other varying along axis A, (within AO) 
Due to global order (i.e., intersection of 

% 
roups is empty relative to AO) projection can 
e processed in parallel among grou f s. 

projection can be processed in paralle 
Also, 

within a 
group if partitions are processed as single 
units. The dispatching of partitions of a group 
to the RAP.3 cells 

! 
or to the cache first) will be 

done by the VLSI fi ter by examining the higher 
order bits of the attribute values on the fly. 

The followi 
RAP. 3 projection “a 

algorithm summarizes the 
ardware macro: 

Algorithm Project 
(4 

(1) 

(2) 

Pointer sort (i.e., without moving 
tuples) the tuples in cell memory wit 
respect to the attribute to be ro’ected. 
This sort is performed by the ?b IM U and 
takes place in parallel among the cells. 
Eliminate du licates in the sorted list of 
(a.1) by mar R ing the tuples with uni ue 
attribute values directly by the CIM % U 
in cell memory. 

(b) c <-- # of relation Ceh 

Repeat 
(1) Pick the first unprocessed cell and read 
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A.11 Other Pages 

(2) 

(3) 

(4) 

into the controller the sorted attribute 
values taken out of the marked tuples 
in cell memory. 
The controller writes these values in cell 
interface processor memories of all the 
remaining cells that store the relation, 
simultaneously at each iteration. 
By a merge-like operation between the 
sorted attribute values in cell memory 
and the sorted values in cell interface 
processor memory, all remaining cells 
compute the set difference of fczLrrent 
cell va~!uesj - {vaLue.s in 

Y 
t by the con- 

troUerj simultaneously. his is done by 
resetting the mark bits of the tuples 
containing values identical to those of 
the subtrahend. 
c <-- c-l 

until c=o 
At the end of each iteration (1) through (4), the 

i 
recessed cell at step (1) contains unique attri- 
ute values within the relation. And at the end, 

all the cells are left with marked tuples 
corresponding to unique attribute values. 
6.3 More General Join Cases 

As indicated earlier, an n-degree relation 
would corres 
cube in the f; 

ond to an n-dimensional hyper- 
YOP search s 

) and & 
type R A0 = B~]S between re ations R P 

ace. A ‘oin of the 
i A~,A ,,..., A,,+ 

B~,B~,...,~~-,) would be processed by parti- 
tions fetched in the value order, as shown in the 

ercubes as dictated b 

ble subhypercubes would conveniently be 
reduced to the intersection of m data spaces. 
7. CONCLUSION 

We have argued that an efficient solution to 
the I/O bottleneck problem- which results in 
binary and projection operation complexity of 
O(n*) in relational databases--cannot be easily 
found if one reduces the problem to that of 
designing yet another architecture. The solu- 
tion lies in efficient, dynamic, and order 
preserving data space partitioning techni ues 
such as the DYOP. It has been shown that D 9( OP 
partitioning is superior to that of the GRACE 
architecture and can exploit parallelism. An 
example of compatible marriage between the 
DYOP partitioning and the RAP.3 architecture is 
demonstrated through the join and projection. 

Once such a partitioning strategy is chosen 
we can concentrate on the choice of a specific 
database machine architecture based on the 
knowledge of our archival storage system (i.e., 
number of disks and channels). Because then 
we will able to know, in detail, our bandwidth 
and partition sizes (actually this desi n is an 
iterative en s). 5 The 
knowle 

% 

process between the two 
e of these parameters will enable us to 

choose t e desired architecture. A guideline to 
weigh the alternatives is discussed at the begin- 
ning of our article. 
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