DYNAMIC AND ORDER PRESERVING DATA PARTITIONING FOR
DATABASE MACHINES

Esen A. OZKARAHAN Mohamed OUKSEL

Dept. of Computer Science, Arizona State University
Tempe, Arizona, 85287

ABSTRACT

The I/0 bottleneck represents a major
problem in architectures that have been pro-
posed to implement hard database operations
such as join and projection. It is recognized
that solutions to this problem cannot be based
on new database machine architectures alone
if sat‘i,s[{actmy performance goals are to be
attained. A case in point is illustrated by the
comparison of cellular /associative a in-
stream pipeline based architectures. A metho-
dology based on a global order preserving and
dynamic partitioning is esented.  The
relevance of this approach to solution of the
I/0 bottleneck oblem is demonstirated
through the efficient parallel processing of the
join and projection operafions. F’maﬁ ., this
methodology 1is incorporated into a specific
database machine architecture, namely, the
FAFP.3 database machine. The partitioning
strateg? has been previously proven to be supe-
rior ta the other knoun methods.

1.0 INTRODUCTION

Historically, the bottlenecks besetting the
Von-Neumann architectures were primarily
remedied by introducing parallelism and/or
pipelining to support decentralized processing
of both numeric and non-numeric £ta How-
ever, the centralized processing nature of the
architecture was not the only cause of
bottlenecks. Indeed, other sources’included the
semantic gaps existing between the problems at
hand and the architecture, which could not
handle high level programming concepts, and
the location based addressing. This latter prob-
lem resulted in the maintenance of various
access paths to allow associative reference
which could not be supported directly other-
wise.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. Te
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Proceedings of VLDB 85, Stockholm

358

In the area of database management sys-
tems, the problems outlined above have finally
led to devegopment of database machines based
on parallel architectures, the majority of which
are associative. These machines provide high
level data languages geared towards direct sup-
port of one or more data models, and because
of their associativity, eliminate the access path
problems. These features help close the seman-
tic gap of the Von Neumann architecture.

The on%;)intg research in database machines
has brouyght forth a variety of architectures
and their performance assessments. The field
has finally matured to realize the importance of
the 170 bottleneck problem [Ozkarahan, 1983)
which has so far plagued all the architectures
which implement hard datebase operations
such as the binary relational algebra operation
of join and the unary operation projection. At
first we have seen numerous proposals such as
in-stream pipelined processing, multiprocessor
architectures connected in a tree network
which offered sublinear communication paths,
and finally those based on the high density of
VLSIL. The VLSI designs found the rescue in
"cramming'’ bits and/or circuits into a chip;
and the nﬁigher the crammability the higher
went the hopes for a solution.

After these efforts, the researchers have
come to recognize that there is no simple archi-
tecture solution to the problem of mapping an
arbitrary large memory space to a finite one
{such as the memory of a database machine).
n other words, we are realizing that eflicient
support of a virtual address space cannot
come through the brute force approach of
building larger and more clever architectures.
Clearly, the problem lies elsewhere. Indeed, the
effect” of the 1/0 bottleneck problem can be
reduced through the design of efficient parti-
tioning of the data space In such a way as to
exploit both clustering and parallel processing.
In the rest of the paper we start first by com-
paring the basic database machine architec-
tures and their relative performance in join.
Then, we introduce a dynamic, order preserv-
ing partitioned file structure and show how one
can exploit such an organization in database
machines. Finally, we demonstrate how one
can utilize this partitioning in database opera-
tions by demonstrating the processing of hard



operations of join and projection.
2.0 DATABASE MACHINE ARCHITECTURES

We can classify database machine architec-
tures [Ozkarahan, 1985] into: a) cellular associ-
ative systems, b) multigrocessor based sys-
tems, c¢) systems d)wlit in-?_ltrearrél and/or

ipeline processing, ogic enhanced primary
?ngmoryp SI) systems, and _e) filters. While
category (a) is typified by the RAP architecture,
DIRECT ™ [Dewitt, 19792) and DBC [Banerjee,
Hsiao, and Kannan, 1979] are examples for
category (b) (however, they belong to two
different subcategories of tightly coupled homo-
eneous network of processors or functionally
ﬁistr'ibuted processors, respectively). Exam-
ples for cat%ory (c) are DSDBM [Tanaka, 1984]
and GRACE Q itsuregawa, Tanaka, and Moto-Oka,
1984]. Systolic arrays [Kung and Lehmann,
1980] and highly concurrent tree machines are
representative of category (d). Finally, filters
are generally understood to be simple reduc-
tion {i.e., selection, may-be join filtering) pro-
cessors that can be chea%]g manufactured in a
VLSI chip. ([Ozkarahan, 1985] can be consulted
for the survey of database machines.) For our
purposes here we will identify
cellular/associative and in-stream and/or pipe-
line devices as the two extreme architectures
and therefore make them the topic of our dis-
cussions. In the former, we have parallel pro-
cessors (cells) that make up the database
machine whereas in the latter the architecture
is geared towards in-stream processing (e.g.,
searching, sorting) in pipeline. In the latter
category although the sort and search engines
can be connected in a network and operate con-
currently, the entire purpose is to achieve 1/0
synchronous Se.g., as high as 3 Mbytes/sec
channel speed) processing.

The argument in the in-stream architec-
tures has been that they can bring down the
join complexity of the nested-loop based archi-
tectures from O(n?), for n data items or tuples
(i.e., relation cardinalit%) to a scale that is pro-
portional to nilogn by the virtue of sorting. At
this point we can goint out the following about
i’oin processing and database machines. Nested
oop :g)in processing and sort-merge based join
(which can be the typical way how a join is pro-
cessed in a uniprocessor) are the two distinct
ways of performing join in database architec-
tures. In a resident database, that is if the
entire database can be kept in the database
machine memory, the join complexity can be
kept as low ‘as O(n). This is due to
associative/parallel search within the database
machine. In nonresident databases however this
complexity reaches O(n?) due to 170 bottleneck
(i.e., the bottleneck caused by excessive and
repetitive paging/staging of data into the
database machine). This complexity cannot be
blamed on the type of the database machine or
the nested loop algorithm however. Despite the
design of numerous architectures, the 1/0
bottleneck remains the major shortcoming.
Before we talk about the sort-merge based join
let us point out that the performance of join in

359

the cellular/associative systems with resident
database is superior to the sort-merge based
oin due to O(n) complexity of the former which
enefits from parallelism and associativity. The
sort-merge join, which is the typical way of
doing a join In a uniprocessor, has a theoretical
complexity of c.n.lagn where the very large value
of the constant ¢ makes such a join ingeasible‘
The in-stream and pi{)elined architectures hel
to alleviate this problem b% utilizing a networ£
of searchers and sorters that operate in pipe-
line. These architectures are also not immune
to the 170 bottleneck problem because, at best,
they have been demonstrated to keep pace with
the channel speed. This speed is limited by the
channel bandwidth, therefore, the performance
of in-stream architectures is also limited unless
further parallelism is exploited. We can quote
ti%%S ]following relationships from [Ozkarahan,

T o1
N
O(E;"" t,logN): O((tscan + t!n)"%’ )

N
(B_""tu'lOgN)l 2
20 ] O((tseav + tzo)'[‘g—] )

(1)

0 5 (2)
2 W, S A Rp (3)
el 2] e g ]
where

N = number of data items (i.e., tuples, relation
cardinality)

n = number of processors (cel]s(} in a
cellular/associative device (i.e, atabase
machine)

t, = time to process one data item in a serial
processor :

tseav = time to complete processing (i.e., one
memory scan or cycle) in the
cellular/associative device

t;, = paging time to load data in the

cellular/associative device

Bjp = channel bandwidth in the in-stream dev-
ices

p = number of parallel in-stream devices

Rjp = read/write time a unit of data, inciudin
seek time, in a secondary memory device suc
as disk

A = average number of attributes (on which
fast access path structures are kept) updated
in an operation

S = average number of values updated in an
attribute update

¥, = proportion of updates with respect to
overall transaction volume

In the above complexity expressions,
expression (1) represents an in-stream archi-
tecture on the left and a nonresident
cellular/associative architecture on the right
for a join operation. Ascan be noticed, the cel-
lular ~ architecture is thrashing due to 1/0
bottleneck. The assumed join model is the
nested-loop algorithm. In expression (2) we
show the needed duplication of in-stream archi-
tecture to build parallelism so that the left
side of the expression becomes less than or



equal to the cellular counterpart on the right.
Expression (3) must be added to the previous
complexity expressions if any one or both of the
database machines represented by these
expressions resort to access paths {as opposed
to full associativity) in their operations. In
other words for correct modeling of perfor-
mance we should not ignore the expensive
operation of access path maintenance. Expres-
sion (4) assumes architectural enhancement in
the form of cache memory to provide staging to
be overlapped with database machine process-
ing. In this case, only the maximum of the
overlapped quantities in both sides will deter-
mine the complexity.

As to the choice of architecture, the archi-
tect has to determine the cost of each architec-
ture in view of the variables that will remain
fixed in the above expressions and substituting
alternatives for the remainder and computing
the cost at the desired level of the perfor-
rn(zimce relationship between the left and right
sides.

In the following, we will present an order

preserving g};namic space partitioning scheme
that can enhance the in-stream and cellular
architectures discussed above. More
specifically, the partitioning to be presented

will impact the values of p and o for the
respective architectures. The degree with which
p or -Z—is effected will not be the same however.

We will come back to this issue after we present
our partitioning scheme.

3.0 DYNAMIC AND ORDER PRESERVING PARTI-
TIONING

Various partitioning methodologies may be
ursued to enhance the performance of data-
Ease machines including semantic clustering,
sorting, hash based filtering, hash based clus-
tering, coarse indexing, in-stream filtering, file
segmentation, and staging/paging that exploits
locality of references [Ozkarahan, 1985].
Semantic clustering emphasizes the conceptual
modeling task. At this level, the concern is
about tﬁe choice of attributes composing a
record type or the terms assigned to describe
documents in unformatted databases. The
other types of partitioning deal with the physi-
cal partitioning of the data space. Unlike other
schemes proposed so far to deal with data par-
titioning the method presented and also
referred to as The Interpolation Based (rid File
[Ouksel, 1984a] is clearly a multidimensional
partitioning structure in the strict sense which
offers very eflicient filtering, clustering, and
global sorting capabilities. In varyinidegrees, it
relates to extendible (dynamic) hashing, B-
trees, dynamic multipaging, multidimensional
B-trees, K-D-B trees, mu tiFor uni) dimensional
linear and/or dynamic hashing, interpolation
based index maintenance, and the grid file—-
refer to [Ouksel and Scheuermann, 1983] for
references and detailed comparisons. However,
the partitioning methodology described below
offers significant advantages. Logically, it

360

corresponds to a dynamically maintained and
order preserving direct file organization. Some
characteristics and advantages provided by this
partitioning methodology are:{From this point
on we shall refer to it as DYOP Partitioning
which stands for Dynamic Order Preserving Par-
titioning.) -
a) Search time is constant (typically two,
one for the directory and one for the
data file).

Directory and data file have identical
structures and search characteristics.

No overflow buckets or chaining are
needed.

Directory and data file partitions can be
stored anywhere because their file
addresses are kept in the directory
(directories can expand into a mulfi

level hierarchy).
No distributed free space needs to be
kept in the directory and the data file.

The DYOP é)artitioning methodology is due
to [Ouksel, 1965a], [Ouksel, 1985b]. 'ﬁge DYOP
partitioning methodology is illustrated below by
exhibiting the behavior of the data file and the
direct&)ry through repeated insertions of data
records.

3.1 DYOP Data File

The data file can be envisioned as an n-
dimensional space where each dimension
corresponds to an attribute 4 0<i<n-1, n being
the number of attributes (fields) in a tuple
(record). This means that search space
corresponding to the relation (file) will be the
cartesian product of the domains underlying
the attributes. For clarity we shall restrict our
structure to the two dimensional case (ie.,
DexD,, not necessarily distinct, for the attri-
butes 4, and 4,). A record r will correspond to a
vector r = (v, v,) in the search space where v,
v, are the values taken from the respective
domains Dy and D,. The data file is the set of
partitions 2or buci(ets) obtained through the
repeated subdivision of the search space. Again,
for simplicity, we shall assume a partition size
of 2 records. Let us start with a data file con-
taining only two records hence a single parti-
tion. This is shown in Figure 1(a) gﬁxere the
number of the only partition zero is indicated in
the lower left corner. In the file the partitions
are numbered in the order in which they are
created. In the figure the axes correspond to
domains and the superscripted domain vari-
ables (D?) represent the current set of possible
coordinates which are later used to build the
directory. As will be shown later, the file system
can be considered as a hierarchy of directories
since the data file and the directory have the
same structure. The data file is considered as
the lowest level directory and thereby explain-
ing the superscript zero.

b)
c)

d)

e)
£;

Now if we insert a third record into the file
an overflow will occur and the partition must be
split along one of the dimensions (or inter-



D D
(¢ (of)
[
0 | .
|
Yul----1 0 * !
! |
Vigl-em g - - - - . 1 .
o . 0 b
vos 0 v 170n 0 1 Dy
(D§) (D§)
(a) (b)
Dl 4
(D7) (o?)
T T :
| . . ] . .
1 a ! .
2 13 '3
________ e e e e e — - e e _ — — -
| !
- I . [}
0 | . ] .
0] ! 0 11
L - ' »
0 1 Dq Dy
(D8) (D§)
(e) (d)
D1 D]
o (09)
| (I e | . . :
'  ® | 4 e | .
1 i i I 1 ) !
2 6 43 7 13 7
———Fk == - =" o= -
i | i
|
0 ! | 0 !
L] ‘ : . ' L] ! L]
0 44 1 !5 0 ‘1 .
J . ! - y >
00 01 10 11 Dy 00 01 10 11 Dq
(D§) (D§)
(e) 6]

Figure 1. The data file

changeably, along one axis or coordinate). We
shall adopt a cyclic order policy for choosing
the splitting axis (others which permit a ran-
dom choice are discussed in [Ouksel, 1983]).
Hence, we will split partition #0 along D,. This
split will be made by halving the ordered range
oFf) Dy values hence maintaining the linear order
within each resulting half. At this point since a
single partition corresi)onds to the entire range
of domain Dy the split will occur at |Dy|/2.
Accordingly, all those records whose v, is less
than | Dyl /R will remain in partition #0 while all
those wg=|Dp| /2 will be assigned to a new parti-
tion, partition #1. Figure 1(b) shows the split.
The partitions are numbered 0 and 1 and so are
the coordinates of the partitions (i.e., while
they were both 0 in Figure 1(a), after the split,
the D, subranges are numbered 0 and 1). As
shown in Figure 1(c), another insertion into par-

361

tition #1 will cause it to split, but this time
along D, according to the cyclic order of split
axes. We must emphasize here that a split of a
given partition along a given axis trigtgers the
implicit splits alonﬁl the same axis of all the
other partitions. This type of split is termed
implicit because no physical splits occur. The
purpose of this strategy is to Ir’;rovide logical
uniformity that will permit the systematic
numbering of partitions presented later. That is
a unique mapping will exist between the coordi-
nates of a partition and its assigned number.
The split takes place in a linear order where all
partitions are split in the order they are impli-
citly or explicitly created. Apart from their
numbering however, there is no other effect on
the implicitly split (i.e., unconcerned) parti-
tions. ey will only be identified as implicit
partitions  and stored in (i.e., physically



assigned to) a common explicit partition. This is
referred to as the embedding of implicit parti-
tions in explicit ones. While Figure 1(c) shows
implicit splitting and linear numbering of impli-
cit and explicit partitions, Figure 1(d) shows
only the explicit partitions.
Consider adding a fifth record into partition
ﬁz. Partition #2 will still remain implicit
ecause the insertion did not cause partition
Xg, in which partition #2 is embedded, to split.
other insertion into the same partition region
will make partition #2 explicit. And this will hap-
en without triggering another round of splits
in the search space (i.e., it will only account for
a previous split). This prevents unnecessar
increase in the magnitude of coordinates whic
in turn keeps the directory simple and smaller.
If we continue with insertions some partitions
will require splitting, as is the case with parti-
tion #3 in Fifure 1(e). In the cyclic order, this
time the split occurs along D,. However, the
split will occur either at |Dy|/4 for those
records whose vg<|Dg| /2 or at 3|D02 /4 for those
records whose vg=|Do| /2. Figure 1 (e) shows the
linear artition s%htting and numbering
whereas Figure 1(f) shows only the explicit par-
titions. As can be seen in Figure 1(e), the split
along a dimension is propagated to all the
other partitions along the dimension even
though only partition #3 has overflown. This
creates the additional implicit partitions of 4, 5,
and 8. Note also that the linear numbering of
partition numbers is satisfied within the split
axis as the major order and then within the
other axis as the minor order (i.e., the order of
partitions is 4, 5, and then 8).

In our partition assignment scheme we
assign the lowest number to an explicit parti-
tion which may contain multiple implicit parti-
tions (e.g., P, P, ..., P,) so that the assignment
can be shown as P« P, Py, ... B, where e<sm
and m is the total number of partitions in the
data file. We say that the implicit partitions 7,
P, .... P, are embedded in the explicit partition
A,
3.2 DYOP Directory

As we mentioned earlier D§ and p? indicate

x(10,1)
x(11,1)

0 x(00,0) £(10.0)

0 D§
(Dd)

the sets of coordinates along the axes of the
data file. Accordingly, the vector r°=(dg,d?)
represents the coordinates, in binary form, of
partitions in the data file. For example, in Fig-
ure 1(f) (10,1) represents the two coordinates of
partition #3 while the one associated with parti-
tion #0 is (00,0). The directory is made up of
records which store coordinates of the data file
gartitions. The length of any di" is determined
y the number of splits taken place along D?. In
the following we show the construction of the
directory for the data file example illustrated
above. As we already know the data and direc-
tory file structures are identical; however,
since we can store more directory records in a
partition (because directory records are small)
the capacity of a directory partition will be
large. But for claritgy, we will assume it is 3.
Accordingly, Figure 2(a) shows the initial make
up of the directory. We see four points in the
directory search space corresponding to the
four explicit partitions in the d%ta file. As can
be noticed, the coordinates of the directory
search space are labeled D¢ and D}, superscript
1 indicating the first level directory (one higher
than the data file at level 0). These coordinates
constitute the basis for the 2nd level directory
in the same way the first level director{l is built
from the data file. We stop building higher level
directories when the number of partitions in
the highest level directory is equal to one. Look-
ing at Figure 2(a) we see that the directory par-
titlon #0 needs to be split because the partition
size is 3. The split starts alon%lthe D§ axis. The
linear order in the range of the split axis must
be preserved in the same way as in the data file.
Therefore, when we split along »D§, those
records whose coordinate (Si.e., D{§) prefixes are
a1l (i.e., 10, 11 corresponding to higher values
in the range) are moved to a new partition. This
is illustrated in Figure 2(b) where the new parti-
tion is numbered 1.
According to our directory structure, the direc-
tory record (10, 1} which represents the data
file partition #1 will itself be addressed as (1,0),
i.e., directory partition #1, in the higher level
directory. In general r*=(d%, d%, ..., di,
represents the coordinate vector of the hth
level where 0sh<marh and df=p(df~',1%) for O<i<n,

where n is the number of dimensions, and
[
D}
(0}) ‘
]
]
|
. X
i X
OA )
X : X
0 y 1
l Lal
0 1 D

(b)

Figure 2. The directory

362



1sl<mazh where p(s,]) denotes the prefix of
length I of binary string s. Note that no records
are kept in the directory for the implicit data
file partitions because as we will show later we
can determine the explicit partitions embed-
ding the implicit ones without additional direc-
tory accesses.

The DYOP partitioning scheme is inspired
from the Interpolation Based Index Maintenance
Burkhard, 1953] or the Grid File [Nievergelt,
interberger, and Sevcik, 1984]. However, the
structure that ultimately emerged is different.
This is because DYOP combines the desirable
properties of both and avoids their
shortcomings. In the Interpolation-Based Index
Maintenance no directory is needed and splits
in the data file are delayed by adding overflow
chains to file partitions. And when splitting
becomes necessary, all partitions are split
including those non-overfiowing ones. In this
scheme the space growth is worse than that of
DYOP partitioning and furthermore overflow
chaining deteriorates search time. In the grid
file, the directory space requirement is at best
a super-linear function and at worst an
exponential function of the number of records.
In DYOP however, the restriction to split only
overflowing partitions %uarantees a linear func-
tion. The differences between the DYOP parti-
tioning and the other related organizations we
have mentioned at the beginning are more fun-
damental and documenteg in detail in [Ouksel,
1983a]. It is important to note that unlike mul-
tikey structures such as K-D trees or K-D tries,
DYOP is symmetric with respect to any of the
attributes. Moreover, the directory structure
has the same organizational properties as the
data file; hence it also takes advantage of all
the benefits.

3.3 Storage Addressing of DYOP Partitions

Due to the linear order of splitting of the
implicit and explicit partitions in the DYOP files,
we are able to deduce a mapping which allows a
unique numbering of partitions. In the data file,
a record r's (r= (vp, v,, ..., vn-,)) ith component
v; will have a relative position z;= v /|D;| in the
correspondinﬁ ordered set ;. As we know, this
record r will be represented in the directory b
the coordinate vector d°= §d§, d?, ..., &%) whic
gives us the coordinates of the partition storing
the data record r. These coordinates are given
by :

e - 12 ;
d® = lx,-2%| for O<i<n-1 (5)

To compute a2, it suffices to know the number
of splits ¢°, occurred along the D? axis. This in
turn can be determined as follows: Let ¢ be the
number of times the whole search space has
been split. If the splitting order was cyclic then
it can be expressed as L%°n+m implying that
1°=1° + 1 splits occurred along axis i such that
o<ism and L° splits along axis i such that
m<i<n-1. That is, at a given time we may not
have completed the full round of splits along all
the axes involved and some axes will remain
unsplit for the current cycle. Let also 4 for
0<j<t* (where !' also corresponds to the binary

363

string lenﬁth of the prefix of the ith coordinate)
be the jth binary digit of 4°. Then the number
of the partition storing the data record r can be
obtained from :

M(r1%) = 'E‘zt%‘zn(l‘%-j)dg
{=0 J4=0
LO+1 if O<ism
L® otherwise (6)

The artition number M does not
differentiate between explicit and implicit par-
titions. Because implicit partitions are not
represented directly in the directory we must
have a way of mapping coordinates of implicit
partitions to the same directory partition
representing the explicit partition in which the
given implicit one is embedded. Only in this way
can the directory search be resolved by a sin%ie
access. This is accomplished by the use of the
same M function. This time, it is used to find the
directory partition which contains the coordi-
nates of the explicit data file partition embed-
ding the implicit target partitions. The following
relationships have been shown to hold for the
DYOQP partitioning:

If IT represents a partition number then all
the partition numbers for the partitions that
may possibly contain partition ITis given by:

ILTee, - - - ,H—i 2°T], where o = floglll and
=0
Mol -

1f we represent the coordinates of an impli-
cit and explicit partition at the hth level direc-
tory, respectively, by r* and r", then there
exists and integer k such that:

where [°= {

-Tla, is the binary representation of I

p(rf‘,l.{‘“):p (r?‘.l.f”) for h<k <mazh and D<i=n-—1

This is a consequence of the previous rela-
tionship. The explicit partition number M(r*e1r )
is stored at the (h+1) th level directory whose
partition number can also be obtained by ™,

3.4 A Retrieval Example

Given a record r = (vg, vy, ... , ¥p;) @nd the
number of times the entire search space has
been split (i.e., I=L(n-1)+m) we must determine
the address a, where the record r is stored. To
do that we must determine the following:
a) Compute rq
b) Compute r!, r% .., r*7! stop when you
obtain a directory consisting of a single
partition (i.e., r* = (0,0)) which corresponds
to the top directory.
Search top director}r . .
number is M (rmer-l me=-1) in main
memory to obtain the address omgn_2 of the
partition whose number is M (rmeh=2, 1met %)
or the one it is embedded in.
Search lower level directories from k =
maxh - 2 to 1. In each search, search the
partition at the address g, for the address
associated with partition M(r*-11*¥7}) or the
one it is embedded in.

partition whose

c)

d)



) The number of file accesses will be O(maxh-
1).

Let us assume that we want to retrieve
record r = g37500,10) and that Dy = 50000,
D,=80, 1°=3, i'=2, and 1?=0. Our search space is
two dimensional, maxh=3, and the level 2pdirec-
tory will be the top directory. And since 1?=0,
meaning no split has occurred, the directory
consists of one partition, it will be main
memory resident. From v,(37500) and 'u,%l(')) we
determine x={37500/50000, 10/80) or (0.110 ,
0.001) in the binary form. From this, by using
expression (5) we determine r°=(11,0). That is,
because the zero-th level has been split 3 times
then there will be two splits along Dy and one
along D, giving the respective powers of 2 in
expression S@). Because the first level directory
has been split twice i.e., once along each direc-
tion, we pick one digit from each of the coordi-
nate prefixes of the lower directory to give
7'=(1,0) and similarly we find r3=(0,0).

After this we determine the partition
number M(r2,1?) of the tog level directory which
comes out as M(0,0)0=0. This number
corresponds to e, in main memory. At this
address we determine a,, the address of the
ﬁartition M{r11') or the l}r)lartition embedding it.

(r111) evaluates to 1. the lower level direc-
tory we search the partition at the address q,
for the partition whose number is calculated to
be M(r°i9=5, or the one it is embedded in. The
address a, found at this point corresponds to
the address of the data file partition in which
the record r=(37500,10) is stored. The trees
shown in Figure 3 abstract the splits that took
place along the dimensions. In Figure 3(a) we
see the splits in the lower directory and in Fig-
ure 3(b) we see the splits that took place in the
data file. Each level in the trees corresponds to
a split along an axis. If the splits, which
preserve order, are labeled with 0 and 1 along
the branches of an ordered binary tree, then
the binary string formed by concatenating the
branches along the path from the leaf associ-
ated with a partition to the root would give us
partition number(s) we have determined by
using M in expression (6). In the figures, those
partitions are circled at the leaves and the
paths are indicated in bold.

4.0 PARTITIONING FOR DATABASE MACHINES

Although DYOP partitioning is used for
direct addressed files, we can adapt it for space
partitioning in database machines. The only
parameter to vary will be the partition size

which will be very large in the case of database
machines. To give an example, consider RAP.3
database machine which is a cellular associative
device. Each cell of RAP.3 machine has a cell
memory capacity of 1 to 2 megabytes. There-
fore each load of a 16 cell RA%P.B device will
require database chunks of 16 to 32 megabytes.
Each chunk will be a DYOP partition.

If we consider an in-stream architecture we
need not make partition size that large. How-
ever, a small partition size will have adverse
effect on data bandwidth provided by archive
storaﬁe (e.g., disk(s)). In the case of a single
disk drive, the larger the partition the higher
will be the bandwidth because of continuous
read out from contiguous disk locations. The
smaller the partition the lower is the bandwidth
because of frequently intervening disk seeks
between partition accesses. To overcome that
we may devise an interleaving and/or multi-

lexin§1 scheme by using multi gle disks. There-
ore, the type of database machine architecture
will determine the partitioning strategy; how-
ever, multiple disks will be preferable regard-
less of the type of architecture.

We can compare DYOP partitioning with the
other similar rnethodolo%ies. Specifically, if we
take the partitioning by hash clustering used in
the GRACE architecture the following comparis-
ons can be made. First let us describe the
GRACE method. Figure 4 shows this method.

As can be seen from the figure, in GRACE
the data are not filtered but tagged with hash
codes which scatter in space. Afterwards, com-
patible codes are gathered and distributed to
various modules to absorb the nonuniform vari-
ation in the generation of hash codes.

In DYOP partitioning, because the global
order is preserved the space reduction shown in
Figure 4{a), which is a logical picture, is also
preserved physically. This allows us to filter off
the outer incompatible regions of the data
space and therefore greatly alleviates the
problems of insufficient bandwidth and/or
memory space either directly or indirectly.

More specifically, the I%—' complexity in expres-

]
sions (1) through (4) will reduce down to g—‘ due

to the linearing effect of join space reduction
and order preserving partitioning. In other
words, because of order a partition will not be
joined with incompatible partitions. We will
show how to utilize DYOP partitioning in join

1
2 61 () 3 7

(b

Figure 3. Split directions and partition numbers

364



R ’/// A x g * o o
e / X
| 4, o o
a < 7> Relation | HASH o °
t // 9 <] Distribute
. i -]
i — .
r ~
o] 7 2 4 , o0 o
-
n g X o x
R 7~ ° ¢ x a
% X - 1 o
Relation S Data Space
{a) Join space reduction
X X g X % ¥ XN %K X e XXgw X, Npxy
xK:x"':; v k:;—x l";»"r’:vvv
T > i 0 35
e X g ¥ e e
AsnAAaenQ 2 5 Y0 gl 18 Qany
MEMORY Nuaopng, :Q""%\Lnu esoe|DgnSnn Qv
r . 8000 0 Qggq ge g 090 e00 g el 0
MODULES 08500 ne e~ .00 0o csts 00 °
o000 0et3 8 00 0% o: o°°°’°°°°a
-] L4 DO #
28 G 8c0 000 0°g a0’ 00 330 0 p0?
(b)

Figure 4. Hash based clustering in GRACE

and %rojection after we take a brief look at the
RAP.3 architecture.

5.0 RAP.3 ARCHITECTURE

The RAP.3 database machine [Ozkarahan,
1982, 1985] has evolved from its predecessors
which were called RAP.1 and RAP.2. Basically,
RAP.3 adapted controllable memories ({latest
version of it used RAM’s) to be used in the cell
memory and mapped its cellular structure into
a two dimensional parallelism. The result was
to bring the parallelism of the cellular struc-
ture down to a modest value by compensatin
the decrease in cell parallelism with intra-ce
parallelism. In other words, each cell is made
up of lHaradlel subcells where each subcell has
the full functionality of a cell This intra-cell
garallelisrn enabled us to replace the specially

ardwired logic with commercial microproces-
sors and firmware based query execution. The
net effect was not a slow down, because of the
two dimensional paralielism, but complete elim-
ination of all %ossible rigidities and limitations
imaginable with the RAP.1 or RAP.2 designs. Fig-
ure 5(a) shows the overail RAP.3 system archi-
tecture and Figure 5(b) shows the internals of a
RAP.3 cell. e following concepts should be
noted: The RAP.3 system does not believe in
the "backend slave” concept, but rather
believes in GPN?C (general purpose nonnumeric
computer) operating among a network of com-
puters. .3 believes in indirect database
search Sbecause there is no alternative to it in
real life) and therefore the need for space par-
titioning, in-stream filtering, overlapped (with
processing) staging by the wuse of cache
memories and processor-memory swap switch.
That is, the cell processors must be able to
switch between active and cache memories.
While an active memory is processed, the cache
must be staged in at the background and at the
swapping point the roles of active and cache
memories must be interchanged. In Figure

365

5(b), each subcell has enough local memory (8K
bytes) to hold a tuple, the query code, and data
such as the sorted contents of a batched tran-
saction operands or source relation join attri-
bute values in a semi-join (CROSS-MARK) opera-
tion. The DMA is a specially built hardware that
eliminates 1/0 polling by the subcell micropro-
cessors so that these processors either process
their tuple contents or sit in a wait state until
awakened by the DMA to continue processing gn
actuality the wait state seldom occurs with the
exception of start-up) The RAP.3 database
machine has a universal instruction set and also
"hardware macros” for some operations such as
projection, cross-mark (semi-join) execution,
and batched transaction processing. In the next
section we will demonstrate the use of DYOP
partitioning in conjunction with the RAP.3
architecture and its hardware macros for doing
join and projection operations.

6.0 JOIN AND PROJECTION WITH PARTITIONING

Below, we describe the use of DYOP to
implement the join and projection operations.
More elaborate algorithms concerning these
binary relational database operations and oth-
ers such as the inequality join and the m-way
join are treated in [Ouksel, 1985b]. In the same
study, the inherent parallel properties of the
DYOP scheme is demonstrated through the
design of parallel algorithms to execute these
relational database operations independently of
any specific architecture.

6.1 Equijoin
The join methodology we will describe here
is general i.e., can be used both for semi-join
and join. The difference comes in the way parti-
tions are processed in the database machine. If
we assume two relations R and S with cardinali-
ties N and M to be joined and if &, represents
artition size, then it is shown in [Ouksel,
1985a] that R and S will be mapped into approx-



VL3I

Filter
CACHE
MEMORY
AND
SWITCH

VLSI

DB Filter

—: CELLULAR
- ]

4]

GPC

ARRAY
AND

INTEGRATED
HOST

LAN

O

OUTSIDE WORLD

(a) RAP.3 system architecture

Tuple m Tuple m+1 Schema and Tuple Structure
———— g——___are in Cell Interface Processor
T HIR RS

CELL MEMORY
Zx

2.

i

CIP
HARDWIRED DMA CONTROLLER — ENR
LTOC
LEC €
[ ! T RE | RAP
f} ﬁdemory—l Memory-2 Memory-k ig E—’
B i et ofahhaladdy co [0]
g icro- icro- icro- ER ¥
L rocessor-1 rocessor-2 rocessork R
L “ 0
s MPU T
(b) A RAP.S cell £
Figure 5. RAP.3 database machine
‘ f
Ay B,
111 ! , T
110 LS S o B e N =~/ Lo/
101 2 0 [0 171 SV 2
100 Zo ADS A0 BTk 10 1AV dans
011 i/'/lz"/‘n//"an . - 4 -
010 'ﬁg—':.g,—s‘./l,i--a Ol |- - k=3 177 Bl
001 : : .
000 00f~-4 | |
Ao Be-
000001 0310011100 :01 110111 00 0: 10 i1
R S

Figure 8. Join processing

imately Er and Es pages where

E‘R=biloge and E'5=:—Iloge (e=2.718)
0 0

Let us further assume that R and S were
previously reduced by selection operations
whose results are enclosed in the space del-
ineated by the rectangles shown in Figure 6 for
both R and S. The area enclosing the results of
a selection is rectangular because the relations
are assumed to be binary in this example and
the key is composite. The area would have
been a hypercube if the relations were com-
posed of more than two attributes. In this
example, both join and intersection are accom-

366

plished at once on the two attributes composing
the relations. In the figure, rectangles in bold
enclose the results of selections and the second
narrow rectangle in the S relation indicates
region of space that is compatible with that of
the selected area in R. We should only compare
partitions of compatible regions between the
relations to do the join operation. In the follow-
ing, we enumerate the possibilities in join pro-
cessing.

CASE 1: A partition is fully contained in the
selected region of the relation. An example to
this is partition O in relation S and its
corresponding (compatible) partitions 0, 0,, 0,



and 0 in R. As can be noticed in the
coordinates, partition O in S covers a larger
region which is equivalent to the sum of the
four partitions in K. The approach in join would

be to:

a) Subdivide larger partition (here parti-
tion O in S) into smaller partitions that
are equal in size to the size of partitions
in the other relation with finer partition
size (here R relation).

b) Send compatible partition pairs (i.e.,

one from R and one from S) to database
machine to be joined. Here we assume
that partition sizes are chosen such
that they can both fit in the database
machine memory. This join will be
accomplished in one pass because DYOP
partitioning preserves order so that
compatible tuples will nct be scattered
in space.

Repeat the operation until all compati-
ble partition pairs from the relations
are sent to be joined in the database
machine.

In (a) we mentioned subdividing partition 0
in S into iog-of.oé,ogi\ to be joined with
$06,01.0.,05) in R. Again the join will'be between
compatible pairs (i.e., 0§*0q, ..., 04*0s ). Here we
will assume that the VLSI filter in the RAP.3
architecture will identify 0§ through 04 in O in
the data stream during staging by lookin% at
the high order bits of attribute values and place
them in their respective places in the cache
memory prior to processing.

CASE 2: The partitions are not entirely con-
tained in the selected regions of the relations.
Example of this partition #1 in S which
corresponds to partitions 1, 1;, 1, and 15 in R.
Here in both relations the tuples falling out of
the selected regions in the partitions must first
be filtered out %efore they are sent for join in
the database machine. Again as indicated
above, during staging, the VLSI filter can both
decompose the larger partition #1 from S and
filter out the irrelevant tuples from the decom-
posed partitions on the way to the cache, givin,
us first the set { 14, 1}, 13, 14} and then {1{t, 1{T,
13!, 14" on the fly. The single primes indicate
decomposition while double primes indicate
subsequent filtering that are both accomplished
by the VLSI filter. Therefore, the join will be
betgleen the pairs:1p*14!, 1,*1}, 1,*13!', and
19* 141,

At the end of each join dispatch, the RAP.3
machine will perform its parallel join according
to its algorithm, described in the related refer-
ences, which will not be repeated here. How-
ever, we will discuss the .3 parallel projec-
tion macro following the projection example
due to its natural compatibility with DYOP par-
titioning.

6.2 Projection

Projection operation requires sorted rela-
tion for efficient processing. 1t should be noted
that while DYOP partitioning preserves global
order among partitions in the multidimensional

c)

367

search space, data within a partition are not
sorted. Also in cases where implicit partitions
are embedded in an explicit partition the expli-
cit partition will be unordered both within and
between implicit partitions. Consider Figure 7.
If we want values of 4, ordered within 4,, then
gulhng out explicit partition #0, indicated by
old rectangle, will fall out of sequence because
we should scan coordinate 00 of 4, along 4, first
before we can pull coordinate 01 (i.e., implicit
partitions 8, and 20). This means we need sort-
ing within a partition whether or not it contains
implicit partitions. There is no difference.in the
case of having implicit partitions, however, sim-
?1 because an explicit partition’s size is fixed
that is the partition has not grown enough to
be split).
Let us show projection by referring to Fig-
ure 7. Projection on 4, of Ig means that the
duplicates must be searched in the following

groupings:
Ti?,a,z,m;, {16,20,18,22}, ..., {25,29,27,31]
e addresses in each group are computed by
using the two nested loops:
At
11 10] 22 1480 11123! 15; 31
102|186 2613 1907 27|
0:| & 120[:2 28,921 13 29|
- = - -~ - - - - - [N
00|B:! 16|« '2¢/1 | 17'5 25

000001010011 100101 110111 Ap
R
Figure 7. Projection of R(4g, 4,) on 4¢

one varying along axis 4y

the other varying along axis 4; (within 4,)

Due to global order (i.e., intersection of
Eroups is empty relative to 4,) projection can

e processed in parallel among groups. Also,

projection can be processed in parallel within a
group if partitions are processed as single
units. The dispatching of partitions of a group
to the RAP.3 cells Sor to the cache first) will be
done by the VLSI filter by examining the higher
order bits of the attribute values on the fly.

The followi algorithm summarizes the
RAP .3 projection hardware macro:

Algorithm Project
(2)

(1) Pointer sort (i.e., without movin
tuples) the tuples in cell memory wit
respect to the atiribute to begro'ected.
This sort is performed by the CIMPU and
takes place in parallel among the cells.

Eliminate duplicates in the sorted list of
(a.1) by marking the tuples with unique
attribute values directly by the CIMPU
in cell memory.

(b) c <-- # of relation cells

(2

Repeat
(1) Pick the first unprocessed cell and read



Alt Other Pages

into the controller the sorted attribute
values taken out of the marked tuples
in cell memory.

The controller writes these values in cell
interface processor memories of all the
remaining cells that store the relation,
simultaneously at each iteration.

By a merge-like operation between the
sorted attribute values in cell memory
and the sorted values in cell interface
processor memory, all remaining cells
compute the set difference of {current
cell values} - {values input by the con-
troller} simultaneously. This is done by
resetting the mark bits of the tuples
containing values identical to those of
the subtrahend.

(4) c<—-c1

Until c=0
At the end of each iteration (1) through (4), the

rocessed cell at step (1) contains unique attri-

gute values within the relation. And at the end,

all the cells are left with marked tuples
corresponding to unique attribute values.

6.3 More General Join Cases

As indicated earlier, an n-degree relation
would correspond to an n-dimensional hyper-
cube in the DYOP search space. A join of the
type R[4o = B,]S between relations Ron,A, ..... Ay
) and S(Bo.B,..5, ) would be processed by parti-

.....

tions fetched in the value order, as shown in the
foregoing. In other words, as in projection, for
each partition along 40( and B,) before we get to
a subsequent partition we would scan an 4¢(5;)
partition along the remaining n-1(m-1) coordi-
nates. This can be interpreted as processing
the join between two compatible subhypercubes
of degree n-1(m-1) from the respective rela-
tions. Having a filter on the data path (or filters
on multiple paths) enables us to dispatch vari-
able sizes of data from the compatible subhy-
;;.rcubes as dictated by available processor

(@

®

cell) memory in the cell partitions. Such an
MD architecture consisting of cell clusters or
partitions each processing a join dispatch is
included in the EAP.B architecture (Figure 5).
This enables parallel join 1proc:essin both within
a join and among multiple joins. The model of
%om processing discussed here would benefit
rom m-way joins because the sizes of compati-
ble subhypercubes would conveniently be
reduced to the intersection of m data spaces.
7. CONCLUSION

We have argued that an efficient solution to
the 1/0 bottleneck problem- which results in
binary and projection operation complexity of
0O(n?®)"in relational databases--cannot be easily
found if one reduces the problem to that of
designing yet another architecture. The solu-
tion lies in efficient, dynamic, and order
preserving data space partitioning technigues
such as the DYOP. It has been shown that DYOP
partitioning is superior to that of the GRACE
architecture and can exploit parallelism. An
example of compatible marriage between the
DYQOP partitioning and the RAP.3 architecture is
demonstrated through the join and projection.

368

Once such a partitioning strategy is chosen
we can concentrate on the choice of a specific
database machine architecture based on the
knowledge of our archival storage system (i.e.,
number of disks and channels). Because then
we will able to know, in detail, our bandwidth
and partition sizes {actually this design is an
iterative process between the two ends). The
knowled%le of these parameters will enable us to
choose the desired architecture. A guideline to
weigh the aiternatives is discussed at the begin-
ning of our article.

REFERENCES

BANARJEE, J., HSIAO, D.K., KANNAN, K. [1979]
DBC-A Database Computer for Very Large Data-
bases," IEEE Transactions on Computers, Vol.
C-28, No. 6, pp. 414-429.

BURKHARD, W. A [1983]. Interpolation-Based
Index Maintenance, Proc. of ACM SIGMOD-
SIGACT Symposium, pp. 76-85,

DEWITT, D. J., [1979]). DIRECT-A Multiprocessor
Organization for Supporting Relational Dato-
base Management Systems, IEEE Transactions
on Computers, Vol. C-28, No. 6, pp. 395-408.

KITSUREGAWA, M., TANAKA, H., MOTO-OKA, T.
1983). plication of Hash to Database
achine and its Architecture, New Generation

Computing, Vol. 1, No. 1, pp. 83-74.

KUNG, H. T., LEHMAN, P. L. 51980]. Systolic
VLSI) Arrays for Relational Database Opera-

ns , Proc. of ACM SIGMOD Conf., pp. 105-116.

NIEVERGELT, J., HINTERBERGER, J., SEVCIK, K.
C. £1984. The Grid PFile: An Adaptable, Sym-
metlric Multikey File Structure, ACM Transac-
tions on Database Systems, 9,No.1, pp.38- 71.

OUKSEL, M. [1983a]. Order-Preserving Dznamic
Hashing Schemes for Associative Searching in
Database Systems, Ph.D. Dissertation, Dept. of
Electrical ngéneering and Computer Secience,
Northwestern University, Illinois.

QUKSEL, M., SCHEUERMANN, P. [1983b]. Storage
Mappings ~ for  Multidimensional = Linear
Dynamic Hashing, Proc. of ACM SIGMOD-SIGACT
Symposium, pp. 90-105.

OUKSEL, M. [1985a]. The Interpolation-Based
Grid File Proc. of ACM SIGMOD-SIGACT Sympo-
sium, pp. 20-27.

OUKSEL, M. [1985b]. Data Structures and Paral-
lel Algorithms for the Ezecution of Relational
Database Operations, in preparation.
OZKARAHAN, E. A [1982]. Implementations of
the Relational Associative Processor (RAP) and
its System Configurations, Dept. of Computer
Science, TR82-005, Arizona State University.

OZKARAHAN, E. A. [1983]. Desirable Punctionali-
ties of Database Architectures, Proc. of IFIP83
World Congress, pp. 357-362.

OZKARAHAN, E. [1985.11] Database Machines
and Database Management, Prentice-Hall Inc.,
Englewood Cliffs, N. J.

TANAKA, Y. [1983]. A Data-Stream Database
Machine with Large Capacity, in Advanced Data-
base Machine Architectures, Ed. D. K. HSIAQ,
Pé'gngté%e-Hall Inc., Englewood Cliffs, N. J., pp.
168- .



