
The MR Diagram - A Model for Conceptual Database
Design

Raghu Ramakrishnan
Avi Silberschatz

Department of Computer Science
The University of Texas

Austin, TX 78712.

ABSTRACT

Traditional database models are not sufficiently
expressive for a variety of standard and non-standard
database applications. Several models supporting greater
abstraction have been proposed to 611 this gap, but no
one model has gained wide acceptance. This paper
delnes a model, based on the notion of molecules and
non-jirat normal /arm relations, that provides a power-
ful abstraction mechanism using aggregation. The model
also provides a simple pictorial representation that allows
a compact and clear specitlcation of a database. We
illustrate the model with several examples and show how
it can be used in the design of databases.

I. Introduction

It has long been recognised that database modelling
and knowledge representation share the objective of
representing some abstraction of the real world. While
there are important diflerences, both stand to gain much
from a synthesis, and as a first step towards such a syn-
thesis, data models must support greater abstraction (1).
Several applications such as Computer Aided Design
would also benefit from such abstraction capabilities.
This has sparked a growing trend towards the develop
mrnt of data models (2, 3, 4, 5, 6, 7) that support
abstraction but no one model has gained wide accep-
tance.

Semantic data models allow us to model abstractions
by providing a mechanism for defining new abstractions

t This research was supported in part by the Office of Naval
Research under contrrct NOOOlCR&K-0087, and by the Nrtionll
S6nr-c Foundation under grant MEW-04017.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing ;:; by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special pennis-
sion Erom the Endowment.

in terms of other, already defined, abstractions, usin!:
aggregation and generalization. Informally, if A is .,I,
aggregation of B and C, an instance of A is a compnsi-
tion of an instance of B and an instance of C. If A is .ti
generalization of B and C, an instance of A is either ~1
instance of B or an instance of C. A more powerful
notion of aggregation allows us to view an instance of A
as a composition of a set of instances of B and a set of
instances of C. Classification allows us to group all
instances of A together.

In the Relational model (9), aggregation is supported
by associating a sequence of attributes with a relation
name, and classification groups all tuples of a given rela-
tion. Generalization is not supported directly. Smith and
Smith (10, 11) extend the notion of aggregation by allow-
ing an attribute to be a tuple from another relation, and
Batory and Buchmann (4) take this a step further by
allowing an attribute to be a set of tuples from another
relation. Our contribution is to provide a uniform
representation for abstraction using an extension of the
Relational model which supports generalization and
aggregation in the form described by (4). Our scheme has
the advantages of a simple pictorial representation and
an extended form of the relational query language.

The paper is organised as follows. Section 2 introduces
the notion of a molecule, in particular the way aggrega-
tion is used to define the structure of an abstract object.
Section 3 discusses how we attach meaning to this struc-
ture so that our representation is a natural model of the
abstraction being modelled. lo section 4 ,we present our
model and illustrate it with several examples. Subsequent
sections discuss operators and procedural extensions to
make the model more expressive, to achieve a clean
separation between levels of abstraction, and to clarify
the definition of structure and semantics. We then
demonstrate how a database can be designed in a top-
down fashion. There is a brief discussion of bottom-up
design and its relation to view modelling and schema
integration. Finally, we consider related work and
present our conclusions.

Proceedings of VLDB 85, Stockholm 376

2. The Concept of a Molecule

Our model rests upon the notion of a molecule type
which describes a type of object or a type of relationship
between objects at some level of abstraction. A molecule
type is defined as a non-first normal form relation. Each
tuple in this relation represents a molecule of this type,
and describes an object or a relationship.

An ‘object’ is some abstraction that is of interest to us.
It could be a VLSI chip layout, a corporation, or a cat.
I,ike the word ‘entity’, it is intuitively defined. It is
important to note that our model does not distinguish
between entities and the relationships among them.
Rather, an object and a relationship between objects are
both viewed as abstractions, and it is entirely possible
that a relationship at one level is an object at a higher
level. The model provides a uniform representation for
all abstractions, and they may be viewed as objects or
relationships, whichever is more appropriate, in dilferent
contexts

A molecule type M is defined in terms of other
molecule types. Intuitively, a molecule of type M is a col-
lection of molecules of the component types. There is a
set-valued attribute corresponding to each component
molecule type, and in a tuple describing a molecule of
type M, these sets contain the keys of all component
molecules of the corresponding type. The definition of a
molecule type may also include ‘atomic’ or non-set
valued attributes which, in a given molecule, are used to
describe the molecule as a whole.

Pictorially, a molecule type is represented by an
ellipse. The ellipse for molecule type h4 is labelled ‘M’
and has the list of M’s atomic attributes listed beside it
in parentheses.

If M is defined in terms of molecule types Mi, an arrow
is drawn from the ellipse for M to the ellipse for each Mi.
Thus, outgoing arrows indicate the structure of a
molecule type and may be labelled with the correspond-
ing component names. Incoming arrows at the ellipse
representing molecule type M indicate the molecule types
which are defined using M as a component type.

We present a few examples to clarify these concepts
before defining them formally.

Example 1: Supplier-Parts-Projects

Figure 1 describes the familiar Suppliers-Parts-
Projects relationship. We describe this using a molecule
type called ‘Orders’. Figure 1.a describes ‘Orders’
pictorially, Figure 1.b shows instances of t.he underlying
rrbl:ltions for Suppliers, Parts and Projects. and Figure 1.c
\hows an instance of the relation for ‘Orders’.

The key for this molecule IS order-#. An ‘Orders’
tuple could be interpreted as follows: the set of suppliers
jointly supply the set of parts to the set of projects.
There are other possible interpretations, and in general,
the intended interpretation is not clear from the above
definition of a molecule. []

Example 2: Univerrity Departments

Figure 2.a partially describes a department in a
university. A department is described by its faculty, stu-
dents and the courses it offers. At this level of abstrac-
tion, it is not known how courses are described. Figure
2.b shows instances of the relations for ‘Faculty’, ‘Stu-
dents’ and ‘Courses’. To completely describe the
molecule type ‘Dept’ one need only know the key attri-
butes of the molecule type ‘Courses’. Figure 2.b describes
an instance of the relation for ‘Courses’ partially and
Figure 2.c shows an instance of the relation for ‘Dept’
under the assumption that courses have unique names.

This example illustrates two points. One is that a
molecule type can be defined using other molecule types.
The second is that WC only need to know the keys of the
underlying molecules to define a molecule type. This
implies that the relation describing a molecule will not
change even if the relations describing some of its under-
lying molecule types change (ie the structures of some
components change) so long as their keys continue to be
valid. I]

We need to be more precise about the nature of a
molecule type. We therefore formalize this intuition. A
molecule type could represent a type of object or a rela-
tionship between objects. In either case, it is defined in
terms of other molecule types. If molecule type M is
defined in terms of molecule types M,, M,,...hfn, then a
molecule of type M is a collection of mol&ules of types
M, through Mn. Each molecule type has an associated
sequence of atomic (indivisible, non-set-valued) attributes
whose values, for a given molecule, describe the proper-
ties of that molecule taken as a whole.

Mathematically, a molecule type M is defined as fol-
lows:

where the A. s are atomic attributes, the M.‘s are
molecule type;: and m,n >= 0. and not m=n=‘0. The
Ai,s are called the atomic or scalar components of M and
the hli’s are called the molecular components.

This represents a non-N normal form relation with
tuptes

where the keys in a given sel. (ki) arp distinct

(order-#)

Figure 1.a. MR diagram for Suppliers-Parts-Projects

Suppliers Parts Projects

Figure 1.b. Relations for Suppliers, Parts and Projects

Order-# Suppliers Parts Projects

1 is11 {Pl! P3, P4) {PrlJ

2 1521 (Pl) br2, pr3)

Figure l.c. Relation for the Orders molecule type

(name)

(name) 22 Courses

Figure 2.a. The Dept molecule type

Faculty Students Courses

c-x c-x

cs304 cs304

cHY301 cHY301

cHY104 cHY104

Figure 2.b. Relations for Faculty, Students and Courses

d-name faculty students courses

cs {Smith, Brown} {Tom, Ken, Nick} (CS304)

CHY {Jones, Black} {Sue, Nick) (CHY301, CHY104)

Figure 2.~. Relation for the Dept molecule type

A molecule of type M is described by a tuple in this
relation, and is composed of a collection of tuples lrom
the relations that describe molecule types Mi, i = 1 to n.
These underlying tuples are specified by sets of keys (ki},
some of which may be null. The a’s are attributes
describing molecule M and are atomic. Note that some of
the Mi’s may be identical. This means that objects of
these types play more than one role in the relation (or
abstract object) defined by molecule type M. For exam-
ple, consider the following molecule definition:

People = [name]

Father-of = [People, People]

People is a molecule type with the atomic attribute
name and no set-valued attributes. Father-of is a
molecule type with no atomic attributes and two set-
valued attributes.

Thus, the tuple [{John}, {Jim, Susan, Joe}] in the
relation for Father-of means that John, Jim, Susan and
Joe are people and that John is the father of Jim, Susan
and Joe.

We also define a navigation operator as follows:

Given a molecule m (of type M, say), mli refers to the
set {ki} in the tuple defining m, and m1i.k refers to the
molecule of type Mi with the key k (ie, the tuple with
key k in the relation defining Mi). We used mli instead
of mlM. to avoid the ambiguity that arises when some
of the d. s are identical. To make this more readable, we
add some! syntactic sugar:

Molecule type M is defined by [Al, .:,
and [Ml, . . ,

Am, C,, , C,I
M] where the C’s are distinct component

names. The se&d part of the deEnit.ion specifies the
underlying molecule type of component Ci. The molecule
type Father-of may now be deEned by [Father, Children]
and [People, People].

How do we describe the traditional concepts of entity
and relation in terms of molecules? An entity is simply a
molecule type with no underlying molecule types. The
sets {k.} are absent from the definition of a molecule
represeAting an entity. A traditional Erst-normal form
relation between entities can also be represented as a
molecule with no underlying molecules. We call such
molecules independent molecules. Thus, as in the rela-
tional model, we have a uniform representation for
objects and relations between objects. An entity is just a
special case of an object, and a traditional relation is just
a special case of a relation between objects.

Example 3: Courree in a Department

Figure 3 shows a refined version of the ‘Dept’
molecule type. The point to note is that a given object
(in this example, the independent molecule types ‘Facul-

ty’
and ‘Students’) can be used to describe more than one
molecule type. []

Example 4: Projectr

This example shows how a molecule type may be
defined recursively in terms of itself. A project is
described by its name, which is unique, the faculty
members and students who are working on it, and a set
of sub-projects (Figure 4.a).

Figure 4.b shows an instance of the relation for the
‘Project” molecule types, using the ‘Faculty’ and ‘Stu-
dent’ relations defined in Figure 2.b. This could also be
used to associate a list of related projects with the
definition of a project. In fact, the semantics of the ‘Pro-
ject” molecule type is ambiguous in that the molecule
type deEnitiou does not tell us which of the above two
roles a component project plays. We expect, however,
that the role played by a component of a molecule type
is the same in all molecules of this type. []

3. The Semanticr krociated With a Molecule

The above definition of a molecule type specifies
only its structure. How do we interpret this structure?
Let us examine various examples to clarify this point.
Reconsider the Suppliers-Parts-Projects example. The
meaning of the ‘Orders’
molecule 11, {sl}, {pl, p2, p4}, {prl}] is clear. Supplier
sl supplies parts pl, p2 and p4 to project prl. This does
not mean that pl, p2 and p4 are the only parts he sup-
plies to prl. If we wish to enforce the semantic? that
these are the only parts hesupplies to prI, we could do
so by making ‘Suppliers’ a key for ‘Orders’.

Now consider the ‘Orders’ molecule 12. (s2.s3},
{pl,p6}, (pr2)]. Does this mean that both sl and s2
supply the named parts or that they supply them jointly?
The first interpretation means that this molecule is just a
compact representation for the t.wo molecules 12. (s2),
{pl,p6}, {pr2)] and 12, {s3}, (pl,p6}, {pr2)]. The second
treats {s2.s3} as a composite supplier, a single indivisible
unit. So the semantics depend on the nature of the aggre-
gation represented by {s2,s3}.

We thus distinguish between two kinds of components,
unit components and complex components. In the above
example, viewing Suppliers as a complex component
leads to the Erst interpretation and viewing it as a unit

380

(name)

v

Room

Figure 3. Tbe Dept molecule type refined

Faculty Faculty

(P-name) (P-name)

Figure 4.a. Tbe Project molecule type

P-name Faculty

CAD {Smith, Jones}

Chemical-design, {Jones, Black}

Computer-analysis {Brown}

Students

{Tom, Nick}

{Sue, Nick}

{Tom, Ken}

Sub-projects

{Chemical-design
Computer-analysis)

WJLLJ

{NULL)
3

Figure 4.b. Relation for the Project molecule type

381

component leads to the second. As we saw in the exam-
ple above, a molecule with complex components is really
a set of molecules. If molecule type M has complex com-
ponents Mi...Mj, then a molecule of type M with nk keys
in the set corresponding to complex component Mk really
represents a collection of ni*...*n. molecules, each of
molecule type M’ where the defim Ion of molecule type 2.
Xl‘ is identical to the definition of molecule type M,
except that all the complex components are now unit
components (In fact, the set corresponding to one of
these components in a molecule of type M’ is singleton.).
An instance of M is just a compact representation for an
instance of M’ where each molecule of M stands for
n.*...*n. molecules of M’, and it is really the molecules of
t;pe d, that describe objects of interest to us. However,
defining a molecule type with more than one complex
component obscures the nature of the abstraction that is
of interest to us, and we strongly discourage it.

1. The Proposed Model

A database definition is a collection of molecule
type definitions and a database instance is a set of in-
stances of the underlying molecule types. Database
design is the process of defining these molecule types.

For example, a database may contain information
about all legal firms in a city. The design of this data-
base is essentially the definition of the molecule type
‘Law-Firm’. This can be done hierarchically, using a
topdown approach. This molecule type may also be
thought of as a view of the lower-level molecule types in
this database, and the process of database design may be
thought of as the process of building this view from a set
of independent molecules. These two approaches are dis-
cussed separately in later sections.

The central concept in our model of a database is the
molecule. The definition of a molecule includes our
notion of aggregation. A molecule is an aggregate object,
described by a collection of molecules from a predefined
set of molecule types, and may contain an arbitrary
number of molecules from any one type. Classifiration is
implicit in that molecules of a given type are represented
hy tuples in a relation.

If molecule type M is a generalization of molecule
typrs M., we define M as if the Mi: were its component
types. d owevcr. we know that a given molecule of type ,
hf is a single molecule of one of the types Mi, and so in a
tuple representing a molecule of type M, all sets {k.},
exrcpt one, will be empty and the exception will be a s/n-
glrton set.

If we know that (ki} is always either singleton or null,
we represent component C. by a broken arrow. Thus if
hi IF a generalization of molecule types Mi, the arrows to
all these components are broken. Further, only one of

these sets is non-null. We represent this pictorially by
drawing an arc through these arrows. In general, an arc
through a set of arrows, broken or solid, indicates that
only one of the components associated with these arrows
is non-null in any given molecule of this type.

Example 5: Modelling Vehicles

Figure 5.a models the molecule type ‘Vehicle’ as a
generalization of the molecule types ‘Car’ and ‘truck. All
vehicles have a license number. The
broken arrows indicate that a molecule of type ‘Vehicle’
has at most one component molecule of type ‘Truck’ and
one of type ‘Car’. The arc through these arrows indicates
that at most one of these sets is non-null, in other words,
a vehicle is a car or a truck but not both!

Figure 5.b models ‘Vehicle’ as a molecule type with the
underlying molecules ‘Car’ and ‘Truck’. This does not
reflect the above semantics. For instance, this definition
allows a ‘Vehicle’ to be a collection of cars and trucks, an
abstraction that we would normally think of as a collec-
tion of vehicles rather than as a single vehicle.

Figure 5.c models ‘Vehicle’ as being either a collection
of cars or a collection of trucks, again not the int,ended
semantics. [I

Example 6: Modelllng Verslonn of Cars

In Figure 6 we illustrate how similar objects can be
classed together to reflect the fact that they are identical
at some level of abstraction.
A molecule of type ‘Car’ is one of the named cars. Thus,
while detailed descriptions of these cars may he stored at
some level, we are able toepresent the fart t.hat t,hey
are instances of the same abstract object and store those
properties that are relevant to this abstracted vies [I

Example 7: Modelling Variant Structures

This example illustrates how to define several vcr-
sions of a molecule or to define a molecule whose struc-
ture has variants.

In Figure 7, addresses have two components, a city
name and a local address. The local address is either a
post-box address or a street address. This esnmple
shows how an arc through some of the arrows can he
used to realize a variant structure. Sinr,e the arrows for
the molecule types ‘PO-box’ and ‘Street-address’ are
linked by an arc, a given address molecule has at most
one of these. The component ‘City-name’ is always
present since no arc pass through the arrow linking it to
the address molecule type.

This technique can also be used to generalize some

382

(licence,#)

a

Vehicles

(g-~

Figure 5.a. Vehicles defined using generalization

(licence-#)

Figure 5.b. Vehicles as a collection of cars and trucks

(licence-#)

Figure 5.~. Vehicles as a collection of either cars or trucks

Figure 6. Different versions of cars

Figure 7. A molecule type with variant structure

Family 0 relation

Figure 8. Generalization of relationship

objects (the arrows pointing to these are linked by an
arc). I1

Example 8: Generalizing Relatlonrhlpr

The previous examples showed how molecule types
representing structured entities could be generalized.
This example shows that the
concept of generalization extends naturally to relations.

Figure 8 models molecule types describing the father,
mother, daughter, son and married-to relationships. An
instance of the ‘Family-relation’ molecule is a molecule
from one of the above types, reflecting the fact that any
of these relationships is a family relationship. [I

6. Operationr on Moleculea

One of the strengths of the Relational model is its
powerful query language. In this section, we show how
the relational operators can be extended to non-first nor-
mal
form relations as we use them, tbus providing our model
with an elegant and natural query language.

When a relational operator is applied to a molecule
type M that has complex components, the relation for
this molecule type is first expanded to the relation for its
underlying molecule type IM’. Thus we onIy need to
define the extension 01 these operators to molecule types
with no complex components, which are represented by
non-first normal form relations with each set valued com-
ponent viewed as a single indivisible unit.

The extension of the union, Cartesian product and pro-
jection operators is straightforward. Extending the selec-
tion, intersection and join operators involves testing set
equality and containment. A set {kj} is a subset of set
{k.) if every element in {k.) is also m {kj}. Two sets are
eqbal if each is a subset of ihe other.

We can also use the navigational operator, defined ear-
lier, in specifying queries but its use within a relational
operator is expensive.

The operations discussed so far are retrieval opera-
tions. How do we insert, update and delete molecules?
IVe insert a molecule of type M by inserting a tuple for it
in the relation for M. When we do this, the tuples
corresponding to the keys in sets {ki} should already be
in the relations corresponding to to molecule types Mi.
M’e delete a molecule by removing the tuple that
describes it. Thus a delete is local to the relation for the
given molecule type and does not propagate to the rela-
tions for the underlying molecule types. This has two
irrtport,ant elTects. First, suppose we delete a tuple tl
whose km, i,s part of some set {ki} in another tuple t2. if

we now retrieve the components of t2 using the naviga-
tion operator, we find that there is no tuple with the key
for tl. We assume that this key refers to a null tuple.
Thus, a delete at one level may update the structure of a
tuple at a higher level, and this change is noticed only
when we attempt to retrieve the components of the
latter. This may not always reflect the intended seman-
tics of a molecule, and care must be exercised in this
regard in the definition of a molecule type. Second, the
components of a deleted molecule are not removed.
Again, this may not reflect the intended semantics of a
molecule.

This provides the motivation for owned molecule
types. A molecule type may ‘own’ one of its component
molecule types. This owned molecule type will not
appear as a component anywhere else. It is introduced
solely to help define the owner. Let molecule type M,
own molecule type M .
inserted, deleted or %

Molecules of type M2 are
up ated only when a molecule of

type M, (which owns them) is inserted, deleted or
updated. Any changes in a molecule of type M, are
immediately reflected in the molecules it owns.

There is one subtle problem associated with owned
molecule types. Each key must represent a unique
molecule, so there cannot be two identical molecules.
Now how do we handle the case when two molecules of
the owner type wish to own the same molecule? If we let
the molecule be shared, deleting it from.one owner will
cause it to be removed which means it is delet,ed from
the other owner too. To avoid this, we associate some
extra fields with the definition of an owned molecule
type. These could be either system-generated unique
keys, such as tuple id numbers, or the key fields of the
owner molecule type. These fields serve as the key for
the owned molecule type.

We represent an owned molecule type by a bold
ellipse. Note that an owned molecule type may be
defined in terms of molecule types that are not owned,
either by it or its owner, and that ‘owns’ is transitive.
We will see examples of owned molecule types when we
discuss top-down design.

We update a molecule by changing the tuple that
represents it. Details of how this is done should be obvi-
ous from the above discussion since an update may be
thought of as a delete followed by an insert.

Although the motivation for introducing owned
molecules was to make the model more expressive, they
also permit more efficient implementations since all
owned molecules can be stored with their owner
molecules.

We may wish to provide a user with a limited view of
a molecule type. This is made possible by associating a
set of views with each molecule. A view is a subset of the
components that define the molecule type. A view may

385

hr thought of as another molecule type, but no inserts,
deletes or updates on views are allowed. Views are
intended to be a window on the parent molecule type,
and tuples in a view are changed only when the
corresponding tuples (molecules) in the parent molecule
type are changed.

8. Procedural Extensions to fhe Model

Abstract data types have proved to be a powerful
and clean abstraction mechanism in programming
languages. We now consider how abstract data types can
be realized in our model by associating a set of pr&
cedures with each
molecule type. These procedures represent the only
operations permitted on molecules of this type.

The intention is that a molecule type, as defined.by its
relation schema and associated procedures, should com-
pletely represent an abstract object type at the desired
level of abstraction, in analogy with abstract data types
in programming languages. The relation for this molecule
type is a collection of abstract objects, each tuple being
one such object.

Typically, we would include procedures ‘insert’,
‘delete’, ‘update’ and perhaps a sophisticated retrieval
operation, reflecting the semantics of the molecule in a
natural way. The ‘insert’, ‘delete’ and ‘update’ pro-
cedures reelect the intended semantics of the molecule.
All these procedures have the corresponding system
operations as defaults, and their definition could be omit-
ted if we chose to do so.

Consider a molecule type Ml defined with molecule
type M2 as a component. The procedures associated
with M, may only manipulate molecules of type M,
using the set of procedures (or defaults, if some of them
are not defined) associated with Mq. The definition of
these procedures may be done bottom-up or top-down. In
the top-down approach we assume the existence of prc+
cedures which implement the intended semantics at lower
levels, and define each of these later on in hierarchical
fashion.

The navigational operator may be used in these pro-
cedures to locate appropriate components but not to
navigate within them. These procedures now provide a
rlcan separation between various levels of abstraction.
The implementation of a molecule type in terms of com-
ponents using aggregation, classification or generalization
is captured by these procedures and is opaque to higher
Irvrls so long as these procedures retain the same inter-
fnres.

These procedures thus allow us to define the semantics
of a molecule type procedurally, complementing the
drclnrative semantics described in section 3. The declara-

tive semantics are reflected by the system-provided
default procedures for ‘insert’, ‘delete’, etc.

These procedures may be used to enforce semantic
constraints, by having the insert and update procedures
perform various checks.

They also allow us to define fields which are function-
ally determined by other fields. These fields are com-
puted by the insert procedure, automatically insuring
that any dependencies are satisfied. There is one problem
however. If a component which is .not owned is specified
as one of the determining fields, any changes in this com-
ponent must be propagated upwards. Thus insert, delete
and update procedures at one level could depend on the
specified functional dependencies at a higher level.
Clearly, this problem does not arise if all determining
components are owned. These functionally determined
fields provide a powerful tool for defining meaningful
views (see section 5) of a molecule type while maintain-
ing as much information hiding as desired.

7. Top - Down D&abase Design

The design of a database begins with the
identificarion of the abstract objects we wish to describe.
We refine each of these objects in steps, int,roducing
more detail at each stage unlit the description of each
object
in the database has been taken down to the lowest
desired level of abstraction

At this stage, we will probably discover, among other
things, that components of some molecule types appear
as p3rt of some of their other components and can be
migrated down. We may also find that several referrnces
to molecule types can be replaced by references to some
of their components or views, sometimes even prompting
us to redefine some molecule types.

Next, we identify owned molecule types. A molecule
type can be made the owner of a component type if the
latter is not a component of any other molecule type
and, further, we do not wish to talk about it as an
abstract object in its own right. By now, the design
should also be sufficiently advanced to enable us to make
a choice of keys.

Next, we bring the database into 3’NF by moving
down some molecule types. A non 1NF relation is in
3’NF if it is in 3NF when each of its components is
viewed as a single atomic unit. We consider molecule
types M with complex components in terms of their
underlying molecule types M’. Violat,ions of 3’NF are
caused by dependencies in which non-key components
determine other components. If non-key components C,
and C2 determine component C3 in molecule
create a new molecule type M2 with components

356

and C1 and key (C , C2). M is redefined with com-
,P;;;;; a,, kand d, replace with a single component d

1s approach to database design is similar
to that diszussed in (10).

Example 9: Deslgn of a Databeae for Vehicle
Sales

We illustrate the top-down apdroacb by designing a
database that describes vehicle sales. We begin with the
abstractions we wish to model - manufacturers,
dealers and buyers - and refine each in turn. Figure 9.1.a
shows the database at this stage. Note that we do not
know precisely bow they are related as yet.

.4 manufacturer is described by the vehicles be has
produced and sold in the current year. We associate
attributes ‘name’ and ‘year’ with this molecule type and
refine it in terms of components tbat describe what this
manufacturer produced and sold in the given year (Fig-
urc 9.1.b).

The products are vehicles, and so a manufacturer’s
output can be described in terms of the number of vebi-
clrs of each type that be produces. The ‘Products’
molecule type is used to associate the number produced
with the vehicle type. A collection of these molecules can
thus express a manufacturer’s output.

A manufacturer’s sales can be described by the
number of vehicles of each type that he sells to each of
his dealers. We use a molecule type ‘Inventory’ to
repress the number of vehicles of a given type that are
sold to a given dealer. This is shown in Figure 9.l.c. It is
easy to see that ‘Products’ and ‘Inventory’ are identical
since they have the same structure and describe the same
abstraction _ the number of vehicles of a given type that
participate in some transaction or are part of some struc-
ture. So we can use just one molecule type, say ‘lnven-
tory’, for this purpose (Figure 9.1.d). However, this may
not be the best possible design since using two molecule
types allows us to make each of them an owned
molecule.

We now refine ‘Dealer’. A dealer is described by the
number of vehicles of each type that he has in stock and
his kales for the given year (Figure 9.2). The description
of the vehicles be has in stock is similar to the ‘Inven-
tory’ molecule type. The only difference is that an extra
attribute has been added to show the price charged by
t hr dealer. His sales are described by the sale date, vehi-
cle and customer.

molecule types representing these descriptions, in order
to keep this example brief.

A customer may be a person or a corporation, but
is, for tbe purposes of this abstraction (bis or its role in a
sale) completely characterised by his or its address. This
insight may be used to guide the design of the molecule
types representing tbem. We illustrate this by partially
expanding ‘People’ (Figure 9.4.a). The information that
is iiewed as an abstract object in the ‘d.Sales’ molecule
type is made a distinct component. Figure 9.4.c shows
the molecule types for ‘d.Sales’ and ‘People’ at this stage.
However this has a subtle Eaw - the semantics of the
‘People’ molecule type makes it desirable to make the
‘Name and address’ component an owned type. This
makes it impossible for us to use this as a component in
‘d.Sales’, so we really need to use another molecule type
with the same structure to define ‘d.Sales’. Thus it turns
out that the insight gained with regard to the structure
of the ‘d.Sales’ molecule type is inapplicable, but this
may not always be so.

Examining our design so far, it is easy to see that
all vehicles have a name, so the name attributes for ‘Car’
and ‘Truck’ can be moved up.

At this stage we can identify the owned molecule
types using the criteria discussed earlier. This is a fairly
obvious exercise and we show the resultant design at this
stage (Figure 9.5).

If we assume that the social security number is a
key for ‘People’, then our design is not ih 3’NF since
name and address is also a key and hence determines the
third component, ‘Occupations’. This can be rectified by
moving ‘Occupations’ down to the ‘Name and address’
molecule type. This requires ‘Occupations’ to be owned,
which means we bave to store details about engineers for
each engineer. The solution to this problem is to make
‘Occupation name’ an owned molecule, and store details
of each occupation in a separate molecule type. The final
design for ‘People’ is shown in Figure 9.4.b.

There is one last point that is instructive. Each
molecule type may be used to define part of a user’s
view. Given this, we may wish to restrict, the amount of
detail visible from a given molecule type. For example,
the ‘Manufacturer’ type need only contain the dealer’s
name. Details of his business are none of the
manufacturer’s business. We could enforce this by mak-
irlg ‘Dealer-name’ an independent molecule (owned by
‘Sales’ and NOT ‘Dealer’) and replacing ‘Dealer’ in the
definition of ‘Sales’ with ‘Dealer-name’. (1

To complete this design we need to describe the
rnl~lecules ‘Vehicle’ and ‘Customer’. A vehicle is either a
car or a truck (Figure 9.3) and each of these is character-
I<(Y! hy a name and a description. Cars and trucks may
h:l\,a diflrrent descriptions. We don’t expand t,l e

0 Manufacturers

Figure 9.1.a. The initial database description.

(name, year)

Figure 9.1.b. Manufacturers

(name, year)

I /’
/’

a

Vehicles

Figure 9.l.c. The Manufacturers molecule type refined

35%

lnamr vrar)

6 Vehicles

Figure 9.1.d. Another way of refining Manufacturers

Figure 9.2. Dealers refined

0 Vehicles

(name) ,,xxx (name)

(Z-J \W’

Figure 9.3. Vehicles refined

(ssn)
0 People

yTik-&/”)--&

Figure 9.4.a. The People molecule type refined

(ssn)
0

People

(date)

Figure 9.4.b. The final design for People

(ssn)

0

People

. .
,’ ‘\

,0’ ‘\ \ .
cl Occupations

Figure 9.4.c. A Possible Refinement of d.Sales

(name)

Figure 9.5. The vehicle sales database

g. Bottom - Up Database Design

The top-down approach is probably the best way to
design a database if we are designing it from scratch.
tlowever, if several objects at the
lower levels of abstraction have already been designed, as
for instance when we wish to integrate some given sche-
mas or build some abstractions on top of them, a
bottom-up approach may be desirable.

In bottom-up design, we may think of the database as
a set of underlying objects - independent molecules, at
the lowest level - with a set of user views on top. The
design process consists of identifying these objects and
then constructing the user views. When we apply this
technique to schema integration, there is the further
problem of ensuring that the given schemas are con-
sistrnt with each other. This is a difficult problem which
we do not discuss. It is possible that attempting to build
the desired user views bottom-up, and restructuring
ronflictmg schemas top-down will prove fruitful, but this
is an area where a great deal of work needs to be done
before we can come up with good answers.

VVe give a simple example of how views can be built on
top of a set of given schemas. Consider the database in
example 8. We may wish to define an abstract molecule
type to represent a family. The ‘Family’ molecule type
could be defined with ‘Family-relation’ as a component,
and attributes such as the family address. (We could also
drfinc it in several other ways, with components
‘Father-of’, and ‘Married-to’, for instance.)

9. Relationehip to Other Models

Our definition of a molecule is equivalent to that
given in (4). The important differenre between the two is
that we establish the correspondence between a molecule
of type M and its underlying molecules of type M.
in the relation defining hl. Batory and Buchmanh estab-
lish this correspondence by associating with each
molecule of type Mi the keys of all molecules of type M
that it helps to describe. They do this in order to achieve
a separation between the abstract specification of a
molecule type and its actual implementation, in keeping
with the programming language paradigm of abstract
data types. This makes it difficult to define a molecule
precisely and to refer to its components. Our approach
avoids these problems, and it also supports the abstrac-
trou paradigm, as we demonstrated in sections 5 and 7.

The use of non-first normal forms in VERSO (2, 3) is
similar to our approach, but it differs in the following.
Suppose we say that a molecule type M, is ‘used’ in the
drfnition of molecule type M, if it is a component type
r~f hf., or ‘used’ in the definytion of one of M2’s com-
r~~~n~*r;t types. Then, in the \‘ERSO approach, a molecule

type M cannot be defined with component types M, and
M2 if there is some M\d\s-lS\s+l\u such that it is used
in the definition of both M and M Essentially, this res-
triction forces all their MRldiagrar& to be trees in which
the sub-trees at each level are disjoint.

For example, the database design in Figure 9.l.c is ibe-
gal in VERSO because ‘Manufacturer’ is defined in terms
of ‘Products’ and ‘Sales’ and both of these are defined
using ‘Vehicle’.

All their ‘molecules’, to use our terminology, are
owned molecules and are stored with their owner
molecules.

Also, they view the atomic attributes ‘a’ as being
drawn from underlying att,ribute types, which may be
shared between two molecule types. Thus the ‘a’s differ
from the components (ki} only in that they are atomic.
In our model, they are intended to describe the molecule
as a whole, and are distinct from the components {ki} in
that they are independent of other molecule types,

Smith and Smith aggregation (10, 11) also imposes a
tree structure on the aggregates but without the restric-
tion that the sub-trees be disjoint. However, their notion
of aggregation does not allow us to group several tuples
of a single component type. In terms of our definition of
a molecule type, the sets {ki} are always singleton or
null. In fact, the Smith and Smith model may be viewed
as a generalization of the Relational model, where an
attribute in a relation may be a tuple from another rela-
tion. Our model goes one step further and allows an
attribute to be a set of tuples from an underlying rela-
tion.

Clearly, our model subsumes the Relational and ER
models. It may be appropriate to stress the differences in
the pictorial representations of molecule types and the
ER model. MR diagrams use ellipses to represent
molecule types with molecular components. Such
molecule types have no count.erpart in ER diagrams.
Rectangles are used to represent independent molecules,
which may be either entities or relationships in the ER
model. In other words, the MR diagram represents just
the structure of the molecules. Their semantics must be
defined elsewhere, although an appropriate choice of
molecule names often helps. Arrows here dchnr structure,
not relationships. So although MR and ER diagrams may
look similar, they are interpreted in totally different
ways.

10. Conclusions

The hlR model provides a natural tool for database
modelling. Object,s in this model have a uniform and sim-
ple description, and can be expressed clearly in diagrams.
The model provides a high level of abstraction and
supports both top-down and bottom-up drsign of a data-

392

b:ise. The hfR model is built around the concept of a
molrcuie. Defining a molecule in terms of non-first nor-
m:il form relations provides a precise representation as
well 3~ the basis for a relational query language. Further,
it allows us to express generalization of objects and rela-
tion.\hips between objects in a natural way. Our
approach is clearly object-oriented, and, with the pro-
cedural extensions discussed in section 6, completely cap
tures the programming language concept of abstract
data types.

The fact that bottom-up design is similar to building a
set of views suggests that this might be an appropriate
model for view modelling and view integration. This,
however, is beyond the scope of this paper.

Referencea

[l] H.K.T. Wong and J. Mylopoulos, “Two Views of
Data Semantics: A Survey of Data Models in Artificial
Intelligence and Database Management”, INFOR, Oc-
tober 1977.

121 F. Bancilhon et al.. “VERSO: A Relational Back
End Data Base Machine”, Proc. Inter. Workshop on Da-
tabase Machines, San Diego, 1982.

131 S. Abiteboul and N. Bidoit, “Non First Normal
Form Relations to Represent Hierarchically Organized
Data”, Proc. ACM Symposium on Principles of Database
Systems, Waterloo, 1984.

141 D. Batory and A. Buchmann, “Molecular Objects,
Abstract Data Types, and Data Models: A Framework”,
Proc. VLDB. 1984.

[5] M. Hammer and D. McLeod, “Database Description
with SDM: A Semantic Database Model”, ACM Trans.
Database Systems, Vol. 6, No. 3, 1081.

[S] R. Hull and C.K. Yap, “The Format Model: A
Theory of Database Organization”, JACM, July 1984.

[7] S. Abiteboul and R. Hull, “IFO: A Formal Semantic
Database Model”, TR-84-304, University of Southern
California.

[S] P.P.S. Chen, “The Entity Relationship Model - To-
wards a Unified View of Data”, ACM Trans. Database
Systems, Vol. 1, No. 1, 1976.

[Q] E.F. Codd. “Relational Model of Data for Large
Shared Data Banks”, CACM, June 1970.

[lo] J.M. Smith and D.C.P. Smith, “Database Abstrac-
tions: Aggregation”, CACM, June 1977.

1111 J.M. Smith and D.C.P. Smith, “Database Abstrac-
tions: Aggregation and Genrralization”, ACM Trans. Da-
tabase Systems, Vol. 2, No. 2, 1977.

1121 B.H. Liskov and S.N. Zilles, “Programming with
Abstract Data Types”, Proc. ACM SIGPLAN Symp. on
Very High Level Languages, SIGPLAN Notices (ACM)
Vol 9, No 4, 1974.

393

