
A TOOL FOR MODULAR DATABASE DESIGN

Luiz Tucherman*
Antonio L. Furtado**
Marco A. Casanova***

*Latin American Systems Research Institute/IBM Brazil
l *Pontificia Universidade CatGlica do Rio de Janeiro

***Brasilia Scientific Center /IBM Brazil

ABSTRACT

6 database design method, based on the
concept of modu Le, is first described.
The method incorporates both a
strategy for enforc i ng integrity
constra i nts and a tactic for
organ i z i ng large sets of database
structures, integrity constraints and
operations. A software toot that
helps the deve lopn~ent and ma i ntenance
of database schemas designed according
to the method is then specified.
Finally, a prototype expert 5 y 5 t em
offering a partial implementation of
the tool is described.

1. INTRODUCTION

We discuss in this paper a software tool
that he LPS the database administrator
spec i fy and maintain database schemas
following a modular discipline.

The tool incorporates knowledge about a
database design method, first described
in LTCFI, that prov ides structured
descriptions of the more trad i t i ona 1
not ions of concept ua 1 and ex terna 1
schemas. Kelat ion schemes, i ntegr i ty
constraints and operat ions are grouped
into n\odules lPa,LZI and introduced in a
structured, order LY fash ion that
enhances the understandab i 1 i ty of the
database. The method also dictates that
the relations of a module M must be

Pormieeion to copy without fee all or part of thie maGal ia
granted provided that the copier are not made or dietributed for di-
net cornmenU advantage, the VLDB copyxi& notice aad the title
of the pubiication and ite date appear, and notice t given that copy.
ing ie by permieeim of the Very Large Data But Endowment. To
copy otberyiae, or to repnbliah, requires l fee and/or epecial permie-
eion from the Endowment.

updated only by the operations defined
in M, which corresponds to the usual
not ion of encapsu la t ion LLZI . Hence, if
the operations of each module M preserve
consistency with respect to the
i ntegr i ty constraints of M, the method
introduces an effective way to guarantee
logical consistency of the database.
Yet, quer i es rema i n unrestra i ned in our
method, just like i n the trad i t iona 1
database design strategies.

Modular database design is not a new
idea, but all references known to us
lDMW,EKW,LMWW,SFNC,SNF,Wel tend to
exp lore the principles, theoret i cd 1 and
otherwise, of the method. We are, by
contrast, interested in immediate
applications of the idea.

The des i gn of a database schema in our
method consists of the success i ve
addition of new modules to a (possibly
empty) ker ne 1 database schema. But we
also recognize that designing a database
s c h em a is intrinsically an interactive
process. The database designer
frequently has to go back and alter the
definition of a schema, either because
the application evol.ves, or because his
percept ion of the application changes.
This understanding of the method led us
to divide the development of the tool
into two phases.

In the initial implementation phase, the
toot should incorporate a diet iondry to
store the description of m o d u I. a r
database schemas and should provide
facilities to add new mod II 1 es to an
ex i st i ng schema. A first prototype with
these character ist its, wr i t ten in the
aties extension of micro-PROLOG LHSI, is
fully orerat iona 1. I* incorporates
severd I. des i gn rules and offers a very
user-fr i end ly i nterfac:e capable of
guiding the database administrator
through the var i ous stages of the
definition of a module.

Proceedings of VLDB 85, Stockholm 436

I n the second stage of development, the
toot shou Ld account for database
redes i gn. That is, it should help the
DBA add, delete or modify the definition
of objects of a modular database schema.
The redes i gn process is somewhat more
camp Lex, since it must necessar i Ly map d
syntact i cd I. Ly correct schema satisfying
all design requ i rements into another
schema with the same property. As a
consequence, the process must adequately
cope with the prob Lem of the propagation
of changes. At the present time, the
set and stage is fully specified and the
prototype is be i ng extended to cover
database redesign.

The paper is divided as fol tows.
Section 2 describes the basic concepts
of the database design method. Sect ion
3 defines a d i c t i onary to descr i be

mod u 1 a I- database schemas. Section 4
specifies the database design tool, with
special emphas i 5 01-I the prob Lem of
chang i ng the definition of modules.
Section 5 out 1 i nes the c u r r e 17 t

prototype.

Due to space L irli tat ions, deta i led
d i SC USC: i 0117; were left to the technical
report version of the paper LTFCI.

2. MODULAR DATAEASE DESIGN

A LgldliQn scbewe is a statement of the
f cl r RI RLAt ,...,Anl, w h e I- e R is the
rela1iQu naflle and At ,...,An are the
aJkrihutes of the scheme. An inhsr.i.tr
rnns~raiu~ is a statement of the form
11:G!, where n is the name Of the
constra i nt and B is d we 1 t-formed
f or ill u 1 a ovel- the relation SC: h emes i n
quest ion. An negrdiipo is a procedure

def i n i t i on i ii 5 0 01 e appi-opi- i ate

pi-ograslrn i ng Language. We will use the
notat ion fCX4 ,...I XII): s to indicate an

operation 11 a m e d f with parameters
Xl ,...t xn and body s.

A ondulr is d triple M = (RS,CN,OP)
where

f . RS is a set of relat ion schemes such
that 1-I 0 two sctleeles in RS have the
same I-eLat ion ndf~le;

2. C;N IS a set of ilitegl- i ty constl-a ints

over the l-elation schemes in K’S. CN
bl u ” t contain, f 01- each retat ion
sc: h emp R LA< I..., Anl, a rf?lat.iQu
SsheKle a x i. c! 0 indicating that the
interpretat ion of R must be a subset

of the Cartesian product of the
interpretat ions of Al,. . . ,An.

3. OP is a set of operations over the
retat ion schemes in RS.

A module may be either eL.imj.iiye, if it
is defined without any reference to
other modules, or derived, if it is
defined from previously existing modutes
by one of the two module constructors,
aubswki.nn and exieosinn.

A prifni t ive mod u Le M=(RS,GN,OP) is
defined by a statement of the form:

(1) module M
schemes RS;
constra ints CN’ ;
operat i on5 OF’;
enforcements EN;

endmod u L e

where CN’ is CN without the relation
s c h e ~II e a x i 0 fr 5 (since these integl- i ty
colistra i nts are comptetety fixed by KS,
they may be omitted from CR’) and EN is
a set of enfnrrewrnt r1ausr.s of the form
'0 eufnxes 1' where 0 is the name of an

opera t i on and I is the name of a
constraint of M.

The DtiA f~\us t i nc L ude a n enforcement
c L a use ‘0 !2UfQLSeS 1’ whenever the
definition of operation 0 takes into
account constra i nt I. That is, whenever
s 0 fll e change to the definition of I
affects the definition of 0. This type
of add i t i ona I. informat ion wilt be
i nlportant in Sect ion 4 when we consider
the problem of redesigning the database
schema.

The rest of this set t i on def i nes the

ta o d u 1 e constructors in deta i L, whereas
Sect ions 2.3 and 2.4 indicate how they
can be prof i tab Ly used for database
design.

Let Mi = (RSi,CNi,OPi), i=l ,..., n, be
rnodu Les.

Cons i der the subsutnp t i on col-lst~uctc!l-

first. Intuit ivety, if the DEA defines
il by subsumpf ion over ftlodules Hi,. . . ,Ml3,
then M faay contain new retat ion schemes,

new ilitegl- i ty corlstl-a irlts and new

operations, and M always inherits all

the i-e I.at i on .sc hemes and inteql- i iy

constraints of Mt,...,Mli. M also

i nher i t s a I. 1 Opel- at i 01-1s of tit,... >MY\,

except that M 111 a y hide some of these
opera t i on.5 if they viotate a n e w

constra i nt . Moreover, M contains all
pertinent enforcement clauses just as in
the definition of primitive modu Les.
Modu Les M1 I..., Mn then become
inaccessible to the users and can no
1 0 ll g e r participate in the definition of
11ew mod u Les.

7 he following statement defines a new
module M by ruhsuoeij.nn over MI,..,Hn:

(2) module M subsumes MI,...,Mn with
schemes RSOi
constraints CNO ;
opera t i ons OPO j
enforcements ENj
hidings HI i

endmod u le

where :

1. RSO is a set of l-e La t ion schemes
such that no re I.at ion name in RSO
occurs in Mi ,‘*a, Mn , and I30 two

schemes i n RSO have the s a m e
re la t i 011 name j

2. CNO is a set of (named) integrity
constraints over HSO,RS1 , . . . ,RS:lj

3. OF’0 is a set of opera t i ons over
RSO,KSI,4a*,KSllj

4. EN is a set of enfnrrewenl clauses
of the form ‘0 eufmres I’ whel-e 0
is the name of an operation defined
i n M and I is the name of a
constraint also defined in Mj

5. HI is a poss i b Ly empty set of hiding
rlauseh of the form ‘0 may.

uiolaie Ii,...,Ik’ where 0 is the
name of an Opel-at ion of M i , for some
i in Li,nl, and I j is the name of a
constra i nt defined in CNO, for each
j in Ll,kl. We say that 0 is hidden
by M.

More precisely, the statement in (2)
defines a module M=(KS,CN,OY) whel-e

1. RS is the union of KS0 I..., RSn
2 . CN is the union of CNQ I..., CNll
3. OF’ is the union of OF’O,OF’i ’ ‘-**I OF'n'

where
Opel-at ioZi ’

is opi
without all

h i dden i n M, for
i =I , . . . , I1

We now turn to the definition of the
extension constructor. Informa 1 Ly, a
rr o d u 1 e M extends modu Les Ml ,.L., Mn if
each retat ion scheme of M is a yiev over
the relation schemes of Mi,...,Mn (that
is, a l-elation scheme derived from those
of Hi ,-.., Mn) and each constraint of M
is a logical consequence of those of
Mi ,...I Mn , when views are tl-ea ted as
def i ned pred i cate symbots. M may also

introduce opera t i ons on v i ews. But, to
avoid the so-cd 1 Led view update prob Lem
LFCI, the definition of M contains, for
each view operation p, an imp Lementat ion
of P i n terms of the Opel-at ions of
Ml ,..r,Mnr Unlike subsumpt ion, modul*s
Mf ,...,Mn remain accessible after the
definition of M.

4 new module M is defined by ex~gn~j.n~~
over Hi ,...I Mn through a statement of
the form:

(3) module M extends Mi ,..A, Mn with
schemes RSOj

constra ints CNO j
opera t i 011s OF’0 j

using
views VW;
surrogates SRj

endmod u Le

where :

1. the triple (RSO,CNO,OFO) defines a
module M i n the sense of Set t i on
2.i.

2. VW conta ins, for each s c h em e
RlAi ,...I Akl i n KSO, a view
defiuitinn maeeius of the f 0 r ra
R(xi ,...,xk) : Q, where Q is a
wet l-formed formu La with k free
var i ab Les, ordered xt I..., xk, over
RSI I..‘, RSn.

3. SR conta ins, f0:- each opera t i on
f(Yi ,.*., y Ill) : I- in OPO, d SlkkIk:C2QaltE! I
which is a n Opel-at ion of the form
f(Yl I..., ym) : S over RSi,*.*,RSllj

The statement in (3) then defines a new
nlodule M=(HSO,CNO,OPO) and coup Les M to
Ml I..., nn through the pail- (VW,SH). A
view definition nlapping HLAI,...,AkJ: Q
in VW indicates that Q defines H in
ternls of the relation schemes of
Ml I..., Mn. Hence, a query over R is
trans La ted into a 9 u e r y over the
relation schemes of Hi ,...I lln with the
help of G!. Likewise, a surrogate
f(yi,...,ym). 5 i n SR descl- i bes a n
inlplementation of f(yi,...,ym): r i n
tel-ms of the Opel-at ions of Mi ,...I Mn .
Thus, a call to procedul-e f generates an
execution of 5, not l-.

A modular database schema consists of a
set of mod u Les that ill us t satisfy a
se:- i es of design rules, which guarantee
that if the database is updated only by
the Opel-ations visible to the users, the
state of the database will always remain

438

consistent. More precisely, the set of

ronsirfenf modular daiahaae achemas and
their arLi.ue condul12ta~ is recursively
defined as follows:

1. the emp t y set is d consistent
modu tar database s c h em a with a 11
empty set of sctivc modules;

2. Let D be a consistent modular
database schema w i th act i ve modu Les
set A. Let M be a module such that
no modu Le in D has the same name as
H. Then D’ = D U (Ml is a
consistent modu tar database schema
iff M satisfies one of the following
conditions:
a. if M is a primitive module then

M must satisfy requ i rement I
(see Figure 2.1 at the end of
this set t i on for the camp Lete
1 ist of requirements and a brief

exp Lana t ion of their meaning).
The active module set of D’ is
A’ = A U (Ml

b. if M is a modu Le ob ta i ned by
extend i ng Hi , . . . , Mn then M must
satisfy requirements 2,3,4,5.
The active module set of D’ is
A’ = A U (M)

C. if kl is a module obtained by
subsum i nq M$, . . . , Mn then :
i) the relation names of the

new 1-e la t ion schemes def i ned
i n M must be d i f f er en t f r om
those Of the relation
schemes i n M’I , . . . , Mn.

2) M must sat i sfy requirements
6,7,8,9.

The active module set of D’ is
A’ = A U (M, - (M1 ,.--, Mn).

Let D be a modular database schema with

active mod u Les set A. The set C of

r~nreeltual modifies Of D is the subset of
A consisting of all primitive modules
and all active modu Les defined by
subsump t ion; the set E of exiernal
&lQdUlfZS Of D is the set of a 11 modules
defined by extension in D. An opera t i on

P of D is arLi.ue, ‘ZQllLt?EtiWl QK eXi!i’KlUl

iff p is a I1 opera t i on of an active,
concept ud 1 l~espectivelyyr external module of D,

A user has in principle access to all
active modu Les of a modular database
schema. Hence, he see.5 al 1 relation
schemes dlld integrity constra i nts
def i ned in all modules, but he can only
update the database using the active
operations. He c a n also freely query
any relation scheme.

As for the design of modular database
schemas, the process we suggest follows
c lose ly the formal definition. The DBA
gradua 1 LY adds new modules to an
initially empty database schema. He
must pay attention to two aspects: how
to define a new modu Le and hnw to
satisfy the design requirements (see
Section 2.4 for an example).

To cone L ude this sect ion, we state a
theorem to the effect that the choice of
the design requirements suffices to
guarantee consistency preservation.

THEOREM 2. I LTCFI: Let D be a modular
database schema. Suppose that D
satisfies requirements I through 9.
Then, every active operat ion of D
preserves consistency w i th respect
to the set of all constra i nts
defined in modules of D.

Fiqure 2.1 : List of Requirements

PRIMITIVE MODULES

Be~U.reoenf.-l.r each opera t i on def i ned i n
a modu Le H must preserve consistency
with respect to a I. 1 inteyr i ty
constraints defined in M.

Th i s requ i rement ref Lects the
fundamenta 1 preoccupation that the
database shou Ld always be left in a
consistent state LCCFI.

MODULES DEFINED BY EXTENSION

Let M be a module defined by extension

over modu Les Hi=(RSi,CNi,OPi),
i=i ,..r,n. Let RSO,CNO,OPO,VW and SH be
the new relation schemes, integi- i ty
constraints, operations, view
definitions and surroqa tes,
respectively, defined in M.

Beluirgoeniv2r if f(yl,...,ym): s is the
surrogate of f(Yl ,.-., ym) : I- defined
in SR then s is a faithful translation
of r LFCI.

Rep u i remen t 2 guarantees that s
correctly imp lewents r in the sense that
I- and s must have the same effect as far
as the views are c:oncerned.

~g~vj.refijgl~~-3r. i f f (yl , . . . , Ym) : s is a
surrogate defined in SF;, then s can
on I.y (II o d i f Y the va 1 ues of relation
schemes in Mi ,..-, Mn through calls to
the operations defined in Mt , . . - ,Mn.

439

Kequ i rement 3 guarantees that each
surrogate 5 preserves consistency with
respect to CNi since 5 updates the
schemes
opera t i 0nsOAf M1 i

through calls to
, for each i=f , . . . , n.

Besuirewe~AAr for each integrity
constraint I i n CNO, I’ must be a
logical consequence of the integrity
constra ints of Mi I..., Mn, where I’ is
obtained from I by rep Lsc i ng each
atomic formula of the for 1
Fctti I..., tk) by QLti/xt tk/xkl,
where R LA4 I..*, Akl: 4 is ‘^^;ke view
definition of I? described in VW, and
the List of free variables of Q is
Xi ,...,X k.

Hequ i rement 4 guarantees that the
i ntegr i ty constra i nts of M fol low from
those of Mi,...,Mn when each view is
interpreted

Th u::
a defined predicate

symbo t . I10 red 1 Ly new Loca 1
constra i nts c a I1 be defined in a module
created by extension.

&suireweu1-51 Mt,...,Mn must be active
modules of D.

Req,u i rement 5 avoids dcf ining view
opera t i on5 us i ng inactive operations,
which may violate consistency.

MODULES DEFINED BY SUBSUMPTION

Let M be a module defined by subsumpt ion
over modu Les Mi=(RSi,CNi,OPi),
i=i ,...,n. Let RSO, 040, OPO, HI be the
ii e w relation schemes, i ntegr i ty
constraints, operations, and h i dden
operations, respectively, defined in M.
Let CN be the union of 040,CNn and
OF’ be the union of OPO,OPi ,-.., OPn’ ,
where OPi ’ is the set OPi , except for
those operations that were hidden by M,
for i=t ,*..,ll.

BeluireweutAL each opera t i on in OF
preserves consistency with respect to
the i ntegr i ty constra i nts in CNO.

&auiremgui-i’r each operation in OPO can
on 1. y mod i fy the va 1 ues of relation
schemes in fli I . . . , Mn through cat 1s to
the operations defined in Hi,. . . ,fln.

Requirements 6 and 7 suffice to
guarantee that each opera t i on in OF
preserves cons i stency with respect to
CM.

Be~uirewen~Ar D must not contain a
mod u Le defined by extension using Mi,
for some i in 11 ,113.

Requ irement 8 forb ids the DHA to define
a new module M by subsuming a modu 1.e M i
if there is a third mod u Le M’ that
extends Mi . This requirement is
necessary since it avoids the
undes i rab Le situation where M subsumes
Mi and yet M’ offers direct paths to the
objects and operations of Mi. In fact,
if Requirement 8 is violated, we cannot
assure that ca 11s to operations of M’
will not violate constraints of M.

Beiuiremd-Pi Mi ,..., Mn must be
conceptual modules of D

Rezu i rement 9 does llot p e I- 01 i t the
subsumpt ion of externa 1 modu Les, aga in
to guarantee that all new operations of
M, and those of modules defined by
subsuming M, preserve consistency.

We wi 11 illustrate 0 u r method by
designing a micro database that stores
i nforma t i on about products, warehouses
and shipments of products to warehouses.

We begin by creating a schema with ju.st
one pi-imitive modu Le, PRODUCT, that
represents data about products and
contains the opera t i on.5 allowed on

products. PRODUCT is defined as
follows:

mod u le PRODUCT
schemes

PHODl.P~,NAMEI
constra i nts

ONE-N: YpYnYn’(PROD(p,n) h PROD(p,n)
=) n=n’)

opera t i ons
ADDPKClD(p,n):

if ‘-In’ PHOD(p,n’) h P%(p) h NAME(n)
then insert (p,n) into PROD;

DELPHOD(p) :
delete PROD(x,y) where x=p;

enforcements
ADDPROD enforces ONE-.N;

endmodu Le

The enforcement c Lause indicates that
ADDPROD takes into account the
constraint ONE-N.

The modular database schema contains at
this po i nt only one module, PRC)DUCT ,
which is obviously active. We then add
another pr ini t ive module, WAREHOUSE, to
represent warehouses and the operations

440

on warehouses. We define WAREHOUSE as
follows:

module WAREHOUSE
schemes WAREtiSELWO,LOCI
constra i nts

ONE..C :
VwVcVc’(WAREHSE(w,c) & WAREHSE(w,c’)

=> C’C’)
operat ions

OF’EN(w,c):
if ‘3c ’ WAREHSE(w,c’) h W+:(w) h LOG(c)

then insert (w,c) into WAREHSE;
CLOSE(w) :

delete WAKEHSE(x,y) where x=w;
enforcements

OF’EN enforces ONE-C;
endmodu Le

The modular database schema now has two
active modules, F’KODUCT and WAREHOUSE.
We cant inue the design by defining a new
111 o d u I. e , SHIPMENT, that introduces a
relationship, shipment, between products
and warehouses. Note that a shipment
(P,W) requires that product p and
warehouse w i ndeed exist. Since the
operat ions DELF’ROD and CL.OSE may violate
this constraint, we must define SHIPMENT
by subsumpt ion over F’RODUCT and
WAREHOUSE and redef i ne I)EL.F’KOD and CLOSE
appropriately:

modu Le SHIPMENT
subsumes F’RODUCT, W(IREt~OllSE w i th
schemes SHIF’LF’I,W%,QTYl
constra i nts

ONE--G! :
VpVwV~~Yu’(SHIP(p,w,~~) h SHIF'(p,w,q')

=> q.=q')
INC-F': Vp(3w3-1 SHIP(p,w,q)

=> 311 F’ROD(p,n))
INC-W: Vw(3p32 SHIF'(p,w,q)

=> 3c WAREHSE(w,c:))
opera t i ens

ADDSHIP(p,w,q):
if 3n F’ROD(p,n) h 3c WAHEHSE(w,c) h

‘3q ’ StiIP(p,w,~~') h QTY(q)
then insert (p,w,q.J into SHIF’;

CANSHJP(p,w):
delete SHIF'(x,y,z) where (x=p h y=w);

CL.OSEt (w):
if ‘3p3*1 SHIF’(p,w,q) then CLOSE(w) j

DELF’RODI (p):
if ‘3w3q SHIF'(p,w,q) then DELPKOD(p);

e n f 0 r c e rn P n t s
ADDSHIF enforces ONE-Q, INC-F', INC-Wj
CLOSE:i enforces INC-.W;
DELPROD1 enforces INC-F';

hiding
DELF’ROD may violate INC-F’;
CLOSE may violate INC-W;

end mod u 1 e

The modu tar database schema now has
three modu Les, SHIPMENT, WAREHOUSE and
PRODUCT, but only SHIPMENT is active.
Note that SHIPMENT contains a 11 relation
schemes and constra i nts of PRODUCT and
WAREHOUSE, plus a newly defined relation
scheme and three new constraints. The
active opera t i ons (that is, those
avai table to users) after the definition
of SHIPMENT are: ADDSHIP, CANSHIF’,
CLOSE t and DELF’RODI , defined i n
SHIPMENT, and ADDPKOD and OF’EN,
i nher i ted from PRODUCT and WAREHOUSE,
respectively. Since the operat ions
DELPROD and CLOSE 111 a y violate
constraints INC-P and INC-W of SHIF’MENT,
respectively, they a r e h i dden i n
SHIPMENT. Hence, CLOSE and DELF’ROD are
no longer visible to users.

Finally, introduce the
DELIVERY bywzxtending SHIPMENT:

mod u le

module DELIVERY extends SHIPMENT w i th
schemes DELVRY LF'G, WC 1;
constraints /* (none) */
opera t i on.5

DEL(p,w):
delete DELVRY(x,y) where (x=p h y=w)

us i ns
views

DELVKY(p,w) : 38~ SHIF'(p,w,g)
surrogates

DEL(p,w): CANSHIP(p,w)
endmod u Le

The f ina 1 database schema therefore has
two active modules, SHIF'MENT and
DE:L.IVERY, and two other modules, PRODUCT
and WAREHOUSE. Users have access to
three base relation schemes (using
traditional terminology), PRODlP+,NAMEI,
WAREHSE LW+L.CK 1 , and sHIrtr=,w*,qTYi, and
one view, DELVKYlY~,W~I. The active
opera t i ons a I- e ADDSHIP, CANSHIP,
ADDPROD, DELF’HUDI , OPEN, CLOSEi and DEL.
A user has access to any of these
operations, but note that a call to DEL
invokes the procedure associated with
DEL i n the sllrrQsa~es c Lause of
DELIVERY. The procedure assoc iated w i th
DEL in the QeeraiiQur clause of DELIVERY
just informs the user the meaning of DEL
i ii t er- IRS of its effect on the relation
scheme DELVRY.

3. A DICTIONE4RY DEFINITION

We introduce i n this sect ion a
diet ionary that describes the obJects -
modules, schemes, constraints, and
opera t i ons - and re La t i onsh i ps between
these objects induced by a mod u I. ar

441

database schema . The conceptua 1 schema
of the dictionary will be described in
terms of an entity-relationship model.
Although it is not essential, we will
consider that the dictionary contains
on LY the entities and relationships
derived from a single modular conceptual
schema D. It is a Lso important to
observe that the state of the dictionary
represent i ng a database schema D is
fill LY deters i ned by the dec Larat ive
syntax of the modules of D (that
introduced i n Sect ion 2), and
vice-versa.

We will use B(Ai I.‘., AN) to indicate an
entity type named B whose list of
attributes is Ai,..., An; we wi 11 in turn
US(I K(E1 ,...I Em) to descr i be a
relationship type, whose n d m e is R,
w i thout attributes, over the ent i tY
types named El ,A.., Em . Keys will be
under 1 i ned whenever necessary. The
conceptua 1 schema of the diet ionary,
together with the intended
interpretat ion of the ent i tY and
relationship types, is described below:

ENTITY TYFCS

is-pr imi t ive(name), is-sub(name) and
is-externaI.(natre)

each module M, e i ther primitive,
defined by subsumpt ion or defined by
extension, of the modular conceptua I.
SC hema D, c:orresponds to an entity of
type is,erimiiiYe, is,auh 0t-

isz!2x..tf?cnal t respectively. The only
attribute is the module name.

module(nane)
genera 1 i zat ion of the three previous
sets. The only attribute is the
mod u 1 e nd me .

scheme(name, List,def)
e a c: h relation scheme R defined in a
module of D corresponds to an ent i tY
Of this type. The attr ibutes are the
n a me and the attribute List of f?, as
well as the view definition mapping of
H, if I? belongs to a module defined by
extension, otherwise the value of
attribute def is nil.

constraint(uame,def)
each integr i ty constraint I defined in
a module of D corresponds to an entity
of this type. The attributes are the
name and the defining formula of I.

operat ion(Dame,def,surrogste)
each operation 0 defined in a module
of D corresponds to an entity of this
type. The attributes are the name and
the procedure defining 0, as well as
the surrogate associated with 0, if 0
belongs to a module defined by
ex ten5 i on, otherwise the value of
surrfasaie is Dil.

RELATIONSHIP TYPES

subsumes(module,module) and
extends(module,module)

the pair (M,N) will be in the set of
t-e la t i onsh i ps of type auubsumes 01-
eaieads i ff M and N represent two
modu Les such that M is defined by
subsump t ion or by extension,
respect ivelY, over N.

is-scheme-def ined-in(scheme,module)
the pair (S,M) wi 11 be in the set of
relationships of type
is=srheue=defi.nedrin iff S is a name
of a scheme defined in M.

is-constraint-defined-inIconstraint,ll~odule)
(same, when I is constra int defined in
M. 1

is-operat ion-def ined-incoperat ion,moduLe)
(s a me , when 0 is operat ion defined in
M.)

is-view-over (scheme, scheme)
the pair (V,S) wi 11 be in the set of
relationships of type i.s=xi~wznye~: i ff
V represents a view whose view
def i n i t i on mapp i ng i nvo Lves scheme S.

i s-constra i nt-over Cconstra i nt, scheme)
the pair (1,s) will be in the set of
relationships of type
is=rQMfraiu~=QYer i ff I represents a
constra i nt whose definition involves
scheme S.

is-operat ion-over(operat ion,scheme)
the pair (0,s) wi 11 be in the set o.f
relationships of type
iszQeera~iQll=QYer iff 0 represents an
operation whose definition or whose
surrogate (if 0 is a n opera t i on
def i ned in a mod u 1 e introduced by
extension) involves scheme S.

enforces(operat ion,constraint)
the pair (O,I) will be in the set of
relationships of type enforces iff the
definition of operat ion 0 guarantees
that constra i nt I will be not
violated.

442

may-violate(operation,constraint)
the pail- CO,11 will be in the set of
relationships of type mar=uic&3le iff
0 represents an operation which has an
execut ion that may violate constraint
w
1.

ca 11s (Opel-at ion,operat ion)
the pair (O,O’) will be in the set of
relationships of type rails iff 0
represents a n operation whose
definition or whose surrogate (if 0 is
a I1 operat i on def i ned in a modu Le
introduced by extension) Cd 1 Ls

Opel-at ion 0’.

4. REDESIGNING DATABASE SCHEHAS

This set t ion d i scusses i n genera 1 terms
how the design tool should help the DBA
l-edes i gn a database schema. Sect ion 4.f
addl-esses the prob tern of l-edcs igni ng the
modular structure of a schema, i nc 1 ud i nq
the i nsel- t i on and delet ion of camp Lete
modu Les. Sect ion 4.2 discusses the
pl-ob Lem of redesigning the schemes,
constraints, operations and
relationships of modules.

To add a new module M to an ex ist ing
mod u I. a l- database sc.hesla D, the DBA must
successively add the schemes ,
constraints and operations of H, in this
ordel-, to the diet ional-y. The des i gn
too 1 shou Id then guide the DBA in the
process, ver i f y i ng that he does not

violate any of the requirements 1 i sted
at the end of Sect ion 2.3. However,
since we do not assume a genera 1 program
ver i f i el- capable of detect i ng if a I1

opera t i on violates a constraint, or if
two Opel-at ions al-e equ ivs lent (for a set
Of variables), l-equ i l-ements I , 2, b
cannot be enforced. A genera 1 theorem
prover wou Ld also be needed to enforce
requirement 4. Thus, the DBA has to be
trusted as far as these requirements go.
The toot can, at most, infol-111 the DBA
when these requ i 1-ements must be obeyed.
AS for l-equ i rements 3, 5, 7, 8 and 9,
since they depend on the current state
of the diet ionary and 011 syntactic
cond i t i ens, they c a ii in principle be
verified without undue effol-t.

The deletion of a module N is quite
simp1.e to account for, since it suffices
to delete all objects defined in H and
recursively del.ete a 11 modules M’ whose

definition depends direct Ly or
transit ivelv on M.

Changing the relationships between
modu Les makes sense in only one case
which we discuss i n the rest of this
sect ion. Recall that, by requirement 8,
the DHA cannot define a new module M by
subsum i nq a module M’ if there is a
third module II’ that extends tl’ .
Requirement 8 avoids the undes i rab Le
situation where tl subsumes H’ and yet M’
offers direct paths to the objects and
Opel-at ions of M’ . I 1-l fact, if
requirement 8 is violated, we cannot
assure that ca 11s to Opel-at ions of M’
wi 11 not violate constraints of M. on
the other hand, rezu i rement 8 is too
strong i n severd 1 situations. For
examp le, suppose that we let M subsume
M’ as tons as iI does not hide any
opera t i on used to define surrogates of
M’ . Then, the definition of H’ remains
val.id, provided that we consider that M’
now extends M, instead of M’. Since
this type of chanqe is quite useful, we
introduce a new mod u 1 e collstructor,

rf.l:ous rubsuwetien.

We say that a module M strongly su.bsurnes
Mi ,...I Mn iff:

1. M subsumes Mi ,.a., Ml1 exact Ly as

defined i n Set t i on 2, except that
requirement 8 is rep laced by

Beluireoent QLi H does not hide any
opera t ion p used to define a
surrogate of any module M’ that
extends Mi, fol- any i=i , . . . , Il.

2. the dictionary is changed so that
any nodule M’ that extends Mi is now
cons i dered to extend M, fol- each
i=i,...,n.

Thus, s t I- 0 I1 g subsump t i on is i ndeed a
change of the database schema in the
daub le sense that it introduces a new
modu Le M and may change the def ini t ion
of severa 1 other modules.

4.2 Eirdesisuius Rhierb. wi.1hi.n Mad.u.J.ez

I I1 order to help the DBIS insert, de Lete
0 I‘ III o d i f y the definition of objects
within modules, the des i gn toot must
ver i fy the correctness of object
def ini t ions and deterrr ine how changes on
a group of objects propagate to others.
We focus oul- discussion in this section
on the second problem.

443

We first observe that fixing how changes
must propagate is equivalent to
determining a policy governing how
updates propagate through the
entity-relationship d i agram of the
diet ionary. The policy we adopted is
expressed as a set of detailed rules,
but in genera 1 it ref Lects a precedence
relation on objects as follows:

1. relation schemes have the highest
precedence, which i fop 1 i es that a
relation scheme S is:
a. never affected by changes 011

other objects, if S is defined
i n a primitive module or a
modu Le defined by subsumpt ion;

b. affected only by changes on the
relation schemes S is defined
on, if S is defined in a module
introduced by extension;

2. constra i nts have the second highest
precedence, which i mp I i es that a
constra i nt I is affected only by
changes on:
a. the relation schemes I is

def i ned on;
b. the constraints of the extended

modules, if I is defined in a
mod u L e introduced by extension
(to satisfy requirement 4);

3. operat i on.5 have the Lowest
precedence, which i w p 1 i es that an
Opel-at i on 0 is affected by changes
on :

a. the schemes 0 i s def i necl on;
b. the constraints that 0 enforces

0t- ma y violates, 0 1- the
constra ints of the module where
0 is definedj

C. the operations 0 calls.

The redesign process is organ i zed in two
s9t3x-i * The design tool begins the first
step by asking the DBA to supply the set
of changes he wants to apply to the
current schema, and then it takes ovel-
and he Lps the DBA detect and ful LY

spec i fy add i t iona L changes that must be
made to produce a new cons istent schema.
This step is itsetf divided into rlaggz
as exetapLified below. Dur i ng the second
step, the des i gn tool applies all
changes to the current schema.

In what fol Lows, we adopt the notation
‘Ei R E2’ to indicate that there is a
b i n a I- y rel.ationship of type R between
entities El and EZ in the current state
of the dictionary.

As an exdmp Le, referr i ng to the database
s c h e II, a defined in Section 2.4, suppose
that the DHA decides to add a new

attribute, WEIGHT, to the 1-e Lat ion
scheme PROD. The design tool then
beg ins stage 1 of step I of the redesign
process by Looking UP in the diet ionary
which schemes may be affected by the
change 01-l PROD. Since there are no
views defined on PROD, the tool proceeds
to stage 2 where i t determ i nes wh i ch
constraints a r e affected by the change
on PROD. Us i ng the fol Lowing
relationships involving PROD (that can
be found in the state of the diet ionary
descr i b i ng the database schema i n
ques

and
des
to

t ion) :

using the propagation rules, the
9 n tool informs the DHA that he has

check the definition of the
constraints ONE-N and INC-P. A s s u III e
that the DBA, when inspect in9 ONE-N,
decides to modify its defining formuta
to accornodate the new attr ibute WEIGHT
of PROD and a Lso to reta in F’+ as a key
of PROD. ALSO a s s u m e that the DBA
dec ides to modify the definition of
INC:-mF' just to inc Luds a third argument
into the occurrence of PROD,
correspond i ng to the new attribute
WEIGHT (these a I- e put-e LY syntact ica L
changes that have to be introduced
anyway).

Next, the design toot starts stage 3 of
step 1. It first deters i nes how the
changes defined on schemes and
constraints propagate to the operations.
Using the fo L Lowing d ic:t ionary
relationships i IIVO Lv i ng F’ROD, ONE-N and
It-K-F':

ADDF’KOD izzneecai.i.pu=gye):, PROD
DELF’ROD iz=QeeraliQn=uYer FTiOD
ADDSHIF' j+z:Qpgr&iQuzaygr PROD
ADDF'ROD eufoxres ONE-N
ADDSHIF EDfQLStZS INC-F
DELPROD1 el)fQLSftS INC-F
DELF’ROD oar=riQlaie INC-F

and using the propaga t ion rules, t h e
des i gn tool detects that the DRG must
check the definition of ADDF'KCI D ,
DEL.PROD, ADDSHIP and DELF’RODI . However-,
the i nforma t i on conta i ned i n the
dictionary is not sufficient to disclose
all consequences of t h e changes
spec i f i ed on constra i nts. Indeed , .s i nc: e
a constraint, ONE-N, of modu Le F’K’ODIJCT
was mod i f i ed , the design tool must ask
the DBA if its enforcement now depends
a l.so 0 I1 the operat ion DELF’ROD. A
simi Lar remark app L ies to the operations

444

CANSHIF and CLOSEl , when constraint
INC-Y is cons i dered. Assume that the
DBA decides that CANSHIP and CLOSE1 need
not be changed.

The tool proceeds with stage 3 by
recursively usinq the calls relationship
to detect consequences of possible
changes on opera t i ons . The only such
relationship in the dictionary involving
ADDF’ROD, DELPROD, ADDSHIP or DELPRODI
is:

DELF’RODI rallz DELPHOD

Thus, the final set of operations that
must be inspected is ADDF’RCID, DELPROD,
ADDSHIF' and DELPRODI . The tool then
prompts the DBA to supply the changes he
wants to apply to these operations.
Note that DELF’RODI has to be Listed
after DEL.PROD, since the former cat 1s
the latter.

Assume that, when asked how to modify
ADDF’ROD, the DBA rep 1 ies that ADDPROD
has to be modified to accommodate the
new attribute of F’HCID and to continue to
enforce ONE-N. DELF’ROD and CIDDSHIP need
be mod i f i ed only to add the new column
to PROD. Finally, assume that the DEA
decides that DELPRODi need not be
changed at all (since the change on
DELF’KOD does not affect DELFWODI) . This
concludes stage 3 and step 4.

Finally, the design tool enters step 2
and asks the DPA if all resulting
changes are indeed sat isfactory and, if
so, creates a new sc:hecaa accord i ng I.Y.

5. AN EXPERT HELPER FOR DATABASE DESIGN

I n this set t I on we brief Ly describe a
prototype software tool that helps the
DDA interactively add new modules to a
database schema. The prototype a Lso
partially i m p L em e n t s the dictionary
described in Section 3.

The prototype is an exams Le of an eXE!eri
heleec t a concept introduced in LFMI to
des i gna te relatively sma I. L i ntel L i gent
tools to help in the desiqn, usage and
ma i ntenance of Large convent i ona 1
systems. The current ver 5 i on of the
tool r u n s 011 an IBM persona 1 computer
and was written usinq the ap.es extension
of micro-PROLOG LCMl . Thanks to the use
of aP.ez I the prototype is highly
interactive.

The design of the tool beqins by
choosinq a representat ion for a schema D

suitable for micro-PROLOG. The key idea
is to translate the state of the
dictionary describing D (see Section 3)
into a set of axioms. Each axiom wi LL
be a ground atomic formula of the form
‘Ll iah L2’, where iah is a b inary
predicate symbo 1 (infix notat ion is
used) and Li and L2 are Lists.

The genera 1 format of a n axiom
represent inq a relationship is

((type)(type)) tab ((na~t~e)(na~l~e)(version))

where the List ((typelltype)) expresses
the relationship type, indicated by the
types of the objects connected, and the
List ((na~ne)<name)(version)) expresses
the individua L relationship, indicated
by the names of the objects ((version)
denotes the particular version of the
database schema).

Of all entities, only those designating
modu Les are represented in the present
vers ion of the tool. An axiom standing
for a modu Le has the fol Lowing format :

(mod) tab ((name) <kind) (version))

where (kind) is one of (primitive,
subsumpt ion, extension).

I n Table 5.1 we present the
correspondence between the entries of
the diet ionary and their axiomatic
representat ion, as imp Lemented by the
toot.

Tabic 5.1 -- Axiomatic Representation

Type / Entry A x i 0 m

iszerioi4ix.e
(Ml (mod) tab (M ‘primitive’ n)

iszzub
(M) (mod) tab (M ‘subsumpt ion’ 1.))

izrex~ernal
(M) (mod) tab (M ‘external. n)

schewe
(S,L,G!) not i a~ Lemented

rnnzf.ra.inIt
(I,Q) not imp Lemented

QeeraIiQIl
(O,P,F") not i ntp Lemented

subsuwer
(M,N) (mod mod) tab (M N n)

exiread.5
(M,N) (mod mod) tab (M N n)

isrzchewezdefined=i.n
(S,M) (sch mod) tab (S M n)

iz=ram~~Eain~.zd~fined~i~
(I,M) (con mod) tab (11 M n)

i~=Qeera~iQnzdefinedlin

445

tO,M) (ape mod) tab (0 II n)
isxuieuznyer

(V,S) (sch sch) tab (V S n)
ir=rQuzAra.iM=QYer

(1,s) (con sch) tab (I S n)
i,5=QE!e~~~iQU=QYC?~

(0,s) (ape sch) tab (0 S n)
Wlf QKCeS

(O,I) Cope con) tab (0 I n)
mar=uinlafe

(C),1) ((hid ape) con) tab (0 I n)
calls

(O,F) Cope ape) tab (0 P n)

Note: n is the version number

In the sequel we sketch how the
prototype can be used by a DBA to add a
module to a database schema. To begin
the definition of a module, the DHA
types matule Lnamel. From this point
on, the prototype prompts the DBA to
SUPPLY a 11 i nforma t ion needed to define
the schemes, constraints and operations
of the module. The ‘program’ consists of
the predicate ‘module’ which in turn
cd 11s other predicates to create the
sever a 1 module components. A particular
module may or may not have schemes,
constraints and operations. However:

Q if the modu Le M is not primitive,
the DEA must List the mod u les M
subsumes 01~ extendsi

* if the module M is defined by
extension, each scheme S is a view.
So, the DBA must daf ine a mapp i ng of
S into the schemes of the modules M
E?XtellClS j

0 for each constraint or operation 0,
the DBA must 1 ist all schemes 0
references j

0 01-l LY operst i on5 of non-pr i m i t i ve
mod u Les may call other operationsi
III 0 r e 0 v e r , a I. 1 operat i 011s of modu Les
created by extension are surrogates
and 16 u 5 t , therefore, i nc Lude such
ca L Ls. The DHA must then inform the
rails relationship.

so, the presence of certain
I-E tat i onsh i ps (indicated by the
insert ion of the corresponding axiom) is
COmpu Lsory , and the predicate ‘module’
wi 11 fai 1 if the DBA dec tares that they
do not exist (by typing ‘end’ when the
query is posed to h im) .

The prototype fixes, procedura 1 Ly, the
sequence to be followed by the DHA in
crea t i ng the various relationships and
their cor~~puLsory or opt iona 1 nature. 011
the other hand, using the BP~Z features
un i q.ue-answer and va 1 i d-answer, the

prototype separately defines, in a
dec Larat ice style, the criteria to
decide whether the values supp 1 ied by
the DBA as answers are acceptable.

We enumerate below, per type of
relationship created, the
are present Ly enforced.

(mod) tab (x y 1)
Y B (primitive,
extension}

(mod mod) tab (x y i)
Y is a n active mod u 1
ne i ther have been
extension nor extended
created by subsump t i on

(sch sch) tab (x Y i)
scheme y is accessi b te t
used in the definition

criteria that

subsumpt ion,

e, which must
created by

if x is being

o some modu le
of the module

in which the view x is being defined

(con sch) tab (x Y 1)
scheme Y is accessible to the module
i 1-1 which constra i nt x is be i ng
defined

Cope ape) tab lx Y i)
operation Y is accessible to SOfl1f?

modu Le used in the definition of the
mod u Le in which operation x is being
defined; if the Latter is defined by
extension, Y is related t 0 soc1\e

scheme under Ly i nq i ts v i ews

(ape sch) tab (x Y i)
scheme y is accessible to the module
where operation x is being defined.

Cope con) tab (x y 1)
operation x and constra i nt Y have
some scheme i n common

((hid ape) con) tab (x y i)
operation x is catted by an operation
of which constraint y depends

The prototype poses the re Levant
quest ions to the DBA using natur-a 1
Lansuase sentences, and adopts static
and dynamic menus to restr i ct his
answers; it also ensures that names are
unique throughout the database schema.

of ae.53
is-temp Late)

&dd i-t i ona 1 - features
(which-template, i n-menu,
are used for these purposes.

t the end of
compare the
with the

requ i rements for correct module design,
Requirements i, 2, 4, 6 and 7 are not

Returning to Figure 2.1 a
Section 2. 3 , WG! may now
imp Lemented cr i ter ia

446

enforced i they would requ i l-e deta i led
descriptions of the components.
Reyu i rements 5, 8 and 9 al-e explicitly
enforced by the imp Lemented cr i ter i a.
Nequ i rement 3, referl- ing to modules
created by extension, is enforced by
restricting the views and opera t i ons
llec tared in the module to the schemes
and operations involved in the modules
extended.

To cone Lude, we could certainly do more
i n terms of check ins the consistency of
modu tar designs using the informat ion
that is now extracted f r 0 m the DBA.
However, what we a Ll-eady check is
sufficient to demonstrate the usefulness
of th is k ind of expel-t helper.

6. CONCLUSIONS

We descr i bed i ii this paper a software
too 1 to supper t the modular database
design method first introduced in LTCFI.
The method itself was enhanced by
incol-porat ing the hiding al1d enforcement
c Lauses, and by po L i sh i ng some des i qn
rules. The software too L i s imp Lemented
to the point of tlelp ing the database
administrator add new modu Les to a 11
existing database schema. The redes i gn
process, a Lthough not imp lemented, was
specified in detai L. Future p tails
i nc 1 ude tral1sforming the too1 into a
full-fledged dictionary s y s t em
i ncorpora t i ng as m u c h know ledge as

possib Le about the des: i gn method.

REFERENCES

LCCFI

LCHI

LDMWI

LEKWI

M.A. Casanova, J.M.V. de
Cast i Ltlo and A. L. . Furtado.
‘Proper t i es 0 f Concept ua 1 and
Externa 1 Database Schemas’ .
F’roc. of the TC 2 - Wol-k ing
Conferenc:e on Forma 1 Descl- i p t i on

of F r 0 g I- a III 10 i n g Concepts II,
Garm i sh-Pal- tenk i rc:tlen (1 982)
K.L. Clark and F.G. McCabe.
7 m i c ro-F’ROLUG : p I- 0 g I- a m re i n g i vi
logic’. F’l-ent ice-Hall. (1984)

W. Dosch, G. Mascari, M. Wil-sin9
’ on the A Lgebrs i c Spec i f i cat ion
0 f- Databases’. PI-oc. 8th Int’ 1
Conf. on Very Large Data Bases
(iY82)
H. Ehrig, H.-J. Kl-eowsk i, H.
Weber . ‘Atgebraic Specification
Schemes fol- Data Base Systems’.

Froc. 4th Int’ 1 Conf. on Very
Large Data Bases (1978)

LFCI A.L. Furtado and M.A. Casanova.
*Updating Helat iona L Views’, ii1
‘Query Process i ng in Database
Systems’, Spr i nger Ver Lag (in
print).

LFMI A.L. Fur tado and C.M.O. Moura.
*Expel-t he Lpers to data-based
informat ion systems’. Proc. of
the First Internat iona 1 Workshop
on Expert Database Systems
(t984), 298-313

LHSI F. Hammond and M. Sergot. ‘apes:
augmented PROLOG for expert
systems - reference manua 1’ .
Logic Based Systems Ltd. <fY84)

LLMWWI F.C. Lockemann, H.C. llayr, W.H.
Wei L, W.H. Woh 1 Leber . ‘Data
Abstract ions for Data Base
Systems’. ACM Transact i ons on
Database Systems 4:t (t97Y)

LLi!l . . E Liskov, S. Zi L les,
‘Specification Techniques fo,-
Data Abstract ions’. IEEE
Tl-ansac t ions 011 Sof twal-e
Engineering SE-i (1975)

LFa3 D. Farnas. ‘011 the Cl-i tel-ia to
be Used i l1 Dec:ompos i ng Systems
into Modules’. Comm. of the ACM
ts:i2 (4972)

LSFNCI U. Schiel, A.L. Furtado, E.J.

LSNFI

LTCFI

LTFCI

LWel

Neuhold, M.A. Casanova.
‘Towards Mu 1 t i - Leve L and Modu tar
Concept ua 1. SC hema
Specifications’. Inform. Systems
9:i 11984), 43-57
C.S dos Santos, E.J. Neuhold,
A.L. Fur tado. ‘A Data Type
Approach to the
Entity-Relationship Model’.
Int’t. Conf. of the
Entity-Relationship Approach to
Systems Analysis dl1d De s i g I-I
(1980)
L. 7’ u c h e I- III a 11 , M. A. Casanova and
A.L. Furtado, ‘A F I- a q 014 t i c
Approac:h to Modular Database
Design’, Fl-oc. of the 9th Int’ 1.
Conf 1 on Very Lal-ge Data Races,
F Lol-ence, Italy (19831, 219-231
L. Tucherman, A.L. Ful-tado al1d
M.A. Casanova, 'AI-I Expel-t System
for Modu Lal- Database Des i sli” ,
Techn i ca L Report CCFQ30)
Erasi Lid SC i ent i f i c Center, IBM
Brazi L ({985)
H. Webel-. ‘Modular i ty in Data
Base Systerlls Des i 911’. Froc L
Joint IFM/Un i v. Newcas:t ie UPDI~

Tyne Sem i nar (4 9’79 1

447

