A TOOL FOR MODULAR DATABASE DESIGN

Luiz Tucherman*
Antonio L. Furtado**
Marco A. Casanova***

*Latin American Systems Research Institute/IBM Brazil
**pontificia Universidade Catolica do Rio de Janeiro
*»**Brasilia Scientific Center / IBM Brazil

ABSTRACT

A database design method, based on the
concept of module, is first described.

The method incorporates both a
strategy for enforcing integrity
constraints and a tactic for
organizing large sets of database
structures, integrity constraints and
operations. A software tool that

helps the development and maintenance
of database schemas designed according

to the method is then specified.
Finally, a prototype expert system
offering a pavtial implementation of
the tool is described.

§. INTRODUCTION

in this paper a software tool
that helps the database administrator
specify and maintain database schemas
following a modular discipline.

We discuss

The tool
database
in LTCF1,
descriptions

incorporates knowledge about a
design method, first described
that provides structured
of the more traditional
notions of conceptual and external
schemas. Relation schemes, integrity
constraints and operations are grouped
into modules LFa,LZ) and introduced in a
structured, orderly fashion that
enhances the understandability of the
database. The method also dictates that
the relations of a module M must be

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to repablish, requires a fee and/or special permis-
sion from the Endowment.

Proceedings of VLDB 85, Stockholm

436

updated oniy by the operations defined
in M, which corresponds to the usual
notion of encapsulation LLZI]. Hence, if
the operations of each module M preserve
consistency with respect to the
integrity constraints of M, the method
introduces an effective way to guarantee
logical consistency of the database.
Yet, queries remain unrestrained in our
method, just Like in the traditional
database design strategies.

Modular database design is wot a new
idea, but all references known to us
LDMW, EKW, LMWW, SFNC, SNF , We) tend to
explore the principles, theoretical and
otherwise, of the wmethod. We are, by
contrast, interested in immediate
applications of the idea.

The design of a database schema in our
method consists of the successive
addition of new modules to a (possibly
empty) kernel database schema. Eut we

also recognize that designing a database

schema is intrinsically an interactive
Process. The database designer
frequently has to 9o back and alter the
definition of a schema, either because

the application evolves, or because his
perception of the application changes.
This understanding of the method led us
to divide the development of the tool
into two phases.

In the
tool
store

initial
should
the

implementation phase, the
incorporate a dictionary to
description of modular
database schemas and should provide
facilities to add new wmodules to an
existing schema. A first prototype with
these characteristics, written in the
apes extension of micro-FROLOG LHSI, is
fully operational. It incorporates
several design rules and offers a very
user-friendly interface capable of
quiding the database administrator
through the various stages of the
definition of a module.

In the second stage of development, the
tool should account for database
‘redesign. That is, it should help the
DEA add, delete or wmodify the definition
of objects of a modular database schema.
The redecsign process is somewhat more
complex, since it must necessarily map a
syntactically correct schema satisfying
all design requirements into another
schema with the same property. As a
consequence, the process must adequately
cope with the problem of the propagation

of changes. At the present time, the
second stage is fully specified and the
prototype is being extended to cover
database redesign.

The paper i s divided as follows.
Section 2 describes the basic concepts
of the database design method. Section
3 defines a dictionary to describe
modular database schemas. Section 4
specifies the database design tool, with
special emphasis on the problem of
changing the definition of wmodules.
Section 5 outlines the current
prototype.

Due to space Llimitations, detailed

left to the technical
LTFCI.

discusgions were
veport version of the paper

2. MODULAR DATARASE DESIGN

2.1 Ihe Conceet of a Module

is a statement of the
form RLAT, .., AN], where R is the
relation nawe and Af,...,An are the
atiribuies of the scheme. An iniegarity
constraint is a statement of the form
n: @, where n is the panme of the
constraint and R is a well-formed
formula over the relation schemes in
question. An gperaticn is a procedure
definition in some appropriate
pProgramming Llanguage. We will use the
notation fi(xi,...,xn): 5 to indicate an
operation named f with parameters
xf,...,xn and body s.

A relation schewe

A podule is a triple M = (RS,CN,O0)

where

i. RS is a set of relation schemes such

that no two schemes in RS have the

same relation name;

2. CN is a set of integrity constraints
over the retation schemes in RS. CN
must contain, for each relation
stheme Ritad,...,Anl, a relation
scheme axigm indicating that the
interpretation of R must be a subset

437

of the cartesian eroduct of the
interpretations of Af,...,An.
3. 0OF is a set of operations over the
relation schemes in RS.
2.2 Module Consiruciors
A wmodule may be either primitive, if it
is defined without any reference to
other modules, or derived, if it is

defined from previously existing modules
by one of the two module constructors,
subsuwnetion and extension.

A primitive module M=(RS,CN,0M)
defined by a statement of the form:

is

(1) module M
schemes RS
constraints CN';
operations oF;
enforcements EN;
endmodule
where CN' is CN without the relation
scheme axioms (since these integrity
constraints are completely fixed by KS,
they may be omitted from CN') and EN is

a set of epforcement clauses of the form

'0 enfeorges 1' where O is the name of an
operation and I is the mname of a
constraint of M.

The DRA must include an enforcement
clause ‘0 enforces I°' whenever the
definition of operation 0 takes into
account constraint I. That is, whenever
some change +to the definition of 1
affects the definition of 0. This type
of additional information will be

important in Section 4 when we consider

the problem of redesigning the database
schema.

The rvrest of this section defines the
module constructors in detail, whereas
Sections 2.3 and 2.4 indicate how they
can be profitably used for database
design.

Let Mi = (RSi,CNi,QFi), i=1,...,n, be
modules.

Consider the subsumption constructor
first. Intuitively, if the DRA defines

M by subsumption over modules Mi,...,Mn,
then M may contain new relation schenes,

new integrity constraints and new
operations, and M always inherits all
the relation schemes and integvitly
constraints of Mi, ..., M. M also
inherits all operations of Mi,..., Mn,
except that M may hide some of these
operations i f they violate a new

constraint. Moreover, M contains all
pertinent enforcement clauses just as in
the definition of primitive modules.
Modules Mi, ..., Mn then become
inaccessible to the users and can no
longer pavticipate in the definition of
new modules.’

The following statement defines a new
module M by gubsumplion over Mi,..,Mn:
subsumes M1, ...,Mn with
RSO,

module M
schemes
constraints CNO;
operations OF0;
enforcements EN;
hidings HI;

endmodule

(2)

where:

set of relation schemes
no relation name in RSO
Mi,...,Mn, and no two

RSO have the same

is a
that

i. RSO
such
occurs in
schemes in
relation name;

2. CNO is a set of (named) integrity
constraints over RSO,RS1,...,RSn;
OF0G is a set of operations over
RSO,RS89, «..,R8n;

EN is a set of gnforcewnent clauses
of the form 'O gnforces I' where O
is the name of an operation defined
in M and I is the name of a
constraint also defined in M;

HI is a possibly enpty set of hiding
clauses of the form '0 may
viplate If1,...,Ik' where 0 is the
name of an operation of Mi, for some
i in Lli,n), and Ij is the name of a
constraint defined in CNO, for each
j in L1, k). We say that 0 is hidden
by M.

More precisely, the statement in (2)
defines a module M=(RS,CN,OF) where

if. RS is the union of RSO,...,RSn

2. CN is the union of CNO,...,CNn

3. OF is the union of OFO,0Ff{’',...,0OFN'
where OFi'! is OPi without all
operations hidden in M, for
=1, ..M

We now turn to the definition of the

extension constructor. Informally, a

module M extends modules Mi,...,Mn if

each relation scheme of M is a yiew over

the relation schemes of Mi,...,Mn (that
is, a relation scheme derived from those
of Mi,...,HMn) and each constraint of M
is a logical consequence of those of
M, .., M0, when views are treated as
defined predicate symbeols. M may also

L38

introduce operations on views. Eut, to
avoid the so-called view update proablem
LFC1, the definition of M contains, for
each view operation p, an implementation
of p in terms of the operations of
Mi, ..., M0, Unlike subsumption, modules
Mi,....,Mn remain accessible after the

definition of M.

A new module M is defined by extension
over Mi,...,Mn through a statement of
the form:
(3) module M extends Mi,...,Mn with

schemes RSO;

constraints CNO;

operations OQOF0;

using
views VW;
surrogates SK;

endmodule
where:

i. the triple (RSQ,CNO,0OF0) defines a

module M in the sense of Section
2.4,

2. VW contains, for each scheme
RLAT,...,Ak] in RSO, a view
definition wapping of the form
ROxd,...,xk) Q, where Q@ is a
well-formed formula with k free
variables, ordeved xi{,...,xk, over
RS4,...,RSn.

3. S8R contains, for each operation
flyi,...,ym): r in OFO, a surrogate,
which is an operation of the form
flyd,...,ym): s over RSY{,...,RSn;

The statement in (3) then defines a new

module M=(RSO,CNO,0F0) and couples M to

Mi,...,Mn through the pair (VW,SR). A

view definition mapping RLAt,...,Akl: @

in VW indicates that Q@ defines R in
terms of the relation schemes of

Mi, ..., M. Hence, a 4query over R is

transiated into a query over the

relation schemes of Mi,...,Mn with the
help of Q. Likewise, a survogate

in SR describes an
imp lementation of flyi,...,ym): v in
terms of the operations of Mi,...,Mn.
Thus, a catl to procedure f generates an
execution of s, not r.

f(yif,...,ym) s

2.3 Desian EBules for Modular DRatabase

Schewas

A modular database schewma consists of a

set of wmodules that must satisfy a
series of design rules, which guarantee
that if the database i1s updated only by

the operations visible to the users, the
state of the database will always remain

consistent. More precisely, the set of

consistent wmodular database schewas and

their active wadules. is recursively

defined as follows:

i. the empty set is a consistent
modular database schema with an
empty set of active modules;

2. Let D be a consistent wmodular
database schema with active modules
set A. Let M be a module such that
no module in D has the same name as
M. Then D' = D U (M) is a
consistent modular database schema

iff M satisfies one of the following

conditions:

a. if M is a primitive module then

M must satisfy requivement §

(see Figure 2.1 at the end of

this section for the complete

list of requirements and a brief
explanation of their meaning).

The active wmodule set of D' is

A' = A U (M}

if M is a mwmodule obtained by

extending Mi,...,Mn then M must

satisfy requirements 2,3,4,5.

The active module set of D' is

A' = A U (M}

if M4 is a

subsuming Mi,...,Mn then:

1) +the relation names of the
new relation schemnes defined
in M must be different from
those of the relation
schemes in Mi,...,HMn.

2) M must satisfy requirements

6,7.8,9.
active
= A U (M) -

module obtained by

module set of D' is

{Mi, ..., M0},

The
Al

Let D be a modular database schema with
active modules set A. The set C of
conceptual mpdules of D is the subset of

A consisting of all primitive modules
and all active modules defined by
subsumption; the set E of exiernal
wodules of D is the set of all modules

defined by extension in D. An operation

p of D is active. conceptual or external
iff p is an operation of an active,
conceptual or external module of D,

respectively.

A user has inprinciple access to all
active wmodules of a modular database
schema. Hence, he sees all relation
schemes and integrity constraints
defined in all modules, but he can only
update the database using the active
operations. He can also freely query

any relation scheme.

439

As for
schemas,
closely
gradually
initially
must

the design of modular database
the process we suggest follows
the formal definition. The DERA

adds new modules to an

empty database schema. He
pay attention to two aspects: how
to define a new module and how to
satisfy the design requirements (see
Section 2.4 for an example).

To conclude this section, we state a
theorem to the effect that the choice of
the design requirements suffices to
guarantee consistency preservation.

THEOREM 2.1 LTCF1: Let D be a modutar
database schema. Suppose that D
satisfies vequivements 1 through 9.
Then, every active opervation of D
preserves consistency with respect
to the set of all constraints
defined in modules of D.

Figure 2.49: List of Requirements
FRIMITIVE MODULES

Beauirenent_ji: each opevation defined in
a module M must preserve consistency

with respect to all integrity
constraints defined in M.
This requirement reflects the
fundamental preoccupation that the
database shoutd always be left in a

consistent state LCCF].

MODULES DEFINED RY EXTENSION

lLet
over

M be a module defined by extension
modules Mi=(RSi,CNi ,OFi),
i=f,...,n. Let RSO,CNO,OFO0,VW and SR be
the new velation schemes, integrity
constraints, operations, view
definitions and surrogates,
respectively, defined in M.
if fC(yf,...,ym): s is the
fiyi,...,ym): v defined
is a faithful translation

Eeauirewent 2.
survogate of
in SR then s
of v LFCI.

Requirement 2 guarantees that s
correctly implements r in the sense that
r and s must have the same effect as far
as the views are concerned.

flyd, ..., ym): s is a
survogate defined in SR, then s can
only modify the values of relation
schemes in Mi,...,Mn through calls to
the operations defined in Mf,...,Mn.

Eeauiremnent 3. if

Requirement 3 guarantees that each
surrogate s preserves consistency with

respect to CNi since s wupdates the

schemes of Mi thyough calls to

operations of Mi, for each i={,...,n.

BEeauirement. 4. for each integrity
constraint I in CNO, I' wmust be a
logical consequence of the integrity
constraints of Mi,...,Mn, where I' is
obtained from I by replacing each
atonic formula of the form
R{ti,...,tk) by @QLti/x1,...,tk/xk],
where RlAat,...,Akl: & is the view
definition of R described in VW, and
the List of free wvarviables of Q is
X4, ..., xka

Retuirement 4 guarantees that the

of M follow from
when each view is
as a defined predicate
symbol. Thus, no really new local
constraints can be defined in a module
created by extension.

constraints
Mf, .. ,Mn

integrity
those of
interpreted

Eeauirement S: Mi,...,Mn must be active

modules of D.

Requirement 5 avoids defining view
operations using inactive operations,
which may violate consistency.

MODULES DEFINED RY SUEBSUMFTION

Let M be a module defined by subsumption
over modules Mi=(RSi,CNi,OFi),
i=f,...,n. Let RSO, CNO, OF0, HI be the
new relation schemes, integrity
constraints, opevations, and hidden
operations, vrespectively, defined in M.

Let CN be the union of CNO,...,CNn and

0OF be the union of OFO,O0F{',...,0FNn',

where O0OFi* is the set OFi, except for

those opevations that were hidden by M,

for i=%,...,n.

Eeauicewent_&:. each operation in OF
preserves consistency with respect to
the integrity constraints in CNO.

Eeauirement_7: each operation in OFO can

modify the wvalues of relation
in Mi,...,Mn through calls to
in Mi, ..., Mn.

only
schemes
the operations defined

Requirements 6 and 7 suffice to
quarantee that each operation in OF
preserves consistency with respect to
CN.

Beauirement B8: D must not contain a

defined by extension using Mi,
in Lf,nl.

module
for some i

Lko

Requirement 8 forbids the DRA to define
a new module M by subsuming a module Mi

if there is a third module M' that
extends Mi. This requirement is
necessary since it avoids the

undesirable situation where M subsumes
Mi and yet M" offers direct paths to the
objects and operations of Mi. In fact,
if Requirement 8 is violated, we cannot
assure that calls to operations of M"

will not violate constraints of M.

Besuirement 2: Mi,...,Mn must be
conceptual modules of D

Requirement 9 does wnot permit the
subsumption of external modules, again
to guarantee that all new operations of
M, and those of wmodules defined by
subsuming M, preserve consistency.

2.4 An Exawele

We will illustrate our method by

designing a micro database that stores
information about products, warehouses
and shipments of products to warehouses.

We begin by creating a schema with just
one primitive module, FRODUCT, that
represents data about products and
contains the operations allowed on
products. FRODUCT is defined as
follows:

module FRODUCT
schemes
FROD LF#, NAME]
constraints
ONE_N: ¥p¥n¥n'(FROD(p,n) & FROD(p,n")
=) n=n')
operations
ADDFROD(p , 1) :
if 7in' FROD(p,n') & F#{(p) & NAME(n)
then insert (p,n) inte FROD;
DELFROD(p) :
delete FROD(x,y) where x=p;
enforcements
ADDFROD enforces ONE_N;
endmodule

indicates that
account the

clause
into

The enforcement
ADDFROD takes
constraint ONE_N.

modular database schema contains at
point only one module, FRODUCT,
is obviously active. We then add
primitive module, WAREHQUSE, to
warehouses and the operations

The
this
which
another
represent

on warehouses. We define WAREHOUSE as

follows:

module WAREHOUSE
schemes WAREHSELW#,L0C]
constraints
ONE_C:
Vu¥c¥c ' (WAREHSE(w,c) & WAREHSE(w,c')
=) c=¢')
operations
OFEN(w,c):
if 7¥c' WAREHSE(w,c') & We(w) & LOC(cC)
then insert (w,c) into WAREHSE;
CLOSE(w):
delete WAREHSE(x,y) where x=w;
enforcements
OFEN enforces ONE_C;
endmodule

The modular database schema now has two
active modules, FRODUCT and WAREHOUSE.
We continue the design by defining a new
module, SHIFMENT, +that introduces a
relationship, shipment, between products

and warehouses. Note that a shipment
(p,w? rejuires that product p oand
warehouse w indeed exist. Since the

operations DELFROD and CLOSE may violate
this constraint, we must define SHIFMENT
by subsumption over FRODUCT and
WAREHOUSE and redefine DELFROD and CLOSE
appropriately:

module SHIFMENT
subsumes FRODUCT, WAREHOUSE with

schemes SHIFLF:,Ws,QTY]
constraints
ONE_Q:
¥p¥uw¥a¥y ' (SHIF(p,w,q) & SHIF(p,w,q")
=) q=q')
INC_F: ¥p(3wtqi SHIFP(p,w,q)

=) in FROD(p,m))
INC_W: ¥Yw(3Ipta SHIF(p,w,q)
=) ¢ WAREHSE(w,c))
opevations
ADDSHIF(p,w,q):
if 4n FROD(p,n) & Fc WAREHSE(w,c) &
39 SHIP(p,w,1') & QTY(q)
then insert (p,w,1) into SHIF;
CANSHIF(p,w):
delete SHIF(x,y,2) where (x=p & y=w);
CLOSES (w):
if T"3p3q SHIF(p,w,q)
DELFRODY (p):
if "twiq SHIF(p,w,1) then DELFROD(p);
enforcements

then CLOSE(w);

ADDSHIF enforces ONE_Q, INC_F, INC_W;
CLOSEA enforces INC_W;
DELFRODY enforces INC_F,

hiding
DEIL.FROD may violate INC_F;
CLOSE may violate INC_UW;
endmodule

L1

The modutar database schema now has
three wodules, SHIFMENT, WAREHOUSE and
PRODUCT, but only SHIFMENT is active.
Note that SHIFMENT contains all relation
schemes and constraints of FPRODUCT and
WAREHOUSE, plus a newly defined relation
scheme and three new constraints. The
active opevations (that is, those
available to users) after the definition
of SHIFMENT arvre: ADDSHIF, CANSHIF,
CLOSEH" and DELFROD{, defined in
SHIFMENT, and ADDFROD and OFEN,
inherited from FRODUCT and WAREHOUSE,
respectively. Since the operations
DELFROD and CLOSE may violate
constraints INC_F and INC_W of SHIFMENT,
respectively, they are hidden in
SHIFMENT. Hence, CLOSE and DELFROD ave
no longer visible to users.
Finally, we introduce the module
DELIVERY by extending SHIFMENT:

module DELIVERY extends SHIFMENT with
schemes DELVRYLFS,WS1;
constraints /% (none) %/
operations
DEL (p,w):
delete DELVRY(x,y) where {(x=p & y=w)
using
views
DELVRY (p,w)
survogates
DEL(p,w):
endmnodule

31 SHIF(p,w,q)

CANSHIF(p,w)

The final database schema therefore has
two active modules, SHIFPMENT and
DELIVERY, and two other modules, FRODUCT
and WAREHOUSE. Users have access to
three base relation schemes (using
traditional terminology), FRODLF$,NAME],
WAREHSE LW#LOCY, and SHIFPLF:,W$,Q7TY1, and
one view, DELVRYiLFPE, Wsl. The active
operations are ADDSHIF, CANSHIF,
ADDFROD, DELFROD4, OFEN, CLOSEY awnd DEL.
A user has access to any of these
opevations, but note that a call to DEL
invokes the procedure associated with
DEL in the surregates clause of
DELIVERY. The procedure associated with
DEL in the gperations clause of DELIVERY
just informs the user the meaning of DEL
in terms of its effect on the relation
scheme DELVRY.

3. A DICTIONARY DEFINITION

introduce in this section a
that descryibes the objects -
schemes, constraints, and
and relationships between
induced by a wmodular

We
dictionary
modules,

operations
these objects

schema. The conceptual schema
dictionary will be described in

database
of the

terms of an entity-relationship modetl.
Although it is not essential, we will
consider that the dictionary contains
only the entities and velationships

derived from a single modular conceptual
schema D. It is also important to
observe that the state of the dictionary

representing a database schema D is
fully determined by the declarative
syntax of the modules of D (that
introduced in Section 2), and

vice-versa.

We will use B(A1,...,AN) to indicate an
entity type named B whose List of
attributes is Af,...,An; we will in turn
use RCEd, o0, Em) to describe a
relationship type, whose name is K,
without attributes, over the entity
types named Ef,...,Em. Keys will be
undev L ined whenever necessary. The
conceptual schema of the ‘dictionary,
together with the intended
interpretation of the entity and

relationship types, is described below:

ENTITY TYFES

is—primitive(name), is—sub(name) and

is~external (name)
each module
defined by
extension,
schema D,
type is.primitive,
is-external, respectively.
attribute is the module name.

M, either
subsumption or defined by
of the modular conceptual
corvesponds to an entity of
is-sub or
The only

primitive,

module(name)

generalization of the three previous
sets. The only attribute is the
module name.
scheme(pane, list,def)

each vrelation scheme KR defined in a
module of D corresponds to an entity
of this type. The attributes are the
name and the attribute List of R, as

well as the view definition mapping of
R, if R belongs to a module defined by

extension, otherwise the value of
attribute def is nil.

constraint(nawe,def)
each integrity constraint I defined in

a module of D corresponds to an entity
of this type. The attributes are the
name and the defining formula of I.

L2

operation(nane,def,surrogate)
each operation O defined in a module
of D corresponds to an entity of this
type. The attributes are the name and
the procedure defining 0, as well as

the survrogate associated with O, if O
belongs to a module defined by
extension, otherwise the value of
surrogate is pil.

RELATIONSHIF TYFPES

subsumes(module,module) and

extends (module,module)
the pair (M,N) will be
retationships of type
extends iff and N represent two
modules such that M is defined by
subsumption or by extension,
respectively, over N.

in the set of

subsumes or
M

is~scheme—-defined-in(scheme,module)

the pair (§,M) will be in the set of
relationships of type
is-schewe-defined=jin iff § is a nawe
of a scheme defined in M.

ig-constraint-defined-in{constraint,module)

(same, when I is constraint defined in

M)
is-operation~defined—~in(operation,module)
(same, when 0 is operation defined in

M.}

is-view-over(scheme, schemne)

the pair (V,8) will be in the set of
retationships of type js~view-pyer iff
v represents a view whose view

definition mapping involves scheme §.

is—constraint-over{constraint, scheme)
the pair (I,8) will be in the set of
relationships of type
is-copnstraint-aover iff I represents a
constraint whose definition involves
scheme §.

is—operation-aover(operation, scheme)
the pair (0,8) will be in the set of
relationships of type
is-operation-over iff O represents an

operation whose definition or whose
surrogate i f 0 is an operation
defined in & module introduced by

extension) involves scheme S.

enforces(operation,constraint)
the pair (0,I) will be in the set of
yelationships of type enforces iff the
definition of operation 0 guarantees
that constraint I will be not
violated.

may-violate(operation,constraint)
the paivr (0,I) will be in the set of
relationships of type may-violate iff
0 represents an operation which has an
execution that may violate constraint
I.

calls(operation,operation)

the pair (0,0') will be in the set of
relationships of type calls iff O
represents an agperation whose
definition or whose surrogate (if 0 is
an operation defined in a module
introduced by extension) calls

operation 0O'.

4. REDESIGNING DATABASE SCHEMAS
This section discusses in general terms
how the design tool should help the DRA
redesign a database schema. Section 4.1
addresses the problem of redesigning the
modular structure of a schema, including
the insertion and deletion of complete
modules. Section 4.2 discusses the
problem of redesigning the schemes,
constraints, opevations and
relationships of modules.

4.1 Redesigning the Hodular Siruciure of
a Schewa

module M to an existing
the DRA must

To add a new
modular database schema D,
successively add the schemes,
constraints and operations of M, in this
order, to the dictionary. The design
toot should then quide the DBA in the
process, verifying that he does not
violate any of the requivements listed
at the end of Section 2.3. However,
since we do not assume a general program
verifier capable of detecting if an
operation violates a constraint, or if
two operations are equivalent (for a set
of wvariables), vequivements 1§, 6
cannot be enforced. A geneval theorenm
prover would also be needed to enforce
requivement 4. Thus, the DBA has to be
trusted as far as these requirvrements go.
The tool can, at most, inform the DEA
when these vrequivements mucst be obeved.
As for vrequivements 3, 5, 7, 8 and 9,
¢ince they depend on the current state
of the dictionary and on syntactic
conditions, they can in principle be
verified without undue effort.

s
.~

is quite
suffices
in M and
' whose

deletion of a module M
to account for, since it
all objects defined
delete all modules

The
simple
to delete
recursively

Lh3

definition depends
transitively on M.

directly or

the relationships between
makes sense in only one case

discuss in the rest of this
section. Recall that, by requirement 8,
the DRA cannot define a new module M by
subsuming a wmodule M if there is a
third module M that extends M'.
Requivement 8 avoids the undesirable
situation where M subsumes M' and vet M°
offers divrect paths to the objects and
operations of M. In fact, if
requivement 8 violated, we cannot
assure that calls +to operations of M*
will not violate constraints of M. On
the other hand, requivrement 8 is too
strong in several situations. For
example, suppose that we let M subsume
M' as long as M does not hide any
operation used tc define surrogates of
M., Then, the definition of M" remains
valid, provided that we consider that M'
now extends M, instead of M'. Since
this type of change is quite useful, we
introduce a new module constructor,
strong subsumetion.

Changing
modules
which we

is

We say that a module M strongly subsumes

Mi,...,Mn iff:

1. M subsumes Mi,...,Mn exactly as
defined in Section 2, except that
requirement 8 is vreplaced by
Beauirement 8': M does not hide any

operation p used to define a
surrogate of any module M" that
extends Mi, for any i=%1,...,n.

2. the dictionary is changed so that
any module M* that extends Mi is now
considered to extend M, for each
i=1,...,n.

Thus, strong subsumption s indeed a

change of the database schema in the

double sense that it introduces a new

may change the definition
modules.

module M and
of several other

4.2 Bedesigning Qbiects within Hodules

In ordery to help the DB&A insert, delete
or modify the definition of objects
within modules, the design tool must
verify the correctness of object

definitions and determine how changes on
a group of objects propagate to others.
We focus our discussion in this section
on the second problem.

We first observe that fixing how changes

must propagate is equivalent to
determining a policy governing how
updates propagate through the
entity-relationship diagram of the
dictionary. The policy we adopted is
expressed as a set of detailed rules,

but in general it reflects a precedence
relation on objects as follows:

the highest
that a

{. relation schemes have
precedence, which implies
relation scheme § is: .
a. never affected by changes on
other objects, if § is defined
in a primitive module or a
module defined by subsumption;
affected only by changes on the
relation schemes § is defined
on, if § is defined in a module
introduced by extension;

2. constraints have the second highest

precedence, which implies that a

constraint I is affected oniy by

changes on:

a. the relation schemes I is
defined on;

b. the constraints of the extended
modules, if I is defined in a
module introduced by extension

(to satisfy requirement 4);
operations have the lowest
precedence, which implies that an
operation 0 is affected by changes

on:

a. the schemes 0 is defined on;

b. the constraints that 0 enforces
or may violates, or the
constraints of the module where
0 is defined;

c. the operations O calls.

The redesign process is organized in two
steps. The desiagn tool begins the first
step by asking the DEA to supply the set
of changes he wants to apply to the
current schema, and then it takes over
and helps the DBA detect and fully
specify additional changes that must be
made to produce a new consistent schema.
This step is itself divided into stages
as exemplified below. During the second
step, the design tool applies all
changes to the curvrent schema.

In what follows, we adopt the notation
'Ef R E2' to indicate that theve is a
binary relationship of type R between
entities E1 and E2 in the current state
of the dictionary.

referring to the database
in Section 2.4, suppose

decides to add a new

As an example,
schema defined

that the DEA

Lk

attribute, WEIGHT, to the relation
scheme FROD. The design tool +then
begins stage § of step 1 of the redesign
process by looking up in the dictionary
which schemes may be affected by the
change on FROD. Since there are no
views defined on FROD, the tool proceeds
to stage 2 where it determines which
constraints are affected by the change
on FROD. Using the following
relationships involving FROD (that can
be found in the state of the dictionary
describing the database schema in
question):

ONE_N
INC_F

iszconstraintzover FROD
iszconsiraini-over FROD

and using
design tool
to check
constraints
that the
decides
to

the propagation rules, the
informs the DEA that he has
the definition of the
ONE_N and INC_F. Assume

DRA, when inspecting ONE_N,
to modify its defining formula
accomodate the new attribute WEIGHT
of FROD and also to retain F$ as a key
of FROD. Also assume that the DEA
decides modify the definition of
INC_P just to include a third argument
into the occurrence of FROD,
corresponding to the new attribute
WEIGHT (these are purely syntactical
changes that have +to be introduced
anyway).

to

Next, the design tool starts stage 3 of
step 1. It first determines how the
changes defined on schemes and
constraints propagate to the operations.

Using the following dictionary
relationships involving FROD, ONE_N and
INC_F:

ADDFROD js-operation-cver FROD
DELFROD jis-geperaition-oyer FROD

ADDSHIF jg-operatipn-pver FROD

ADDFROD enforces ONE_N

ADDSHIF enforces INC_F

DELFRODY enforces INC_F

DELFROD may-violate INC_F
and using the propagation rules, the
design tool detects that the DBA must
check the definition of ADDFROD,
DELFROD, ADDSHIF and DELFRODY. However,
the information contained in the

dictionary is not sufficient to disclose
all consequences of the changes

specified on constraints. Indeed, since
a constraint, ONE_N, of moduie FRODUCT

was modified, the design tool must ask
the DEBA if its enforcement now depends
also on the operation DELFROD. A
similar remark applies to the operations

CANSHIF and CLOSEY, when constraint
INC_F is considered. Assume that the
DEA decides that CANSHIF and CLOSEf need
not be changed.

The tool proceeds with stage 3 by
recursively using the galls relationship
to detect consequences of possible
rhanges on operations. The only such
relationship in the dictionary involving
ADDFROD, DELFROD, ADDSHIF or DELPRODf
is:
DELFRODY calls DELFPROD

final set of operations that
must be inspected is ADDFROD, DELPROD,

ADDSHIF and DELFPRODY. The tool then
prompts the DBRA to supply the changes he

Thus, the

wants to apply to these operations.
Note +that DELFRODYI has to be listed
after DELFROD, since the former calls
the latter.

Assume that, when asked how to modify
ADDFROD, the DBA rveplies that ADDFROD
has to be wodified to accommodate the

new attribute of FROD and to continue to
enforce ONE_N. DELFROD and ADDSHIF need
be modified only to add the new column
to FROD. Finally, assume that the DBRA
decides that DELFRODY need not be
changed at all (since the change on
DELFROD does not affect DELFRODI). This
concludes stage 3 and step .

Finally, the design tool enters step 2
and aske the DRA if all resulting
changes are indeed satisfactory and, if
so, creates a new schema accordingly.

S. AN EXPERT HELPER FOR DATABASE DESIGN

we briefly describe a
tool that helps the

In this section
prototype software
DEA interactively add new modules to a
database schema. The prototype also
partially implements the dictionary
described in Section 3.

is an exanple of an expert
helper., a concept introduced in LFM] to
designate relatively small intelligent
tools to help in the design, usage and
maintenance of large conventional
systems. The curvrent version of the
toot runs on an IEBM personal computer
and was written using the gpes extension
of micro-FROLOG tCMI. Thanks to the use

The prototype

of apes., the prototype is highly
interactive.
The design of the tool begins by

chonsing a representation for a schema D

LL5

suitable for micro-FROLOG. The key idea
is to translate the state of the
dictionary describing D (see Section 3)
into a set of axioms. Each axiom will
be a ground atomic formula of the form
‘LY tab L2', where tab is a binary
predicate symbol (infix notation is
used) and LY and L2 are lists.

The general format of
representing a relationship

an axiom
is :

({typeX{type)) tab ((named{(name’{version))

the Llist ({(type){type)) expresses
relationship type, indicated by the

of the objects connected, and the

({named{nameX{version)) expresses
the individual relationship, indicated
by the names of the objects ({version)
denotes the particular version of the
database schema).

where
the
types
tist

0f all entities, only those designating
modules are represented in the present
version of the tool. An axiom standing
for a module has the following format:

(mod) tab (<{(name) (kind) <{(version))

where <kind> is one of (primitive,
subsumption, extensiont.

In Tabtle 5.1 we present the
correspondence between the entries of
the dictionary and their axiomatic
representation, as implemented by the
tool.

Tabie 5.1 —~ Axiomatic Representation

Type / Entry Axiom

is-primiltive

(M) (mod) tab (M 'primitive’ n)
is=sub

(M) (mod) tab (M 'subsumption' n)
is-external

(M) (mod) tab (M ‘extermal' n)
schene

(S,L,0 not inplemented
consiraint

(I,Q not implemented
gperation

(0O,F,F') not implemented
subsynes

(M,N) (mod mod) tab (M N n)
exiends

(M,N) (mod mod) tab (M N n)
is-schene-defined-in

(S,M) (sch mod) tab (S M n)
is-constraintizdefined-in

(I,M) C(con mod) tab (I M n)

is-eoeeration-defined-in

(0,M) (ope wod) tab (0O M n)

is-view-over
(V,S) (sch sch)
is-consgtraini-over
(1,8) (con sch)
is-peeration=pyver
(0,S) (ope sch)
enfprces
(0,1
may-violate
(0,I) (Chid ope) con) tab (0O I n)

calls
(0,F)

tab (V &)

tab (I S n)

tab (0 § n)

(ope con) tab (O I n)

(ope ope) tab (0 ¢ w)

Note: n is the version number

sketch how the
by a DEA to add a
schema. To begin
module, +the DRA

In the sequel we
prototype can be used
module to a database
the definition of a
types module <namel. From this point
on, the prototype prompts the DRA to
supply all information needed to define
the schemes, constraints and operations
of the module. The *program® consists of
the predicate 'module’ which in turn
cails other predicates to create the
several module components. A pavticular
module may or may not have schemes,
constraints and operations. However:

e if the module M is not primitive,
the DBA must Llist the wodules M
subsumes or extends;

@ if the module M is defined by

extension, each scheme § is a view.
So, the DBA must define a mapping of
§ into the schemes of the modules ™
extends;

° for each constraint or opevation O,
the DERA must 1list all schemes 0
references;

@ only operations of non-primitive
modules may call other operations;
moreover, all operations of modules
created by extension are surrvrogates
and must, thevefore, include such
calls. The DEA must then inform the
calls relationship.

So, the presence of certain
vrelationships (indicated by the
insertion of the corresponding axiom) is
conpulsory, and the predicate 'module’
will fail if the DBA declares that they
do not exist (by typing "end"' when the
query is posed to him).

fixes, procedurally, the
be followed by the DRA in
creating the various relationships and
theiry compulsory or optional nature. On
the other hand, using the apes features
unijue-answeyr and valid-answer, the

The prototype
sequence 1o

L46

prototype separately defines, in a
declarative style, the criteria +to
decide whether the values supplied by

the DBA as answers are acceptable.

We enumerate below,
relationship created,
are presently enforced.

per type of
the criteria that

(mod) tab (x y 1)
Y € {primitive,
extension}

subsumption,

(mod mod) tab (x y 4)

y is an active module, which must
neither have heen created by
extension nor extended if x is being

cveated by subsumption

(sch sch) tab (x y {)
scheme y is accessible to some module
used in the definition of the module
in which the view x is being defined

(con sch) tab (x y 1)
scheme Yy is accessible to the module

in which constraint x is being
defined
(ope ope) tab (x y 1)

operation Yy is accessible to some
module used in the definition of the
modute in which operation x is being
defined; if the Latter is defined by
extension, y is velated to sone
scheme underlying its views

(ope sch) tab (x y 1)
scheme vy is accessible to the module
where operation x is being defined.

(ope con) tab (x y 1)
opevation x and constraint
some scheme in common

y have

(¢hid ore) con) tab (x y)
opevation x ig called by an operation
of which constraint y depends

The prototype poses the retevant
questions to the DBA wusing natural
language sentences, and adopts static
and dynamic menus to restrict his
answers; it also ensures that names are
unique throughout the database schema.
Additional features of apes

(which-template, in—menu, is-tenplate)

are used for these puvposes.

2.4 at the end of
we may now compare the
criteria with the
for correct module design.
i, 4, 6 and 7 ave not

Returning to Figqure
Section 2.3 ,
imp lemented

requirements
Requirements

3
o

require detailed
the components.
8 and 9 are explicitly
inp lemented criteria.
referring to modules

enforced; they would
descriptions of
Requirements 35,
enforced by the
Requirement 3,

created by extension, is enforced by
restricting the views and operations
declared in the wmodule to the schemes

and operations involved in the modules

extended.

To conclude, we could certainly do more
in terms of checking the consistency of

modular designs wusing the information
that is now extracted from the DRA.
However, what we already check is

sufficient to demonstrate the usefulness
of this kind of expert helper.

6. CONCLUSIONS

We described in this paper a software
tool to support the modular database
design method first introduced in LTCFI.
The method itself was enhanced by

incorporating the hiding and enforcement

clauses, and by polishing some design
rules. The software tool is implemented
to the point of helping the database

administrator add new wmodules to an
existing database schema. The redesign
process, although not implemented, was
specified in detail. Future plans
include transforming the tool into a
full-fledged dictionary system
incorporating as much knowledge as

possible about the design method.

REFERENCES

J.M.V. de
A.L. Furtado.
Conceptual and

M.A. Casanova,
Castilho and
"Froperties of
External Database Schemas".
Froc. of +the TC 2 - Working
Conference on Formal Description
of Frogramming Concepts 1II,
Garmish-Fartenkivrchen (1982)
K.L. Ctark and F.G. McCabe.
"micvo~FROLOG: programming in
legic®. Frentice—~Hall (1984)

W. Dosch, G. Mascari, M. Wirsing
*On the Algebraic Specification
of Databases®. Froc. 8th Int'l
Conf. on Very Large Data Bases
(1982)

LEKW] H. Ehrig, H.-J. Kreowski, H.
Weber. *Algebraic Specification
Schemes for Data Base Systems'.

LCCF1

LCHM]

LDHMW]

LFC)

LFM]

LHS]

LLMWW1]

1Lz}

LFal

LSFNC]

LSNF]

LTCF]

LTFC]

LWel

W4T

Froc. 4th Int'l Conf.
Large Data Rases (1978)
A.L. Furtado and M.A. Casanova.
*Updating Relational Views", in
"Query PFProcessing in Database
Systems", Springer Verlag (in
print).

A.l.. Furtado and C.M.0. Moura.
*Expert helpers to data-based
information systems". Proc. of
the First International Workshop

on Very

on Expert Database Systems
(1984), 298-343

F. Hammond and M. Sergot. "apes:
augmented FROLOG for expert
systems - reference manual®.
Logic HKased Systems Ltd. (1984)

F.C. Lockemann, H.C. Mayr, W.H.
Weil, W.H. Wohlleber. *Data
Abstractions for DPata RBase

Systems". ACM Transactions on
Database Systems 4:1 (1979)

B. Liskov, s. Zilles.
"*Specification Technigques for
Data Abstractions". IEEE
Transactions on Software

Engineering SE-1 (1975)

D. Farnas. "On the Criteria to
be Used in Decomposing Systems
into Modules®. Comm. of the ACM
1542 (4972

U. Schiel, A.L. Furtado, E.J.
Neuhold, M.A. Casanova.
‘Towards Multi-level and Modular
Conceptual Schema
Specifications". Systemns
?:14 (1984), 43-57

C.§ dos Santos, E.J. Neuhold,
A.l. Furtado. "A Data Type
Approach to the
Entity-Relationship Model®.
Int'l. Conf. of the
Entity-Relationship Approach to
Systems Analysis and Design
(1980)

.. Tucherman, M.A.
A.L. Furtado, "A Fragmatic
Approach to Modular Databacse
Design®, Froc. of the 2th Int'l.
Conf. on Very Large Data Racses,
Florence, Italy (1983), 219-231
L. Tucherman, A.L. Furtado and
M.A. Casanova, "An Expert System
for Moduler Database Desian®,
Technical Report CCE®30,
Brasitia Scientific Center, IEM
Brazil (1983)

H. UWeber. "Modularity
Rase Systems Design".
Joint IBM/Univ. Newcastle
Tyne Seminar (197%9)

Inform.

Casanova and

in Data
Froc.
up o

