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Abstract 1. Introduction and Motivation 

Conventional access methods cannot be 
effectively used in large Scientific/Statistical Database 
(SSDB) applications. A file structure (called bit tran- 
sposed file) is proposed which offers several attractive 
features that are better suited for the special charac- 
teristics that SSDBs exhibit. This file structure is an 
extreme version of the (attribute) transposed file. The 
data is stored by vertical bit partitions. The bit pat- 
terns of attributes are assigned using one of several 
data encoding methods. Each of these encoding 
methods is appropriate for different query types. The 
bit partitions can also be compressed using a version 
of the run length encoding scheme. Efficient operators 
on compressed bit vectors have been developed and 
form the basis of a query language. In addition to 
selective power with low overhead for SSDBs, the bit 
transposed file is also amenable to special parallel 
hardware. Results from experiments with the file 
structure suggest that this approach may be a reason- 
able alternative file structure for large SSDBs. 

Scientific/Statistical Databases (SSDBS) exhibit 
many specialized data usage and characteristics 
([Shoshani,Olken,Wong84], [Wong84]). Despite the 
advent of many advanced access methods, the dom- 
inant file structure for very large SSDBs is still the 
simple sequential file. The major reason is a 
“mismatch” between conventional access methods 
such as inverted files, B-trees, hashing, etc. and the 
characteristics of SSDBs. First, since the cardinality 
of SSDBs attributes is typically small, most access 
methods simply partition the database into a small 
number of still very large files, with prohibitively 
expensive overhead for the pointers, structures, tables, 
etc., with only limited selective power added. Second, 
since SSDBs are largely static, the expensive overhead 
associated with the dynamic facilities of most access 
methods is not justified. Third, the values of SSDBs 
attributes tend to cluster, and current access methods 
often do not take advantage of this opportunity for 
compression. Fourth, the access to SSDBs is typically 
long “sweep” i.e., a long sequence of individual 
records is fetched and a small number of attributes 
extracted. This kind of range access is not supported 
well by most access methods. Supported by the Ofiice of Energy Research, U.S. 
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The search for an appropriate file structure 
begins with the fourth point mentioned above, which 
is the motivation for attribute transposed files 
([Wiederhold 831, [Batory 791). Conventional files 
store the data as a collection of contiguous records, 
i.e., all the fields for a single record are stored 
together on a disk page. Attribute transposed jiles 
store the data as a collection of contiguous attribute 
columns, i.e., all of the data for a field (attribute) is 
stored together. Bit transposed files (BTF) store the 
data as a collection of bit columns, i.e., all of the data 
for single bit position of an attribute encoding is 
stored together. Thus the file structure we propose 
can be seen to be an extreme form of the attribute 
transposed file. 
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The basic advantage of attribute transposed files 
is that only those attribute columns which are needed 
for a query need be retrieved. In many statistical 
applications only a small fraction of the attributes are 
needed for a query. Bit transposed files offer three 
advantages: 

0) 

(‘3) 

(3) 

Clever data encodings will permit us to retrieve 
only a fraction of the bit vectors used to encode 
an attribute in order to perform a selection. 

The bit vectors are amenable to data compression 
via run length encoding, especially if the data 
records have been sorted. 

Selection criteria can be formulated as boolean 
expressions on the bit vectors, facilitating fast 
evaluation and specialized hardware. 

In summary the bit transposed file system offers - 
an eHicient means of performing selections. 

2. Overview 

The BTF system has three major components: an 
index encoder, transposed bit vector loader, and a 
query processor on bit vectors. 

The index encoder translates each field in each 
record in the database into a series of bits based on 
several encoding schemes. The result is that each 
record of the database is translated into a bit pattern. 

The second component, called the transposer, 
stores the bit patterns in a transposed manner so that 
for each bit position of the bit pattern, a file is pro- 
duced which contains the bit value of that bit position 
from all the records in the database. The result is n 
BTFs where n is equal to the number of bit columns 
that result after encoding. Because values in large 
statistical databases tend to cluster, we have 
developed a compression method to compress the 
BTFs so that long runs of O’s and l’s can be stored 
more efficiently. 

The third component of this file structure is the 
query processor on BTFs. The processor translates 
the retrieval requests on the database into a boolean 
expression on the BTFs. The translation algorithm 
takes as input the encoding schemes for the attributes 
in the query and the query type in order to generate 
the shortest boolean expression. The boolean expres- 
sion is then evaluated by using the primitive boolean 
operators AND, OR, and NOT. These operators are 
very efficient that can also take advantage of the 
compressed BTFs. 

In section 2 the various index encoding schemes 
are described with examples. Section 3 gives details 
and examples to the transposition of records by bits. 
In Section 4 the query processing aspect is examined. 
Section 5 formalizes the problem of cptimal index 
encoding assignment and experiment results with the 

algorithm are included in an appendix. Section 6 
describes the implementation and experimentation of 
the file structure and results are listed in another 
appendix. Some interesting current work is 
mentioned in Section 7. Section 8 contains the sum- 
mary and conclusion of the paper. 

3. Index Encoding Schemes 

In this section we will describe the available 
index encoding schemes in our current BTF tran- 
sposed file structure. Index encoding schemes are cru- 
cial to BTFs because they ultimately decide how 
many boolean operations have to be performed on the 
bit vectors. There are four basic schemes: binary, k- 
of-n, unary, and superimposed. Each one of these 
schemes can have a composite version for attributes 
with large number of values. Below we will describe 
each of them with examples and discuss the usage of 
the scheme for different kind of queries. 

3.1. Binary Encoding 

Given an attribute A with n possible values, the 
binary encoding of A is to use log,(n) bits for each 
value v and the bit pattern for v is the binary number 
in the range of 0 and n, corresponding to the ordinal 
integer of v among the n values of A. As a conven- 
tion, the bit positions are labeled b0, bl, . . . . bn, from 
the rightmost bit to the leftmost. This scheme 
requires the minimum of storage but all bits have to 
be examined for retrieval. 

As an example throughout this paper, we will use 
an application of radiation experiment on dogs. This 
experiment database contains information such as dog 
type, weight, age, dosage, location, etc. Assume that 
there are 10 dog types. To encode dog type using the 
binary encoding requires 4 bits and the bit patterns of 
these 10 values range from 0000 to 1010. 

3.2. K-of-N Encoding 

This encoding scheme assigns bit patterns to 
attribute values by turning on a distinct set of K bits 

from N bits. Hence it can encode up to 
( 1 ;“: values. 

For example, the l-of-10 encoding for dog type men- 
tioned above would involve the following bit patterns: 

0000000001 
0000000010 
OOOOOO0100 
. . . 
looooOOOOO 
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An 2-of-5 encoding for dog type has the following bit 
patterns: 

00011 
00101 
00110 
01001 
01010 
01100 
10001 
10010 
10100 
11000 

Unlike binary encoding, this scheme requires exa- 
mining only K bits for any value. It also allows a 
time-space tradeoff in the sense that more storage 
space (larger N) would mean less bits to examine 
(smaller K). 

3.3. Unary Encoding 

This scheme requires N bits to encode N values 
and it is useful for attributes that are involved mostly 
in range or inequality queries. For example, the fol- 
lowing is the result of encoding dog type using the 
unary encoding scheme. 

00OOOOOO01 
0000000011 
0000000111 
. . . 
1111111111 

To retrieve all dog types that are larger then type 3 
requires to examine only bit b3 (if it is 1 or not). 
Similarly for all dog types that are below type 3 
requires to examine only bit b2 (if it is 0 or not). 
Range queries in the form of (a,b) can be expressed as 
two inequality queries in the form of < a and > b. 
For example, to find all dog types between 3 and 8 
requires examining only bits b2 (greater than 2) and 
b8 (less than 9). Similarly queries such as - =a can 
be expressed as < a or > a. For example, to find all 
dog types not equal to dog type 3 requires examining 
bits b2 (less than 3) and b3 (greater than 3). 

3.4. Superimposed Encoding 

Superimposed encoding scheme ([Knuth73]) is 
important for SSDBs which contain large volume of 
bibliographical data or property data ([Shoshani, 
Olken, Wong84)). T o use superimposed encoding for 
an attribute, a hashing function is first defined which 
maps each desired keyword in the attribute into a bit 
pattern of N bits. Given an attribute value (text with 
keywords), the collection of bit patterns of all the key- 

words are superimposed (logically 0 Red together) 
and the resulting bit pattern is the encoded value. 
This scheme supports partial match queries. Given a 
list of keywords to be searched, the keywords are 
hashed, superimposed onto a bit vector and the result- 
ing bit pattern is matched against the superimposed 
codes of the attribute. Because of the possible “false 
drops”, this scheme can only be used as a “filter” in 
the sense that only some records not qualifying are 
eliminated but of the selected ones, a search for the 
keywords is still required to reject those that were 
selected because their codes coincide with the super- 
imposed code of the query. 

3.5. Composite Encoding 

Each of the four encoding schemes mentioned 
above can be made “composite”. Given an encoding 
scheme E and a bit vector with length N, a composite 
encoding scheme for E of D fields is the concatenation 
of D groups of bit vectors, each of which is encoded 
using E and with length N. For example, suppose 
there are 1000 possible values for the attribute dosage 
in our experiment database. An l-of-1000 encoding 
would require 1000 bits for each value, A composite 
l-of-10 encoding with 3 fields, which involves the con- 
catenation of three l-of-10 fields together, can be 
used. To find a particular dosage value, only 3 bits 
have to be examined, 1 from each field. Composite 
k-of-n encoding with d fields can be viewed as a n-bit 
radix number with d digits. It is not required for the 
fields of a composite encoding scheme to have the 
same length. For the example above, we could have 
the first field encoded as 2-of-5 and the last two a.s l- 
Of-IO. 

Given an attribute encoded in a particular 
scheme, to find the correspondence between a value of 
the attribute and its bit pattern is done by a code 
table lookup. The major advantage of the composite 
encoding scheme is the reduction of the code table 
size. The reason is that the number of possible 
encoded values of a composite encoding scheme is the 
product of the number of possible encoded values of 
its fields, but the size of its code table is just the sum 
of the size of the code tables of its fields. In fact, in 
the case that all fields have the same encoding, then 
the same code table can be used. Another advantage 
of composite encoding is that for attributes with large 
number of possible values, multiple levels of grouping 
can be made so that selection can be performed based 
on the disired level. For example, in the composite 
encoding of dosage above (three l-of-10 fields), there 
are three levels of grouping of values, one at the hun- 
dreds, one at the tens, and one at the ones level. 
Selection performed at the hundreds, tens, or ones 
level involves respectively one, two, or three bits. For 
large SSDBs, having multiple levels of grouping of 

450 



values is very important and composite encoding 
scheme is invaluable. 

Table 1 summarizes the properties of the encod- 
ing schemes. The formulas are expressed in terms of 
d (the number of fields, in the case of non-composite 
encoding, d=l), n (the width of each field), and k (the 
number of bits to turn on in the case of k-of-n encod- 
ing). 

4. Bit Transposition 

In this section we will describe the file structure 
using some examples. The steps in obtaining the 
BTFs involve the following: first, the encoding 
schemes are decided for selected attributes; then the 
attributes are encoded for all records in the database; 
for each bit position of the encoded record, a file con- 
sisting of all the bits across the whole database is gen- 
erated and stored; finally, the files are compressed. 

The database of radiation experiment on dogs is 
used again here to illustrate these steps. The attri- 
butes of the database include the dog type, weight, 
age, dosage, location, observation, etc. Assume the 
following encoding schemes 

attribute # values 

dog type 10 
weight 8 
age 20 
dosage 200 

location 10 
observation 1000 keywords 

scheme 

2-of-5 
unary (8 bits) 
binary (5 bits) 
composite unary 
(3 fields of 6 bits) 
l-of-10 
superimposed 
on 10 bits 

Using these encoding schemes, the database is 
transformed into bit patterns. For each bit position, 
a bit vector is stored as a file. For the example above, 
the number of bit vectors files is as follows: 

attribute #bit vectors 

dog type 5 
weight 8 
age 5 
dosage 18 
location 10 
observation 10 

These bit vectors are then subject to compres- 
sion. The compression method we use is a variation 
of the header compression scheme proposed by 
[Eggers, Olken, Shoshani811, which in turn is a varia- 
tion of the run length encoding scheme with efficient 
access to the compressed data. Because of space limi- 
tation, the reader is referred to the above paper for 
the details of the compression method. The BTF 
compression scheme has the additional capability of 
suppressing the compression in the case where the 
overhead exceeds the gain of compression. This hap- 
pens when there are a large number of short runs of 
l’s and 0’s. The suppression algorithm involves look 
ahead and constant evaluation and balance of the cost 
of the overhead vs the storage gain from the compres- 
sion. 

5. Query Processing 

5.1. Boolean Operators on Bit Vectors 

The primitive operators on bit vectors are the 
boolean operators AND, OR, and NOT. These opera- 
tors can be efficiently implemented by breaking up the 
bit vectors into words and feed to the boolean opera- 
tors of the CPU. More efficiency is gained when the 
compression rate of the bit vectors is large. In the 
case of computing the AND operator between two bit 
vectors, for example, the runs of O’s in one of the bit 
vectors can be “skipped”, and the correspondicg part 
of the other bit vector can also be skipped. For bit 
vectors with large compression rate (which is one of 
the dominant characteristics of SSDBs), this skipping 
action can be used to produce very fast boolean opera- 
tors over bit vectors. 

5.2. Query Language 

The current BTF query language is a simple 
boolean expression language which allows range, 
exclusion, and set conditions. For example, to retrieve 
all female dog records between age 3 to 5 and weigh 
more than 10 Ibs, the following query can be used. 

sex[l] & age[3:5] & weight[>lO] 

The query “retrieve all dogs except German Shep- 
pards (which has value 105)and dogs that have 
developed cancer in the brain”, can be expressed as 

dogtype(- 1051 & observation[“cancer”,“brain”] 

(Note that in the current implementation of tbp BTF 
there is actually a menu-driven user interface which 
alleviates the user from having to memorize t’lie inter- 
nal codes of the attributes.) 
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5.3. Decoding of queries 

Given a query, a series of table lookup has to be 
performed to translate the query into boolean expres- 
sion of bit vectors. The first table is the attribute 
index encoding table which records the encoding 
scheme for each attribute and contains pointer to the 
attribute’s bit assignment table. The bit, assignment 
table records the bit pattern for each attribute value. 
In the case of composite encoding, there can be up to 
d value decode tables where d is the number of fields 
of the composite encoding scheme. 

Given the bit assignments for each attribute in 
the query, the next step is to generate boolean expres- 
sion on bit vectors. The generation procedure exam- 
ines both the encoding scheme and the condition in 
the query for each attribute in order to generate the 
shortest boolean expression. Below, we will illustrate 
this step by some examples. 

1. Simple exact match queries. 

(a) find all German Shepherds 

From table lookup, value 105 is found to have bit 
assignment 01100. The query 

dogtype[l05) 

is translated to 

dogtype (b3 & b2). 

and can now be evaluated. (Remember that the bits 
are named from right to left.) 

(b) find all 5-year-old dogs. 

Age 5 is encoded as 00101 in a binary encoding 
scheme, so the following expression is generated 

age (- b4 & - b3 & b2 8: - bl & b0) 

(c) find all S-year-old German Shepherds. 

is translated to 

dogtype(b3 St b2) & 
age (- b4 & - b3 SC b2 SC - bl & b0). 

2. Queries with set conditions 

find all dogs that have been radiated on locations 1, 4, 
or 7. 

location[l,4,7] 

Since location is encoded as a l-of-lo, the query is 
translated to 

location (b0 1 b3 1 b6). 

3. Queries with range conditions 

(a) find all dogs lighter than weight class 7. 

Recall that attribute weight is encoded as unn.t’.Y, the 
above query is translated simply to 

weight (- b6). 

(b) find all dogs receiving more than 30 dosage units. 

Attribute dosage is encoded as a Composite unary 
with 3 fields of 6 bits. Assume dosage 30 is encoded 
as 000111,000011,011111. The query can be 
translated to 

dosage ((b14 SC b7 & b4) ) (b14 B b8 ) ) b15) 

5.4. Order of Evahating Bit Vectors 

After the boolean expression on bit, vectors is 
obtained, an order of execution is determined which 
will minimize the running time. The optimal order of 
execution is to evaluate the bit vectors in the descend- 
ing order of their compression rates. This is because 
the skipping action mentioned earlier is maximized. 
The rearrangement is performed by an algorithm that 
walks through the boolean expression to produce a 
new (but equivalent) expression where the order of the 
bit vectors appearance correspond to the descending 
order of their compression rates. The new expression 
is then evaluated from left to right. 

6. Index Encoding Optimization 

In this section, we would like to consider 
automating the optimal index encoding for one encod- 
ing scheme, the k-of-n. Future work will attempt to 
extend this approach to incorporate the rest of the 
encoding schemes. 

Given an attribute A with 11 possible values , the 
k-of-x encoding method stores each value as a binary 
number with z digits. Exactly ii digits are l’s and 
the other z-k are 0’s. Clearly we can represent at 

most i ( 
0 

the number of combinations of z objects 
taken k at a time) different values for the attribute 
using this method and therefore we have the con- 

straint that z 
0 

must be at least v . To meet this 

The query is expressed as 
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constraint we can choose to increase both x and k 
,increase only z while keeping k small, or increase 

only k . In any case k will not exceed I since i 0 
x-l 

is maximized at either k =t or k =- 
2 

and we will 

show that increasing k means more boolean opera- 
tions to answer a query . On the other hand ,a large 
x means that more storage will be required to store 
the bit vectors. Hence we have a time space tradeoff 
problem. In this section we address the following 
problem: Given a certain amount of space to store 
the bit vectors, what is the optimal partitioning of 
this space among m attributes such that the expected 
query processing time is minimized. A more formal 
definition of the model and a dynamic programming 
solution to this problem is now given. 

Given a database of N records on m attributes 
A 14 2,..,Am , we would like to store the records as a 
set of bit vectors. The total number of bits reserved 
for encoding all attributes is C , so that the total 
storage requirement is C*N . We assume that attri- 
bute Ai has Vi possible values and appears in a query 
with probability pi. Our problem is to find for each 
attribute Ai , a ki and a zi such that the values for 
Ai will be encoded in a, ki-of-xi encoding. We assume 
that when a value for attribute Ai is mentioned in a 
query , the amount of boolean operations required to 
find the appropriate records will be proportional to ki 
because this is the number of columns we have to 
AND / OR in this case. Therefore , minimizing the 
expected time to answer a query amounts to minimiz- 
ing 

tn 
C Pi h 

i=l 

The constraints are 

C Xi I C. 
i=l 

2 Vi. 

We observe that the minimum value for any Xi is 
log2(vi ) , by information theoretic arguments and also 
the maximum value for ki that we will consider is 
log,(vi ) because otherwise we can use the usual binary 
encoding with this cost for query processing. The 
above optimization problem can be solved by dynamic 
programming techniques by using the following princi- 
pal of optimality. Let us denote by OPTy (1,2,..,j) 
the optimal expected query cost for the above problem 
where we only consider attributes A ,,A *,..,Aj and 
allow these attributes to use a total of y bits. We 
observe that 

OPT, (1,2 ,...., j +l) = 

minimun+, {OPTx (1,2,..,j)+OPT,-, (j +I)}. 

In words ,every partitioning of w bits for the first 
j +l attributes is achieved by finding some y where 
y <w such that the first j attributes use y bits 
and the attribute A j+r uses the remaining w -y bits. 
Among all such feasible partitionings , we have to 
find the value for y which minimizes the sum of these 
costs. This provides us with an iterative approach 
where at each iteration we add one more attribute 
into consideration until we finally find 
OPTc(1,2,..,m ) which is the optimal way of parti- 
tioning C bits among m attributes. A program 
which implements this idea was written in PASCAL 
and it took a very short time to compute optimal allo- 
cations for all practical size databases that we are 
currently using in our experiments. The details of the 
testing of the algorithm appear in Appendix A. 

7. Implementation 

A prototype of the BTF structure has been 
implemented in a VAX/VMS environment using 
mainly C with some assembler coding. The physical 
level of the prototype includes a compression package, 
an index encoder, a bit vector bulk loader, a set of 
boolean operators on compressed bit vectors. At the 
logical level, we have an user interface module, and a 
query processer. The user interface component is part 
of another experimental system called MICSUM, 
which uses the BTF structure and will be presented in 
a separate paper. 

The largest database we have running using the 
bit transposed file is a 110,000 records cancer 
incidents database available from the National Insti- 
tute of Health. Some performance experiments were 
performed comparing the retrieval time of the BTF 
with Datatrieve, a DEC relational DBMS, against the 
cancer data. The result is that BTF incur much 
smaller overhead (up to 10 times) and the retrieval 
time is consistently 10 times or more faster than 
Datatrieve. More details of some of experiments can 
be found in Appendix B. Besides the space and 
retrieval time, the loading time of the data is also of 
interest. We selected four attributes of the cancer 
database to have transposed bit vectors. Indices for 
the same attributes were generated in Datatrieve for a 
fair comparison. The transposition of the records into 
bit vectors took about half an hour on our VAX, but 
it took Datatrieve 5 days to create two indices and 9 
days for 4 indices. In fact, only about 75% of the 
database was loaded because of the excessive CPU 
time. 



8. Related Work 

As we mentioned in the Motivation Section, the 
basis of our approach is the transposed file, which is 
popular among SSDB implementors 
([Turner,Hammond,Cotton79]). The BTF can be 
thought of as an extreme version of the transposed 
file. In addition to the advantages associated with the 
transposed file for SSDBs, the bit transposed file offers 
three potential benefits: indexing capability with 
minimum of overhead because bit vectors are data 
and indices; better compression rate because of the 
front compression opportunity (such as a telephone 
book) and the lack of word, or even byte boundary; 
and the inherent parallelism (and hence efficiency) 
associated with the boolean logic on bit vectors. 

Two early versions of the BTF appear in prill & 
Tolken 771 and [Kiyoki, Tanaka, Aiso81]. The former 
only has the binary encoding scheme whereas the 
latter only the l-of-n scheme. Neither consider other 
encoding schemes for different query types, compres- 
sion of bit vectors, or optimization problems. 

Suppose we encode an large cardinality attribute 
with l-of-n encoding, and then we apply run encoding 
to each bit vector. This is the equivalent of a fully 
inverted file with difference encoded inverted lists (for 
each attribute value). By varying the encoding, we 
can interpolate (in terms of space and access time) 
between fully inverted files and simple sequential files. 

9. Current Work 

We are concentrating our effort on three major 
areas: experimentation and development; optimization 
problems; and special parallel hardware. 

Our current development on BTF includes the 
aggregation operators as well as other relational 
operators such as join. The aggregation operators will 
allow summary databases to be generated from BTFs, 
which in turn can be subject to further manipulation. 
We are also planning to experiment with more large 
SSDBs. 

The first optimization problem we are working on 
is the generalization of the optimal index encoding 
algorithm presented earlier. We are interested in the 
optimal index encoding assignment for attribute 
values considering any of the encoding schemes or 
their combinations and the values of an attribute may 
be encoded using more than one encoding scheme to 
optimize the access requirements. The second optimi- 
zation problem is the aggregation operation. The 
problem is to find an optimal order to perform the 
aggregation among the attributes so that the number 
of passes over the bit vectors is minimized and the 

different compression rates associated with the attri- 
butes are exploited. 

From our experience of implementing the BTF, it 
is apparent that simple yet powerful multiprocessor 
hardware can be built to support the file structure. 
We have a preliminary design for a transposer and a 
vlsi design for a boolean logic machine. The tran- 
sposer consists of a 32 by 32 register matrix. 32 
words (32 bits each) are read in at a time and the bits 
are slices into the matrix horizontally. The transposi- 
tion is done by reading the data vertically from the 
top 32 registers. The entire database can be tran- 
sposed using this matrix. The same transposer can 
also be used to convert from the bit transposed form 
to record format. The boolean logic machine is organ- 
ized as a tree where each node is a simple processor 
with only AND, OR, and NOT operations built in. 
Given a query, the “tree machine” is dynamically 
reconfigured to correspond to the parse tree of the 
query. The data, which is in the form of bit vectors, 
is fed to the tree machine from the leafs. The result 
is propagated upward in a pipeline manner towards 
the root, which produces the result. A prototype 8- 
processor chip has been designed. The processors are 
connected in a full crossbar which has the necessary 
logic to make it dynamically reconfigurable. 

10. Summary and Conclusions 

The motivation of our research began with the 
examination of why current access methods are not in 
use for large SSDB processing. We will review our 
observations and examine whether our proposal pro- 
vides part of the solution. 

The first characteristic of SSDBs is that attri- 
butes tend to have small cardinality. As a result, 
most current access methods would add limited selec- 
tive power yet incur large overhead. The BTF takes 
advantage of this property because small cardinality 
of attributes implies that it is possible to have small 
number of bit vectors, hence values can be efficiently 
retrieved. Also, there is minimal overhead associated 
with bit vectors because bit vectors are data and 
indices. 

The second characteristic of SSDBs is the cluster- 
ing effect of attribute values. The BTF takes advan- 
tage of this property by compressing the bit vectors. 
Unlike traditional compressed data, however, tllrre is 
no need to uncompresss in order to use the data. 
Instead the compressed bit vectors are used to imple- 
ment efficient boolean operators. 
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The third characteristic is the static (or append 
only) property of SSDBs that tend to underuse the 
dynamic mechanism of most access methods. Tran- 
sposed files (especially bit transposed files) exhibit 
very poor update performance (because they require a 
disk seek per attribute (bit) vector for each record 
modified, unless updates are batched. We presently 
provide only append operations. 

The fourth characteristic of SSDBs is that queries 
tend to access many records but only on a few attri- 
butes. This property is the basic motivation of the 
transposed files. The BTF can be thought of as a 
transposed file with a built-in “generalized” indexing 
mechanism which incurs minimal overhead. General- 
ized indices because the elaborate index encoding 
schemes provide a continuum of indexing levels based 
on access requirements and storage considerations. 

We envision the BTF to be used in coexistence 
with other access methods, especially in situations 
where efficient index encoding is diflicult to obtain. 
Examples include attributes with continuous domains 
and very large cardinality. Our current implementa- 
tion of the BTF, in fact, accommodates other file 
structures such as sequential files, and transposed files. 

In conclusion, we believe that the BTF offers an 
interesting approach to SSDBs because of its simpli- 
city, low overhead, inherent efficiency due to the 
parallel bit operations in computers, the optimization 
opportunities, and amenability to parallel hardware 
implementation. 
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Appendix A Index Encoding Optimization 
Algorithm Result 

This appendix lists the test runs and the CPU 
time it took the optimization algorithm to obtain the 
optimal results. Table 2 contains the input and out- 
put of the test runs. For each test run, each attribute 
has two pairs of numbers. The left number of the 
upper pair represents the number of possible values 
for the attributes and the right number is the fre- 
quency of the attribute being accessed. The lower 
pair of numbers (a, b) represents the result of the 
optimal bit assignment. 

Table 3 lists the CPU time comparison of the 
exhaustive search method and our dynamic program- 
ming method. In some instances, the latter’s running 
time is less than 1% of the brute force method. As 
can be seen, this method is efficient enough for most 
practical databases. 

Appendix B Performance Comparison 

The database is a real cancer incidents records. 
It contains information such as the patient’s sex, age, 
cancer site, type of cancer cells, year, etc. 

Table 4 lists the size of the test database in 
Datatrieve and BTF. The overhead column of BTF is 
the size (in number of 512-byte pages) of the bit vec- 
tors. The overhead for Datatrieve is the size of the 
indices. 

The list of queries contains twenty queries, ten in 
BTF syntax, and ten in Datatrieve syntax. 

Table 5 lists the running time of the listed 
queries (in terms of minutes, seconds and fractions of 
seconds). 

List of Queries 

1. B: year[75] 
D: find rOlkey4 with year = 75 

2. B: year[73:78] 
D: find rOlkey4 with year bt 73 and 78 

3. B: year[73:77] & racerea[2] 
D: find rOlkey4 with year bt 73 and 77 and racere 

= 2 

4. B: year[75,77] & sexre[l] 
D: find rOlkey4 with (year = 75,77) and (sexre = 

1) 

5. B: sexre[l] & racerea[l] 
D: find rOlkey4 with sexre = 1 and racere = 1 

6. B: year[74] & agere[l0:12] 
D: find rOlkey4 with year = 74 and agere bt 10 

and 12 

7. B: site[570:579] & sexre[l] 
D: find rOlkey4 with site bt 570 and 579 and sexre 

= 1 

8. B: year[76:78] SC sexre[2] 
D: find rOlkey4 with (year bt 76 and 78) and sexre 

= 2 



9. B: year[73,75,77] 8z site[859] 
D: find rOlkey4 with year = 73, 75, 77 and site = 

859 

10.B: year[76,78] & histolog(9730,9731] 
D: find rOlkey4 with (year = 76,78) and (site = 

9730, 9731) 
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Table 3 

* 
measured in CPU milliseconds in a CDC CYUIII<-170/730 

BTF 

DATATRIEVE 

# records 

110,000 

83,729* 

DB size (in pages) 

6,974+ 

8,100 

Table 4 

Overhead (in pages) 

1,332 

10,134 

+ The size of the DB after four attributes are index encoded. 
* Only about 75% of the original DB is loaded because of excessive CPU time. 

QUERY BTF DATATRIEVE 

1 00:04.03 
2 00:24.92 
3 00:10.84 
4 00:06.96 
5 00:?6.98 
6 00:02.18 
7 00:07.24 
8 00:11.77 
9 00:02.68 

10 00:02.35 

00:43.06 
05:22.03 
04:43.45 
02:11.59 
06:50.20 
00:56.60 
00:19.47 
03:18.08 
03d2.91 
02:22.01 

Table 5 


