
Bit Transposed Files

Harry K.T. Wong, Hsiu-Fen Liu, Frank Olken, Doron Rotem*, Linda Wong
Lawrence Berkeley Laboratory,

University of California

Abstract 1. Introduction and Motivation

Conventional access methods cannot be
effectively used in large Scientific/Statistical Database
(SSDB) applications. A file structure (called bit tran-
sposed file) is proposed which offers several attractive
features that are better suited for the special charac-
teristics that SSDBs exhibit. This file structure is an
extreme version of the (attribute) transposed file. The
data is stored by vertical bit partitions. The bit pat-
terns of attributes are assigned using one of several
data encoding methods. Each of these encoding
methods is appropriate for different query types. The
bit partitions can also be compressed using a version
of the run length encoding scheme. Efficient operators
on compressed bit vectors have been developed and
form the basis of a query language. In addition to
selective power with low overhead for SSDBs, the bit
transposed file is also amenable to special parallel
hardware. Results from experiments with the file
structure suggest that this approach may be a reason-
able alternative file structure for large SSDBs.

Scientific/Statistical Databases (SSDBS) exhibit
many specialized data usage and characteristics
([Shoshani,Olken,Wong84], [Wong84]). Despite the
advent of many advanced access methods, the dom-
inant file structure for very large SSDBs is still the
simple sequential file. The major reason is a
“mismatch” between conventional access methods
such as inverted files, B-trees, hashing, etc. and the
characteristics of SSDBs. First, since the cardinality
of SSDBs attributes is typically small, most access
methods simply partition the database into a small
number of still very large files, with prohibitively
expensive overhead for the pointers, structures, tables,
etc., with only limited selective power added. Second,
since SSDBs are largely static, the expensive overhead
associated with the dynamic facilities of most access
methods is not justified. Third, the values of SSDBs
attributes tend to cluster, and current access methods
often do not take advantage of this opportunity for
compression. Fourth, the access to SSDBs is typically
long “sweep” i.e., a long sequence of individual
records is fetched and a small number of attributes
extracted. This kind of range access is not supported
well by most access methods. Supported by the Ofiice of Energy Research, U.S.

DOE under Contract No. DEAC03-76SFOOO98.
* Dept. of Computer Science, Univ. of Waterloo,

Canada

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy.
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

The search for an appropriate file structure
begins with the fourth point mentioned above, which
is the motivation for attribute transposed files
([Wiederhold 831, [Batory 791). Conventional files
store the data as a collection of contiguous records,
i.e., all the fields for a single record are stored
together on a disk page. Attribute transposed jiles
store the data as a collection of contiguous attribute
columns, i.e., all of the data for a field (attribute) is
stored together. Bit transposed files (BTF) store the
data as a collection of bit columns, i.e., all of the data
for single bit position of an attribute encoding is
stored together. Thus the file structure we propose
can be seen to be an extreme form of the attribute
transposed file.

Proceedings of VLDB 85, Stockholm
448

The basic advantage of attribute transposed files
is that only those attribute columns which are needed
for a query need be retrieved. In many statistical
applications only a small fraction of the attributes are
needed for a query. Bit transposed files offer three
advantages:

0)

(‘3)

(3)

Clever data encodings will permit us to retrieve
only a fraction of the bit vectors used to encode
an attribute in order to perform a selection.

The bit vectors are amenable to data compression
via run length encoding, especially if the data
records have been sorted.

Selection criteria can be formulated as boolean
expressions on the bit vectors, facilitating fast
evaluation and specialized hardware.

In summary the bit transposed file system offers -
an eHicient means of performing selections.

2. Overview

The BTF system has three major components: an
index encoder, transposed bit vector loader, and a
query processor on bit vectors.

The index encoder translates each field in each
record in the database into a series of bits based on
several encoding schemes. The result is that each
record of the database is translated into a bit pattern.

The second component, called the transposer,
stores the bit patterns in a transposed manner so that
for each bit position of the bit pattern, a file is pro-
duced which contains the bit value of that bit position
from all the records in the database. The result is n
BTFs where n is equal to the number of bit columns
that result after encoding. Because values in large
statistical databases tend to cluster, we have
developed a compression method to compress the
BTFs so that long runs of O’s and l’s can be stored
more efficiently.

The third component of this file structure is the
query processor on BTFs. The processor translates
the retrieval requests on the database into a boolean
expression on the BTFs. The translation algorithm
takes as input the encoding schemes for the attributes
in the query and the query type in order to generate
the shortest boolean expression. The boolean expres-
sion is then evaluated by using the primitive boolean
operators AND, OR, and NOT. These operators are
very efficient that can also take advantage of the
compressed BTFs.

In section 2 the various index encoding schemes
are described with examples. Section 3 gives details
and examples to the transposition of records by bits.
In Section 4 the query processing aspect is examined.
Section 5 formalizes the problem of cptimal index
encoding assignment and experiment results with the

algorithm are included in an appendix. Section 6
describes the implementation and experimentation of
the file structure and results are listed in another
appendix. Some interesting current work is
mentioned in Section 7. Section 8 contains the sum-
mary and conclusion of the paper.

3. Index Encoding Schemes

In this section we will describe the available
index encoding schemes in our current BTF tran-
sposed file structure. Index encoding schemes are cru-
cial to BTFs because they ultimately decide how
many boolean operations have to be performed on the
bit vectors. There are four basic schemes: binary, k-
of-n, unary, and superimposed. Each one of these
schemes can have a composite version for attributes
with large number of values. Below we will describe
each of them with examples and discuss the usage of
the scheme for different kind of queries.

3.1. Binary Encoding

Given an attribute A with n possible values, the
binary encoding of A is to use log,(n) bits for each
value v and the bit pattern for v is the binary number
in the range of 0 and n, corresponding to the ordinal
integer of v among the n values of A. As a conven-
tion, the bit positions are labeled b0, bl, bn, from
the rightmost bit to the leftmost. This scheme
requires the minimum of storage but all bits have to
be examined for retrieval.

As an example throughout this paper, we will use
an application of radiation experiment on dogs. This
experiment database contains information such as dog
type, weight, age, dosage, location, etc. Assume that
there are 10 dog types. To encode dog type using the
binary encoding requires 4 bits and the bit patterns of
these 10 values range from 0000 to 1010.

3.2. K-of-N Encoding

This encoding scheme assigns bit patterns to
attribute values by turning on a distinct set of K bits

from N bits. Hence it can encode up to
(1 ;“: values.

For example, the l-of-10 encoding for dog type men-
tioned above would involve the following bit patterns:

0000000001
0000000010
OOOOOO0100
. . .
looooOOOOO

449

An 2-of-5 encoding for dog type has the following bit
patterns:

00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

Unlike binary encoding, this scheme requires exa-
mining only K bits for any value. It also allows a
time-space tradeoff in the sense that more storage
space (larger N) would mean less bits to examine
(smaller K).

3.3. Unary Encoding

This scheme requires N bits to encode N values
and it is useful for attributes that are involved mostly
in range or inequality queries. For example, the fol-
lowing is the result of encoding dog type using the
unary encoding scheme.

00OOOOOO01
0000000011
0000000111
. . .
1111111111

To retrieve all dog types that are larger then type 3
requires to examine only bit b3 (if it is 1 or not).
Similarly for all dog types that are below type 3
requires to examine only bit b2 (if it is 0 or not).
Range queries in the form of (a,b) can be expressed as
two inequality queries in the form of < a and > b.
For example, to find all dog types between 3 and 8
requires examining only bits b2 (greater than 2) and
b8 (less than 9). Similarly queries such as - =a can
be expressed as < a or > a. For example, to find all
dog types not equal to dog type 3 requires examining
bits b2 (less than 3) and b3 (greater than 3).

3.4. Superimposed Encoding

Superimposed encoding scheme ([Knuth73]) is
important for SSDBs which contain large volume of
bibliographical data or property data ([Shoshani,
Olken, Wong84)). T o use superimposed encoding for
an attribute, a hashing function is first defined which
maps each desired keyword in the attribute into a bit
pattern of N bits. Given an attribute value (text with
keywords), the collection of bit patterns of all the key-

words are superimposed (logically 0 Red together)
and the resulting bit pattern is the encoded value.
This scheme supports partial match queries. Given a
list of keywords to be searched, the keywords are
hashed, superimposed onto a bit vector and the result-
ing bit pattern is matched against the superimposed
codes of the attribute. Because of the possible “false
drops”, this scheme can only be used as a “filter” in
the sense that only some records not qualifying are
eliminated but of the selected ones, a search for the
keywords is still required to reject those that were
selected because their codes coincide with the super-
imposed code of the query.

3.5. Composite Encoding

Each of the four encoding schemes mentioned
above can be made “composite”. Given an encoding
scheme E and a bit vector with length N, a composite
encoding scheme for E of D fields is the concatenation
of D groups of bit vectors, each of which is encoded
using E and with length N. For example, suppose
there are 1000 possible values for the attribute dosage
in our experiment database. An l-of-1000 encoding
would require 1000 bits for each value, A composite
l-of-10 encoding with 3 fields, which involves the con-
catenation of three l-of-10 fields together, can be
used. To find a particular dosage value, only 3 bits
have to be examined, 1 from each field. Composite
k-of-n encoding with d fields can be viewed as a n-bit
radix number with d digits. It is not required for the
fields of a composite encoding scheme to have the
same length. For the example above, we could have
the first field encoded as 2-of-5 and the last two a.s l-
Of-IO.

Given an attribute encoded in a particular
scheme, to find the correspondence between a value of
the attribute and its bit pattern is done by a code
table lookup. The major advantage of the composite
encoding scheme is the reduction of the code table
size. The reason is that the number of possible
encoded values of a composite encoding scheme is the
product of the number of possible encoded values of
its fields, but the size of its code table is just the sum
of the size of the code tables of its fields. In fact, in
the case that all fields have the same encoding, then
the same code table can be used. Another advantage
of composite encoding is that for attributes with large
number of possible values, multiple levels of grouping
can be made so that selection can be performed based
on the disired level. For example, in the composite
encoding of dosage above (three l-of-10 fields), there
are three levels of grouping of values, one at the hun-
dreds, one at the tens, and one at the ones level.
Selection performed at the hundreds, tens, or ones
level involves respectively one, two, or three bits. For
large SSDBs, having multiple levels of grouping of

450

values is very important and composite encoding
scheme is invaluable.

Table 1 summarizes the properties of the encod-
ing schemes. The formulas are expressed in terms of
d (the number of fields, in the case of non-composite
encoding, d=l), n (the width of each field), and k (the
number of bits to turn on in the case of k-of-n encod-
ing).

4. Bit Transposition

In this section we will describe the file structure
using some examples. The steps in obtaining the
BTFs involve the following: first, the encoding
schemes are decided for selected attributes; then the
attributes are encoded for all records in the database;
for each bit position of the encoded record, a file con-
sisting of all the bits across the whole database is gen-
erated and stored; finally, the files are compressed.

The database of radiation experiment on dogs is
used again here to illustrate these steps. The attri-
butes of the database include the dog type, weight,
age, dosage, location, observation, etc. Assume the
following encoding schemes

attribute # values

dog type 10
weight 8
age 20
dosage 200

location 10
observation 1000 keywords

scheme

2-of-5
unary (8 bits)
binary (5 bits)
composite unary
(3 fields of 6 bits)
l-of-10
superimposed
on 10 bits

Using these encoding schemes, the database is
transformed into bit patterns. For each bit position,
a bit vector is stored as a file. For the example above,
the number of bit vectors files is as follows:

attribute #bit vectors

dog type 5
weight 8
age 5
dosage 18
location 10
observation 10

These bit vectors are then subject to compres-
sion. The compression method we use is a variation
of the header compression scheme proposed by
[Eggers, Olken, Shoshani811, which in turn is a varia-
tion of the run length encoding scheme with efficient
access to the compressed data. Because of space limi-
tation, the reader is referred to the above paper for
the details of the compression method. The BTF
compression scheme has the additional capability of
suppressing the compression in the case where the
overhead exceeds the gain of compression. This hap-
pens when there are a large number of short runs of
l’s and 0’s. The suppression algorithm involves look
ahead and constant evaluation and balance of the cost
of the overhead vs the storage gain from the compres-
sion.

5. Query Processing

5.1. Boolean Operators on Bit Vectors

The primitive operators on bit vectors are the
boolean operators AND, OR, and NOT. These opera-
tors can be efficiently implemented by breaking up the
bit vectors into words and feed to the boolean opera-
tors of the CPU. More efficiency is gained when the
compression rate of the bit vectors is large. In the
case of computing the AND operator between two bit
vectors, for example, the runs of O’s in one of the bit
vectors can be “skipped”, and the correspondicg part
of the other bit vector can also be skipped. For bit
vectors with large compression rate (which is one of
the dominant characteristics of SSDBs), this skipping
action can be used to produce very fast boolean opera-
tors over bit vectors.

5.2. Query Language

The current BTF query language is a simple
boolean expression language which allows range,
exclusion, and set conditions. For example, to retrieve
all female dog records between age 3 to 5 and weigh
more than 10 Ibs, the following query can be used.

sex[l] & age[3:5] & weight[>lO]

The query “retrieve all dogs except German Shep-
pards (which has value 105)and dogs that have
developed cancer in the brain”, can be expressed as

dogtype(- 1051 & observation[“cancer”,“brain”]

(Note that in the current implementation of tbp BTF
there is actually a menu-driven user interface which
alleviates the user from having to memorize t’lie inter-
nal codes of the attributes.)

451

5.3. Decoding of queries

Given a query, a series of table lookup has to be
performed to translate the query into boolean expres-
sion of bit vectors. The first table is the attribute
index encoding table which records the encoding
scheme for each attribute and contains pointer to the
attribute’s bit assignment table. The bit, assignment
table records the bit pattern for each attribute value.
In the case of composite encoding, there can be up to
d value decode tables where d is the number of fields
of the composite encoding scheme.

Given the bit assignments for each attribute in
the query, the next step is to generate boolean expres-
sion on bit vectors. The generation procedure exam-
ines both the encoding scheme and the condition in
the query for each attribute in order to generate the
shortest boolean expression. Below, we will illustrate
this step by some examples.

1. Simple exact match queries.

(a) find all German Shepherds

From table lookup, value 105 is found to have bit
assignment 01100. The query

dogtype[l05)

is translated to

dogtype (b3 & b2).

and can now be evaluated. (Remember that the bits
are named from right to left.)

(b) find all 5-year-old dogs.

Age 5 is encoded as 00101 in a binary encoding
scheme, so the following expression is generated

age (- b4 & - b3 & b2 8: - bl & b0)

(c) find all S-year-old German Shepherds.

is translated to

dogtype(b3 St b2) &
age (- b4 & - b3 SC b2 SC - bl & b0).

2. Queries with set conditions

find all dogs that have been radiated on locations 1, 4,
or 7.

location[l,4,7]

Since location is encoded as a l-of-lo, the query is
translated to

location (b0 1 b3 1 b6).

3. Queries with range conditions

(a) find all dogs lighter than weight class 7.

Recall that attribute weight is encoded as unn.t’.Y, the
above query is translated simply to

weight (- b6).

(b) find all dogs receiving more than 30 dosage units.

Attribute dosage is encoded as a Composite unary
with 3 fields of 6 bits. Assume dosage 30 is encoded
as 000111,000011,011111. The query can be
translated to

dosage ((b14 SC b7 & b4)) (b14 B b8)) b15)

5.4. Order of Evahating Bit Vectors

After the boolean expression on bit, vectors is
obtained, an order of execution is determined which
will minimize the running time. The optimal order of
execution is to evaluate the bit vectors in the descend-
ing order of their compression rates. This is because
the skipping action mentioned earlier is maximized.
The rearrangement is performed by an algorithm that
walks through the boolean expression to produce a
new (but equivalent) expression where the order of the
bit vectors appearance correspond to the descending
order of their compression rates. The new expression
is then evaluated from left to right.

6. Index Encoding Optimization

In this section, we would like to consider
automating the optimal index encoding for one encod-
ing scheme, the k-of-n. Future work will attempt to
extend this approach to incorporate the rest of the
encoding schemes.

Given an attribute A with 11 possible values , the
k-of-x encoding method stores each value as a binary
number with z digits. Exactly ii digits are l’s and
the other z-k are 0’s. Clearly we can represent at

most i (
0

the number of combinations of z objects
taken k at a time) different values for the attribute
using this method and therefore we have the con-

straint that z
0

must be at least v . To meet this

The query is expressed as

452

constraint we can choose to increase both x and k
,increase only z while keeping k small, or increase

only k . In any case k will not exceed I since i 0
x-l

is maximized at either k =t or k =-
2

and we will

show that increasing k means more boolean opera-
tions to answer a query . On the other hand ,a large
x means that more storage will be required to store
the bit vectors. Hence we have a time space tradeoff
problem. In this section we address the following
problem: Given a certain amount of space to store
the bit vectors, what is the optimal partitioning of
this space among m attributes such that the expected
query processing time is minimized. A more formal
definition of the model and a dynamic programming
solution to this problem is now given.

Given a database of N records on m attributes
A 14 2,..,Am , we would like to store the records as a
set of bit vectors. The total number of bits reserved
for encoding all attributes is C , so that the total
storage requirement is C*N . We assume that attri-
bute Ai has Vi possible values and appears in a query
with probability pi. Our problem is to find for each
attribute Ai , a ki and a zi such that the values for
Ai will be encoded in a, ki-of-xi encoding. We assume
that when a value for attribute Ai is mentioned in a
query , the amount of boolean operations required to
find the appropriate records will be proportional to ki
because this is the number of columns we have to
AND / OR in this case. Therefore , minimizing the
expected time to answer a query amounts to minimiz-
ing

tn
C Pi h

i=l

The constraints are

C Xi I C.
i=l

2 Vi.

We observe that the minimum value for any Xi is
log2(vi) , by information theoretic arguments and also
the maximum value for ki that we will consider is
log,(vi) because otherwise we can use the usual binary
encoding with this cost for query processing. The
above optimization problem can be solved by dynamic
programming techniques by using the following princi-
pal of optimality. Let us denote by OPTy (1,2,..,j)
the optimal expected query cost for the above problem
where we only consider attributes A ,,A *,..,Aj and
allow these attributes to use a total of y bits. We
observe that

OPT, (1,2 ,...., j +l) =

minimun+, {OPTx (1,2,..,j)+OPT,-, (j +I)}.

In words ,every partitioning of w bits for the first
j +l attributes is achieved by finding some y where
y <w such that the first j attributes use y bits
and the attribute A j+r uses the remaining w -y bits.
Among all such feasible partitionings , we have to
find the value for y which minimizes the sum of these
costs. This provides us with an iterative approach
where at each iteration we add one more attribute
into consideration until we finally find
OPTc(1,2,..,m) which is the optimal way of parti-
tioning C bits among m attributes. A program
which implements this idea was written in PASCAL
and it took a very short time to compute optimal allo-
cations for all practical size databases that we are
currently using in our experiments. The details of the
testing of the algorithm appear in Appendix A.

7. Implementation

A prototype of the BTF structure has been
implemented in a VAX/VMS environment using
mainly C with some assembler coding. The physical
level of the prototype includes a compression package,
an index encoder, a bit vector bulk loader, a set of
boolean operators on compressed bit vectors. At the
logical level, we have an user interface module, and a
query processer. The user interface component is part
of another experimental system called MICSUM,
which uses the BTF structure and will be presented in
a separate paper.

The largest database we have running using the
bit transposed file is a 110,000 records cancer
incidents database available from the National Insti-
tute of Health. Some performance experiments were
performed comparing the retrieval time of the BTF
with Datatrieve, a DEC relational DBMS, against the
cancer data. The result is that BTF incur much
smaller overhead (up to 10 times) and the retrieval
time is consistently 10 times or more faster than
Datatrieve. More details of some of experiments can
be found in Appendix B. Besides the space and
retrieval time, the loading time of the data is also of
interest. We selected four attributes of the cancer
database to have transposed bit vectors. Indices for
the same attributes were generated in Datatrieve for a
fair comparison. The transposition of the records into
bit vectors took about half an hour on our VAX, but
it took Datatrieve 5 days to create two indices and 9
days for 4 indices. In fact, only about 75% of the
database was loaded because of the excessive CPU
time.

8. Related Work

As we mentioned in the Motivation Section, the
basis of our approach is the transposed file, which is
popular among SSDB implementors
([Turner,Hammond,Cotton79]). The BTF can be
thought of as an extreme version of the transposed
file. In addition to the advantages associated with the
transposed file for SSDBs, the bit transposed file offers
three potential benefits: indexing capability with
minimum of overhead because bit vectors are data
and indices; better compression rate because of the
front compression opportunity (such as a telephone
book) and the lack of word, or even byte boundary;
and the inherent parallelism (and hence efficiency)
associated with the boolean logic on bit vectors.

Two early versions of the BTF appear in prill &
Tolken 771 and [Kiyoki, Tanaka, Aiso81]. The former
only has the binary encoding scheme whereas the
latter only the l-of-n scheme. Neither consider other
encoding schemes for different query types, compres-
sion of bit vectors, or optimization problems.

Suppose we encode an large cardinality attribute
with l-of-n encoding, and then we apply run encoding
to each bit vector. This is the equivalent of a fully
inverted file with difference encoded inverted lists (for
each attribute value). By varying the encoding, we
can interpolate (in terms of space and access time)
between fully inverted files and simple sequential files.

9. Current Work

We are concentrating our effort on three major
areas: experimentation and development; optimization
problems; and special parallel hardware.

Our current development on BTF includes the
aggregation operators as well as other relational
operators such as join. The aggregation operators will
allow summary databases to be generated from BTFs,
which in turn can be subject to further manipulation.
We are also planning to experiment with more large
SSDBs.

The first optimization problem we are working on
is the generalization of the optimal index encoding
algorithm presented earlier. We are interested in the
optimal index encoding assignment for attribute
values considering any of the encoding schemes or
their combinations and the values of an attribute may
be encoded using more than one encoding scheme to
optimize the access requirements. The second optimi-
zation problem is the aggregation operation. The
problem is to find an optimal order to perform the
aggregation among the attributes so that the number
of passes over the bit vectors is minimized and the

different compression rates associated with the attri-
butes are exploited.

From our experience of implementing the BTF, it
is apparent that simple yet powerful multiprocessor
hardware can be built to support the file structure.
We have a preliminary design for a transposer and a
vlsi design for a boolean logic machine. The tran-
sposer consists of a 32 by 32 register matrix. 32
words (32 bits each) are read in at a time and the bits
are slices into the matrix horizontally. The transposi-
tion is done by reading the data vertically from the
top 32 registers. The entire database can be tran-
sposed using this matrix. The same transposer can
also be used to convert from the bit transposed form
to record format. The boolean logic machine is organ-
ized as a tree where each node is a simple processor
with only AND, OR, and NOT operations built in.
Given a query, the “tree machine” is dynamically
reconfigured to correspond to the parse tree of the
query. The data, which is in the form of bit vectors,
is fed to the tree machine from the leafs. The result
is propagated upward in a pipeline manner towards
the root, which produces the result. A prototype 8-
processor chip has been designed. The processors are
connected in a full crossbar which has the necessary
logic to make it dynamically reconfigurable.

10. Summary and Conclusions

The motivation of our research began with the
examination of why current access methods are not in
use for large SSDB processing. We will review our
observations and examine whether our proposal pro-
vides part of the solution.

The first characteristic of SSDBs is that attri-
butes tend to have small cardinality. As a result,
most current access methods would add limited selec-
tive power yet incur large overhead. The BTF takes
advantage of this property because small cardinality
of attributes implies that it is possible to have small
number of bit vectors, hence values can be efficiently
retrieved. Also, there is minimal overhead associated
with bit vectors because bit vectors are data and
indices.

The second characteristic of SSDBs is the cluster-
ing effect of attribute values. The BTF takes advan-
tage of this property by compressing the bit vectors.
Unlike traditional compressed data, however, tllrre is
no need to uncompresss in order to use the data.
Instead the compressed bit vectors are used to imple-
ment efficient boolean operators.

454

The third characteristic is the static (or append
only) property of SSDBs that tend to underuse the
dynamic mechanism of most access methods. Tran-
sposed files (especially bit transposed files) exhibit
very poor update performance (because they require a
disk seek per attribute (bit) vector for each record
modified, unless updates are batched. We presently
provide only append operations.

The fourth characteristic of SSDBs is that queries
tend to access many records but only on a few attri-
butes. This property is the basic motivation of the
transposed files. The BTF can be thought of as a
transposed file with a built-in “generalized” indexing
mechanism which incurs minimal overhead. General-
ized indices because the elaborate index encoding
schemes provide a continuum of indexing levels based
on access requirements and storage considerations.

We envision the BTF to be used in coexistence
with other access methods, especially in situations
where efficient index encoding is diflicult to obtain.
Examples include attributes with continuous domains
and very large cardinality. Our current implementa-
tion of the BTF, in fact, accommodates other file
structures such as sequential files, and transposed files.

In conclusion, we believe that the BTF offers an
interesting approach to SSDBs because of its simpli-
city, low overhead, inherent efficiency due to the
parallel bit operations in computers, the optimization
opportunities, and amenability to parallel hardware
implementation.

Acknowledgements

We would like to thank Arie Shoshani for his
valuable comments. Credits are to Michael Ger for
implementing the index encoding algorithm and pro-
viding the test data. We would also like to
acknowledge the text editing help from Carole Agazzi.

Appendix A Index Encoding Optimization
Algorithm Result

This appendix lists the test runs and the CPU
time it took the optimization algorithm to obtain the
optimal results. Table 2 contains the input and out-
put of the test runs. For each test run, each attribute
has two pairs of numbers. The left number of the
upper pair represents the number of possible values
for the attributes and the right number is the fre-
quency of the attribute being accessed. The lower
pair of numbers (a, b) represents the result of the
optimal bit assignment.

Table 3 lists the CPU time comparison of the
exhaustive search method and our dynamic program-
ming method. In some instances, the latter’s running
time is less than 1% of the brute force method. As
can be seen, this method is efficient enough for most
practical databases.

Appendix B Performance Comparison

The database is a real cancer incidents records.
It contains information such as the patient’s sex, age,
cancer site, type of cancer cells, year, etc.

Table 4 lists the size of the test database in
Datatrieve and BTF. The overhead column of BTF is
the size (in number of 512-byte pages) of the bit vec-
tors. The overhead for Datatrieve is the size of the
indices.

The list of queries contains twenty queries, ten in
BTF syntax, and ten in Datatrieve syntax.

Table 5 lists the running time of the listed
queries (in terms of minutes, seconds and fractions of
seconds).

List of Queries

1. B: year[75]
D: find rOlkey4 with year = 75

2. B: year[73:78]
D: find rOlkey4 with year bt 73 and 78

3. B: year[73:77] & racerea[2]
D: find rOlkey4 with year bt 73 and 77 and racere

= 2

4. B: year[75,77] & sexre[l]
D: find rOlkey4 with (year = 75,77) and (sexre =

1)

5. B: sexre[l] & racerea[l]
D: find rOlkey4 with sexre = 1 and racere = 1

6. B: year[74] & agere[l0:12]
D: find rOlkey4 with year = 74 and agere bt 10

and 12

7. B: site[570:579] & sexre[l]
D: find rOlkey4 with site bt 570 and 579 and sexre

= 1

8. B: year[76:78] SC sexre[2]
D: find rOlkey4 with (year bt 76 and 78) and sexre

= 2

9. B: year[73,75,77] 8z site[859]
D: find rOlkey4 with year = 73, 75, 77 and site =

859

10.B: year[76,78] & histolog(9730,9731]
D: find rOlkey4 with (year = 76,78) and (site =

9730, 9731)

References

(Shoshani, Olken, Wang 841
Shoshani, A., blken, F., Wong, H.K.T.,
“Characteristics of Scientific Databases”,
Proc. 1984 VLDB, Singapore, 1984.

[Wong84)
Wow, H.K.T., “Micro/Macro
Statistical/Scientific Database Manage-
ment”, The First IEEE International
Conference on Data Engineering, Los
Angeles, March, 1984.

[Eggers, Olken, Shoshani 811
Eggers, S., Olken, F., Shoshani, A., “A
Compression Technique for Large Statisti-
cal Databases”, in Proc. 1981 VLDB,
Cannes, France, Sept, 1981.

[Turner, Hammond, C,otton79]
Turner, M., Hammond, R., Cotton, F., “A
DBMS for Large Statistical Databases,”
Proc. 1979 VLDB, Rio de Janeiro, 1979.

prill & Tolken 771
Brill, R.C, Tolken, S.E., “Subset Selection
by Boolean Calculation”, Unpublished
memo, 1977.

(Knuth 731
Knuth, D.E., The Art of Computer Pro-
gramming, Volume 3, Addison Wesley,
1983.

(Batory791
Batory, D.S., “On Searching Transposed
Files,” ACM TODS, Vol. 4, no. 4, Dec.,
1979, 531-544.

[Wiederhold 831
Wiederhold, G., Database Design,
McGraw-Hill, 2nd Edition, 1983.

[Kiyoki, Tanaka, Aiso 81)
Kiyoki, Y., Tanaka, K., and Aiso, H.,
“Design and Evaluation of a Relational
Data Base Machine Employing Advanced
Data Structures and Algorithms”, in The
8th Annual Symposium on Computer
Architecture, MAy 12-14, 1981, Minneapo-
lis, Minn.

values exact match > partial match

binary

k of n

unary

superimposed

2n.d

d

(n + l)d

O(2”d)

nd

kd

d

no

nd

nd

n*(n+l)/2

no

No

No

No

*

Table 1

* depends on code density, typically is 1/2nd.

456

1 Max, I Attr. ;

REl i3!U

i , 1 A:” i A;r,. j A; / Ajrr.) “6’” i AZ: j A: / AT 1 A;‘0

1
m 1 Tzao ~~,~~ / ;lr:t)O :$y (Tc:)OO t$ / 1 1

mo.20 SlUOO 70.3000 687.W ’ 2”.400 788.90 2.1000 (3mJo 1 50.300 4.200

2 ,a (10.10) (53) (13.2) 10.10) (W ((12.5) (1.1) ; (10.2) : (53) (G3
/ 5270.30 I 4sa.20 ’ 900.70 wo.2w 1 456.30 / em3.m

3 m / (15.7) I wa: (13.5: (14.4) ! WY) / (10.10)
I I

94W.30 j 600.t30 52.400 70.20 700.1wo I 60.2w 9,LOO 567.30

4 i w (14.14) 1 (125) W.3) (7.7) (13.4) I (12.2) (4.4) (10.10)

MS67.su 23,lOW 560.20

5 80 ! ;2:; j ;:ieoo (18.7) (8.7) (10.10) i ;;z;

soo.zn 6W.30 700.10 I 60.100 30.200 l3.100 ‘SW 25.10 46.100 j 3.1000

0 90 (13.4) , (134) (12.5) 1 (12.2) (0.2) (fJ.1) w (5.5) (11.2) ; (3.1!

Table 2

I
I I

1 1

/
Exhnus tivc /

Run Search gethod* I
Dynamic Progr$mming

Method
, I

1 1335 I 172
2 396O:l / .I 1 1

!

j 3 3315 ! 176

;t I
196.43 / x0 /

16 /
2139 195

250576 I 595 I

Table 3

*
measured in CPU milliseconds in a CDC CYUIII<-170/730

BTF

DATATRIEVE

records

110,000

83,729*

DB size (in pages)

6,974+

8,100

Table 4

Overhead (in pages)

1,332

10,134

+ The size of the DB after four attributes are index encoded.
* Only about 75% of the original DB is loaded because of excessive CPU time.

QUERY BTF DATATRIEVE

1 00:04.03
2 00:24.92
3 00:10.84
4 00:06.96
5 00:?6.98
6 00:02.18
7 00:07.24
8 00:11.77
9 00:02.68

10 00:02.35

00:43.06
05:22.03
04:43.45
02:11.59
06:50.20
00:56.60
00:19.47
03:18.08
03d2.91
02:22.01

Table 5

