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Abstract 
Basic notions of the HIT data model 

are presented. The model is based on the 
notion of function and uses the 
apparatus Of the typed lambda-calculus 
which enab 1 es clean and t ranspa rent 
formulation of the data base concepts at 
various levels of description. 

‘I. Introduction -.___ --- ._____ _--- 
At the moment, a number of data 

models has been published that reflect 
various aspects of data bases, or their 
proposed usage or their place in the 
hierarchy of levels ranging from the 
conceptual schema design of a data base 
to the rather physical work with the 
data. Nevertheless, the contemporary 
models are not general enough and cannot 
be succesfully used for all the levels 
of the description of data and the work 
with them. 

In this paper-# the basic concepts 
of the Homogeneous Integrated Type-or i- 
ented data model (HIT DM) Cl63 are 
presented. The model has been elaborated 
so as to be of use both for the 
conceptual schema design oriented to the 
use of natural language Cl23 I and for 
the description of work with the data in 
a data base C91, Cl631 Cl13 I C283. In 
contrast with the approaches of e.g. 
Cl81, C41, E213, the main aim of HIT DM 
is to provide not only a functional 
semant its or a query language, but 
really a self-contained data model. HIT 
DM will be presented in an updated 
formalism which is based on the typed 
lambda-calculus (Cf. e.g. t33, fipp.B) in 
a 81 ight modification (313 inspi red 
especially by the Simple Theory of Types 
Chl as modified in C241. All the aspects 
of the link between the data mode 1 and 
the intensional analysis of the natural 
language C231 cannot be discussed here, 
the reader can consult Cl51 or Cl73. 

2. Basic concepts 
The main feature-o? the HIT DM is 

the use of functions for the description 
of the dependences between the data 
values (that, e.g., are to be stored in 
a data base). For the data description, 
the role of functions in HIT QM is 
similar to that of relations in the 
relational data model (RDM) C71. For the 
work with functions, especially for 
their application and formation of new 
ones, the typed lambda-calculus is used 
in HIT DM in a way relational operations 
are used in RDM. Contrary to RDM, howev- 
et-# the use of functions can eliminate 
some difficulties connected with the 
work with “unno rma 1 i zed relations” i 
moreover I the apparatus for the work 
with functions makes it possible to 
desc r i be what happens i n the external 
views, update operations or distributed 
data bases, and what, e.g., the applica- 
tion of integrity constraints means. In 
addition, the analysis of the natural 
language can be also based on functions 
C2.33. This means that the same apparatus 
can be applied to the conceptual schema 
design of a data base (roughly speaking, 
the relationships in the E-R mode 1 CSI 
can be replaced by certain tunctionsil 
cf. c121, in a similar way as relations 
were replaced by functions in the case 
of RDM) The ability of using the same 
apparatus both for the description of 
the data structures as well as their 
transformations and programs work it-q 
over them, and for the description of 
the semantics of the initial not ions 
from the modelled reality makes HIT DM 
to be really “homogeneous” - the same 
apparatus is used at various levels of 
description. 

Two essential notions of HIT DM are 
attributes and pseudo-attributes. (It 
should be stressed that in HIT DM the 
notion of attribute 
different sense than in AGM.) 

used in a 
To put it 

informally, attributes are the functions 
that one bears in mind when he uses the 
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natural 1 anQuaQe . Take, e.g. 8 the 
attribute “Salary”. When we say 

“The salary of Mr.Smith is $54000”) (1) 
this means that the tunct ion “Salary”, 
applied to “Mr .Smith”, gives the result 
~~$54000” I i e. 

l’Salary” ( “Mr. Smith” 1 = “#54000”. (2) 
However I the attributes in the natural 
language are not so simple because they 
are/ in addition, parametrized by the 
state of the world (they are the so- 
-called intensions C233). The “Salary” 
i nc 1 udes the(empirica1) dependency on 
the state-of-affairs, the so-called 
possible worlds C253. Then, the meaning -- - -- --.___I-- 
Of (1) would be: take a particular 
possible world W (usually that which is 
believed to be the actual one, i .e. 
correspondiny to the distribution of 
certain features realized in reality) 
and apply “Salary” to wi the result 
“Salary”(W) is such a tuntion that 
having been applied to “Mr.Smith”, it 
gives the result “$54000”, i .e. instead 
of (2) we should write 

( “Salary” ( W) ) ( “Mr. Smith” 1 = “$5400@. 
A more sophisticated view of the se- 
mantics of the natural language can be 
achieved by the parametrization of the 
attributes (or intensions in the general 
theory) not only by the possible worlds 
but also by time moments. The details 
will not be discussed here, cf. C253. 

When dealing with a particular data 
base I the data stored in it are rather 
fixed functions (or tables) rather than 
that kind of attributes parameterized by 
the state of the world. In a particular 
data base one deals with pseudo-attri- 
butes, ct. E.153, c173: concreted attri- 
butes for some particular corresponding 
state of the world (i.e. extensions of 
the t ormer intensions). In HIT DM the 
pseudo-attributes play the role similar 
to the relations in RDM, or Codasyl-sets 
from the CODASYL report C11, while the 
attributes correspond to relationships 
and/or attributes from the E-R model. 

For work with functions, it is 
use? ul to assign certain types to them, 
i.e. to connect a function with the 
domains of possible argument va 1 ues and 
with the range of resu 1 t values. For 
this purpose, a hierarchy of (tunction- 
al) types over a certain set of elemen- 
tary, non-functional, base types can be 
built. The elementary types will be the 
so-called sorts Cl73; from the viewpoint 
of a data base designer or a data base 
user I sorts reflect the value domains in 
the same sense as the domains of attri- 
butes in ROM Cl33. 

3. Formal apparatus 
Let us have a base consisting of a 

finite number of dG=erable domains of 

elementary values, the so-called sorts, 
one of them let be the set B (=Boolean) 
o? the truth-values. The hierarchy of 
types over the base is inductively 
defined as tallows: 

(i) any member of the base is a type; 
(ii) it T, and T, are types then also 

the domain of mappings from T4 into 
Ta ’ denoted tT4->Tn), is a type (a 
functional type); 

(iii) it T,,. . .,T,, are types then also 
their Cartesian product (product 
domain), denoted (TA,. . . ,T,), is a 

type (a tuple type); in the case of 
n=l we take (Td) to be identical with 
Td and, moreover1 we neglect embedded 
parentheses, i.e. we identity, e.g., 
(Td,(T2/Ts)) with (fd ,Tr,Ts) (we 
shall speak about the tuple types 
without embedded parentheses 1 ike, 
e.g. I (T~~Tz,T~) as about normal 
t es). 
-5 (iv) i TA ,T, are tvDes then also their 
disjoini &m, de&ted (T4 +T2) ) is a 
type (a union type). 

Note that we have supposed only 
unary functions in (ii). However ) com- 
bining (ii) with (iii) we obtain also 
types of functions of any arity, e.g. 
((T, I.. . ,Th )->T,+d ) I etc. We assume that 
every type includes certain member 1, 
“undet ined”, of the appropriate type. 

The possibility of forming union 
types (iv) enables to consider also 
subtypes since any system of subtypes 
clearly induces a corresponding division 
of the base types into smaller disjoint 
ones from which the former types can be 
obtained as union types. 

Let us remark that we have intro- 
duced types corresponding only to simple 
values, functions and tuples, and that 
we have omitted types that would cor- 
respond to sets. The type of sets of 
members from T can be understood to be 
(T->a, , because every set with members 
from T can be identified with its 
characteristic function from CT->B). The 
types of relations are clearly ((Td,... 

tt~)->B) t i .e. sets of tuples. 
For the work with functions, we use 

the typed lambda-calculus slightly modi- 
tied for the use of tuple types c311. 
Terms of the calculus consist of varia- 
bles, symbols (object or constant ones), 
each variable or symbo 1 hav i r-q some 
type ’ and the improper symbols. To each 
term of the calculus a certain type is 
ass i Qned The lambda-terms (or terms, 
for short) are defined as tollows:~ 

(i) Every symbol or variable is a term 
of the same type as the symbol. 0 r 
variable 

(ii) Let A be a term of type CT, -‘:9r2) 
and B be a term of type 74 i then 
CAB) I i.e. the application of H t.o B, 
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is a .t_e.rfi of the type Tp 
(iii) Let A be a term of type T and x4’ 

. Ixn be mutually different varia- 
bles of respective types T4 ,...,Tn; 
then Ax,...x,(&), i.e. the x~~...,x~- 
-abstraction of 8, is a term of the 
type ((7.; ,. . . ,7,,)->Tt). (The abst rac- 
tion binds the variables x~,...~x,, in 
the bm of the abstraction; terms 
having all their variables bound are 
called closed terms.) 

(iv) Let A,(r.. ,F\,, be terms of respec- 
tive types Tq ,. ,T,, n.$l, then (A,, 

,A,), i .e. the tue constructionl 
is a term of the type C’l;~~~~~‘tT;~). 

(v) Let Cs be a term-the nbrmal type of 
which is CT+, ,T,); then %. . . ,fi‘,,) 
(where the subscripts are improper 
symbols!), i.e. for a fixed i, ldidn, 
the i-th projection of 6, are terms 
of the respectivF tvrzles TA~..X 
(Note that the normai’ity a&umpt ion 
is necessary; otherwise the pro jec- 
tions would be defined ambiguosly.) 

(vi) Let 
;$.$f+#fi; ;e::, “; “&~t;,” ;“,:A 

we -e-.-m...--. 

t T, +T2 ) : 
is a term of -I- the type 

(vii) Let xly be variables of respective 
types 7’4 ,T2i A,B let be terms of type 
f not containing the variables y/x, 
respectively; then YX~(A,B), i.e. the 
unibn abstr;ction, i& a term of type 
(rr,+f2.->T). 

As a rule, we shall omit the outer 
pairs of parentheses in applications, 
i.e. we shall write A8 or A(B) instead 
of (AB) or (A(8)), whenever no confusion 
could arise. 

Formally, the value of a 1 ambda- 
term is defined as applying the semantic 
function & to the term and a particular 
interpretat ion. By an interpretation + 
we shall understand a function that 
assigns to every variable and symbol of 
any type T some corresponding member of 
T (In fact, the distinction of vari- 
ables and symbols has not any deeper 
sense than to enable a more friendly 
notation). From + we can form interpre- 
tation that differs from + only in as- 
signing, e.g. I to a symbol S the corre- 
sponding value Tf ) we shall denote such 
an interpretation by [St-%+. In our 
calculus the semantic function E is 
defined by (terms of the formal lambda- 
-calculus used as arguments of E are 
enclosed in L 1): 
tlIS3+=+tS) iff S is variable or symbol i 
Ea(mP.$=(EaFIll~) tEaExll+) i 
EI[Xx~...x,(A~n~=A~4...~n(~a~ncx~~~-~~~ 

t x,<-&,I+) i 
raii;, . ,~n)D~=rl-tupie(E8~4D~, I 

~:?$%hltl[A~+, i 
EI[ i$“AJl+=t h e-copy-of EI&J+ in T&-part 

of (T~+fa) i 
EKyxy(FI,E)4+=Xz( in-case zrT4 : (ELxx(A) 

For the defining notation (on the right- 
hand side) we u;e a notation that repre- 
sents LFIMBDA C221 or constructions C243, 
both with added constructs for work with 
tuple types; or just a slightly modif ied 
calculus from C20,ch.IVl. We use under- 
lined variables in the def ininy notation 
to distinguish them from the variables 
of the formal lambda-calculus. The 
structural similarity of the formal 
language of lambda-terms and the nota- 
tion for the members of types presents 
no difficulty because particularly the 
similarity al lows more t ranspa ren t 
insight into the (data base) subject. 

Over the lambda-terms it is possi- 
ble to build up an equational. theory 
describing the natural transformations 
of lambda-terms, particularly the 
so-called (3-conversion, c31 I C311. We 
can choose special constant symbols and 
interpret them in such a way i t-1 wh i 1: h 
they can play in our calculus the same 
role as the logical connec t i ves and 
quantifiers play in the traditional 
logic c231: The traditional logical 
connectives can be replaced by constant 
symbols A, v, 3, e of the type 
( (BIBl->B) and 1 of the type CB->B). The 
identity test, =) is in fact a constant 
symbol of a type ( (T,T)-:sB), for every 
type 1. Expressions 1 ike ttx(fi), 3x(A), 
or ?x(cI) (the last read “the only x such 
that A holds for this value of x), with 
the variable x of type T, can be 
replaced by ll(Ax(Al), Z(Ax(FI)) or 
1(Xx(A)), respectively, where the con- 
stant symbols fl, 1 and I of the respec- 
tive types (tT->B)->B), ( CT->B)->B) and 
( tr-:>B,-:T, are interpreted by the 
following functions: 
+(ll) _. returns true iff its argument 

‘is the set containing just all the 
members of Ti 

+(x1 returns true iff its argument 
is a non-empty set i 

+( I) returns the only member of its 
argument (or the value A if the 
argument contains any other number cf 
members than l 1 

The interpretation of constant sym- 
bols can be fixed stating an appropriate 
equational theory for the constant 
symbols t2C/l. In particular, all the 
interpretations considered i n the 
following are assumed to assiyn proper 
objects to constant symbols. 

Note that for every type T one 
needs an extra triple fl, r, I, l.iks in 
the case of =. For the notational FU r- 
poses I we shall use the traditional form 
of notation instead of the f unc t i ona i 
one for the logical constant symbols 
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For the sorts, it is useful to have 
special constant symbo 1 s enabling to 
name the elements of the sorts; the 
constant symbol that is interpreted by a 
member t of sort T is denoted by ‘t’ (of’ 
the type T). Similarly, for every sort T 
there is a natural ordering of the 
members of the sort, e.g. the sort of 
natural numbers, etc., we assume that we 
have the corresponding symbol < of the 
type ((T,T)->B) interpreted by the test 
for ” less than“ (in the ordering); 
again, we can use infix notation for 
these symbols. 

The set of the constant symbo 1 s 
mentioned above will be denoted by 8. 

4. Data bases 
Let us state more precisely how to 

define a data base using our formal 
means. First , one should express what a 
part of realiy he wants to deal with. 
This is managed via specifying the data 
base concept, which is a tuple of at- 
butes of interest. The data base concept 
materializes in the process of the con- 
ceptual design into a data base concep- 
tua 1 scheE+ (Cl21 

--“-‘--m.m”‘l 
Cl01 deal with the 

kethods of the conceptual design using 
particularly HIT DM). Then all the 
logically possible functions, by which 
extensions of these attributes can be 
interpreted, must be restricted to those 
admissible with respect to our knowledge 
of the properties of the actual world. 
Flfter such a restriction (usually per- 
formed in the designer’s mind), one is 
able to state the “reasonable” domains 
of the pseudo-attributes that can be 
real ized in realitv. These domains 
become sorts and form-(possibly with the 
added sort 8) the base of sorts t131. 
The base of sorts for a particular data 
base results from the attributes of 
interest (of the data base concept) i 
therefore we can restrict the types of 
pseudo-attributes to the simple types 
which are either (suppose T,, . ,T,,, 
S4~...,Qmare sorts): 

(i) ((Tl((l.. ,T,)->(S4,. ,S&), or 
(ii) (CT,,... ,T,)->((S4,...,~)->O)). 

i.e. to functions whose result values 
are (i) tuples (i.e. I equivalently, a 
tuple of m functions with simple result 
from one sort), or (ii) relations (a 
special case are sets). 

To form a data base schemar let us 
assign an attribute identifier, which 
will be an object symbol of a simple 
type t to eve;y attribute of the data 
base concept. The data base schema is 
then the term 

(c\ 4’. t&n) I 
where fid,...,A, are the attribute iden- 
tif iersi i.e. the data base schema is a 
tuple of attribute identifiers. 

Note that, given a data base schema 
S of a normal type (T,,...,T,,), we can 
express its decomposition into the 
attribute symbo 1 s either by say it-q 
S=(A4,...tA,) using projections, 
i.e. S=(St4,#. . . I ::n,, . The latter can be 
especially used when one deals with 
transformed schemata. 

FI data base schema becomes a data 
base when its attribute identifiers are 
filled with data, i.e. when there is an 
interpretation of the attribute symbols. 
The interpretation will be called the 
data base state. 

~~;at”;;c;;s yg;;;ala ,;;:;;y 

Let the base of sorts consist of (be- 
sides the set 8 of the truth-values): 
Strincl, Num , Sal, Floor I Empl Ueptl 
Camp, ItmyxlAddr ang the sorts 
of namesl quantitiej, salaries, floors, 
empl’oyees I departments, companies, 
items, types of items and addresses of 
companies, respectively. Choose the 
following identifiers for our attributes 
of interest (read slashes as “of type”) ! 
NE / (Emp->Strinq) . . .._............ 

‘name of an employee i 
SE ;‘iEnp-Si;‘..................... 

salary of an employee; 
ME ;‘iEmp-A&) _...,....,.......,,,_ 

. . . manager of an employee i 
DE /‘(Emp->Dept) _....._ . . .._......_. 

- department of an employee; 
ND “““. / (Dept->Strinq) __...,_.......... 

name of a department; 
G!DSI /.i;e;;tm)-TNurn) . . . . . quantity 

in which a department sells an item; 
QSCID / ((Comp,ItmlDept)->e) ..__.... 

quantity in which a company 
supplies an item to a departmenti 

NI / (Itm->Strinq) name of an item; 
AC / (Cs->z) _. . _. 

. . . . . . . . address of a company; 
LD ;‘(Dept->Floor) .,_.,_......_... 

location of a department; 
TI ;%m-;Tye) . type of an item. 
The corresponding data base schema is 

D= (NE,SE,ME,DE,ND,QCSIIQCSIDINI,AC, 
LD,TI). (3) 

x 
Let us remark that a data base 

schema composed of functions need not 
dismay anyone who is familiar with RDM: 
The natural understanding of the depen- 
dences between the data describing 
reality is really functional and the 
functionality appears in relational 
schemata like a stowaway in the form of/ 
e.g. I keys of relations. 

However, notwithstanding the fact 
that relations do not seem to be as 
natural as simple functions, relations 
are a special kind of attributes because 
((T4,...,T,,)->B) is exactly the type of 
relations over sorts T+j,...,Tn. There- 



fore, one can regard RDM as a special 
case of HIT DM. 

5. Retrieval 
By a retrieval operation we under- 

stand a function that transforms a given 
data base into a requested answer.- The 
answer is a member of some appropriate 
type over the base of sorts. Usually, 
the type of the answer is some sort, 
particularly the sort B in the case of 
yes/no queries, or a type CT->B), for 
some sort T (i.e. type of a set of 
objects of the sort T). More complicated 
cases are also possible and they can 
express even st rut tures of complex 
answers) e.g. structured tables, using 
nested sets, relations or functions. 

We shall use the lambda-calculus 
for the definition of retrieval opera- 
tions. Naturally, much more friendly 
user-oriented means can be taken into 
account Cl63 I Clll, Cl911 c273 i 
nevertheless, the lambda-calculus 
represents some kind of “naked 
semant its” for them. 

Let us have a set c of constant 
symbols that contains the set 8 of 
“logical” symbols (see above, $3)) i.e. 
‘9Et:, and let S be a data base schema of 
type S. Then the retrieval operation of 
slass t will be su% a closed term of 
type (S->T) that does not contain any 
constant symbol other that the symbols 
Prom It is not difficult to show that 
the retrieval operations of the class % 
correspond to the relational algebra or 
the relational calculus of RDM Cl93. 

An enrichment of 8 by new functions, 
e.q. aggregating functions as ‘1 count ” , 
“min” , “max”, “sum”, “aver” or ari thmet- 
ic functions as +,--,x,/, etc., produces 
no formal complications and enables us 
to obtain richer classes of retrieval 
operations that correspond to commonly 
used user-oriented retrieval languages. 

In general, for a given data base 
schema S of type St terms defining re- 
trieval operations can be written as 

Xa,...a,(R) , (4) 
where the variables aql...(a, are of the 
same types as attribute identifiers Ad, 

A provided that S = (A4,...,&). 
I’&;; &al it is to write such a query 
in the form 

RCa, <-c14,. . ,a,,<++,1 (5) 
(brackets denote formal substitution), 
because in (5) one need not take care of 
the particular strut ture of the data 
base schema as (5) contains only the 
attribute identifiers relevant to the 
retrieval . Qf course, (5) is equivalent 
to the retrieval operation (4) applied 
to the given data base schema S, i.e. 
((3-conversion, ct. e.g. C313): 

REa,<-F14 I.. . ,an<-A,lI(Xa,...an(R))(S). 

In such a easer given a data base state 
+t the answer is given by 

eaRCa,<-A~,...,a,<-A~ln~ . 
Example 2: Take the data base schema D 
from (3) and a query to the data base: 

“Find the (names of the) departments 
where all the employees earn less 
then their manager. ” 

One can easily check that this query is 
answered by (nr d, e are variables of 
the respective types String, Dept, Emp): 

An(3d(ND(d)=nntre(DE(e)-ds 
=SE(ME(e))>SE(e)))) 

this 
(6) 

Note that the type of term is 
tStrir+q->B), i.e. that of sets of names. 

he set that answers our query, ac- 
cording to a given data base state 4, is 

~U~n(3d(ND(d)=nh~e(DE(e)=d~ 
=rSE(ME(e))>SE(ef)))n~ 

Let us stress that the formal 1 an- 
guage of lambda-terms makes it possible 
to express the semantics of operations 
over data bases in a unified way and 
without a barrier of syntax. Although it 
was not meant to provide a user-oriented 
query language, the very form of lambda- 
-terms should not be unfamiliar to the 
data base people. To realize it, compare 
the form of (6) with the examples of the 
same query (only slightly modified by 
the identification of the descriptive 
sorts with the object sorts, cf. C91 or 
ClOl) expressed in common relational 
query languages in Cl41 (one could even 
abbreviate hn(...) by <n:...3). 
# 

6. External views 
The data base schema represents a 

kind of a global view of both data 
stored in a data base and their struc- 
ture. However, from the viewpoint of a 
particular user I it is desirable to be 
able to see the data from his own view 
For this purposel the user uses his own 
view schema derived from a data base 
schema usins a transformation called 
(external) view. 

View schema is, like the data base 
schema, a tuple of attribute identif i- 
ers. However, dealing with view schema, 
the attribute identifiers are no longer 
symbols only but generally lambda-terms 
(with types of the form either (i) or 
(ii) from 34) that contain, besides 
bound variables and constant symbols, at 
most the attribute identifiers of the 
source data base schema. 

A view that gives rise to a view 
schema is lambda-term U of type (S-M/), 
where S is the type of the (source) data 
base schema S and V is the type of the 
(target) view schema V. Then we have 

V = U(S) I 
and the attribute identifier-s of the 
view schema V are (U(S) )(.,), . I (U(S) +,,,, 
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for V of a normal type (TqI..,Tn). 
View schemata contain no more sym- 

bols (other than the constant ones or 
bound variables) than the original data 
base schema. The state o? a view data 
base (the interpretation that assigns 
data to attribute identifiers) is always 
identical with that of the source one. 

Any data base schema can be also 
considered to be a view schema given by 
IJ =ha(a) that detines the identity map- 
ping. It would be useful to retell the 
story concerning retrieval operations 
and to formulate retrievals for schemata 
whose attribute identifiers are< in 
general, lambda-terms. Clearly, this 
presents no difficulties. Therefore, one 
can use schema with the meaning of both 
data base schema and view schema, 
especially in the context of retrieval 
and view operations. 

Views can provide suitable repre- 
sentations of, e.g., the transformers of 
the ANSI/X3/SP&RC schema Cll. If we 
choose suitable views that do not “for- 
get” any information, 
have a corresponding 

to every view U wg 
inverse view U 

SfJCt-I that for a given schema S, S is 
equivalent with both u-‘( u ( s ) ) and 
U(U-‘(S)) (cf., e.g., C91). In this case) 
one may choose as the very data base 
schema any of I-, C- or E- schemata. 
(However, the I-schema is probably the 
best choice in a real system because 
then the (abstract) data base state has 
direct f concrete) explanation as the 
state of the physical files. 1 

Of cou t-se, one may also imagine a 
,view schema that reflects the correspon- 
4 i ng schema in any other data model the 
data structures of which are expressible 
using the HIT-like attributes. Particu- 
larly, this is true for ROM. 
Example 3: Let us show the view R that 
snaps the schema D from (3) into the 
relational schema with relations: 
EMP / ( (StritiqlSal,StrincjlStrine)->8) i 
S&LES / ((Strinq,Strine,Num)->B)i 
SUPPLY / ( (Comp,Strinq, Itm,Num)->B) ; -m 
SUPPLIER / ( (Cs,Addr)->B) i 
LOC / ((StrinF&)->B) i 
C:L&SS / (tStrina,T_ye)->B) 
Note that , the multiple Strinq’s in these 
relations were caused by our initial 
choice of sorts in Example 1. If we 
chose different sorts of names for em- 
ployees, departments and items, the 
types of the relations would look more 
naturally. The corresponding view R will 
be (the variable a is of the same type 
as D, and variables n,s,o,p,e,m,d,q,i,c, 
r, 1 rv, t are of the respective types 
Strinq,~, String,Strina,-Emp,&,[)ept, 
Striny,ltm,Comp,fiddrILoclNum,T~): 

R=Aa ( (Ansop ( 3e ( a,J e ) =n A a(,,( e) =s A -. 
3m(+(m)=o A a&e)=m) A sd(a&d)=p 

a;,,( e 1 =d 1 , Xpqv(Bdi(a&d)=p A a,,( i )=qn 
6+C{dr i )=v) ) I Acpqv(3di (atf$d)=ph 
a&i)=qn a((crdli)=v)), Acr(aig)(c)=r), 
hpl(3d(a(s$d)=p A a(*)(d)=e) ), 
Xqt(Zti(*m(i)=qA a&i)=t))). 

Denoting 
EMP = Xnsop(3e(NE(e)=n A SE(e)=sr. 

3m(NE(m)=ohME(e)=m) A 3d(ND(d)=pA 
DE(e)=d) ; 

SCALES = Xpqv(Bdi(ND(d)=pA NI(i)=qn 
G!DSI(d~i)=v)) i 

SUPPLY = kcpqv(3di(ND(d)=pnNI(i)=qA 
QCSID(c,i,d)=v)) i 

SUPPLIER = Acr(AC(c)=r) i 
LOC = Apl(3d(ND(d)=phLD(d)=l)) i 
CLASS = Aqt(3i(NI(i)=qIrTI(i)-t)) i 
the corresponding (relational) view 
schema R(D) is equivalent to R(D) = 
= (EMP,SALES,SUPPLY,SUPPLIER,LCC,CLASS) 
with the semantics exactly fitting the 
schema that one would express in RDM. 
x 

Slightly generalizing views to 
mappings from any number of source data 
base schemata, it is easy to describe 
also schemata of distributed data bases, 
cf. C321, or C271. 

7. IJpdates 
So far we have considered only 

transformations of data base schemata 
under a fixed data base state, i.e. uder 
a fixed interpretation. However , it is 
also necessary to be able to change the 
data base state, i.e. to transform it 
from one state into another performing 
updates of a data base: by an update we 
shall understand a mapping IJ from the 
interpretations (of symbols from a given 
data base schema) into themselves. 

Consider a data base schema S of a 
type Si s = (A4r...tAn). Let us have a 
term IJ of a type (S->S) containing only 
bound variables or constant symbols. By 
the update defined by U (shortly update 
onlv) we shall understand such a rnx 
‘u irom interpretations into interpkktal 
tions that to interpretation + 

t.. ., A,(-n-th(QUSB*) I+ I i e. 
u: +H Cfi4C-f irst(egUSB+) ,. . 

,f4,<-n-thc~~usX+)i+. (7) 
The lambda-term U is called the defining 
term of the update U. 

Defining terms of updates play an 
important role in the treatment of 
update operations and especially in the 
context with integrity constraints (cf. 
C303). It is easy to show (using the 
definition of ta 3) that every defining 
term U of an update u represents in fact 
a view such that, given a fixed data 
base state, the data base corresponding 
to the view schema given by the view LI 
is exactly the same as the updated data 
base with the original data base schema, 
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1.e. for any data base schema SI state + 
and update U it holds 

tlrusn+ = E!rsJl oft+) I (8) 
where U is the defining term of %. 

The impact of the equation (8) 
consists in the way in which it deter- 
mines a particular update: First, one 
defines a view that “models” the result 
of the update. Then, using (81, such a 
vi PW is the defining term of the 
considered update; thus, using (71, the 
update is fully described. Therefore, 
according to (8)) one is able to study 
updates using the same techniques as for 
the study of views. 

Naturally, it would be awkward if 
every new update required to do the cor- 
responding derivation separately. In- 
stead, it is more natural to introduce a 
notion of update operations, which are 
,f uric t i on5 assigning to given parameters 
a corresponding update C301 I c243. The 
update operations are treated 1 ike 
updates (with only slight changes, e.g. 
defining term is of the type ((Pq,... 
. ,P” ,->(S->S) ) I where P,,. ,Pn are 
types of the parameters of the update 
operation). Properties similar to (71, 
(8) are also satisfied. 

When one deals with updates, it is 
natural to int reduce compositions of 
updates. It is easy to show that, having 
two updates 2, v with the corresponding 
defining terms UI VI the term 

WV = Aa(U(V(a))) 
is the defining term of the composed 
update Zc~l)’ 

Having a set bYof updates, we say 
that w is semicomplete iff V U, VvQziz: 
ZLoVEtr. Moreover, if W is semicomplete 
and UUZiv:ti*V= 1 (where 3 is the identitv 
mapping), we say that 2$ is complete t23: 

Similarly, both completeness and 
semicompleter&s can be. analogically 
defined for update operations. 

Using views, it is easily possible 
to formalize in a quite similar way also 
view updates (cf. C323) via defining 
lambda-terms called update translators. 
They behave like translators from C23. 

8. Integrity constraints 
No data model seriouslv dealinu 

with updates can ignore the tact thai 
admissible data in a data base must 
fulfil some constraints, the consistency 
constraints, that follow from our knowl- 
edge of reasonable links among the data 
describing reality. In fact, consistency 
constraints are given through a 
specification (using some statements of 
natural language declaring properties of 
admissible (i.e. not only logically 
possible) reality; they should take part 
in the design of the data base 
conceptual schema together with the data 

base concept) of a set of admissible 
data base states, the data base space. 
The data base sDace is 
lambda-term C calied the 

ctiven bv 

checker C303 of type (s->B) I 
CotYsistenci 

where the 
corresponding data base schema S is of 
the type S. Then, the corresponding data 
base space is the set 

SP = A+ttacts)ll$) I 
i.e. the set of all the interpretations 
+ such that tICtS)l+ is “true”. 

As the first approximation, one can 
use the integrity checker as follows: 

(i) perform update %. to the data base 
LBsP+ i 

(ii) then apply C to the resulting data 
base, i.e. 
i!acts,ntU+, i 

perform the yes/no query 

(iii) if the result of (ii) is ” t rue ‘1 
then accept the update (i) else 
resume (i) and return the data base 
into the initial state + 

This schema can be, however , substan- 
tially i mp roved. First , according to 
(8)) one can perform the test (iii) be- 
fore performing the update because it is 
sufficient to perform the yes/no query 

EllC(U(S) ,J+ , (9) 
where U is the defining term of the 
update U. In that case, an inconsistent 
update can be resumed even before one 
tries to perform it. 

Even now, the checking of admiejsi- 
bility of an update using (9) is not the 
best solution. According to a given 
update (or update operation) one can 
imagine such a test that does not check 
all the data in a data base for consis- 
tency (as (9) in fact does) but that 
tests only the data that are somehow 
connected with the particular update. An 
optimal test is realized using the so- 
-called intezrtty Fonstraint- Iwh;z;riz 
Darticular UCI a e cloven bv l-l), 
H term of type (S-%1 such that 

y+::(EBC(S)&.=true => ~[CtlJtS) )$# 
= taIts)n+ (-10) 

The integrity constraint I is not de- 
fined by (10) unambiguously, the partic- 
ular choice depends on a suitable 
optimization criterion which does not, 
however, come from the calculus itself. 

In practice, it is possible to de- 
fine the integrity constraint as such a 
term I for which 

I(S) = C(U(.s)) (11) 
in the theory enriched by the axiom: 

C(S) = ‘true’ 
Particularly, if C and U contains only 
such symbols for which it is possible to 
define such an equational theory i n 
which V+: rafin+ = ta8n+ if f A = B, then 
(11) is equivalent with (l(3). In gene- 
ral I some I’s obeying (10) may not 
satisfy (11); from the viewpoint of the 
practically implementable consistency 
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constraints, however, it should not be 
important. 

For a more detailed treatment of 
the topic, cf. C301, C283 or C293. 

V. HIT DM and implementations 
Although we have proposed the ideas 

of HIT DM on the level of an abstract 
mode 1, it is applicable also to the work 
on the internal level of a DBMS. ( Pseu- 
do-lattributes correspond to virtual da- 
ta files accessed using keys, function 
arguments represent the keys while the 
resc11 ts represent the items of file 
records (EVI uses special types for the 
internal schema attribute identif iersi) . 

Lambda-terms defining retrievals 
can be directly translated into a (pro- 
cedural programming language using ordi- 
nary commands for data manipulation; 
thanks to the simple apparatus of con- 
ve rs i ens , it is advantageous to do vari- 
ous optimizations on the level of lambda 
-terms (cf. C93 for more details). 

10. Conclusion ..ew--_--.v-..-.- 
We have described the basic frame- 

work of the HIT data model. It repre- 
sents a model that is theoretically at 
least as well-grouded as the relational 
one i however t it is able to be succes- 
fully used in a wider spectrum of appli- 
cations. Over and above, the formal 
apparatus of the mode 1 enables us to 
achieve a unified description of various 
levels of data base systems, from the 
design of a conceptual schema to the 
semantics of physical implementation. 
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