
HIT DATA MODEL
DATA BASES FROM THE FUNCTIONAL POINT OF VIEW

Ji pi ZlatuBka

Comp. Sci. Dept. University of Brno
KotlApskA 2, CS-611 37 W-no, Czechoslovakia

Abstract
Basic notions of the HIT data model

are presented. The model is based on the
notion of function and uses the
apparatus Of the typed lambda-calculus
which enab 1 es clean and t ranspa rent
formulation of the data base concepts at
various levels of description.

‘I. Introduction -.___ --- ._____ _---
At the moment, a number of data

models has been published that reflect
various aspects of data bases, or their
proposed usage or their place in the
hierarchy of levels ranging from the
conceptual schema design of a data base
to the rather physical work with the
data. Nevertheless, the contemporary
models are not general enough and cannot
be succesfully used for all the levels
of the description of data and the work
with them.

In this paper-# the basic concepts
of the Homogeneous Integrated Type-or i-
ented data model (HIT DM) Cl63 are
presented. The model has been elaborated
so as to be of use both for the
conceptual schema design oriented to the
use of natural language Cl23 I and for
the description of work with the data in
a data base C91, Cl631 Cl13 I C283. In
contrast with the approaches of e.g.
Cl81, C41, E213, the main aim of HIT DM
is to provide not only a functional
semant its or a query language, but
really a self-contained data model. HIT
DM will be presented in an updated
formalism which is based on the typed
lambda-calculus (Cf. e.g. t33, fipp.B) in
a 81 ight modification (313 inspi red
especially by the Simple Theory of Types
Chl as modified in C241. All the aspects
of the link between the data mode 1 and
the intensional analysis of the natural
language C231 cannot be discussed here,
the reader can consult Cl51 or Cl73.

2. Basic concepts
The main feature-o? the HIT DM is

the use of functions for the description
of the dependences between the data
values (that, e.g., are to be stored in
a data base). For the data description,
the role of functions in HIT QM is
similar to that of relations in the
relational data model (RDM) C71. For the
work with functions, especially for
their application and formation of new
ones, the typed lambda-calculus is used
in HIT DM in a way relational operations
are used in RDM. Contrary to RDM, howev-
et-# the use of functions can eliminate
some difficulties connected with the
work with “unno rma 1 i zed relations” i
moreover I the apparatus for the work
with functions makes it possible to
desc r i be what happens i n the external
views, update operations or distributed
data bases, and what, e.g., the applica-
tion of integrity constraints means. In
addition, the analysis of the natural
language can be also based on functions
C2.33. This means that the same apparatus
can be applied to the conceptual schema
design of a data base (roughly speaking,
the relationships in the E-R mode 1 CSI
can be replaced by certain tunctionsil
cf. c121, in a similar way as relations
were replaced by functions in the case
of RDM) The ability of using the same
apparatus both for the description of
the data structures as well as their
transformations and programs work it-q
over them, and for the description of
the semantics of the initial not ions
from the modelled reality makes HIT DM
to be really “homogeneous” - the same
apparatus is used at various levels of
description.

Two essential notions of HIT DM are
attributes and pseudo-attributes. (It
should be stressed that in HIT DM the
notion of attribute
different sense than in AGM.)

used in a
To put it

informally, attributes are the functions
that one bears in mind when he uses the

Proceedings of VLDB 85, Stockholm 470

natural 1 anQuaQe . Take, e.g. 8 the
attribute “Salary”. When we say

“The salary of Mr.Smith is $54000”) (1)
this means that the tunct ion “Salary”,
applied to “Mr .Smith”, gives the result
~~$54000” I i e.

l’Salary” (“Mr. Smith” 1 = “#54000”. (2)
However I the attributes in the natural
language are not so simple because they
are/ in addition, parametrized by the
state of the world (they are the so-
-called intensions C233). The “Salary”
i nc 1 udes the(empirica1) dependency on
the state-of-affairs, the so-called
possible worlds C253. Then, the meaning -- - -- --.___I--
Of (1) would be: take a particular
possible world W (usually that which is
believed to be the actual one, i .e.
correspondiny to the distribution of
certain features realized in reality)
and apply “Salary” to wi the result
“Salary”(W) is such a tuntion that
having been applied to “Mr.Smith”, it
gives the result “$54000”, i .e. instead
of (2) we should write

(“Salary” (W)) (“Mr. Smith” 1 = “$5400@.
A more sophisticated view of the se-
mantics of the natural language can be
achieved by the parametrization of the
attributes (or intensions in the general
theory) not only by the possible worlds
but also by time moments. The details
will not be discussed here, cf. C253.

When dealing with a particular data
base I the data stored in it are rather
fixed functions (or tables) rather than
that kind of attributes parameterized by
the state of the world. In a particular
data base one deals with pseudo-attri-
butes, ct. E.153, c173: concreted attri-
butes for some particular corresponding
state of the world (i.e. extensions of
the t ormer intensions). In HIT DM the
pseudo-attributes play the role similar
to the relations in RDM, or Codasyl-sets
from the CODASYL report C11, while the
attributes correspond to relationships
and/or attributes from the E-R model.

For work with functions, it is
use? ul to assign certain types to them,
i.e. to connect a function with the
domains of possible argument va 1 ues and
with the range of resu 1 t values. For
this purpose, a hierarchy of (tunction-
al) types over a certain set of elemen-
tary, non-functional, base types can be
built. The elementary types will be the
so-called sorts Cl73; from the viewpoint
of a data base designer or a data base
user I sorts reflect the value domains in
the same sense as the domains of attri-
butes in ROM Cl33.

3. Formal apparatus
Let us have a base consisting of a

finite number of dG=erable domains of

elementary values, the so-called sorts,
one of them let be the set B (=Boolean)
o? the truth-values. The hierarchy of
types over the base is inductively
defined as tallows:

(i) any member of the base is a type;
(ii) it T, and T, are types then also

the domain of mappings from T4 into
Ta ’ denoted tT4->Tn), is a type (a
functional type);

(iii) it T,,. . .,T,, are types then also
their Cartesian product (product
domain), denoted (TA,. . . ,T,), is a

type (a tuple type); in the case of
n=l we take (Td) to be identical with
Td and, moreover1 we neglect embedded
parentheses, i.e. we identity, e.g.,
(Td,(T2/Ts)) with (fd ,Tr,Ts) (we
shall speak about the tuple types
without embedded parentheses 1 ike,
e.g. I (T~~Tz,T~) as about normal
t es).
-5 (iv) i TA ,T, are tvDes then also their
disjoini &m, de&ted (T4 +T2)) is a
type (a union type).

Note that we have supposed only
unary functions in (ii). However) com-
bining (ii) with (iii) we obtain also
types of functions of any arity, e.g.
((T, I.. . ,Th)->T,+d) I etc. We assume that
every type includes certain member 1,
“undet ined”, of the appropriate type.

The possibility of forming union
types (iv) enables to consider also
subtypes since any system of subtypes
clearly induces a corresponding division
of the base types into smaller disjoint
ones from which the former types can be
obtained as union types.

Let us remark that we have intro-
duced types corresponding only to simple
values, functions and tuples, and that
we have omitted types that would cor-
respond to sets. The type of sets of
members from T can be understood to be
(T->a, , because every set with members
from T can be identified with its
characteristic function from CT->B). The
types of relations are clearly ((Td,...

tt~)->B) t i .e. sets of tuples.
For the work with functions, we use

the typed lambda-calculus slightly modi-
tied for the use of tuple types c311.
Terms of the calculus consist of varia-
bles, symbols (object or constant ones),
each variable or symbo 1 hav i r-q some
type ’ and the improper symbols. To each
term of the calculus a certain type is
ass i Qned The lambda-terms (or terms,
for short) are defined as tollows:~

(i) Every symbol or variable is a term
of the same type as the symbol. 0 r
variable

(ii) Let A be a term of type CT, -‘:9r2)
and B be a term of type 74 i then
CAB) I i.e. the application of H t.o B,

471

is a .t_e.rfi of the type Tp
(iii) Let A be a term of type T and x4’

. Ixn be mutually different varia-
bles of respective types T4 ,...,Tn;
then Ax,...x,(&), i.e. the x~~...,x~-
-abstraction of 8, is a term of the
type ((7.; ,. . . ,7,,)->Tt). (The abst rac-
tion binds the variables x~,...~x,, in
the bm of the abstraction; terms
having all their variables bound are
called closed terms.)

(iv) Let A,(r.. ,F\,, be terms of respec-
tive types Tq ,. ,T,, n.$l, then (A,,

,A,), i .e. the tue constructionl
is a term of the type C’l;~~~~~‘tT;~).

(v) Let Cs be a term-the nbrmal type of
which is CT+, ,T,); then %. . . ,fi‘,,)
(where the subscripts are improper
symbols!), i.e. for a fixed i, ldidn,
the i-th projection of 6, are terms
of the respectivF tvrzles TA~..X
(Note that the normai’ity a&umpt ion
is necessary; otherwise the pro jec-
tions would be defined ambiguosly.)

(vi) Let
;$.$f+#fi; ;e::, “; “&~t;,” ;“,:A

we -e-.-m...--.

t T, +T2) :
is a term of -I- the type

(vii) Let xly be variables of respective
types 7’4 ,T2i A,B let be terms of type
f not containing the variables y/x,
respectively; then YX~(A,B), i.e. the
unibn abstr;ction, i& a term of type
(rr,+f2.->T).

As a rule, we shall omit the outer
pairs of parentheses in applications,
i.e. we shall write A8 or A(B) instead
of (AB) or (A(8)), whenever no confusion
could arise.

Formally, the value of a 1 ambda-
term is defined as applying the semantic
function & to the term and a particular
interpretat ion. By an interpretation +
we shall understand a function that
assigns to every variable and symbol of
any type T some corresponding member of
T (In fact, the distinction of vari-
ables and symbols has not any deeper
sense than to enable a more friendly
notation). From + we can form interpre-
tation that differs from + only in as-
signing, e.g. I to a symbol S the corre-
sponding value Tf) we shall denote such
an interpretation by [St-%+. In our
calculus the semantic function E is
defined by (terms of the formal lambda-
-calculus used as arguments of E are
enclosed in L 1):
tlIS3+=+tS) iff S is variable or symbol i
Ea(mP.$=(EaFIll~) tEaExll+) i
EI[Xx~...x,(A~n~=A~4...~n(~a~ncx~~~-~~~

t x,<-&,I+) i
raii;, . ,~n)D~=rl-tupie(E8~4D~, I

~:?$%hltl[A~+, i
EI[i$“AJl+=t h e-copy-of EI&J+ in T&-part

of (T~+fa) i
EKyxy(FI,E)4+=Xz(in-case zrT4 : (ELxx(A)

For the defining notation (on the right-
hand side) we u;e a notation that repre-
sents LFIMBDA C221 or constructions C243,
both with added constructs for work with
tuple types; or just a slightly modif ied
calculus from C20,ch.IVl. We use under-
lined variables in the def ininy notation
to distinguish them from the variables
of the formal lambda-calculus. The
structural similarity of the formal
language of lambda-terms and the nota-
tion for the members of types presents
no difficulty because particularly the
similarity al lows more t ranspa ren t
insight into the (data base) subject.

Over the lambda-terms it is possi-
ble to build up an equational. theory
describing the natural transformations
of lambda-terms, particularly the
so-called (3-conversion, c31 I C311. We
can choose special constant symbols and
interpret them in such a way i t-1 wh i 1: h
they can play in our calculus the same
role as the logical connec t i ves and
quantifiers play in the traditional
logic c231: The traditional logical
connectives can be replaced by constant
symbols A, v, 3, e of the type
((BIBl->B) and 1 of the type CB->B). The
identity test, =) is in fact a constant
symbol of a type ((T,T)-:sB), for every
type 1. Expressions 1 ike ttx(fi), 3x(A),
or ?x(cI) (the last read “the only x such
that A holds for this value of x), with
the variable x of type T, can be
replaced by ll(Ax(Al), Z(Ax(FI)) or
1(Xx(A)), respectively, where the con-
stant symbols fl, 1 and I of the respec-
tive types (tT->B)->B), (CT->B)->B) and
(tr-:>B,-:T, are interpreted by the
following functions:
+(ll) _. returns true iff its argument

‘is the set containing just all the
members of Ti

+(x1 returns true iff its argument
is a non-empty set i

+(I) returns the only member of its
argument (or the value A if the
argument contains any other number cf
members than l 1

The interpretation of constant sym-
bols can be fixed stating an appropriate
equational theory for the constant
symbols t2C/l. In particular, all the
interpretations considered i n the
following are assumed to assiyn proper
objects to constant symbols.

Note that for every type T one
needs an extra triple fl, r, I, l.iks in
the case of =. For the notational FU r-
poses I we shall use the traditional form
of notation instead of the f unc t i ona i
one for the logical constant symbols

472

For the sorts, it is useful to have
special constant symbo 1 s enabling to
name the elements of the sorts; the
constant symbol that is interpreted by a
member t of sort T is denoted by ‘t’ (of’
the type T). Similarly, for every sort T
there is a natural ordering of the
members of the sort, e.g. the sort of
natural numbers, etc., we assume that we
have the corresponding symbol < of the
type ((T,T)->B) interpreted by the test
for ” less than“ (in the ordering);
again, we can use infix notation for
these symbols.

The set of the constant symbo 1 s
mentioned above will be denoted by 8.

4. Data bases
Let us state more precisely how to

define a data base using our formal
means. First , one should express what a
part of realiy he wants to deal with.
This is managed via specifying the data
base concept, which is a tuple of at-
butes of interest. The data base concept
materializes in the process of the con-
ceptual design into a data base concep-
tua 1 scheE+ (Cl21

--“-‘--m.m”‘l
Cl01 deal with the

kethods of the conceptual design using
particularly HIT DM). Then all the
logically possible functions, by which
extensions of these attributes can be
interpreted, must be restricted to those
admissible with respect to our knowledge
of the properties of the actual world.
Flfter such a restriction (usually per-
formed in the designer’s mind), one is
able to state the “reasonable” domains
of the pseudo-attributes that can be
real ized in realitv. These domains
become sorts and form-(possibly with the
added sort 8) the base of sorts t131.
The base of sorts for a particular data
base results from the attributes of
interest (of the data base concept) i
therefore we can restrict the types of
pseudo-attributes to the simple types
which are either (suppose T,, . ,T,,,
S4~...,Qmare sorts):

(i) ((Tl((l.. ,T,)->(S4,. ,S&), or
(ii) (CT,,... ,T,)->((S4,...,~)->O)).

i.e. to functions whose result values
are (i) tuples (i.e. I equivalently, a
tuple of m functions with simple result
from one sort), or (ii) relations (a
special case are sets).

To form a data base schemar let us
assign an attribute identifier, which
will be an object symbol of a simple
type t to eve;y attribute of the data
base concept. The data base schema is
then the term

(c\ 4’. t&n) I
where fid,...,A, are the attribute iden-
tif iersi i.e. the data base schema is a
tuple of attribute identifiers.

Note that, given a data base schema
S of a normal type (T,,...,T,,), we can
express its decomposition into the
attribute symbo 1 s either by say it-q
S=(A4,...tA,) using projections,
i.e. S=(St4,#. . . I ::n,, . The latter can be
especially used when one deals with
transformed schemata.

FI data base schema becomes a data
base when its attribute identifiers are
filled with data, i.e. when there is an
interpretation of the attribute symbols.
The interpretation will be called the
data base state.

~~;at”;;c;;s yg;;;ala ,;;:;;y

Let the base of sorts consist of (be-
sides the set 8 of the truth-values):
Strincl, Num , Sal, Floor I Empl Ueptl
Camp, ItmyxlAddr ang the sorts
of namesl quantitiej, salaries, floors,
empl’oyees I departments, companies,
items, types of items and addresses of
companies, respectively. Choose the
following identifiers for our attributes
of interest (read slashes as “of type”) !
NE / (Emp->Strinq)_............

‘name of an employee i
SE ;‘iEnp-Si;‘.....................

salary of an employee;
ME ;‘iEmp-A&) _...,....,.......,,,_

. . . manager of an employee i
DE /‘(Emp->Dept) _.....__......_.

- department of an employee;
ND “““. / (Dept->Strinq) __...,_..........

name of a department;
G!DSI /.i;e;;tm)-TNurn) quantity

in which a department sells an item;
QSCID / ((Comp,ItmlDept)->e) ..__....

quantity in which a company
supplies an item to a departmenti

NI / (Itm->Strinq) name of an item;
AC / (Cs->z) _. . _.

. address of a company;
LD ;‘(Dept->Floor) .,_.,_......_...

location of a department;
TI ;%m-;Tye) . type of an item.
The corresponding data base schema is

D= (NE,SE,ME,DE,ND,QCSIIQCSIDINI,AC,
LD,TI). (3)

x
Let us remark that a data base

schema composed of functions need not
dismay anyone who is familiar with RDM:
The natural understanding of the depen-
dences between the data describing
reality is really functional and the
functionality appears in relational
schemata like a stowaway in the form of/
e.g. I keys of relations.

However, notwithstanding the fact
that relations do not seem to be as
natural as simple functions, relations
are a special kind of attributes because
((T4,...,T,,)->B) is exactly the type of
relations over sorts T+j,...,Tn. There-

fore, one can regard RDM as a special
case of HIT DM.

5. Retrieval
By a retrieval operation we under-

stand a function that transforms a given
data base into a requested answer.- The
answer is a member of some appropriate
type over the base of sorts. Usually,
the type of the answer is some sort,
particularly the sort B in the case of
yes/no queries, or a type CT->B), for
some sort T (i.e. type of a set of
objects of the sort T). More complicated
cases are also possible and they can
express even st rut tures of complex
answers) e.g. structured tables, using
nested sets, relations or functions.

We shall use the lambda-calculus
for the definition of retrieval opera-
tions. Naturally, much more friendly
user-oriented means can be taken into
account Cl63 I Clll, Cl911 c273 i
nevertheless, the lambda-calculus
represents some kind of “naked
semant its” for them.

Let us have a set c of constant
symbols that contains the set 8 of
“logical” symbols (see above, $3)) i.e.
‘9Et:, and let S be a data base schema of
type S. Then the retrieval operation of
slass t will be su% a closed term of
type (S->T) that does not contain any
constant symbol other that the symbols
Prom It is not difficult to show that
the retrieval operations of the class %
correspond to the relational algebra or
the relational calculus of RDM Cl93.

An enrichment of 8 by new functions,
e.q. aggregating functions as ‘1 count ” ,
“min” , “max”, “sum”, “aver” or ari thmet-
ic functions as +,--,x,/, etc., produces
no formal complications and enables us
to obtain richer classes of retrieval
operations that correspond to commonly
used user-oriented retrieval languages.

In general, for a given data base
schema S of type St terms defining re-
trieval operations can be written as

Xa,...a,(R) , (4)
where the variables aql...(a, are of the
same types as attribute identifiers Ad,

A provided that S = (A4,...,&).
I’&;; &al it is to write such a query
in the form

RCa, <-c14,. . ,a,,<++,1 (5)
(brackets denote formal substitution),
because in (5) one need not take care of
the particular strut ture of the data
base schema as (5) contains only the
attribute identifiers relevant to the
retrieval . Qf course, (5) is equivalent
to the retrieval operation (4) applied
to the given data base schema S, i.e.
((3-conversion, ct. e.g. C313):

REa,<-F14 I.. . ,an<-A,lI(Xa,...an(R))(S).

In such a easer given a data base state
+t the answer is given by

eaRCa,<-A~,...,a,<-A~ln~ .
Example 2: Take the data base schema D
from (3) and a query to the data base:

“Find the (names of the) departments
where all the employees earn less
then their manager. ”

One can easily check that this query is
answered by (nr d, e are variables of
the respective types String, Dept, Emp):

An(3d(ND(d)=nntre(DE(e)-ds
=SE(ME(e))>SE(e))))

this
(6)

Note that the type of term is
tStrir+q->B), i.e. that of sets of names.

he set that answers our query, ac-
cording to a given data base state 4, is

~U~n(3d(ND(d)=nh~e(DE(e)=d~
=rSE(ME(e))>SE(ef)))n~

Let us stress that the formal 1 an-
guage of lambda-terms makes it possible
to express the semantics of operations
over data bases in a unified way and
without a barrier of syntax. Although it
was not meant to provide a user-oriented
query language, the very form of lambda-
-terms should not be unfamiliar to the
data base people. To realize it, compare
the form of (6) with the examples of the
same query (only slightly modified by
the identification of the descriptive
sorts with the object sorts, cf. C91 or
ClOl) expressed in common relational
query languages in Cl41 (one could even
abbreviate hn(...) by <n:...3).

6. External views
The data base schema represents a

kind of a global view of both data
stored in a data base and their struc-
ture. However, from the viewpoint of a
particular user I it is desirable to be
able to see the data from his own view
For this purposel the user uses his own
view schema derived from a data base
schema usins a transformation called
(external) view.

View schema is, like the data base
schema, a tuple of attribute identif i-
ers. However, dealing with view schema,
the attribute identifiers are no longer
symbols only but generally lambda-terms
(with types of the form either (i) or
(ii) from 34) that contain, besides
bound variables and constant symbols, at
most the attribute identifiers of the
source data base schema.

A view that gives rise to a view
schema is lambda-term U of type (S-M/),
where S is the type of the (source) data
base schema S and V is the type of the
(target) view schema V. Then we have

V = U(S) I
and the attribute identifier-s of the
view schema V are (U(S))(.,), . I (U(S) +,,,,

474

for V of a normal type (TqI..,Tn).
View schemata contain no more sym-

bols (other than the constant ones or
bound variables) than the original data
base schema. The state o? a view data
base (the interpretation that assigns
data to attribute identifiers) is always
identical with that of the source one.

Any data base schema can be also
considered to be a view schema given by
IJ =ha(a) that detines the identity map-
ping. It would be useful to retell the
story concerning retrieval operations
and to formulate retrievals for schemata
whose attribute identifiers are< in
general, lambda-terms. Clearly, this
presents no difficulties. Therefore, one
can use schema with the meaning of both
data base schema and view schema,
especially in the context of retrieval
and view operations.

Views can provide suitable repre-
sentations of, e.g., the transformers of
the ANSI/X3/SP&RC schema Cll. If we
choose suitable views that do not “for-
get” any information,
have a corresponding

to every view U wg
inverse view U

SfJCt-I that for a given schema S, S is
equivalent with both u-‘(u (s)) and
U(U-‘(S)) (cf., e.g., C91). In this case)
one may choose as the very data base
schema any of I-, C- or E- schemata.
(However, the I-schema is probably the
best choice in a real system because
then the (abstract) data base state has
direct f concrete) explanation as the
state of the physical files. 1

Of cou t-se, one may also imagine a
,view schema that reflects the correspon-
4 i ng schema in any other data model the
data structures of which are expressible
using the HIT-like attributes. Particu-
larly, this is true for ROM.
Example 3: Let us show the view R that
snaps the schema D from (3) into the
relational schema with relations:
EMP / ((StritiqlSal,StrincjlStrine)->8) i
S&LES / ((Strinq,Strine,Num)->B)i
SUPPLY / ((Comp,Strinq, Itm,Num)->B) ; -m
SUPPLIER / ((Cs,Addr)->B) i
LOC / ((StrinF&)->B) i
C:L&SS / (tStrina,T_ye)->B)
Note that , the multiple Strinq’s in these
relations were caused by our initial
choice of sorts in Example 1. If we
chose different sorts of names for em-
ployees, departments and items, the
types of the relations would look more
naturally. The corresponding view R will
be (the variable a is of the same type
as D, and variables n,s,o,p,e,m,d,q,i,c,
r, 1 rv, t are of the respective types
Strinq,~, String,Strina,-Emp,&,[)ept,
Striny,ltm,Comp,fiddrILoclNum,T~):

R=Aa ((Ansop (3e (a,J e) =n A a(,,(e) =s A -.
3m(+(m)=o A a&e)=m) A sd(a&d)=p

a;,,(e 1 =d 1 , Xpqv(Bdi(a&d)=p A a,,(i)=qn
6+C{dr i)=v)) I Acpqv(3di (atf$d)=ph
a&i)=qn a((crdli)=v)), Acr(aig)(c)=r),
hpl(3d(a(s$d)=p A a(*)(d)=e)),
Xqt(Zti(*m(i)=qA a&i)=t))).

Denoting
EMP = Xnsop(3e(NE(e)=n A SE(e)=sr.

3m(NE(m)=ohME(e)=m) A 3d(ND(d)=pA
DE(e)=d) ;

SCALES = Xpqv(Bdi(ND(d)=pA NI(i)=qn
G!DSI(d~i)=v)) i

SUPPLY = kcpqv(3di(ND(d)=pnNI(i)=qA
QCSID(c,i,d)=v)) i

SUPPLIER = Acr(AC(c)=r) i
LOC = Apl(3d(ND(d)=phLD(d)=l)) i
CLASS = Aqt(3i(NI(i)=qIrTI(i)-t)) i
the corresponding (relational) view
schema R(D) is equivalent to R(D) =
= (EMP,SALES,SUPPLY,SUPPLIER,LCC,CLASS)
with the semantics exactly fitting the
schema that one would express in RDM.
x

Slightly generalizing views to
mappings from any number of source data
base schemata, it is easy to describe
also schemata of distributed data bases,
cf. C321, or C271.

7. IJpdates
So far we have considered only

transformations of data base schemata
under a fixed data base state, i.e. uder
a fixed interpretation. However , it is
also necessary to be able to change the
data base state, i.e. to transform it
from one state into another performing
updates of a data base: by an update we
shall understand a mapping IJ from the
interpretations (of symbols from a given
data base schema) into themselves.

Consider a data base schema S of a
type Si s = (A4r...tAn). Let us have a
term IJ of a type (S->S) containing only
bound variables or constant symbols. By
the update defined by U (shortly update
onlv) we shall understand such a rnx
‘u irom interpretations into interpkktal
tions that to interpretation +

t.. ., A,(-n-th(QUSB*) I+ I i e.
u: +H Cfi4C-f irst(egUSB+) ,. .

,f4,<-n-thc~~usX+)i+. (7)
The lambda-term U is called the defining
term of the update U.

Defining terms of updates play an
important role in the treatment of
update operations and especially in the
context with integrity constraints (cf.
C303). It is easy to show (using the
definition of ta 3) that every defining
term U of an update u represents in fact
a view such that, given a fixed data
base state, the data base corresponding
to the view schema given by the view LI
is exactly the same as the updated data
base with the original data base schema,

475

1.e. for any data base schema SI state +
and update U it holds

tlrusn+ = E!rsJl oft+) I (8)
where U is the defining term of %.

The impact of the equation (8)
consists in the way in which it deter-
mines a particular update: First, one
defines a view that “models” the result
of the update. Then, using (81, such a
vi PW is the defining term of the
considered update; thus, using (71, the
update is fully described. Therefore,
according to (8)) one is able to study
updates using the same techniques as for
the study of views.

Naturally, it would be awkward if
every new update required to do the cor-
responding derivation separately. In-
stead, it is more natural to introduce a
notion of update operations, which are
,f uric t i on5 assigning to given parameters
a corresponding update C301 I c243. The
update operations are treated 1 ike
updates (with only slight changes, e.g.
defining term is of the type ((Pq,...
. ,P” ,->(S->S)) I where P,,. ,Pn are
types of the parameters of the update
operation). Properties similar to (71,
(8) are also satisfied.

When one deals with updates, it is
natural to int reduce compositions of
updates. It is easy to show that, having
two updates 2, v with the corresponding
defining terms UI VI the term

WV = Aa(U(V(a)))
is the defining term of the composed
update Zc~l)’

Having a set bYof updates, we say
that w is semicomplete iff V U, VvQziz:
ZLoVEtr. Moreover, if W is semicomplete
and UUZiv:ti*V= 1 (where 3 is the identitv
mapping), we say that 2$ is complete t23:

Similarly, both completeness and
semicompleter&s can be. analogically
defined for update operations.

Using views, it is easily possible
to formalize in a quite similar way also
view updates (cf. C323) via defining
lambda-terms called update translators.
They behave like translators from C23.

8. Integrity constraints
No data model seriouslv dealinu

with updates can ignore the tact thai
admissible data in a data base must
fulfil some constraints, the consistency
constraints, that follow from our knowl-
edge of reasonable links among the data
describing reality. In fact, consistency
constraints are given through a
specification (using some statements of
natural language declaring properties of
admissible (i.e. not only logically
possible) reality; they should take part
in the design of the data base
conceptual schema together with the data

base concept) of a set of admissible
data base states, the data base space.
The data base sDace is
lambda-term C calied the

ctiven bv

checker C303 of type (s->B) I
CotYsistenci

where the
corresponding data base schema S is of
the type S. Then, the corresponding data
base space is the set

SP = A+ttacts)ll$) I
i.e. the set of all the interpretations
+ such that tICtS)l+ is “true”.

As the first approximation, one can
use the integrity checker as follows:

(i) perform update %. to the data base
LBsP+ i

(ii) then apply C to the resulting data
base, i.e.
i!acts,ntU+, i

perform the yes/no query

(iii) if the result of (ii) is ” t rue ‘1
then accept the update (i) else
resume (i) and return the data base
into the initial state +

This schema can be, however , substan-
tially i mp roved. First , according to
(8)) one can perform the test (iii) be-
fore performing the update because it is
sufficient to perform the yes/no query

EllC(U(S) ,J+ , (9)
where U is the defining term of the
update U. In that case, an inconsistent
update can be resumed even before one
tries to perform it.

Even now, the checking of admiejsi-
bility of an update using (9) is not the
best solution. According to a given
update (or update operation) one can
imagine such a test that does not check
all the data in a data base for consis-
tency (as (9) in fact does) but that
tests only the data that are somehow
connected with the particular update. An
optimal test is realized using the so-
-called intezrtty Fonstraint- Iwh;z;riz
Darticular UCI a e cloven bv l-l),
H term of type (S-%1 such that

y+::(EBC(S)&.=true => ~[CtlJtS))$#
= taIts)n+ (-10)

The integrity constraint I is not de-
fined by (10) unambiguously, the partic-
ular choice depends on a suitable
optimization criterion which does not,
however, come from the calculus itself.

In practice, it is possible to de-
fine the integrity constraint as such a
term I for which

I(S) = C(U(.s)) (11)
in the theory enriched by the axiom:

C(S) = ‘true’
Particularly, if C and U contains only
such symbols for which it is possible to
define such an equational theory i n
which V+: rafin+ = ta8n+ if f A = B, then
(11) is equivalent with (l(3). In gene-
ral I some I’s obeying (10) may not
satisfy (11); from the viewpoint of the
practically implementable consistency

476

constraints, however, it should not be
important.

For a more detailed treatment of
the topic, cf. C301, C283 or C293.

V. HIT DM and implementations
Although we have proposed the ideas

of HIT DM on the level of an abstract
mode 1, it is applicable also to the work
on the internal level of a DBMS. (Pseu-
do-lattributes correspond to virtual da-
ta files accessed using keys, function
arguments represent the keys while the
resc11 ts represent the items of file
records (EVI uses special types for the
internal schema attribute identif iersi) .

Lambda-terms defining retrievals
can be directly translated into a (pro-
cedural programming language using ordi-
nary commands for data manipulation;
thanks to the simple apparatus of con-
ve rs i ens , it is advantageous to do vari-
ous optimizations on the level of lambda
-terms (cf. C93 for more details).

10. Conclusion ..ew--_--.v-..-.-
We have described the basic frame-

work of the HIT data model. It repre-
sents a model that is theoretically at
least as well-grouded as the relational
one i however t it is able to be succes-
fully used in a wider spectrum of appli-
cations. Over and above, the formal
apparatus of the mode 1 enables us to
achieve a unified description of various
levels of data base systems, from the
design of a conceptual schema to the
semantics of physical implementation.

Acknowledgments: I would like to thank
to all the authors of Cl63, escleciallv
to Prof. Pave1 Maternal for encburagin~
discussions of the formal framework.

References:
Cl1 UNSI/X3/SPARC, Interim reoort

’ 75-02-08, FDT Vol. 7, 1975.
C21 Bancilhon,F.-Spyratos,N. : Update

semantics of relational views, ACM
Vol.61 1981.

C31 Barendregt,H.: The lambda calculus.
North-Ho1 land, l981.

C43 Buneman,O.P.-Franke1,R.E.: FG!L - a
functional query language, . Proc. fiCM
SIGMUD I 1979.

C51 Chen,P.P.S: The entity-relation-
ship model, ACM TODS, Vol. I, 1976.

C&l Church,A : A formulation of the
simple theory of types, J Symb
Logic, Vol.!?, 1940.

[?I C0ddtE.F.: c\ relational model of
data for large shared data banks,
Comm. ACM, V01.13~ 1971.

CS3 Report of DBTG WDASYL, WM, 1971.
CVI Felix,TJ.-Zlatu~ka,,J.: Transforming

external queries into internal

operations with data using HIT DM,
8th Int. Sem. on DBMS, Oct. 3985

Cl01 Krejti ,F. : The HIT metodology for a
complicated conceptual data structure
design, to appear.

Cl13 Krejti,F.-Kohout,M.: FUL - the
functional user-oriented language for
the HIT DM, to appear.

Cl23 Krejti,F.-Zlatu%ka,J.: Natural
language and its role in designing
and performing data bases, to appear.

Cl33 Krejtl,F.-ZlatuQka,J.: Sortalisa-
tion for the HIT DM, forthcoming.

Cl41 Lacroix,M.-Pirotte,A.: Example
queries in relational languages, 1977

Cl51 Materna,P.: Theory of types and
data description, Kybernetika,
Vol.14, 1978.

Cl63 Materna,P.- Krejti,F.- Zlatu$ka,J.-
-Pokornl,J.-Felix,O.: HIT - data
base model, Proc. SOFSEM’81, 1981 (in
Czech)

Cl71 Materna,P.-Pokornq,J.: Wplyln~
simple theory of types to data bases,
Inf. Systems, Vo1.6, t981.

Cl81 Neuhold,E.J.-OlnhoffITh.: Building
data base management systems through
formal specification, in LNCS 107,
lV81.

Cl91 PokornL,J. : Functional approach to
conceptual modelling, thesis, 1984
(in Czech).

C207 Scott,D.S.: Lectures on a
mathematical theory of computation,
Oxford Univ., 1981.

C211 Shipman,D.W.: The functional data
model and the data language DclPLEX,
ACM TODS, Vol. 6, 1981.

C223 Stoy,J.E. : Denotational semantics:
the Scot t-St rachey approach to
programming language theory, MIT 1977

C233 Tichq,P.: Intensional logic, Univ.
of Otago, Ms., 1976.

C241 Tichl,P.: Foundat ions of the
partial type theory, Reports on Math
Logic, Vo1.14, 1982.

C251 Tichq,P.: On the limitations of the
logical space, to appear.

C263 Zlatulka,J.: External views and
updates in HIT DM, Proc. SOFSEM’82,
IV82 (in Czech)

C271 Zlatu$ka,J.: The HIT data base
model, Univ. of Brno, Ms., 1982.

C2Sl Zlatubka,J. : The data base model
HIT, TIJ Srno, 1983 (in Czech)

C291 Platu%ka,J. : Integr1 ty constraints
in HIT DM, Proc. SOFSEM’83, 1983 (in
Czech)

C301 Zlatu+ka, J Keeping integrity in
HIT DM, Scripta Fat. Sci. Nat. iJniv.
Brno, Vol. 15, 1985.

c311 Zlatu&karJ. : Normal forms In the
typed lambda-calculus with tuple
types, Kybernetika, 1985, in press.

C323 Zlatugka I J : HIT data model, 7th
Int Sem. on DBMS, Varna, lV84.

477

