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Abstract
Basic notions of the HIT data model
are presented. The model is based on the

notion of function and uses the
apparatus of the typed lambda-calculus
which enables clean and transparent

formulation of the data base concepts at
various levels of description.

1. Introduction

At the moment., a number
models has been published that
various aspects of data bases,
proposed usage or their place in
hierarchy of levels ranging from
conceptual schema design of a data base
to the rather physical work with the
data. Nevertheless, the contemporary
models are riot general enough and cannot
be succesfully used for all the levels

of data
reflect
their
the
the

or

of the description of data and the work
with them.
In this paper, the basic concepts

of the Homogeneous Integrated Type-ori-
ented data model (HIT M) [14] are
presented. The model has been elaborated
50 as to be of use both for the
conceptual schema design oriented to the
use of natural language [121, and for
the description of work with the data in
a data base [9), [161, [111, (281. 1In
contrast with the approaches of e.g.
L1281, (41, [21]. the main aim of HIT DM
is to provide not only a functional
semantics or a query language. but
really a self-rcontained data model. HIT
DM will be gpresented in an updated
formalism which is based on the typed
lambda~calculus (¢cf. e.g. [3), App.B) in
a slight modification (311 inspired
especially by the Simple Theory of Types
[A6] as modified in [241. All the aspects
of the link between the data model and
the intensional analysis of the natural
language [23]1 cannot be discussed here,
the reader can consult [15]1 or [17].
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Basic concepts

The main feature of the HIT DM is
the use of functions for the description
of the dependences between the data
values (that, e.qg.., are to be stored in
a data base). For the data description,
the role of functions in HIT DM ig
similar to that of relations in the
relational data model (RDM) (7). For the
work with functions, especially for
their application and formation of mnew
omes, the typed lambda—-calculus is used
in HIT DM in a way relational operations
are used in RUM. Contrary to RDM, howev—
er, the use of furnctions can eliminate
some difficulties connected with the
work with "urnormalized relations®;
morecover, the apparatus for the work
with functions makes it possible to
describe what happens in the external
views., update operations or distributed
data bases, and what., e.g., the applica-
tion of integrity constraints means. In
addition, the analysis of the natural
language can be also based on functions
[23]. This means that the same apparatus
can be applied to the conceptual schema
design of a data base (roughly speaking.,
the relationships in the E-R model [5]
can be replaced by certain functions,
cf. [121, in a similar way as relations
were replaced by furnctions in the rcase
of RECM). The ability of using the same
apparatus both for the description of
the data structures as well as their
transformations and programs working
over them, and for the description of
the semantics of the initial nrotions
from the modelled reality makes HIT DM
to be really "homogeneous" -~ the same
apparatus is used at various levels of
description.

Two essential notions of HIT M are
attributes and pseudo-attributes. (It
should be stressed that in HIT DM the
notion of attribute is used in a
different sense tham in ROM.) To put it
informally. attributes are the functions
that one bears in mind wher he uses the




natural language. Take. e.q.. the
attribute "Salary". When we say

"The salary of Mr.Smith is $54000", (1)

this means that the function '"Salary".
applied to "Mr.Smith", gives the result
“$54000", i.e.

“Salary® (*Mr.Smith*) = *$54000%. (2}
However, the attributes in the mnatural
language are not so simple because they
are, in addition. parametrized by the
state of the world (they are the so-
-called intensions [(23]). The "Salary"
includes the (empirical) dependency on
the state-of-affairs, the so-called
possible worlds [25]1. Then, the meaning

of "1y would be:
possible world W
believed to be

corresponding to

take a particular
(usually that which is
the actual one, 1i.e.
the distribution of

certain features realized in reality)
and apply "Salary" to W, the result
"Salary" (W) is such a funtion that
having been applied to "Mr.Smith"., it
gives the result "$54000", i.e. instead
of (2) we should write
("Salary"(W)) ("Mr.Smith") = "$54000"

A more sophisticated view of the se-
maritics of the natural language can be

achieved by the parametrization of the
attributes (or intensions in the general
theory) not only by the possible worlds
but also by time moments. The details
will not be discussed here., cf. [25].
Wher: dealing with a particular data
base. the data stored in it are rather
fixed functions (or tables) rather than
that kind of attributes parameterized by
the state of the world. 1In a particular
data base one deals with pseudo—attri-
butes., cf. {151, [1?):. concreted attri-
butes for some particular corresponding
state of the world (i.e. extensions of
the former intensions). In HIT DM the
pseudo—-attributes play the role similar
to the relations in RDM, or Codasyl-sets
from the CDODASYL report [2], while the
attributes correspond to relationships
and/or attributes from the E-R model.
For work with functions, it |is
useful to assign certain types to them,
i.e. to cornnect a function with the
domains of possible argument values and
with the range of result values. For
this purpose, a hierarchy of (function-

al) types over a certain set of elemen—
tary, non-functional, base types can be
built. The elementary types will be the

so-called sorts [171, from the viewpoint
of a data base designer or a data base
user., sorts reflect the value domains in
the same sense as the domains of attri-
butes in ROM [131.

2. Formal apparatus
Let us have a base consisting of a
finite number of denumerable domains of
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elementary values, the so-called gorts.,
one of them let be the set B (=Boolean)

of the truth-values. The hierarchy of
types over the base is  inductively

defined as follows:
(i) any member of the base is a type;

(ii) i Ty, and T, are types then also
the domain of mappings from T, into
Ty, denoted (Ty->Ty), is a type (a
functional type);

(iii) if Ty.,....Ty are types then also
their cartesian product (product
domain) ., denoted (T4 .. IT“ ), is a
tvna {a tunle 'I'\/nn) in the casa of

S -

n=1 we take (T,) to be identical with
T, and, moreover. we neglect embedded
parentheses, i.e. we identify., e.g..
(T4, (Ty . Ta)) with (T4, T2:Ta) (we
shall speak about the tuple types
without embedded parentheses like,
e.g.. (T4:T2.T3) as about normal
types) .

(iv) 1f T4.,T, are types then also
disjoint sum, denoted (T,+Ty),
type (a union type).

Note that we have
unary functions in (ii).
bining (ii) with (iii)
types of functions of any
((Ty 7 ... Tw)=>Tpea), etc. We assume
every type includes certain member
"undefined" ., of the appropriate type.

The possibility of forming union
types (iv) enables to consider also
subtypes since any system of subtypes
-learly induces a corresponding division
of the base types into smaller disjoint
ones from which the former types can be
obtained as union types.

Let us remark that we have intro-
duced types corresponding only to simple

their
is a

supposed
However,
obtain
arity.,

only
com-
also
e.q.
that

L.

we

values, functions and tuples, and that
we have omitted types that would cor-
respond to sets. The type of sets of

members from T can be understood to be
(T->B), because aevery set with members
from T can be identified with its
characteristic function from (T->B). The
types of relations are clearly ((Ty.,...

o Th)=>B), i.e. sets of tuples.
For the work with functions, we use

the typed lambda-calculus slightly modi-
fied for the use of tuple types [3I1].
Terms of the calculus consist of varia-
bles, symbols (object or constant ones).
each variable or symbol having some
type, and the improper symbols. To each
term of the calculus a certain type is
assigned. The lambda-terms (or terms.
for short) are defined as follows:
(i) Every symbel or variable is a term
of the same type as the symbcl or
variable.
(ii) Let A be a term of type (Ty->Ty)
and B be a term of type Ty, then
(AB), i1.e. the application of A tc B,




(iii) Let A be a term of type T and x4,
. rXw be mutually different varia-

bles of respective types Ti.,...,Ty;
then Ax,...x,(A), i.e the x4.,...:Xa—
-abstraction of A, is a term of the
type ((T;,. ... T,)->T). (The abstrac-
tion binds the variables x4,....Xyp in
the body A of the abstraction;, terms

having all their variables bound are
called closed terms.)

(iv) Let Ay, ... /Ay be terms of respec—
tive types Tq.. ... Ty, n31, then (A4,
.+AR) ., i.e. the tuple construction,

is a term of the type (T,... . .Ty).

(v) Let A be a term the normal type of
which is (Ty,....Ty); then . Ay
(where the subscripts are improper
symbols!), i.e. for a fixed i, 1Lign,
the i-th projection of A, are terms
of the respective types T,,....Th.
(Note that the normality assumption
is necessary, otherwise the projec-
tions would be defined ambiguosly.)

(vi) Let be a term of type Vi, 1{ig2;
then if**™na, ie. A injected into
(Ty +To ), is a term of the type
(T3 47, ).

(vii) Let x,y be variables of respaective
types T4, Ty A/B let be terms of type
T not containing the variables vy.x.,
respectively; then vyxy(A,B)., i.e. the
union abstraction., is a term of type
(T4 +T ) > .

As a rule, we shall omit the outer
pairs of parentheses in applications,
i.e. we shall write AB or A(B) instead
of (AB) or (A(R)), whenever no confusion
could arise.

Formally, the value of a lambda-
term is defired as applying the semantic
function £ to the term and a particular
interpretation. By an interpretation ¢
we shall understand a function that
assigns to every variable and symbol of
any type T some corresponding member of
T . (In fact, the distinction of vari-
ables and symbols has not any deeper
sense than to enable a more friendly
notation). From ¢ we can form interpre-—
tation that differs from ¢ only in as-—
signing, e.g.. to a symbol S the corre-
sponding value ¥, we shall denote such

an interpretation by ts<-%1¢. In our
calculus the semantic function is
defined by (terms of the formal lambda-
-calculus used as arguments of & are

enclosed in L ).
ElsD4=4(S) iff S is variable or symbol ;
Bl (AE) Te=(ELAD4) (ELBDe)
BIAx, . . . xo(A Dp=rx, . . . Xn(ELADIX,<-% 4/
s 1 X=X nle)
B (Ax. ... An)Te=r~tupleELAa,Ds, . . .,
ElAa, D40
ElAg, le=i-th(ELATs)
E[ﬂ%ﬁﬁﬁn¢=the—copy—of ElAll4 in Ti—part
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of (Ta+Ta)
Blvxy (A, B)Je=Aglin-case z&Ty  (EIrx(A)
)z zePy (BEDAY(E)D$)2)
For the defining notation (on the right-
hand side) we use a notation that repre-
sents LAMBDA [22] or constructions [241,
both with added constructs for work with
tuple types; or just a slightly modified
calculus from [20,ch.IV]. We use under-
lined variables in the defininy notation
to distinguish them from the variables
of the formal lambda-calculus. The
structural similarity of the formal
larnguage of lambda—terms and the nota-
tion for the members of types presenis
no difficulty because particularly the
similarity allows more transparent
insight into the (data base) subject.
Over the lambda-terms it is possi-
ble to build up an equational theory
describing the natural transformations
of lambda-terms, particularly the
so-called @-conversion. [33, [31]. We
can choose special constant symbols and
interpret them in such a way in which

they can play in our calculus the same
role as the logical connectives and
quantifiars play in the traditional
logic [231]: The traditional logical

connectives can be replaced by constant
symbols A, vV, 2, B of the type
((B.B)->B) and 1 of the type (B->B). The
identity test. is in fact a constant
symbol of a type (T.T)->B). for aevery
type T. Expressions like ¥x(A), 3Ix(A),
or 1x(A) (the last read "the only x such
that A holds for this value of x), with
the variable x of +type T, can be
replaced by N{ax(A)), Txa» or
I(Mx(A)), respectively., where the con-
stant symbols M, ¥ and I of the respaec-
tive types ((T->B)->B), ((T->B)->B) and

=

(¢T-2B)->T) are interpreted by the

following functions:

(M returns true iff its argument
‘is the set containing just all the
members of T,

(D) returns true 1ff its argument
is a non—empty set.

$(I) returns the only member of its
argument (or the value 4 if the

argument contains any cther rumber of
members than 1).

The interpretation of constant sym—
bols can be fixed stating an appropriate
equational theory for the constant
symbols [291. In particular, all the
interpretations considered in the
following are assumed to assign proper
objects to constant symbols.

Note that for every type T one
needs an extra triple N, £, 1, like in
the case of For the notatiomal pur-
poses, we shall use the traditiomal form
of notation instead of the functional
one for the logical constant symbels



it is useful to have
constant symbols enabling to
elements of the sorts; the
symbol that is interpreted by a
of sort T is denoted by ‘t’ (of
the type T). Similarly, for every sort T
there is a natural ordering of the
members of the sort, e.qg. the sort of
natural numbers, etc., we assume that we
have tha corresponding symbel < of the
type ((T.T)->B) interpreted by the test
for "less than" (in the ordering);
again, we can use infix notation for
these symbols.
The set of the

mentioned above will be

For the sorts.
special

name the
constant

member t

constant symbols
denoted by &.

4. Data bases

Let us state more precisely how to
define a data base using our formal
means. First, one should express what a
part of realiy he wants to deal with.
This is managed via specifying the data
base concept. which is a tuple of attri-
butes of interest. The data base concept
materializes in the process of the con-
ceptual design into a data base concep—
tual schema ([12, [16] deal with the
methods of the conceptual design wusing
particularly HIT DM). Then all the
logically possible functions, by which
axtensions of these attributes can be
interpreted, must be restricted to those
admissible with respect to our knowledge

of the properties of the actual world.
After such a restriction (usually per-—
formed in the designer’s mind), one is
able to state the ‘reasonable" domains
of the pseudo-attributes that can be
realized in reality. These domains

become sorts and form (possibly with the
added sort B) the base of sorts ([13].
The base of sorts for a particular data
base results from the attributes of
interast (of the data base concept);
therefore we can restrict the types of
pseudo—-attributes to the gimple types
which are either (suppose Th/....Ty:
S,/...Sypare sorts).:

(i) ((qu...lTn)"'>(S4l...lsm))r or

(i) ((Tyr. .. T2, .. .. S)=0P)).
i.e. to functions whose result values
are (i) tuples (i.e.. equivalently, a
tuple of m functions with simple result
from one sort), or (ii) relations (a
special case are sets).

To form a data base schema.,
assign an attribute identifier,
will be an object symbol of a
type, to every attribute of the
base concept. The data base schema
then the term

(Ags. .. /Ay
where Ay, ....Ay are the attribute iden-
tifiers; i.e. the data base schema is a
tuple of attribute identifiers.

let us
which
simple
data

is
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Note that: given a data base schema

S of a normal type (Ta.... . Ty), we can
express its decomposition into the
attribute symbols either by saying

S=(A4, ... ,Ap) or
i.e. S=(S‘4)I e IS"n) .
especially used when one
transformed schemata.

A data base schema becomes a data
base when its attribute identifiers are
filled with data, i.e. when there is an
interpretation of the attribute symhols.
The interpretation will be called the
data base state.

Example 1: Let us introduce
example that occurs in several
Let the base of sorts consist

using preojections,
The latter can be
deals with

a simple
papers.

of (be-

sides the set B of the truth-values):
String, Num, Sal, Floor, Emp., Dept.
Comp. Itm, Typ. Addr meaning the sorts
of names, quantities, salaries. floors.,
employees., departiments. companies,
items, types of items and addresses of
companies., respectively. Choose the

following identifiers for our attributes
of interaest (read slashes as "of type").

NE / (Emp->String) ... ...
............. rname of an employee;
SE / {Emp=>Sal) .. ... ... ... ...
........... salary of an employee;
ME / (Emp->Emp) ...
.......... manager of an employee;
DE / (Emp->Dept) . ... ... ... ... ....
....... department of an employee;
ND / (Dept->String) ......... .. ... ..
........... name of a department;
oDSI  / ((Dept.Itm)=>Num) ... .. quantity

in which a department sells an item;
QSCID / ((Comp.,1tm.Dept)->Num)
quantity in which a company
supplies an item to a department;

NI / (1tm->String) name of an item;
AC / (Comp—>Addr) ...................
............ address of a company;
LD / (Dept->Floor) ... ......... ... .
........ location of a department:
TI / (1tm=>Typ) type of an item.

The corresponding data base schema is

D = (NE,SE,ME,DE.ND,QCSI.QCSID,NI.,AC,
LD.TI) . (%)
=
Let us remark that a data base
schema composed of functions need not

dismay anyone who is familiar with RDM.
The natural understanding of the depen-—
dences between the data describing
reality is really functional and the
functionality appears in relational
schemata like a stowaway in the form of.
e.q., keys of relations.
However, notwithstanding
that relations de¢ not seem to be as
natural as simple functions, relations
are a special kind of attributes because
((Tg... .. Ty)=>P) is exactly the type of
relations over sorts Tu.....Tq. There-

the fact



fore, one can regard RDM as a special

case of HIT DM,

S. Retrieval

By a retrieval operation we under-
stand a functicn that transforms a given
data base into a requested answer. The
answer is a member of some appropriate
type over the base of sorts. Usually,
the type of the answer is some sort.,
particularly the sort B in tha case of

yes/aé__iueries, or a type (T-»B), for
type of a set of

some sort T (i.e.
objects of the sort T). More complicated
cases are also possible and they can
express eaeven structures of complex
answers, e.g. structured tables, using
nested sets. relations or functions.

We shall use the lambda-calculus
for the definition of retrieval opera-
tions. Naturally: much more friendly
user—oriented means can be taken into
account L1461, £111., £193. [(2?71;
nevertheless, the lambda-calculus
reprasents some kind of “naked
semantics” for them.

Let us have a set €
symbols that contains the set & of
“logical" symbols (see above, §3), 1i.e.
L€, and lat S be a data base schema of

of constant

type 8. Then the retrieval operation of
clags C will be such a closed term of
type (8->T) that does not contain any

constant symbol other that the symbols
from It is not difficult to show that
the retrieval operations of the class
correspond to the relational algebra or
the relational calculus of RDM [19]1.

An enrichment of & by new functions,
e.q. aggregating functions as "count".
"min", "max", "sum", "aver" or arithmet-
ic functions as +,~,x./, etc., produces
no formal complications and enables us
to obtain richer «classes of retrieval
operations that correspond to commonly
used user—oriented retrieval languages.

In general, for a given data base
schema S of type 8§, terms defining re-
triaeval operations can be written as

Aay...an(R) .
where the variables a,,....an are of the
same types as attribute identifiers Ay4.
. IA"I provided that S (Ax, ... /Ap).
More usual it is to write such a query
in the form

R[a4<—A4,.. .I&n{"An] (5)
(brackets denocte formal substitution).
because in (5) one need not take care of

(4)

the particular structure of the data
base schema as (5) contains only the
attribute identifiers relevant to the
retrieval. Of course., (5) is equivalent
to the retrieval operation (4) applied
to the given data base schema S, i.e.
(3-conversion, cf. e.q. [311):

RLa <-Ay ... 8p<~Apl=(Aa,...ap(R)I(S).
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In such a case,
¢

given a data base state

the answer is given by

EER[a, <-A4 ... ,a,,<—A..,]]|¢

Example I: Take the data base schema

from (J) and a query to the data base:
"Find the (names of the) depariments
where all the employees earn less
then their manager."

One can easily check that this query is

answered by (n, d, e are variables of

the respective types String, Dept, Emp).
An(3d(ND{(d)=naV¥e(DE(e)=d>

SSE(ME(e))>SE(e)))) . &)
Note that the type of this term is

(String->B)., i.e. that of sets of names.
he set that answers our query., ac-

o

cording to a given data base state ¢. is
EIAN(3d(ND(d)=nAVe(DE (a)=d>
DSE(ME(e))>SE(e)))) ¢
Let us stress that the formal lan-

guage of lambda-terms makes it possible
to express the semantics of operations
over data bases in a unified way and
without a barrier of syntax. Although it
was not meant to provide a user—oriented
query language: the very form of lambda-—
-terms should not be unfamiliar to the
data base people. To realize it, compare
the form of (6) with the examples of the
same query (only slightly modified by
the identification of the descriptive
sorts with the object sorts, «cf. [9] or
[10)) expressed in common relational
query languages in {141 (one could even
abbreviate an(...) by {n:.. .}).

=

6. External views

The data base schema represents a
kind of a global view of both data
stored in a data base and their struc-

ture. However, from the viewpoint of a
particular user, it is desirable to be
able to see the data from his own view.
For this purpose, the user uses his own

view schema derived from a data base
schema wusing a transformation called

(external) view.

View schema is, like the data base
schema, a tuple of attribute identifi-
ers. However, dealing with view schema.
the attribute identifiers are ne longer
symbols only but generally lambda-terms
(with types of the form either (i) or
(ii) from §4) that contain, besides
bound variables and constant symbols., at

most the attribute identifiers of the
source data base schema.

A view that gives rise to a view
schema is lambda-term U of type (S$-3V),

where § is the type of the (source) data

base schema $ and V is the type of the

(target) view schema V. Then we have
v H(S) '

and the attribute identifiers of the

view schema V are (U(S))eqyr. .. LH(S) depy



for V of a normal type (Ty.,..,Tn).

View schemata contain no more sym-
bols (other than the constant ones or
bound variables) than the original data
base schema. The state of a view data
base (the interpretation that assigns
data to attribute identifiers) is always
identical with that of the source one.

Any data base schema can be also
considered to be a view schema given by
I =ha(a) that defines the identity map—
ping. It would be useful to retell the
story concerning retrieval operations
and to formulate retrievals for schemata
whose attribute identifiers are. in
qeneral, lambda-terms. Clearly, this
presents no difficulties. Therefore., one
can use schema with the meaning of both
data base schema and view schema.
especially in the context of retrieval
and view operations.

Views can provide suitable repre-
sentations of, e.q., the transformers of
the ANSI/X3/SPARC schema [13. If we
choose suitable views that de not "for-
get" any information, to every view U} we
have a corresponding inverse view ™
suckh that for a given schema S, S is
equivalent with both riuesy) and
W sS)) (cf., e.q., [91). In this case,
ohe may choose as the very data base
schema any of I-, C- or. E- schemata.
(However., the I-achema is probably the
best choice in a real system because
then the (abstract) Jata base state has
direct (concrete) explanation as the
state of the physical files.)

0Of course, one may also imagine a
view schema that reflects the ceorrespon—
ding schema in any other data model the
data structures of which are expressitble
usirg the HIT-like attributes. Particu-

larly, this is true for RDM.
Example Z: Let us show the view R that
maps the schema D from (3) into the

relational schema with relations:

EMF / ((String.Sal,String,String)->B);
SALES / ((String,String, Num)->B);
SUPFLY /7 ((Comp.,String,Itm,Num)-:B);

SUPPLIER / ((Comp,Addr)-:B);

LAC / ((8tring,Loc)=>B)
CLASS / ((String, Typ)-*B) .

Note that the multiple String’s in these
relations were rcaused by our initial
choice of sorts in Example 1. If we
chose different sorts of hames for em—
ployeas., departmants and items., the
types of the relations would 1look more
naturally. The corresponding view R will

e (the variable a is of the same type
as 0, and variables n.,s.,0.,p.e.m.,d,q.i.c,
r.l1.,v.t are of +the regpective types

Siring.Sal, String.String, Emp,Emp.Dept.

String.Itm,Comp., Addr. Loc Num,Typ):

R=ha((Ansop(3elayler=na agle)=saA
Amlayim)=o A agfel)=m) A 3Jd(ag(d)=p
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aie)=d), Apqv(3di(a,id)=p A azii)=qa
e d,1)=v)), Aepqv(3di(ag(d)=pa
aglid=qA afc,d. id)=v)), Acrlaglc)=r),
Apl(3dlagid)=pa apgy(d)i=e)),
At (Bilaglil=qa aufid=t))).
Denoting
EMP Ansop(3e(NE(e)=n » SE(ae)=g A
Am(NE(m)=0 AME(e)=m) A Id(ND(d)=pa
DE(e)=d) ;
SALES = Apqv(3di(ND(d)=p a NI(i)=qa
QDSI(d,i)=v))
SUPPLY = Acpqv(3di(ND{(d)=p ANI(i)=qA
ACSID(c. i .dd¥=Vv))
SUPPLIER = Acr(AC(c)=r) ;
Lac Apl(Id(ND(d)=p A LD(d)=1))
CLASS = Aqt(Ii(NI(i)=q A TI(i)=t))
the corresponding (relational) view
schema R(D) is equivalemt to R(D)
(EMP ., SALES , SUPPLY ,SUPPLIER,LOC,CLASS)
with the semantics exactly fitting the
schema that one would express in RDM.
b

=

Slightly generalizing views to
mappings from any number of source data
base schemata, it is easy to describe
also schemata of distributed data bases.

cf. 0323, or [27].

7. Updates

So far we have considered only
transformations of data base schemata
under a fixed Jdata base state, i.e. uder
a fixed interpretation. However., it is
also necessary to be able to change the
data base state, i.e. to transform it
from one state into ancther performing
updates of a data base: by an update we
shall understand a mapping U from the

interpretations (of symbols from a given
data base schema) into themselves.

Consider a data base schema § of a
type 8; S Ay, ... Ap). Let us have a
term U of a type (§->8) containing only
bound variables or constant symbols. By
the update defined by U (shortly update
only’) we shall understand such a mapping
U from interpretations into interpreta-
tions that assigns to interpretation ¢
corresponding result [A,<-first(ELUST4) .,
r A Cen-th(EIUSTe) 14 . i.e.

W > [Ay<~first(BQUSTe) .. ..
o ARSmn=th (ELUST4) 18, (7)
The lambda-term U is called the defining
term of the update W.

Defining terms of updates play an
important role in the treatment of
update operationg and especially in the
context with integrity constraints (cf.
[30]). It is easy to show (using the
definitiorn of €L 1) that every defining
term U of an update W represents in fact
a view such that, given a fixed data
base state, the data base corresponding
to the view schema given by the view il
is exactly the same as the updated data
base with the original data base schema.,




i.e. for any data base schema S, state ¢
and update U it holds

Blusley = EMSI(Ue) .
where U is the defining term of U.

The impact of the equation (8)
consists in the way in which it deter-
mines a particular update: First, one
defines a view that “models" the result
of the update. Then, wusing (8), such a
view 18 the defining term of the
considered update; thus, using (?), the
update is fully described. Therefore.
according to (&), one is able to study
updates using the same techniques as for
the study of views.

Naturally., it would be awkward if
every new update required to do the cor-
responding derivation separately. In-
stead., it is more natural to introduce a
rmotior of update operations, which are
functions assigning te given parameters

a8y

a corresponding update {301, ([246]. The
update operations are treated like
updates (with only slight changes, e.g.
defining term is of the type ((Py....

R 'Pl'l )-.:’(S"}s) ), where P4 V2PN IP“ are
types of the parameters of the update
operation). Froperties similar to (7).,
(2) are also satisfied.

Whern one deals with updates, it is
natural to introduce compositions of
updates. It is easy to show that, having
two updates %, V¥ with the corresponding
defining terms U, V., the term

Uey = Xa(ll(V(a)))
is the defining term of the composed
update WUeV

Having a set W of updates, we say

that W is semicomplete iff ¥ U, VeW,
WoVeW. Moreover, if W is semicomplete
and ¥U 3V WV= Y (where 1 is the identity
mapping) . we say that W is complete [2].

Similarly., both completeness and
semicompleteness can be analeogically
defined for update operations.

Using views, it is easily possible
to formalize in a quite similar way also
view updates (c¢f. [32]) via defining
lambda-terms called update translators.
They behave like translators from [2].

8. Integrity constraints

Ne data model seriously dealing
with updates can ignore the fact that
admissible data in a data base must

fulfil some constraints, the consistency
constraints, that follow from our knowl-~
edge of reasonable links among the data
dJescribing reality. In fact., consistency
constraints are given through a
specification (using some statements of
natural language declaring properties of

ardmissible (i.e. not only logically
possible) reality; they should take part
in the design of the data base

conceptual schema together with the data
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base concept) of a get of admissible
data base states, the data base space.
The data base gpace is given by
lambda-term C called the consistency
checker [30] of type (S->B)., where the

corresponding data base schema S is of
the type S. Then. the corresponding data
base space is the set
sp = A (EDC(S)1g) .
i.e. the set of all the interpretations
4 such that EIC(S)1¢ is "true".
As the first approximation, orne can
use the integrity checker as follows.
(i) perform update U to the data base
Eisie
(ii) then apply C to the resulting data
base, i.e. perform the yes/ro query

ElcesyhUg)

(iii) if the result of (ii) is “true”
then accept the update (i) else
resume (i) and return the data base
into the initial state ¢

This schema carn be, however, substan-

tially improved. First, according to

(8), one can perform the test (iii) be~

fore performing the update because it is
sufficient to perform the yes/no query

ELCcu(sNls (9
whera U is the defining term of the
update . In that case, an inconsistent
update can be resumed even before one

tries to perform it.

Even now, the checking of admissi-
bility of an update using (?) is not the
best solution. According to a given
update (or update operation) one can
imagine such a test that does not check
all the data in a data base for consis-
tency (as (9) in fact does) but that
tests only the data that are somehow
connected with the particular update. An
optimal test is realized using the so—
~called integrity constraint I (for a
particular update given by W), which is
a term of type (S->B) such that

¥4 :L0C(3) Dp=true => EECOI(SH ¢
= BLI1(sH e (10)
The integrity constraint I is not de~
fined by (10) unambiguously., the partic-
ular choice depends on a suitable
optimization criterion which does not,
however, come from the calculus itself.
In practice, it is possible to de-
fine the integrity constraint as such a
term I for which

I(S) = CU(s)) (11)
in the theory enriched by the axiom:
C(S} = ‘true’
Particularly, if C and U contains only

such symbols for which it is possible to
define such an equational theory in
which ¥¢. €Al = EIBl4 iff A = B, then
(11) is equivalent with (10). In gene-—
ral, some 1I‘s obeying (10) may not
satisfy (11); from the viewpoint of the
practically implementable ronsistency



constraints, however, it should not be
important .

For a more detailed traatment of
the topicz, cf. €301, £28] or [29].

9. _HIT DM and implementations

Although we have proposed the ideas
of HIT DM on the level of an abstract
model, it is applicable also to the work
on the internal level of a DBMS. (Pseu-
do-jattributes correspond to virtual da-

ta files accessed using keys: function
arguments reprasent the keys while the
results represent the items of file
racorde  ([9] uses special types for the

internal schema attribute identifiers).
iambda—terms defining retriavals
carni be directly translated into a (pro-
cedural programming langjuage using ordi-
rary commands for data manipulation:;
thanks to the simple apparatus of con-—
versions, it is advantageous to do vari-
ous optimizations on the level of lambda
-terms (cf. [9] for more details).

10. Conclusion

We have described the basic frame-—

work of the HIT data model. It repre-
sents a model that is theoretically at
least as well-grouded as the relational

one; however, it is able to be succes~
fully used in a wider spectrum of appli-
cations. Over and atove. the formal
apparatus of the model enables us to
achieve a unified description of various
levels of data base systems, from the
design of a conceptual schema to the
semantics of physical implementation.
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