
Optimizing the Rule-Data Interface in a KMS 

Charles Kellogg ,411thony O’Ilare Larry Travis 

MCC, Austin, Texas IJ. of Wisconsin, Madison, Wisconsin 

Abstract 

Work on integrating systems capable of drawing inferences from 
knowledge b,wes containing large numbers of logical clauses with 
relational datab,we systems containing large numbers of facts is 
described. The aim is to realize the derivational power of symbolic 
logic while at the same time exploiting the set-processing capabilities 
and potential parallelism of relational data base systems. We pro- 
pose that the interface between the deduction and database com- 
ponents involve set-characterizing relational algebra programs 
(RAPS) and sets of answer values, rather than proceeding sequen- 
tially with single answer tuples being requested and returned from 
the database system one by one. Our design includes a query com- 
piler that translales queries into RAPS, as well as a rule compiler 
that compiles rules into an elliciently maintainable and incremen- 
tally updateable predicate connection graph (PCG), a structure 
whose use obviates open ended deductive search at query time. 

When prewnted with a query, the system extracts from the PCG a 
proof schema that represents all possible derivations of the query 
from the +af.ional database. Structure sharing within this proof 
schema provides a b,asis for producing from the schema a 
significantly optimized R.AP. Direct manipulation of the RAP 
expression enables fur&r optimization, and the optimized program 
is then evahmtcd a.gainst the database. The result is a set of all 
possible answers to the rluery, produced with minimal scar& of the 
database. Answers may then be combined with certain intermediate 
rem]Ls and proof schcmn inlormation to gencrate explanations 
describing how the answers were derived from the knowledge base. 

We describe a. prototype implementation of this proposed design and 
report on preliminary empirical explorations. Some results or the 
explorations are lhat, although the number of derivations 
represented in a proof schema grows log exponentially with respect 
to deductive complexity (in one example the number approaches 
three million), RN’ size appears to grow only linearly with deduc- 

tive c0mplexit.y. 

Introduction 

Deductive question answering from knowledge bases con- 
sisting of la.rge numbers of logical clauses combined with 
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large relational’ data bases, represents a major require- 
ment for many future computer applications. This paper 
describes “compilation” techniques for efIicientlY Process- 
ing large collections of rules (currently restricted to a 
pure Horn clause subset of LDL [TZ8G]). The compila- 
tion consists of trinsforming the rules into procedural 
form, as well as constructing a rule/predicate connection 
graph, ,that explicitly represents the possible deductive 
interactions between predicates and rules. Techniques 
for eflicient implementation and maintenance of these 
structures are described, as are their use for the support 
of effective set-oriented deductive question answering. 

Current logic-based knowledge processing systems typi- 
cally involve a considerable amount of query-time deduc- 
tive search. Worse yet, the amount of search required 
for any particular query i&likely to be open ended and 
unpredictable. 

We propose storage representations and processing tech- 
niques designed to transfer much of the rule manipula- 
tion that constitutes this deductive “search” from query 
time to compile time, i.e., to the rule entry phase of 
knowledge processing. 

We start from the point of view of deductive question 
answering based on the predicate calculus and proceed to 
reduce, where praciicable, logical operations to 
relational-algebra operations. We follow this strategy 
because we want to maintain’ the full functionality of 
logical deduction. In particular, we believe it is essential 
to preserve the capability inherent in deductive question 
answering systems to’justify or explain answers. Logic- 
based systems need to present not just conclusions but 
the justification for those conclusions represented by the 
structure of inference-rule applications that has led to 
the conclusions. This justification is one kind of answer 
“explanation” that is frequently very useful. 

An “answer” (other than “yes” or “no”) constructed by 
such question answering systems is an instantiation of 
the variables in a query where instantiation satisfies a 
logically valid deduction of the query from the 
knowledge base (in relational data base theory, such an 
instantiation is an answer tuple). Our approach is to 
develop algorithms that produce sets of answer tuples 
which include members satisfying alternative proofs of a 
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query. By alternative proofs we mean alternative truth- 
functional structures (i.e., proof plans) leading to a given 
conclusion, each of which may itself generate a set of 
alternative answer tuples. This proo/-schema or set-at- 
a-lime’ strategy is contrasted with the tuple-at-a-time 
strategies of deductive question answering systems like 
QR3.5 [GRN69) and logic programming system like Pro- 
log [PRO75]. It also contrasts with the psoo/-plan-at-a- 
time strategies employed in [KETR76], [REI78], 
[KUYO82], [JACV84], and [KEL86] which construct data 
access requests from individual proof plans. 

The system combining rule and query compilation that 
we describe in this paper is implemented currently in 
fast prototype form. We will call it KCRP (for 
“Knowledge Compiler Rapid Prototype”). KCRP has 
been designed to optimize the rule data interface in the 
following way. For a given query the system generates 
all possible proof plans and then compiles a single rela- 
tional algebra program which, when executed, produces 
the set of all possible answers, as well as information 
that can be used to explain how those answers were logi- 
cally produced. 

For purposes of attending to first things first and of 
keeping our prototype manageably simple, we have not 
directly addressed many issues that would be necessary 
in a full scale system. For example in real systems with 
large rule sets and large data bases, complete answer sets 
could become be so large as to be physically unrealizable 
(even if they are in theory still finite). User interfaces 
will have to be developed that enable user control of the 
relational-algebra program as a generator which will pro- 
duce on demand desired but limited subsets of the com- 
plete answer set. Also our prototype does not yet have 
the capability for incorporating into its relational-algebra 
programs the loops that result from recursive rules, 
although it does include the basis for such an extension. 
In particular, recursive cycles are explicitly noted and 
thus easily identified in proof schemas. The KCRP 
design has placed high priority on algorithmic simplicity 
and elliciency. For example, a unification-by-exception 
scheme is employed to minimize calls on a unification 
procedure. This reflects a major design goal, i.e., to 
optimize the tradeoff between costly operations such as 
unification during query processing and complicated 
schemes for rule storage and maintenance. 

Figure 1 illustrates the basic components of the KCRP 
system. Rules are input to a rule compilation processor 
which updates the predicate connection graph (PCG). 
With the representation used for the predicate connec- 
tion gra.ph, addition and deletion of rules is straightfor- 
ward, and storage grows linearly with the number of 
rules. The predicate connection structure directly sup- 
ports deductive question answering, and simple pattern 

‘nor convenience we often rcler to our approach as set-&a-time rather than 
the more appropriate but longer phase prool-schema-at-s-time. Clearly our main 
concern is developing all possible proof plans within the framework or a single prool 
schema. 

matching and graph traversal operations replace many of 
the deductive processing steps required in previous sys- 
tems. In contrast to other approaches based on Prolog, 
the system does not force or make use of any ordering of 
rules or of elements within rules. 
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Figure 1. KCRF Components 

In processing a specific query, a first-stage query proces- 
sor extracts from the PCG relevant deductive connec- 
tions linking the derivable (D) predicates with various 
rule instances and database (B) predicates whose exten- 
sions are contained in the database. The processor 
recognizes common substructures and produces the set of 
all possible connections from the D predicate of the 
query to relevant B predicates. (The prototype works 
only with queries containing a single predicate but exten- 
sion to compound queries will not be difficult). In a 

second stage of query processing, the proof schema2 is 
utilized to produce a relational algebra program (RAP) 
consisting of the standard relational algebra operators, 
(e.g., union, join, project, and select) and additional pro- 
cedures to deal with common substructures. 

*A terminological note: We rerer lo the graph that represents all pcasible 
deductive support ror B query sd its “pro4 schema”. “Proof subschemas” may be 
extracted from a prool schema, either by pruning sway some alternatives under OR 
nodes or by transforming some D-predicate nodes into terminal nodes. A “complete” 
pro.9 subschema is one all or whose terminal nodes are B-predicate nodes. A distinct 
“proof plan” is a complete subschema extracted lrom B schema by pruning away all 
but one of the alternatives under each OR node ot the schema that remains in the 
subschema. A structure-sharing schema is one where, when there are equivalent sub- 
structures, one or them is explicitly represented and all the others are implemented as 
a “dupe” node that points to that explicit representative. An “essential proof plan” 
is extracted from a structure-sharing schema and therefore some ol its terminal nodes 
may be dupe nodes. 

-43- 



The RAP produced for a query is highly optimized in 
terms of minimizing the total number of B predicates 
and relational algebra operations over these predicates. 
We do not however currently optimize the RAP execu- 
tion strategy. This process, shown in dotted lines in Fig- 
ure 1, requires classical query optimization techniques 
such as those discussed in [KBZ86]. RAP expressions are 
evaluated against the relational database, producing the 
set of all possible answers and a series of “explanation 
fragments” which may be used to produce as much (or 
as little) justification of the answers as the user might 
wish. 

Rule Compilation 

In this section we briefly review our rule compilation 
techniques and associated PCG structures designed for 
ellicient representation and maintenance of rules and 
their deductive associations. We illustrate our ideas with 
the following rule set for an “invisible college” applica- 
tion: 

Rlr MSIC(SI,SZ) <- SU(Sl,.%), SU (S2, S3), MT(%) 
Rf: MSlC(Sl,S2) <- AU(SI,P), AU(SU2,P) 
R3: MSIC(SI,Sf) <- AU(S1, PI), AU(S2, PZ), CI(PI, SZ), CI(P2, SI) 
R4: MSIC(SI,St) <- AU(Sl, PI), AU(S2, PZ), CI(PI,P2), CI(P2, Pl) 
R6: KNOW(S2, R, T) <= ORIG(S1, R, T). MSIC(S1, S2) 
RI: SIF(Sl,~SZ, Xi T) <=- AT(S1, M, T). AT(S2, M, T), CNF(M, X, T) 
R7: KNOWL(L, R, T) <== CRA(S, L, T), KNOW(S, R, T) 
1~8: KNOW(S2, R, T) <- KNOW(S1, R, T), ABT(R, X), 

SIF(S1, S2, R, T) 

These rules partially formalize the notion of scientists 
being members of the same invisible college (clique) in 
terms of the predicate MSIC. The SIF, KNOWL and 
KNOW predicates are used to represent knowledge 

transfer among scientists.3 These rules provide for deduc- 
tively augmented access to bibliographic databases con- 
sisting of information about scientists, authors, their 
publications, citation relationships, etc. 

Predicate connection graphs have been widely used in 
mechanized theorem proving where they are dynamically 
generated during the proof process (see [KOW75], 
[SIC76], [STI82], [BIB82]). I n contrast, we use PCG’s as 
“compiled” structures intended to reduce query-time 
search. Our PCG’s are a knowledge representation (a 

SAlthough not important lor underslanding the abstract 8lrUCtUre Or the wan 
pie, the “English” translation ol the D predicates is: 

MSIC: member same invisible college 
SF : scienliflc information Row 
KNOWL: knowledge hy P laboratory of. result 
KNOW: knowledge by 8 scientist ol a result 

The B predicates have lheir “English” translation given below: 
su: Studied under 
MT: Master Teacher 
AU: Author 
Cl: Cites 
ORIG: Originates 
AT: Attend 
CRA: Conducta research at 
ABT: About 

CNF: c0nrerence 

kind of associative, semantic net) and part of a “per- 
manent” knowledge base (see 
[MKSHP81].) 

IIcETR.811 and 

For large rule bases it is crucial to minimize the storage 
requirements for PCG’s. In Figure 2a we show the rule 
connections for the eight rules presented earlier. Here, 
one rule node is recursive (R8), i.e., points to itself, as 
well as being connected to R5 and R6. Substructures, 
such as that dominated by R5, are shared, as indicated 
by the links from R7 to R5 and from R8 to R5. Links 
entering a rule node represent unification paths to the 
head of the rule, while links leaving a rule node represent 
deductive interactions between predicates in the body of 
the rule and the heads of other rules. 

Keeping the representation of deductive associations as 
compact as possible greatly simplifies the process of 
incremental compilation of the rule base. For example, 
consider the addition of a new rule 

RO: KNOW (X,Y,Z) <= KNOW (W,Y,Z),LABA (X,W). 

Adding this rule to the graph of Figure 2a results in the 
graph of Figure 2b. Only one additional node has been 
added but five links have to be inserted to assimilate this 
one rule. 

Figure 2a. Conneclion Graph for eighl rules 

If we were to represent Figure 2a as an and/or 
(rule/goal) tree, we would require 51 nodes to represent 
every rule and every goal within a rule as a separate 
node. Because of the meaning of “tree” , there would be 
no ability to share common substructures and there 
would be no ability to represent recursive cycles. If we 
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tried to represent all of the deductive interactions in Fig- 
ure 2b with such a tree, we would require 125 nodes. If 
we employed an and/or general graph (i.e., no longer 
limiting ourselves to use of a tree), recursive cycles and 
sharing of common substructures would be possible but 
we would still need 34 nodes to represent each rule and 
goal explicitly. 

1 

Figure 2b. ConnecIion Graph for nine rules 

The PCG structure that we have devised is decompos- 
able into two major parts (in eflect, two levels), the rule 
connection level illustrated in Figure 2a and b, plus a 
lower level constituted of structures within each of the 
rule nodes. The rule connection level represents deduc- 
tive associations among rules. The second level 
represents the compiled procedural form of each indivi- 
dual rule. (The structure used for this internal rule 
representation is presented below.) This clean separation 
of inter-rule and intra-rule structure avoids some of the 
complexity of previous PCG representations where both 
kinds of information were forced into one composite 
single-level structure. 

Top level goals do not have an entry in the goal column 
e.g. (KNOWL VW)), and bottom level predicates (B 
predicates) do not have entries in the rule column. The 
number of identifiers in the rule column equals the total 
number of rules while. the number of identifiers in the 
goal column is equal to the number of distinct 
occurrences of predicates as goals. 

Intra-rule deductive associations are represented in a 
data structure called the predicate rule goal index or, 
more briefly, rule/goal index. The rule/goal index for 
the nine rules of our example is shown in Figure 3. A 
rule/goal index is a tabular array consisting of four or 
more columns of information. The first column contains 
predicate pattern identifiers, the second contains predi- 
cate patterns where each argument is replaced by “v”, 
“cl’ or “f” to designate a variable, constant or functor 
respectively. The third column contains, for each row, a 
list of identifiers for every rule which has the predicate 
pattern of that row as its head. For example, in Figure 
3, the row for (MSIC w) indicates this two argument 
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The only work required to add rule R9 to the PCG is to 
add a new row for the LABA predicate, to insert the R9 
identifier into the goal column of the new row, and to 
insert the identifier into the rule and goal columns of the 
existing (KNOW vvv) row. Looking at thii row we see 
that there are now three rule identifiers each in the rule 
and in the goal columns, i.e., 3x3=9 deductive associa- 
tions between (KNOW VW) as a rule and (KNOW VW) 
as a goal whereas before there were 2x2=4 such deduc- 
tive associations. The -difference of five deductive associa- 
tions neatly captures the major source of complexity 
shown in Figure 2b. (If we intersect the head and goal 
columns for the (KNOW VW) row we obtain R8 and R9. 
This indicates that R8 and, R9 are directly and 
indirectly recursive via (KNOW VW)). The deletion of a 
rule is similarly simple and straightforward. We have 
carefully avoided the use of techniques that require the 

relation occurs as the head of rules Rl, R2, R3 and R4. 
The fourth (the goal) column, contains a similar list of 
identifiers of rules containing the predicate pattern of 
that row within their bodies. Again, for (MSIC vv), we 
can see that it occurs as a goal in the body of R5. 

Prrd RoWGoal Jndrr 
1D J’rcd P+ern RUIP Goal 

PJ (AB \‘v) ! - 1 R8 

Figure 3. Predicate Rule/Goal Jndes for 

Argumenlfi’sriable hfatchlnp. 

propagation of effects, such as variable bindings, 
throughout the PCG during maintenance. One benefit 
that should be especially useful for maintainers of large 
knowledge bases is that we can easily compute the pre- 
cise deductive consequences or deductive impact of 
adding or deleting rules. 



The second part of rule compilation consists of compiling 
each rule into a relational algebra procedure. The pro- 
cedural form of a rule is represented by a series of joins 
over predicates in the body of the rule, and a project to 
obtain the arguments for the rule head.4 For example, 
translating rule R8 gives 

as the procedural form of the rule. 

For a. series of Horn clauses where all arguments are 
variables (such as Rl . . . R9) the rule/goal index consists 
of one row per predicate and one column e’ach for rules 
and goals. Query constant constraints ‘are pushed down 
through ‘rules as selects on the rule -bodies and 
unihcation pattern matching may therefore be avoid,ed. 

When constants and/or complex terms occur within rules 
the rule/goal index is expanded into additional rows and 
columns as illustrated in Figure 4. Additional predicate 
patterns for constants (c) and complex terms (i.e., func- 
tom “f”) are produced when necessary and realized as 
new rows in the rule/goal index. In addition, rule and 
goal columns are split into match and unify lists. Rule 
identifiers in the former are always picked up for a query 
goal or subgoal that matches the predicate pattern while 
rule identifiers in the latter may ‘or may not lead to suc- 
cessful unifications. For example if a query .goal/subgoal 
matches predicate pabtern P4 (I’ vc) then rules Rl, R3, 
R4, and R6 will match and rule R5 and/or R7 may unify 
(for constants unillcation reduces to a simple, fast equal- 

Rl: P(q), . . . R5: P&125) - . . . 
R2: P(z, f&(r))) - . . . R6: P(H, z) -- . . . 
R3: P(a, H) - . . . R7: P(a, b) f- . . . 
R4:. P(d, ,3 q- . . . R8: P(f(x),g(a)) + . . . 

I- 

.RuldGoal Index 
Fred ID Pred Patlern Rule Match 

PI (Fvv) (Rl...R8) - 

P2 .-(Pee) (RI, R6) 1 R3, R4, R5, R7) 

P3 (P c VI (RI, R2, R5, R6) (R3, R4, R7) 
1 

P4 8 v c) (Rl, R3, R4, R6) (R5, R7) 

r.5 Pfr) (RI, R6) (R2, RN 
P6 (Pvr) (Rl, R3, R4, k6) 01% Rff) 

Figure 4. Row, column Expansioh for Constant ahd 

FuncGonal Argument hlalching and Unilication 

‘There are a number of complications which must be taken care 01 when we ex- 
tend our prototype, but they do not cause conceptutl dilliculties. II aevcral argu- 
ments in a predicate expression we represented by the same variable then restrict 
operators must be imployed lo force argument pwitions to be ,identical. Although 
this case is handled by the prototype in a locically correct manner, the inlormation is 
not currently used to constrain database search. Allowance has to be made for vari- 
ables that occur in the head but not the body ol the rule. And relational operator 
extensions have to be introduced to handle variables that occur ifi L rule not in a 
top-level argument place but down within a lunctor. 

ity check). Only in the case of complex terms (e.g., ~5, 
P6) is it necessary to resort to calling a unification algo- 
rithm. Term matching thus proceeds very quickly when 
only constants and variables are involved but term 
matching is still complete since the full power of the 
unification procedure (including the “occur” check) is 
available when needed. The PCG supports not only con- 
ventional backward chaining from a query goal toward 
base predicates, but also forward chaining from a B or D 
predicate toward its logical consequences, and bidirec- 
tional chaining between predicates contained in condi- 
tional queries. 

Query Compilation-Phase 1 

KCRP accepts queries consisting of a. single D predicate 
and its arguments. A proof schema representing all pos- 
sible proof plans that deductively connect this predicate 
to B predicates is then constructed. All recursive cycles 
and common substructures are detected during this pro- 
cess and identified as cycle and dupe nodes respectively.5 
Predicates are not restricted to being exclusively either D 
or B predicates, i.e., a predicate may have both 
deductive and database support. 

Figures 5a. and, 5b show the proof schema graphs (for 
simplicity, base relations are not shown) for minimally 
and’ maximally constrained queries involving the KNOW 
predicate for the sample set of rules. AND nodes are 
labeled with rule identifiers (e.g., R5, R8, R6) and OR 
nodes are identilied by the predicate identifiers used in 
the first column of the rule/goal index (e.g., P7.1, and 
P7.2, label two separate, OR structures for the goal 
KNOW). The query ,predicate is the root of the proof 
schema graph, and terminal nodes may be rule 
identifiers, base relations, boxed nodes, or circled nodes. 
Under node P7.2 we see a boxed node and a circled node. 
A boxed node is a pointer to the occurrence of a shared 
substructure. In this case the substructure headed by 
rule identifier R5 is shared. Circled nodes represent 
cycle nodes pointing to recursive substructures. In this 
case, the recursion returns to the ancestor node R8.1. In 
this example, there are five essential proof plans. 

’ A cycle node in a proof schema is a pointer to an ancestor node whereas B 
dupe node is a pointer to a non-ancestor, shared substructure. 
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Figure 5b shows the proof schema graph for the same 
query except that each of the three arguments is a con- 
stant as opposed to a variable. In ,this case, KCRP gen- 
erates a considerably different graph. No sharing of sub- 
structures is possible because constants are passed down 
into the graph and substructures that were equivalent 
for the variable case are no longer equivalent. The result 
is eight distinct proof plans. 

In a proof-plan-at-a-time’system, such as I(M-1, 50 data- 
base literals would be ge.nerated for each, of the queries 
in Figure 5. In KCRP for the Figure 5a example, where 
structure sharing is employed, only eight .database 
literals are generated. For the query in Figure 5b, 12 
database literals are generated. Thus we see that even 
for simple deductive queries involving a small number of 
rule occurrences there can be a significant savings, when 
employing a set-at-a-time architecture, in the number of 
database literals that need to be searched for and 
retrieved. 

Query compilation -Phase 2 

This phase of query processing is driven by a proof 
schema structure. It creates as output a single relational 
a.lgebra program (RAP) representing all of the exten- 
sional database search requirements of the deduction 
structure developed in the previous compilation phase. 
The AND and OR nodes in the proof schema are con- 
verted into joins and unions in the RAP. The procedur- 
alized rules referenced in the proof schema are nested as 
required by their deductive interactions and are aug- 
mented as necessary with dupe and cycle nodes. A fra.g- 
ment of a KCRP RAP is illustrated below: 

(MKTEMP ‘R8-1 ‘(KNOWX Y 2) 
(PROJECT ‘(7 1 6) 
(JOIN ‘((2 3)(3 1)(6 4)) 
(JOIN ‘((I 2)) 
[b$$ENMP ‘DB-6 ‘(ABT R X)(RETRIEVE ‘ABT)) 

(MKTEMP ‘RS-2 ‘(KNOW S R T)(DUPE ‘RS-1)) 
(MKTEMP ‘R8-2 ‘(KNOW S R T)(CYCLE ‘R8-1))))))) 

(Cycle nodes in RAP currently act as noops. Recursion 
is detected, but KCRP does not yet contain the mechan- 

ism for translating proof schema cycles into RAP itera- 
tors.) 

Duplicate nodes, play an important part in avoiding 
massively redundant data search, since they point to and 

allow for the reuse of already derived results. One 
further operation is employed in our RAPS. This is a 
MKTEMP operation which binds the search results for 
each rule instance to a temporary relation. These results 
are used in the later generation of explanations. 

The RAP for the query shown in Figure 5a consists of 3 
unions, 14 joins, 7 projects, and no selects over eight 
database literals. The maximally constrained query (5b) 
employs four ,unions, 24 joins, 12 projects, and 8 selects 
(the result of pushing down query constants) over 12 
database literals. 528 list cells are required to represent 
the RAP for the minimally constrained query, and 897 
for the maximally constrained one. 

RAP Execution, Answer Generation and Explana- 
tion 

KCRP contains a small relational data management sys- 
tem realized by a series of LISP functions which directly 
implement select, project, join, and union operations. 
Additionally, results are reused as required to take 
advantage of dupe pointers and MKTEMP operations 
are employed to store intermediate derived relations. .In 
a set-at-a-time system, query optimization can take place 
at at least two levels. The major form of query optimi- 
zation employed in KCRP results from proof schema 
structure sharing. Classical database query optimization 
techniques are not employed in KCRP currently, but 
such optimization techniques as pushing selections within 
joins, and taking joins in the most optimal order (includ- 
ing the reordering of database literals across rules) must 
be used in a practical system to improve RAP execution. 

Even for the sample queries against the sample rule base 
discussed here quite useful answer justifications may be 
produced. The justification examples shown below were 
directly synthesized from the proof schema and the 
results of evaluating the RAP for the query illustrated in 
Figure 5a. They have been “Englishized” by hand, to 
improve the readibility of KCRP Lisp data structures. 

Brown, Cook, Davis, Frank, Green, Smith 
Martin, Patton, Russell, and Jones know about a 
synthetic insulin result in 1986. 

Brown originated the result. 

Cook, Green, Smith, Frank and Jones know the result 
because they are members of Brown’s invisible college. 

Russell learned about the result from Jones at a 
conference about the subject of the result during the 
year of its’ origination. 
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Patton, Green, and Martin learned about the result 
while co-attending a conference with Smith. 

Davis is a member because his scientific publications 
are involved in a weak citation coupling with Brown’s 
publications. 
. 
. 
. 

Results from Experimental Runs with KCRP 

Figure 6 presents a series of measures and their values 
for seven representative queries which have ‘been run on 
KCRP. The queries designated by columns Ql and Q2 
are ‘the minimally and maximally constrained queries dis- 
cussed earlier. The remaining five queries are for 
another application domain involving a larger rule set of 
41 rules. 

FiSurc 6. S~a~irticr for Sewn Queries 

Figure 7 illustrates a central part of the proof schema for 
Q7, the most complex deductive query so far processed 
on KCRP. The longest deductive path (R41 R34 . . . RQ) 
consists of 12 rule ‘instances. The pattern of (unioned) 
rules R12, R16, ‘kl8, R20, and R30 occurs five times in 
this partial proof subschema and the rule pattern (RIO, 
1213, Rl4, R15, and R17) occurs three times. Both of 
these predicak procedye set patterns arc shown 
enclosed in boxes in Figure- 7. Under and oveilining are 
used respectively, to identify dupe and cycle nodes. The 
number of essential (i.e., with structure sharing) and dis- 
tinct proof plans is shown to the left of each box (and 
also for edges leading to other substructures not depicted 
in Figure 7). The number of proof plans is additive at 
OR nodes and multiplicative at AND nodes. ,The multi- 
plicative effect on~thenhmber of alternative proof plans 
can be seen most dramatically for’ the AND’ed substruc- 
tures headed by R41, R18, and R13. 

sir - CYCLE NODE 

8 ESSW7IAl PRDDf PLANS/t DIS31NCl PRLKU PLANS 

Figure 7. Partial Proof Schema for 97 Illustrating 
Rm~rrion l d Structure Sharlnp Patterns 

Structure Sharing 

KCRP experiments provide dramatic evidence of the 
importance of structure sharing for a.knowledge manage- 
ment system. Information from the first three rows of 
Figure 6 were used to generate the graph shown in Fig- 
ure 8a. This graph clearly depicts th.e log exponential 
growth of total proof plans vs. the number of original (or 
“undupe”) rule instances employed in a proof schema 
constructed for a deductive query. We see that the 
number of distinct proof plans ranges from less than ten 
for Ql to almost three million for Q7. For the essential 
proof plans, made possible by structure sharing, these 
figures are reduced to five and 1,053 respectively. 

By using. pointers to common substructures instead of 
copying or regenerating them we achieve a major reduc- 
tion not only in the number of rule instances used per 
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query but in the number of relational algebra operators 
used and the number of database literals generated as 
well. Even where structure sharing does not reduce the 
number of proof plans, as is the case for the &2 query, it 
helps to reduce the number of generated database 
liter&. 

The number of database relations per query ranges from 
live to 21 while the number of database relation dupli- 
cates per query ranges from two to 20. Although a RAP 
containing 21 database relations may seem unusually 
long, we should note that in this case those 21 relations 
represent the realization of database search implications 
for almost three million distinct proof plans. Looked at 
from the opposite perspective, when a deductive query 
generates a large number of proof plans as is the case for 
Q7, it is important to minimize the number of literals 
that have to be actually evaluated against the database. 

So far we have talked about two of the four kinds of 
structure sharing, duplicate database literals and dupli- 
cates of structures headed by rules. We also show the 
number of duplicates of substructures headed by OR- 
nodes. This ranges from zero to three in our example. 
While large numbers of disjunctive duplicates were not 
found for our set of example queries and rules, where one 
is found it typically dominates a large substructure and 
therefore accounts for a significant part of the savings 
due to structure sharing. The final kind of structure 
sharing employed in .KCRP is subsumption. A given 
substructure is subsumed by another if the other can be 
made equivalent to the given one by the application of 
one or more select operations. Subsumed duplicates for 
the sample queries range from zero to five per query. 

Relational algebra operators 

Figure 6 shows the number of union, join, project, and 
select operations employed in the RAP for each of the 
seven queries. The most significant result is the com- 
bined count of the number of union and join operations 
required per query. This figure ranges from a low of 11 
for Q3 to a high of 48for Q7. Clearly, for a relational 
database of any significant size, the processing of these 
48 relational operators must be optimized in order to 
obtain reasonable performance. Query optimization 
techniques will be an important factor in achieving high 
performance knowledge management capabilities. When 
we look at the join and select counts for Q2 and Q7, the 
two maximally constrained queries, we see the major 
effects of query instantiation, i.e., pushing query con- 
stants thru deductive subgoals into the RAP. Not only 
are the select counts high, eight and nine, but the join 
count is also high. The query instantiation process typi- 
cally results in the generation of more database literals 
and more unduplicated rule instances than are required 
when the query does not contain as many constants. 

RAP Size 

We measure the length of a RAP by the total number of 
CONS cells, i.e. list nodes, required to represent the 
RAP in list structure form. Figure 8b shows that the 
RAP length for the sample queries increases at an 
approximately linear rate. Clearly, additional experi- 
ments are called for with larger rule bases and larger 
numbers of queries to see if these results hold up. Our 
initial results suggest that, whereas the number of proof 
plans tends to increase at a log exponential rate, the 
increase in complexity of the generated RAP is linear. 
Note, however, that the deductive complexity, particu- 
larly for Q7 which has a total of 85 rule instances in its 
proof schema, is already fairly deep for deductive ques- 
tion answering purposes, and it is not clear that typical 
deductive queries for larger rule bases will result in 
significantly more complex proof schemas. Again, 
further experimentation is called for . 

Fiewe 8b. RAP Leqlh vs. Rules/Quc,y 

Extensions and Comparison with PROLOG 

We have designed the prototype with hooks for incor- 
porating recursion modules which would replace rule 
recursion with iteration over data (see [BAN86], 
[BAN85], [HANSS], [HENA84], [ULL85)). The relational 
algebra operations we employ must be expanded to 
include the Extended Relational Algebra operations 
described in [ZAN85a] for dealing with complex objects 
and safety tests [ZAN85b] must also be incorporated in 
order to avoid generating’ potentially infinite sets. 

A comparison of the performance of KCRP and a logic 
program employing a PROLOG style execution strategy 
can be made in the following way. For Q7 the logical 
depth of each of the 2,785,392 distinct proof plans varies 
between 8 and 12 steps (i.e., logical inferences or 
unifications). KCRP, generates one proof schema and 
one RAP search request in order to retrieve data that 
will produce all possible instantiations of those proof 
plans. A PROLOG depth first backtracking strategy 
would produce each distinct proof plan a ss’ngle plan at a 
time and would generate a separate RAP for each plan. 

Taking PROLOG’s backtracking into account we esti- 
mate an average of 3.5 unifications per distinct proof 
plan. Then 2.785x106x3.5 or approximately 9.8x106 logi- 
cal inferences would be required to generate the RAP for 
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Q7. Since KCRP used 4.6 CPU seconds to process Q7 
(on a Xerox 1108) we estimate a PROLOG program 
would have to run at an effective rate of over two million 
logical inferences per second (LFS) to equal KCRP’s 
performance for the query (9.8x10 divided by 4.6). 

Conclusion 

Experimentation with the prototype was undertaken to 
evaluate certain key aspects of the design of a set-at-a- 
time rule compiling, query compiling architecture. 
Results have been encouraging and in some cases surpris- 
ing. Despite considerable experience with logical based 
KBS’s we were surprised to find almost three million dis- 
tinct nonrecursive proof plans generated for an atomic 
query. This many proof plans would be prohibitive to 
deal with either in a tuple-at-a-time or a plan-at-a-time 
system. Yet in our KCRP we could handle the data 
base search for the proof schema representing this many 
plans by retrieving only 21 database literals. 

Generation of the PCG rule/goal index has proved to be 
very fast and the PCG serves as a very compact 
representation for all possible proof plans using a given 
set of rules. With the aid of the PCG, proof schemas are 
quickly generated and Relational Algebra Programs are 
efliciently derivable from proof schemas. 

The set-at-a-time deductive strategy and extensive use-of 
structure sharing provide for almost linear growth in 
RAP complexity with respect to the number of rule 
instances used for the proof schema of a query even 
though proof plans grow at a log exponential rate. It 
will he important to determine if this continues to be the 
case for queries involving larger and more complex rule 
bases. 

While RAP length appears reasonable given the above it 
is still the case that the most complex query produced a 
RAP containing almost 50 expensive union and join 
operations. Our experiments indicate that powerful 
query optimization techniques will be essential for future 
knowledge base systems. 

Our explanation fragment approach provides the basic 
information necessary to generate useful answer explana- 
tions. However, “complete” answer explanations and the 
compacting and summarizing of explanations will require 
a substantial amount of additional research. 
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