
USING HISTORY INFORMATION TO 

PROCESS DELAYED DATABASE UPDATES 

Sunil K. Sarin, Charles W. Kaufman, and Janet E. Somers 

Computer Corporation of America 
Four Cambridge Center 

Cambridge, Massachusetts 02142 

Abstract: An algorithm is described which processes 
database updates arriving out of order in a way that 
maintains a -consistent view of the data. This problem 
arises in the context of a high availability replicated 
database architecture in which updates are totally 
ordered by timestamp but do not necessarily arrive at 
a site in timestamp order. The algorithm uses a his- 
tory of object values written and objects read, by 
updates. When a new update arrives and is executed, 
higher-timestamped updates that read its results are 
scheduled for undoing and reexecution; such reexecu- 
tion may in turn cause additional updates to be reexe- 
cuted, and so on. A major goal of the algorithm is to 
avoid this kind of cascading when reexecution of an 
update would have the same effect as it had before. 
A prototype implementation of the algorithm for a 
relational database is described. It is suggested that 
the algorithm may be of use outside its original con- 
text, in the maintenance of historical databases. 

1. Introduction 

Replication of data at multiple sites offers the 
potential for high availability of a database in a dis- 
tributed environment. However, the need to maintain 
consistency of multiple copies usually limits the avai- 
lability that can be achieved in the face of communi- 
cation failures. If the communication network is par- 
titioned into two or more disconnected groups, at 
most one group (the one, if any, with,a majority of 
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copies or votes [16,8]) will be allowed to update a 
given data item; transactions in other groups cannot 
even read the data item and update others without 
incurring the risk of violating serializability. This 
may be unacceptable in applications - such as inven- 
tory control, banking, and reservation systems - that 
require continued service in the presence of commun- 
ication failures and partitions. 

The System for Highly Available Replicated Data 
(SHARD) developed at CCA emphasizes continued 
operation of a replicated database in spite of network 
partitions and other communication failures [15]. 
Transactions in SHARD do not execute serializably. 
Database queries and external actions issued by a 
transaction are performed immediately at the site 
executing the transaction. However,. updates issued 
by a transaction are processed asynchronously by the 
sites in the system, after some communication delay 
which is highly variable (especially if there is a net- 
work partition) and which may be different for-each 
site. 

Because transactions are not serializable, integrity 
constraints on the database may be violated. Appli- 
cations that use SHARD must distinguish between 
structural “invariants” that are required to-always be 
true for the stored data (e.g., computed totals con- 
sistent with base data) and more general “semantic 
integrity constraints ” that represent desirable states 
but need not be strictly enforced (e.g., no overbook- 
ing of seats or overdrawing of money). The update 
parts of transactions are designed to preserve the 
invariants, but integrity constraints may be violated 
and inconsistent external output may be issued. We 
rely on the application to compensate for these prob- 
lems when they occur. It is also possible for the 
application to selectively introduce “pessimistic” con- 
currency control, giving up some availability, to 
reduce the likelihood of inconsistency and cost of 
compensation. 

This paper is not concerned with how applications 
deal with non-serializable transaction execution 
(described in [14]), but with the processing of updates 
in a way that preserves mutual consistency of multi- 
ple database copies and supports the application’s 
compensation requirements. Updates issued by tran- 
sactions are assigned unique timestamps [ll], and a 
site’s database copy at any given time must reflect 
those updates that it has seen so far as if they had 
been executed in timestamp order. Because of 
unpredictable communication delays, an update arriv- 
ing at a site may have lower timestamp than some 
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previously-received and already-executed updates. If 
any of these higher-timestamped updates conflict 
with the newly-received one, they must be undone 
and reexecuted to maintain the desired timestamp 
ordering criterion. The objective of the algorithm we 
present is to control the amount of such reexecution 
that is needed, while expending a moderate computa- 
tional effort in determining which updates to reexe- 
cute. 

Previous proposals to use timestamp ordering for 
mutual consistency assumed that every update uncon- 
ditionally overwrites a specified data item with a 
given new value. Mutual consistency is achieved by 
the following well-known method, first proposed by 
Johnson and Thomas [lo]. The timestamp of the 
highest-timestamped update to each data item is 
remembered, and a newly-arriving update to a given 
data item is ignored if its timestamp is smaller than 
the timestamp currently associated with the data 
item. Updates that add or delete items to and from a 
set (as in [2,5]) are equivalent to overwriting the 
“membership function” of items in the set to true or 
false, and can be treated similarly. 

Updates in SHARD can be considerably more com- 
plex than simple overwrites. The reasons for this are 
twofold, First, we wish to permit specialized update 
operations, such as incrementing and decrementing a 
numeric quantity. Consider the following transaction 
that withdraws money from a bank account whose 
balance is stored under the data item “Balance”: 

amount := ask-user(“How much to withdraw?“) 
if read(Baiance)>=amount then 

give customer amount in cash 
issue update: Decrement(Balance,amount) 

The Decrement operation above takes effect at a 
given site at the time of execution of the update, 
which may be some,time later than the time of read- 
ing the balance and dispensing the money. If two 
concurrent withdrawals were to see the same initial 
balance, the final value of the balance (after both 
Decrement operations have been received and .exe- 
cuted) would correctly reflect the total amount with- 
drawn. 

The second reason for including more complex 
update types is to allow the detection of hon- 
serializable execution so that the application can per- 
form compensating actions. For example, if the ini- 
tial balance of an account were $400, two concurrent 
withdrawals of $200 and $300 would both succeed 
(because each reads a balance that appears to be 
sufficient) but would leave a negative final balance, 
-$lOO; The bank may wish to compensate for this 
whenever it does occur, perhaps by assessing a fine 
and sending a letter to the customer demanding pay- 
ment. To support this, the withdrawal interaction 
should issue a more complex update of the following 
form: 

Decrement (Balance,amount) 
if Balance<0 then Overdrawn := true 

Such’s composite update is assigned a single time- 
stamp; a site receiving the update executes it atomi- 
cally. The effect of this is that the flag “Overdrawn” 
will be set to true if (and only if) Balance ever falls 
below zero in the timestamp-ordered execution of 
updates. A separate transaction can read this flag 
and perform the necessary compensation if 

Overdrawn is found to be true. This technique can be 

f 
eneralized to other applications, as described in 
141. 

Since updates issued by transactions may read the 
contents of the database (and their effects may be 
conditional on what they read), previous mutual con- 
sistency mechanisms that support only overwrites are 
no longer adequate. Our algorithm uses a history of 
all values of a data item written by all updates, not 
just the latest value and a timestamp. In addition, 
the algorithm records which data items were read by 
each update, so that higher-timestamped updates that 
conflict with a newly-arriving one can be identified; 
these conflicting updates are then undone and reexe- 
cuted to restore consistency. For the example update 
above, the arrival of any earlier-timestamped update 
that changes Balance will cause this update to be 
reexecuted. Overwriting updates are still executed 
efficiently; because such an update does not read 
anything, it is never reexecuted. 

It is possible that the effect of reexecuting an 
update may be the same as it was on the previous 
execution of the update; in such a case, we say that 
the update was unnecessarily reexecuted. This can- 
not be avoided without using semantic information 
about what conditions on the update’s readset (e.g., 
balance being sufficiently high) determine its write- 
set. An explicit objective of our algorithm design was 
to avoid the complexities of representing and manipu- 
lating semantic information about updates; this 
resulted in a conceptually simple algorithm that we 
were able to implement very quickly. The cost of an 
unnecessary update reexecution is not prohibitive, 
because it does not cause any %ascading” of further 
unnecessary reexecutions. That is, if reexecution of 
a given update has the same effect as before (which is 
determined by a run-time comparison), no higher- 
timestamped updates that read its output are marked 
for reexecution. Our algorithm appears to provide a 
sound framework for introducing optimizations based 
on semantic information,, should it be necessary to 
further reduce unnecessary reexecutions; the treat- 
ment of specialized update operations in Section 4.1 
is an example of such an extension, 

The performance of our algorithm (which depends 
on the actual degree of conflict among updates) is a 
serious concern only if there is a prolonged network 
partition. While out of communication with some 
other site, a given site must retain history informa- 
tion as old as the timestamp of the last update 
received from that site. On reconnection, updates 
with very old timestamp may be received, possibly 
causing large numbers of higher-timestamped updates 
to be reexecuted. The storage and processing 
requirements of the algorithm therefore grow with 
the duration of the communication failure. For very 
long partitions (e.g., several days), these costs may be 
unacceptable. In addition, site clocks may drift too 
far out of synchrony for timestamp ordering to be 
meaningful. Therefore, mechanisms based on merg- 
ing values rather than updates (such as [6,13]) may be 
more appropriate if a partition lasts an extremely 
long time; even these may not always be sufficient, 
and manual intervention may be needed. 
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The idea of undoing and reexecuting updates based 
on their conflicts to preserve the timestamp ordering 
property was previously introduced as part of the log 
transformation approach [3]. Log transformations 
were designed for a “discrete” network partition 
scenario, in which the analysis is performed just once 
to integrate updates issued on the different sides of a 
partition when all sites are fully connected again. 
The new’ SHARD architecture, on the other hand, does 
not assume that all sites are ever fully connected, and 
is thus able to handle a wider class of communication 
failures. New updates with old timestamps may 
arrive at a site at any time, and must be continuously 
integrated with already-processed ones. The mbtual 
consistency algorithm must therefore be executed 
repeatedly, and it is important to retain as much 
information as possible for reuse. This is achieved 
using the history database, which is a novel contribu- 
tion of our approach. 

Our design of the history database is relat(?d to 
recent proposals for including the “time dimension” in 
a database [4,12]. To distinguish between the two, we 
will use the terms history to refer to a database (such 
as ours) that records past system states based on tran- 
saction time, and historical to refer to a database 
that represents perceived external states based on 
real-world time. When modeling real-world events in 
a historical database, it is not always the case that 
events are reported in the order that they occurred, 
because of varying external communication delays. 
In addition, there may be errors in reporting that need 
to be corrected later. Each event report, whose 
“timestamp” is the believed time of occurrence of the 
event, will typically contain one or a small number of 
basic facts that are,directly installed in the database, 
and may in addition trigger the recomputation of 
some other data such as cumulative totals or flags 
indicating the presence of unusual transitions (such as 
an account being overdrawn). It is possible that the 
method we use for processing out-of-order updates 
will be applicable in historical databases as well: By 
recording which data items were read by the associ- 
ated computations, it is possible to minimize the 
number of such computations that must be reexe- 
cuted when an old update arrives. 

This paper describes the mutual consistency algo- 
rithm from the point of view of a single site that is 
receiving timestamped updates, issued by itself and 
by other sites, in some arbitrary order. The algorithm 
is executed by a module of the system called the 
Checker. A separate module, called the Distributor, 
is responsible for ensuring that all sites eventually 
receive all updates [1,7]. Even though sites may 
receive updat& in different orders, the Checker algo- 
rithm at each site ensures that the end effect is as if 
all updates had been executed in timestamp order; 
eventual mutual consistency of database copies is 
therefore guaranteed. The current design and imple- 
mentation of SHARD assumes a fully replicated data- 
base for simplicity. We are developing support for 
partial replication, by preanalyzing the update types 
permitted by the application and decomposing the 
database in such a way that every update can be exe- 
cuted locally by a site holding a copy of the affected 
data. The algorithm we present in this paper will 
apply to such a scenario as well. 

The next section describes the model of data that 
we assume. Section 3 describes the basic Checker 
algorithm. Section 4 lists some extenLions that we 
are exploring, including more efficient processing of 
specialized update operations (such as decrements). 
Section 5 concludes by summarizing the key features 
of the algorithm. 

2. Model of Data 

For the purpose of this paper, we assume that the 
database consists of a collection of named objects 
and their associated values, where an object is the 
smallest independently-updatable item of data. This 
is an abstract view of the contents of a datibase, not 
a user-oriented or implementation-oriented data 
model. Most if not all data models can be mapped 
into ours by appropriately restricting the set of possi- 
ble object names and choosing related names for 
related objects, For example, in our prototype imple- 
mentation of the algorithm we assume a relational 
database in which some set of fields in each relation 
comprise the key of the relation: no more than one 
tuple can have the same combination of values in the 
key fields, and the key fields of a tuple ape not updat- 
able. (To satisfy this restriction, it may be necessary 
to use internally-generated surrogatesas keys.) Each 
non-key field of each tuple of each relation is viewed 
as a distinct “object”, having as its neme the triple 
<relation-na~e&ey-value,fieIdname~. 

The set of objects in the database does not change 
over time, i.e., is statically known from the initial 
database state. In the relational example, this 
requirement is met by pretending that every syntacti- 
cally legal key .value is present in the abstract coun- 
terpart of each stored relation, end making the fol- 
lowing extensions (similar to other proposals for han- 
dling creation end deletion in historical databases 
[4]): : 
. For every relation, there is an additional boolean 

field named EXISTS that is imdicit. i.e.. not stored 
in the tuples of the relatioi. ‘l%e value of the 
object <Rl,Rl,EXISTS> is true if the tuple with 
key Kl is present in relation Rl, and is false if key 
Kl is not in Rl. 

. Every non-key field of every relation has a 
declared default value. If the tuole with kev Kl is 
not present.in relation Rl, then-the value ksoci- 
ated with the object <Rl,Kl,Fl> is the default 
value declared for field Fl in relation Rl.. The 
default value for a field may be a special 
“Undefined” or “null” value, or zero (which is 
appropriate for some numeric fields), or false (e.g., 
for the implicit field EXISTS), or. any other 
application-specified value. 

. “Deletion” of the tuple having key Kl in relation 
Rl is modeled ebstr&tly as setting <Rl,Kl,Fl> to 
the default value for everv field Fl in Rl: this 
includes the field EXISTS, -whose value is skt to 
false, 
“Creation” of a tuple with key Kl in Rl is modeled 
as setting <Rl,Kl,EXISTS> to true, .and setting any 
other fields whose initial values are supplied; any 
field for which an initial value is not supplied 
retains its default value. To allow changes to 
tuples to be processed even if the creation of the 

. 
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tuple has not been seen, we also treat tuple 
updates as setting EXISTS to true. If the applica- 
tion does not wish to treat tuple creation and tuple 
update identically, it can use more complicated 
update operations that test the value of EXISTS 
and then conditionally write field values. 

3. The Checker Algorithm 

This section describes how the Checker processes 
updates so that the effect on the datab,ase is as if the 
updates had been executed in timestamp order. 

3.1 Database Updates 

An update is a deterministic mapping.fromVdatabase 
states to database states. Each update issued is 
assigned a. unique. timestamp which is. used’ both for 
totally ordering the updates add for identification. 
Descriptions (and timestamps) of all updates received 
by a site are recorded ,by the site‘ s0 that an update 
can be reexecuted’as needed to preserve conslteney. 
We assume’no,particular repreientation atid encoding 
for.updab8.s; wvg only.assume thrlt the description of ati 
update can be executed by..the ‘Cheicker when”hdeded.” 

Th@‘&cecuti~n~of an ubdate results iriTe Seqi&nce ,of 
requbsts’of the-fbllo,wing, kind+ ’ ’ ” 1 .’ . 
c R&d(o,b]bct-iiaine),, w’hicii &t&s the vaiue. asSo- 

di$t&l’wifh the &iv$h &j&M. . ’ ’ ,a 
l Write(object-riame,vaiue), which ’ r&Hhcks the 

.@i;re& v&M -I’d the ’ nanied dbject <with the 
dpr?ciliCid n&value:. 

Ati* updtitd’ can “$erI&m “aibifrary. d&mpiiifBt&i’ 
betwee’n rtiquests; blitz its .d&ision to h&e a .g’iyen 
Read or,Write request &an depend *0hly .6n the values 
returned by pri?viM Reads and ‘dn nothing else; this 
guarantees that update3 are deterministic. We also 
assume. for *simplicity that an update does not Wtitd 
the same object more than once, nor does it Read an 
object,after iWriting it. This is a minor restriction 
that cab be satisfied by stiitably ,tiewriting complex 
updates. Specialized update operations such as inbre- 
ments arid decrements must al&be r&written in terms 
of Reads and Writes. For example, the withdrawal of 
money from an account followed by ‘the cotiditional 
setting of ir’ flag ‘(illustrated in Sectidn 1) can be 
rewritten as:: 

newbal := Read(Balance) - amount 
Write(Balance,newbal) iinstead of Decrement 
if ne’wbaI4’theh WritB(Overdiawn,trtie) 

While’.an tipdite may read infvrniatiori from the data- 
base,, it ‘dan’ohly read iri&vidual objects and carinot 
issue g&&al queries (“find all ,objects x such: that 
P(x)‘?: (As stated earlier,, queries issued by iransac- 
t,ions are processed separately, from’ updates.) We 
make th,is restriction mainly to av’pid the problem df 
determIning pr&licate qverlap. The algorithm we 
present could .be’ extended to handle updat& that 
include h&rid& albeit inefficientl$ when a query is 
issued by an update its “readset” is recorded a’s some 
worst-chase superset that’is’guarinteed to always con’ 
tain th’e jet of objects satisfying the query. 

3.2 Processing Old Updates 

If an update arrives at a site out of timestamp order 
(i.e., later than some already-processed higher- 
timestamped updates), the following must be done in 
order to maintain a consistent database state that 
reflects all updates received as if they had been exe- 
cuted in timestamp order: 

For any objects that the update reads, the update 
must see the values of these objects “as of” its own 
timestamp;. these values may no longer be the 
current ones. 
Object values that the update writes must also 
appear to have been written as of the update’s 
timestamp; these may not have any effect on the 
current database state if some higher-timestamped 
update wrbte the same object. 
If the update writes one or more objects that are 
read by a higher-timestamped update that has 
already been executed, then the, effects (object 
values written) of the latter update may no longer 
reflect what it would have written if it had seen all 
earlier-timestamped updates executed in time- 
stamp order. Therefore, such higher-timestamped 
updates. need to be, -undone. and reexecuted; on 
doing. so, .higher-timeatamped updates that read 
their effects may also need to be.undvne and reex- 
ecuted,andsoon. ” ‘. 

To’correctly process an update as of its timestamp, 
and to efficiently determine ,which updates need ,to, be 
undone and reexecuted, we nlalntain a hi9tory of all 
object Values -:written’ and all objects read by all 
updates that have been processed. Conbeptually, this 
history 1s. a’ collection of tuples of the .:following 
forms! i . 
. <Write,object-name,timestamp,value>. 3 These 

tuples are- called writeset entries.’ No two writeset 
entries in the history’ can have the same object- 
name and: time’stamp. For every object there is 
orie ‘writeset entry in the history with the special 
timestamp zero (smaller than any other update’s 
timestamp), that supplies the initial value of the 
object. 

. <dead,object-name,timestamp>. These tuples ate 
called readset entries. No two readset entries in 
the history can have the same object-n&me and 
timestamp. 

We will use the following definitions in our discussion. 
Because update timestamps are unique, we use the 
timestamp T of an updat&to also refer to the update 
itself. -” 
6 Writ&et(T) = f<x,v> -1 <Write,x,T,+ is in the his- 

tory) 
. Readset = (x 1 <Read,x,T> isin the history} 
. Previous-Writerfx.T) = the u0date that has the 

highes’t times&p. smalier ihan T ’ among all 
updates that have x in their writesets. 

. Last-Writei s the ubdatb that -has the highest 
tlmestamp &rnong all updates that have x in their 

“kritesets. If wk let infinity be a spe&al value that 
is &&iter thati any timestamp that c&n be assi@;ned 
to an,update, then L&t-Writer(i) is the same as 
Prkvious-Writer(x,infinity). 

: 
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. Value-Upto(x,T) = value v in the writeset entry 
<Write,x,Previous-Writer(x,T),v>. The “current” 
value of x in the database is Value-Upto(x,infinity). 

. Next-Writer&T) = the update that has the lowest 
timestamp greater than T among all updates that 
have x in their writesets. If there is no such 
uodate (i.e.. T>=Last-Writer(x)). then Next- 
Writer(x,T) is.infinity. 

.., 

To process a given update as of its timestamp T, Read 
and Write requests issued by the update are processed 
on the history as follows: 

l Read(x) adds <Read,x,T> to the history and returns 
Value-Upto(x,T). 

. Write(x,v) adds <Write,x,T,v> to the history. 
Processing a Write request may require undoing and 
reexecuting higher-timestamped updates that read 
objects written by the given update T. It may also 
require that the current database copy be updated, if 
the latest value of the object in question is being 
changed; we defer discussion of this until Section 3.4. 
First we describe how the Checker algorithm deter- 
mines which updates it must reexecute to maintain a 
consistent and correct history. 

3.3 The Algorithm 

The Checker algorithm is presented in Figure 1, in the 
form of a loop that runs forever installing the effects 
of received updates as quickly as possible. New 
updates are ones that arrived recently and have never 
been executed. An update that has been executed is 
initially marked Valid but may subsequently be 
marked Invalid if the execution (or reexecution) of an 
earlier-timestamped update causes the value of some 
object in its readset to change. 

The algorithm in Figure 1 executes (or reexecutes) 
New and Invalid updates in timestamp order. While 
the Checker is running, additional New updates may 
be issued by the local site or received from other 
sites. An arriving New update may have lower time- 
stamp thnn the current lowest-timestamped New or 
Invalid update (the update T being processed); this 
update will be processed in the next iteration of the 
loop. 

The crux of the algorithm lies in how it selects 
higher-timestamped updates to be marked Invalid 
when an updater is first executed or is reexecuted. 
Suppose the update T is Invalid and is being reexe- 
cuted. The chhngeset of T is the set of objects that 
now have different values as a result of T’s reexecu- 
tion, and is the union of three disjoint sets: 
1. The set of objects that T did not write in its previ- 

ous execution and does write on reexecution, 
where the value written on reexecution is not the 
same as the value written by the previous (next 
lower-timestamped) writer of the object. 

2. The set of objects that T did write in its previous 
execution and does not write on reexecution, 
where the value it wrote on the previous execution 
is not the same as the value written by the previ- 
ous writer of the object. 

while true do 
T := lowest-timestamped New or Invalid update, 

if none: wait for New updates to arrive, repeat 
;initialize new readset and writeset 
newrset := empty 
newwset := empty 
execute update T, processing requests as follows: 

Read(x): add x to newrset 
return Value-Upto(x,T) 

Write(x,value): add <x,value> to newwset 
determine objects whose values changed: 

oldwset := Writeset ;empty if T New 
added := (x 1 <x,vZ> in newwset 

and x not in oldwset 
and vt-=Value-Upto(x,T)) 

removed := {x i x not in newwset 
and <x,vl> in oldwset 
and vl-=Value-Upto(x,T)} 

changed := {x 1 <x,vZ> in newwset 
and <x,vl> in oldwset 
and v2-=vl) 

changeset := union(added,removed,changed) 
for each x in changeset do 

;mark future readers Invalid, through next writer 
for each update U such that U is Valid 

and U>T and Uc=Next-Writer(x,T) 
and x in Readset( 

mark U Invalid 
end for 
if T>=Last-Writer(x) then 

update x in current database copy 
end for 
;update history, atomically 
replace Readset in history with newrset 
replace Writeset in history with newwset 
;done with T 
mark T Valid 

end while 

Figure 1. The Checker Algorithm 

3. The set of objects that T wrote both in its previous 
execution and in its reeexection, where the values 
written in the two executions are not the same. 

If the update T is New and is being executed for the 
first time, then it did not write anything previously 
(in Figure 1, “oldwset” is empty). Its changeset has 
only one component, corresponding to the first case 
above. 

If a given object x is in T’s changeset, then 
higher-timestamped readers of x must be marked 
Invalid and scheduled for reexecution. However, if 
some later update, Next-Writer(x,T), also wrote x, 
then readers of x having timestamp greater than 
Next-Writer(x,T) need not be marked Invalid because 
the value they would read is the one written by 
Next-Writer(x,T) (or by another higher-timestamped 
writer of x) and is unaffected by T’s change to x. 

That the algorithm above in fact gives the correct 
result can be verified as follows. For each object x in 
Readset( we define Value-Seen(x,U) to be the 
value of x that was read by U when it was last exe- 
cuted. This is the value that Value-Upto(x,U) had in 
the history at the time U was executed. So long as 
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Value-Upto(x,U) equals Value-Seen(x,U) for every x in 
Readset( the effects of U recorded in the history 
are still valid and U need not be reexecuted. We 
observe that, on executing (or reexecuting) a given 
update T, the Checker algorithm marks a Valid 
update U.Invalid if and only if the execution of T 
caused Value-Upto(x,U) to change for some x in 
Readset( Therefore, if an update U is Valid, it 
must be the case that Value-Upto(x,U) still equals 
Value-Seen(x,U) for every x in Readset( Any 
update U for which this is not true must have been 
marked Invalid, and will be reexecuted by the 
Checker. 

While updates whose readsets have been modified 
will be reexecuted (guaranteeing correctness of the 
algorithm), efficiency requirements dictate that no 
update be reexecuted unless its readset has been 
modified. This will be true except in cases where 
Value-Upto(x,U) has changed more than once since 
the last time U was ‘executed and happens to be equal 
to Value-Seen(x,U) again. In this unlikely event, U 
will be unnecessarily reexecuted and will have the 
same writeset as before. Such unnecessary reexecu- 
tions could be avoided if Value-Seen were recorded in 
the readset entries of updates. We chose to save the 
cost of storing these values (instead recording only 
the names of objects read), and of comparing them 
against Value-Upto before reexecuting an ipdate, 
with the expectation that the cost of a few unneces- 
sary reexecutions would not be significant in com- 
parison. 

3.4 Updating the Current Database 

Assume that a separate copy of the current database 
state is being maintained to service queries from 
users and application programs. A change to the his- 
tory should cause the database copy to be updated if 
the highest-timestamped writeset entry for an object, 
say x, is being added or removed or replaced and the 
object’s current value is actually changing as a result, 
i.e., the object x is in the update T’s “changeset” and 
T>=Last-Writer(x). If the highest-timestamped Write 
of x is being remqved on reexecution of T, the current 
database copy should be updated to reflect the value 
written by the previous writer of x; if T is writing a 
new current value of x, that value should be installed 
in the current database copy. 

3.5 Prototype Implementation 

The Checker algorithm has been implemented for a 
relational database. As described in Section 2, indivi- 
dual fields (including the implicit EXISTS field) of 
tuples are treated as independently-updatable 
objects, with names of the form <relation-name,key- 
vaiue,field-name>. The current, database state is 
stored in INGRES relations. 

The history ifpmation needed by the algorithm is 
stored in UNIX files, rather than in the DBMS, in 
order to support the Checker’s special processing 
requirements. The data.structures we use are: 

. A file containing the update descriptions and time- 
stamps; updates are asynchronously appended to 
this file as they arrive. 

. A writeset file that records names and values of 
objects written by updates. 

. A readset file that records names of objects read 
by updates. 

. An update status file, with entries linked in time- 
stamp order, that records each update’s status 
(New or Valid or Invalid) and contains pointers to 
the update’s description and to the readset and 
writeset entries of the update. 

Even though individual fields of a tuple can be 
updated independently, we assume that many updates 
will read or write more than one field of a tuple. 
Such accesses to multiple fields of the same tuple are 
grouped into a single Read or Write request. The 
resulting readset or writeset entries are stored as a 
single record in the corresponding file. Writeset 
records from different updates for the same tuple are 
chained in timestamp order, to permit efficient 
searching for the values of any group of fields of the 
tuple as of any desired timestamp. Similarly, readset 
records for the same tuple are chained in timestamp 
order, so that higher-timestamped readers of any 
group of fields of the tuple can be found in a single 
scan. We have not attempted further optimizations 
of the data structures, because the Checker is not 
currently a bottleneck in the system. It would prob- 
ably be useful to cluster readset and writeset records 
by timestamp, to improve locality and to make 
garbage-collection of old information (Section 4.3) 
more efficient. 

We have not yet made the Checker implementa- 
tion fully crash-resistant. What we have done 
(reflected in Figure 1) is order the different steps of 
an update’s execution or reexecutign (installing the 
new readset and writeset, and marking updates 
Invalid or Valid) in such a way as to make the execu- 
tion restartable. That is, a crash between steps will 
at worst cause an unnecessary reexecution of an 
update; it will not destroy the integrity of the history 
information. Recovering from a crash that occurs 
during execution of a step will require performing 
each step as an atomic recoverable change, using 
known techniques such as intentions lists or shadow 
pages. Breaking the processing of an update into 
multiple steps will also allow concurrent processing of 
multiple updates, as discussed in Section 4.4. 

4. Extensions 

This section outlines several extensions that we 
are considering for the Checker algorithm. While 
these have not been worked out in detail, our inten- 
tion in describing them is to illustrate that the basic 
algorithm and the history database provide a sound 
and robust foundation for introducing a variety of 
enhancements to the performance and functionality 
of the system. 

4.1 Specialized Update Operations 

Certain types of objects permit update operations 
(such as increment and decrement) other than a Write 
operation that replaces the current value of an object 
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with a given new value. When such operations are 
translated into Read and Write requests, the arrival 
of a decrement operation after a higher-timestamped 
one will cause the latter to be reexecuted (since the 
latter’s readset is being changed). While this gives 
the correct final result, the reexecution would not 
have been necessary if the Checker could take advan- 
tage of the commutativity of decrement operations. 

To provide better support for specialized update 
operations, our history database can be extended to 
allow such operations to be stored directly in the his- 
tory without executing them. The history information 
for an object may then contain a mixture of Writes 
and other operations. The computation of the value 
of an object is deferred until it is actually needed. 
That is, when a Read request is issued for a given 
object x as of timestamp T, the desired Value- 
URto(x,T) is computed by-finding the most recent 
Write of x (with highest timestamo smaller than T) 
and then executing i‘;l timestamp order all intervening 
operations on x. 

If the current value of an object is being main- 
tained separately (in the current database copy), it 
must be kept up-to-date as Writes or other operations 
are added to or removed from the object’s history. In 
the worst case, the new current value will have to be 
recomputed as described above. Uowever, there are 
many special cases where the new value can be com- 
puted more efficiently: 

l An operation is added, with higher timestamp than 
the last Write, that commutes with all higher- 
timestamped operations (e.g., all are increments ,or 
decrements): simply execute the operation on the 
current value. This case applies trivially if there 
are no other higher-timestamped operations. 

l An operation is removed (because the Invalid 
update that had issued the operation did not do so 
on reexecution), with higher timestamp than the 
last Write, that is invertible and commutes with all 
higher-timestamped operations (if there are any): 
execute the inverse operation (e.g., decrement 
instead of increment) on the current value. 

4.2 Query Consistency 

If a transaction issues a query against the current 
database copy, there is no guarantee that it will see a 
consistent database state reflecting the timestamp- 
ordered execution of some set of updates. The only 
time the database is consistent is when there are no 
Invalid updates waiting to be undone and reexecuted. 
The Checker could defer installing changes to the 
current database copy until there are no Invalid 
updates (i.e., the last remaining one is reexecuted); 
transactions would then always see consistent infor- 
mation. However, the information seen would not 
reflect updates received since the last time there 
were no Invalid updates. It is possible that some tran- 
sactions might prefer to see the latest information 
even if it is inconsistent; these would be unnecessarily 
penalized. Therefore, it seems preferable to install 
changes directly in the current database, and let each 
transaction decide whether or not it needs to see con- 
sistent information. The Checker can make informa- 
tion about the status of updates available for 

transactions to examine; a transaction that does wish 
to see consistent information simply waits until there 
are no Invalid updates. 

If a transaction wishes to wait until all Invalid 
updates are reexecuted, this may take a very long 
time if new updates with old timestamps’eontinue to 
arrive and keep causing existing updates to be marked 
Invalid. Availabillty could be improved if a transac- 
tion only had to wait for that part of the database in 
which it is interested to become consistent. It should 
be possible to extend the Checker algorithm so that 
when an update is marked Invalid a recursive scan is 
performed of updates that read its output and updates 
that read their output and so on, marking the affected 
data items in the current database copy-as potentially 
inconsistent. Some additional effort will be needed 
to later “unmark” such a potentiaily~inconsistent data 
item, if reexecution of the update that wrote it has 
the same effect as before. 

Further improvements would be possible if the 
Checker could selectively schedule New and Invalid 
updates for execution (or reexecation) based on query 
requirements, rather than treating all updates as 
equal and always executing them in timestamp order. 
The correctness of the algorithm would not be 
affected if updates were executed in some other 
order. Certain classes of queries could be favored by 
statically assigning priorities to different types of 
updates and executing higher-priority updates before 
lower-priority ones. It may also be useful to decom- 
pose updates into independent pieces that can be 
assigned different priorities, e.g., computation of the 
flag Overdrawn could be deferred when an account’s 
Balance is updated. A more dynamic mechanism 
would select New and Invalid updates for execution 
based on the data requirements of the queries out- 
standing (and anticipated) at any given time; we are 
currently looking at what additional information the 
Checker would need in order to do this. 

4.3 Garbage-Collection 

The history database can grow without bound as more 
and more updates arrive; this will eventually exhaust 
the available storage at a site. It is possible to dis- 
card old information from the history once it has been 
determined, by agreement among all sites, that no 
further updates with timestamps smaller than a 
specified “cutoff” will be issued in the future. Once a 
site has determined a cutoff timestamp, say TO, the 
update descriptions and readset entries of updates 
with timestamp smaller than TO can be discarded 
from the site’s history database. The writeset entries 
of these updates can also be discarded, except that a 
newly-arriving update (which can have timestamp as 
small as TO) may need to read the value of an object 
as far back as TO. Therefore, the site must retain 
Value-Upto(x,TO) for each object x (this is in effect a 
“checkpoint” of the database as of timestamp TO); all 
earlier object values can be discarded. 

4.4 Internal Concurrency 

The Checker algorithm we have described executes 
updates one at a time. This was done mainly for ease 
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of exposition and to avoid concurrency issues in the 
implementation. The algorithm would continue to 
work correctly if updates were executed con- 
currently, with appropriate low-level synchronization 
of access to the history data structures. The execu- 
tion (or reexecution) of a New or Invalid update could 
be started immediately whenever some other update’s 
execution is waiting for disk I/O and a processor is 
available. This would make information available for 
queries sooner, but would also increase the likelihood 
that an update will be undone and reexecuted because 
a concurrently-executing earlier-timestamped update 
may invalidate its readset. In the extreme, if a pro- 
cessor could be allocated to every update, the 
behavior of the algorithm would be very similar to 
Jefferson and Metro’s “Time Warp” mechanism [9]. 
The Time Warp approach and our strict sequential 
approach can be viewed as opposite extremes on the 
spectrum of optimism versus pessimism. In future 
research, we hope tp explore other points along this 
spectrum, to achieve a balance between concurrency 
and cost of reexecution. 

5. Summary 

We presented an algorithm that processes updates 
arriving out of timestamp order in such a way that the 
database state always reflects updates received as if 
they had been executed in timestamp order. The 
algorithm uses a history of values written and objects 
read by all updates, and schedules updates for reexe- 
cution based on their conflicts with newly-arriving 
earlier-timestamped updates. The algorithm dynami- 
cally determines the difference between the effects 
of an update’s previous execution and its reexecution 
in order to prevent the cascading of unnecessary 
reexecutions of updates. 

The Checker algorithm has been implemented for a 
relational database in the SHARD prototype at CCA, 
and its performance under initial testing appears rea- 
sonable. We outlined several promising extensions to 
the basic algorithm, suggesting that the technique 
provides a reasonable framework for adding future 
enhancements. It is possible that our technique may 
be useful outside its original scenario, in a historical 
database where “timestamps” refer to real-world time 
rather than system clock time and updates may arrive 
with old timestamp because of external delays or 
because a prior error needs to be corrected. We leave 
this question open for future research. 
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