
USING HISTORY INFORMATION TO

PROCESS DELAYED DATABASE UPDATES

Sunil K. Sarin, Charles W. Kaufman, and Janet E. Somers

Computer Corporation of America
Four Cambridge Center

Cambridge, Massachusetts 02142

Abstract: An algorithm is described which processes
database updates arriving out of order in a way that
maintains a -consistent view of the data. This problem
arises in the context of a high availability replicated
database architecture in which updates are totally
ordered by timestamp but do not necessarily arrive at
a site in timestamp order. The algorithm uses a his-
tory of object values written and objects read, by
updates. When a new update arrives and is executed,
higher-timestamped updates that read its results are
scheduled for undoing and reexecution; such reexecu-
tion may in turn cause additional updates to be reexe-
cuted, and so on. A major goal of the algorithm is to
avoid this kind of cascading when reexecution of an
update would have the same effect as it had before.
A prototype implementation of the algorithm for a
relational database is described. It is suggested that
the algorithm may be of use outside its original con-
text, in the maintenance of historical databases.

1. Introduction

Replication of data at multiple sites offers the
potential for high availability of a database in a dis-
tributed environment. However, the need to maintain
consistency of multiple copies usually limits the avai-
lability that can be achieved in the face of communi-
cation failures. If the communication network is par-
titioned into two or more disconnected groups, at
most one group (the one, if any, with,a majority of

This research was supported by the Defense Advanced
Research Projects Agency of the Department of
Defense and by the Air Force Systems Command at
Rome Air Development Center under Contract No.
F30602-84-C-0112. The views and conclusions con-
tained in this document are those of the authors and
should not be interpreted as necessarily representing
the official policies, either expressed or implied, of
DARPA, RADC, or the U.S. Government.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage? the VLDB copyright notice and the
title of the publication and rts date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
a&or special permission from the Endowment.

Proceedings of the Twelfth International
Conference on Very Large Data Bases -71-

copies or votes [16,8]) will be allowed to update a
given data item; transactions in other groups cannot
even read the data item and update others without
incurring the risk of violating serializability. This
may be unacceptable in applications - such as inven-
tory control, banking, and reservation systems - that
require continued service in the presence of commun-
ication failures and partitions.

The System for Highly Available Replicated Data
(SHARD) developed at CCA emphasizes continued
operation of a replicated database in spite of network
partitions and other communication failures [15].
Transactions in SHARD do not execute serializably.
Database queries and external actions issued by a
transaction are performed immediately at the site
executing the transaction. However,. updates issued
by a transaction are processed asynchronously by the
sites in the system, after some communication delay
which is highly variable (especially if there is a net-
work partition) and which may be different for-each
site.

Because transactions are not serializable, integrity
constraints on the database may be violated. Appli-
cations that use SHARD must distinguish between
structural “invariants” that are required to-always be
true for the stored data (e.g., computed totals con-
sistent with base data) and more general “semantic
integrity constraints ” that represent desirable states
but need not be strictly enforced (e.g., no overbook-
ing of seats or overdrawing of money). The update
parts of transactions are designed to preserve the
invariants, but integrity constraints may be violated
and inconsistent external output may be issued. We
rely on the application to compensate for these prob-
lems when they occur. It is also possible for the
application to selectively introduce “pessimistic” con-
currency control, giving up some availability, to
reduce the likelihood of inconsistency and cost of
compensation.

This paper is not concerned with how applications
deal with non-serializable transaction execution
(described in [14]), but with the processing of updates
in a way that preserves mutual consistency of multi-
ple database copies and supports the application’s
compensation requirements. Updates issued by tran-
sactions are assigned unique timestamps [ll], and a
site’s database copy at any given time must reflect
those updates that it has seen so far as if they had
been executed in timestamp order. Because of
unpredictable communication delays, an update arriv-
ing at a site may have lower timestamp than some

Kyoto, August, 1986

previously-received and already-executed updates. If
any of these higher-timestamped updates conflict
with the newly-received one, they must be undone
and reexecuted to maintain the desired timestamp
ordering criterion. The objective of the algorithm we
present is to control the amount of such reexecution
that is needed, while expending a moderate computa-
tional effort in determining which updates to reexe-
cute.

Previous proposals to use timestamp ordering for
mutual consistency assumed that every update uncon-
ditionally overwrites a specified data item with a
given new value. Mutual consistency is achieved by
the following well-known method, first proposed by
Johnson and Thomas [lo]. The timestamp of the
highest-timestamped update to each data item is
remembered, and a newly-arriving update to a given
data item is ignored if its timestamp is smaller than
the timestamp currently associated with the data
item. Updates that add or delete items to and from a
set (as in [2,5]) are equivalent to overwriting the
“membership function” of items in the set to true or
false, and can be treated similarly.

Updates in SHARD can be considerably more com-
plex than simple overwrites. The reasons for this are
twofold, First, we wish to permit specialized update
operations, such as incrementing and decrementing a
numeric quantity. Consider the following transaction
that withdraws money from a bank account whose
balance is stored under the data item “Balance”:

amount := ask-user(“How much to withdraw?“)
if read(Baiance)>=amount then

give customer amount in cash
issue update: Decrement(Balance,amount)

The Decrement operation above takes effect at a
given site at the time of execution of the update,
which may be some,time later than the time of read-
ing the balance and dispensing the money. If two
concurrent withdrawals were to see the same initial
balance, the final value of the balance (after both
Decrement operations have been received and .exe-
cuted) would correctly reflect the total amount with-
drawn.

The second reason for including more complex
update types is to allow the detection of hon-
serializable execution so that the application can per-
form compensating actions. For example, if the ini-
tial balance of an account were $400, two concurrent
withdrawals of $200 and $300 would both succeed
(because each reads a balance that appears to be
sufficient) but would leave a negative final balance,
-$lOO; The bank may wish to compensate for this
whenever it does occur, perhaps by assessing a fine
and sending a letter to the customer demanding pay-
ment. To support this, the withdrawal interaction
should issue a more complex update of the following
form:

Decrement (Balance,amount)
if Balance<0 then Overdrawn := true

Such’s composite update is assigned a single time-
stamp; a site receiving the update executes it atomi-
cally. The effect of this is that the flag “Overdrawn”
will be set to true if (and only if) Balance ever falls
below zero in the timestamp-ordered execution of
updates. A separate transaction can read this flag
and perform the necessary compensation if

Overdrawn is found to be true. This technique can be

f
eneralized to other applications, as described in
141.

Since updates issued by transactions may read the
contents of the database (and their effects may be
conditional on what they read), previous mutual con-
sistency mechanisms that support only overwrites are
no longer adequate. Our algorithm uses a history of
all values of a data item written by all updates, not
just the latest value and a timestamp. In addition,
the algorithm records which data items were read by
each update, so that higher-timestamped updates that
conflict with a newly-arriving one can be identified;
these conflicting updates are then undone and reexe-
cuted to restore consistency. For the example update
above, the arrival of any earlier-timestamped update
that changes Balance will cause this update to be
reexecuted. Overwriting updates are still executed
efficiently; because such an update does not read
anything, it is never reexecuted.

It is possible that the effect of reexecuting an
update may be the same as it was on the previous
execution of the update; in such a case, we say that
the update was unnecessarily reexecuted. This can-
not be avoided without using semantic information
about what conditions on the update’s readset (e.g.,
balance being sufficiently high) determine its write-
set. An explicit objective of our algorithm design was
to avoid the complexities of representing and manipu-
lating semantic information about updates; this
resulted in a conceptually simple algorithm that we
were able to implement very quickly. The cost of an
unnecessary update reexecution is not prohibitive,
because it does not cause any %ascading” of further
unnecessary reexecutions. That is, if reexecution of
a given update has the same effect as before (which is
determined by a run-time comparison), no higher-
timestamped updates that read its output are marked
for reexecution. Our algorithm appears to provide a
sound framework for introducing optimizations based
on semantic information,, should it be necessary to
further reduce unnecessary reexecutions; the treat-
ment of specialized update operations in Section 4.1
is an example of such an extension,

The performance of our algorithm (which depends
on the actual degree of conflict among updates) is a
serious concern only if there is a prolonged network
partition. While out of communication with some
other site, a given site must retain history informa-
tion as old as the timestamp of the last update
received from that site. On reconnection, updates
with very old timestamp may be received, possibly
causing large numbers of higher-timestamped updates
to be reexecuted. The storage and processing
requirements of the algorithm therefore grow with
the duration of the communication failure. For very
long partitions (e.g., several days), these costs may be
unacceptable. In addition, site clocks may drift too
far out of synchrony for timestamp ordering to be
meaningful. Therefore, mechanisms based on merg-
ing values rather than updates (such as [6,13]) may be
more appropriate if a partition lasts an extremely
long time; even these may not always be sufficient,
and manual intervention may be needed.

-72-

The idea of undoing and reexecuting updates based
on their conflicts to preserve the timestamp ordering
property was previously introduced as part of the log
transformation approach [3]. Log transformations
were designed for a “discrete” network partition
scenario, in which the analysis is performed just once
to integrate updates issued on the different sides of a
partition when all sites are fully connected again.
The new’ SHARD architecture, on the other hand, does
not assume that all sites are ever fully connected, and
is thus able to handle a wider class of communication
failures. New updates with old timestamps may
arrive at a site at any time, and must be continuously
integrated with already-processed ones. The mbtual
consistency algorithm must therefore be executed
repeatedly, and it is important to retain as much
information as possible for reuse. This is achieved
using the history database, which is a novel contribu-
tion of our approach.

Our design of the history database is relat(?d to
recent proposals for including the “time dimension” in
a database [4,12]. To distinguish between the two, we
will use the terms history to refer to a database (such
as ours) that records past system states based on tran-
saction time, and historical to refer to a database
that represents perceived external states based on
real-world time. When modeling real-world events in
a historical database, it is not always the case that
events are reported in the order that they occurred,
because of varying external communication delays.
In addition, there may be errors in reporting that need
to be corrected later. Each event report, whose
“timestamp” is the believed time of occurrence of the
event, will typically contain one or a small number of
basic facts that are,directly installed in the database,
and may in addition trigger the recomputation of
some other data such as cumulative totals or flags
indicating the presence of unusual transitions (such as
an account being overdrawn). It is possible that the
method we use for processing out-of-order updates
will be applicable in historical databases as well: By
recording which data items were read by the associ-
ated computations, it is possible to minimize the
number of such computations that must be reexe-
cuted when an old update arrives.

This paper describes the mutual consistency algo-
rithm from the point of view of a single site that is
receiving timestamped updates, issued by itself and
by other sites, in some arbitrary order. The algorithm
is executed by a module of the system called the
Checker. A separate module, called the Distributor,
is responsible for ensuring that all sites eventually
receive all updates [1,7]. Even though sites may
receive updat& in different orders, the Checker algo-
rithm at each site ensures that the end effect is as if
all updates had been executed in timestamp order;
eventual mutual consistency of database copies is
therefore guaranteed. The current design and imple-
mentation of SHARD assumes a fully replicated data-
base for simplicity. We are developing support for
partial replication, by preanalyzing the update types
permitted by the application and decomposing the
database in such a way that every update can be exe-
cuted locally by a site holding a copy of the affected
data. The algorithm we present in this paper will
apply to such a scenario as well.

The next section describes the model of data that
we assume. Section 3 describes the basic Checker
algorithm. Section 4 lists some extenLions that we
are exploring, including more efficient processing of
specialized update operations (such as decrements).
Section 5 concludes by summarizing the key features
of the algorithm.

2. Model of Data

For the purpose of this paper, we assume that the
database consists of a collection of named objects
and their associated values, where an object is the
smallest independently-updatable item of data. This
is an abstract view of the contents of a datibase, not
a user-oriented or implementation-oriented data
model. Most if not all data models can be mapped
into ours by appropriately restricting the set of possi-
ble object names and choosing related names for
related objects, For example, in our prototype imple-
mentation of the algorithm we assume a relational
database in which some set of fields in each relation
comprise the key of the relation: no more than one
tuple can have the same combination of values in the
key fields, and the key fields of a tuple ape not updat-
able. (To satisfy this restriction, it may be necessary
to use internally-generated surrogatesas keys.) Each
non-key field of each tuple of each relation is viewed
as a distinct “object”, having as its neme the triple
<relation-na~e&ey-value,fieIdname~.

The set of objects in the database does not change
over time, i.e., is statically known from the initial
database state. In the relational example, this
requirement is met by pretending that every syntacti-
cally legal key .value is present in the abstract coun-
terpart of each stored relation, end making the fol-
lowing extensions (similar to other proposals for han-
dling creation end deletion in historical databases
[4]): :
. For every relation, there is an additional boolean

field named EXISTS that is imdicit. i.e.. not stored
in the tuples of the relatioi. ‘l%e value of the
object <Rl,Rl,EXISTS> is true if the tuple with
key Kl is present in relation Rl, and is false if key
Kl is not in Rl.

. Every non-key field of every relation has a
declared default value. If the tuole with kev Kl is
not present.in relation Rl, then-the value ksoci-
ated with the object <Rl,Kl,Fl> is the default
value declared for field Fl in relation Rl.. The
default value for a field may be a special
“Undefined” or “null” value, or zero (which is
appropriate for some numeric fields), or false (e.g.,
for the implicit field EXISTS), or. any other
application-specified value.

. “Deletion” of the tuple having key Kl in relation
Rl is modeled ebstr&tly as setting <Rl,Kl,Fl> to
the default value for everv field Fl in Rl: this
includes the field EXISTS, -whose value is skt to
false,
“Creation” of a tuple with key Kl in Rl is modeled
as setting <Rl,Kl,EXISTS> to true, .and setting any
other fields whose initial values are supplied; any
field for which an initial value is not supplied
retains its default value. To allow changes to
tuples to be processed even if the creation of the

.

-73-

tuple has not been seen, we also treat tuple
updates as setting EXISTS to true. If the applica-
tion does not wish to treat tuple creation and tuple
update identically, it can use more complicated
update operations that test the value of EXISTS
and then conditionally write field values.

3. The Checker Algorithm

This section describes how the Checker processes
updates so that the effect on the datab,ase is as if the
updates had been executed in timestamp order.

3.1 Database Updates

An update is a deterministic mapping.fromVdatabase
states to database states. Each update issued is
assigned a. unique. timestamp which is. used’ both for
totally ordering the updates add for identification.
Descriptions (and timestamps) of all updates received
by a site are recorded ,by the site‘ s0 that an update
can be reexecuted’as needed to preserve conslteney.
We assume’no,particular repreientation atid encoding
for.updab8.s; wvg only.assume thrlt the description of ati
update can be executed by..the ‘Cheicker when”hdeded.”

Th@‘&cecuti~n~of an ubdate results iriTe Seqi&nce ,of
requbsts’of the-fbllo,wing, kind+ ’ ’ ” 1 .’ .
c R&d(o,b]bct-iiaine),, w’hicii &t&s the vaiue. asSo-

di$t&l’wifh the &iv$h &j&M. . ’ ’ ,a
l Write(object-riame,vaiue), which ’ r&Hhcks the

.@i;re& v&M -I’d the ’ nanied dbject <with the
dpr?ciliCid n&value:.

Ati* updtitd’ can “$erI&m “aibifrary. d&mpiiifBt&i’
betwee’n rtiquests; blitz its .d&ision to h&e a .g’iyen
Read or,Write request &an depend *0hly .6n the values
returned by pri?viM Reads and ‘dn nothing else; this
guarantees that update3 are deterministic. We also
assume. for *simplicity that an update does not Wtitd
the same object more than once, nor does it Read an
object,after iWriting it. This is a minor restriction
that cab be satisfied by stiitably ,tiewriting complex
updates. Specialized update operations such as inbre-
ments arid decrements must al&be r&written in terms
of Reads and Writes. For example, the withdrawal of
money from an account followed by ‘the cotiditional
setting of ir’ flag ‘(illustrated in Sectidn 1) can be
rewritten as::

newbal := Read(Balance) - amount
Write(Balance,newbal) iinstead of Decrement
if ne’wbaI4’theh WritB(Overdiawn,trtie)

While’.an tipdite may read infvrniatiori from the data-
base,, it ‘dan’ohly read iri&vidual objects and carinot
issue g&&al queries (“find all ,objects x such: that
P(x)‘?: (As stated earlier,, queries issued by iransac-
t,ions are processed separately, from’ updates.) We
make th,is restriction mainly to av’pid the problem df
determIning pr&licate qverlap. The algorithm we
present could .be’ extended to handle updat& that
include h&rid& albeit inefficientl$ when a query is
issued by an update its “readset” is recorded a’s some
worst-chase superset that’is’guarinteed to always con’
tain th’e jet of objects satisfying the query.

3.2 Processing Old Updates

If an update arrives at a site out of timestamp order
(i.e., later than some already-processed higher-
timestamped updates), the following must be done in
order to maintain a consistent database state that
reflects all updates received as if they had been exe-
cuted in timestamp order:

For any objects that the update reads, the update
must see the values of these objects “as of” its own
timestamp;. these values may no longer be the
current ones.
Object values that the update writes must also
appear to have been written as of the update’s
timestamp; these may not have any effect on the
current database state if some higher-timestamped
update wrbte the same object.
If the update writes one or more objects that are
read by a higher-timestamped update that has
already been executed, then the, effects (object
values written) of the latter update may no longer
reflect what it would have written if it had seen all
earlier-timestamped updates executed in time-
stamp order. Therefore, such higher-timestamped
updates. need to be, -undone. and reexecuted; on
doing. so, .higher-timeatamped updates that read
their effects may also need to be.undvne and reex-
ecuted,andsoon. ” ‘.

To’correctly process an update as of its timestamp,
and to efficiently determine ,which updates need ,to, be
undone and reexecuted, we nlalntain a hi9tory of all
object Values -:written’ and all objects read by all
updates that have been processed. Conbeptually, this
history 1s. a’ collection of tuples of the .:following
forms! i .
. <Write,object-name,timestamp,value>. 3 These

tuples are- called writeset entries.’ No two writeset
entries in the history’ can have the same object-
name and: time’stamp. For every object there is
orie ‘writeset entry in the history with the special
timestamp zero (smaller than any other update’s
timestamp), that supplies the initial value of the
object.

. <dead,object-name,timestamp>. These tuples ate
called readset entries. No two readset entries in
the history can have the same object-n&me and
timestamp.

We will use the following definitions in our discussion.
Because update timestamps are unique, we use the
timestamp T of an updat&to also refer to the update
itself. -”
6 Writ&et(T) = f<x,v> -1 <Write,x,T,+ is in the his-

tory)
. Readset = (x 1 <Read,x,T> isin the history}
. Previous-Writerfx.T) = the u0date that has the

highes’t times&p. smalier ihan T ’ among all
updates that have x in their writesets.

. Last-Writei s the ubdatb that -has the highest
tlmestamp &rnong all updates that have x in their

“kritesets. If wk let infinity be a spe&al value that
is &&iter thati any timestamp that c&n be assi@;ned
to an,update, then L&t-Writer(i) is the same as
Prkvious-Writer(x,infinity).

:

-74-

. Value-Upto(x,T) = value v in the writeset entry
<Write,x,Previous-Writer(x,T),v>. The “current”
value of x in the database is Value-Upto(x,infinity).

. Next-Writer&T) = the update that has the lowest
timestamp greater than T among all updates that
have x in their writesets. If there is no such
uodate (i.e.. T>=Last-Writer(x)). then Next-
Writer(x,T) is.infinity.

..,

To process a given update as of its timestamp T, Read
and Write requests issued by the update are processed
on the history as follows:

l Read(x) adds <Read,x,T> to the history and returns
Value-Upto(x,T).

. Write(x,v) adds <Write,x,T,v> to the history.
Processing a Write request may require undoing and
reexecuting higher-timestamped updates that read
objects written by the given update T. It may also
require that the current database copy be updated, if
the latest value of the object in question is being
changed; we defer discussion of this until Section 3.4.
First we describe how the Checker algorithm deter-
mines which updates it must reexecute to maintain a
consistent and correct history.

3.3 The Algorithm

The Checker algorithm is presented in Figure 1, in the
form of a loop that runs forever installing the effects
of received updates as quickly as possible. New
updates are ones that arrived recently and have never
been executed. An update that has been executed is
initially marked Valid but may subsequently be
marked Invalid if the execution (or reexecution) of an
earlier-timestamped update causes the value of some
object in its readset to change.

The algorithm in Figure 1 executes (or reexecutes)
New and Invalid updates in timestamp order. While
the Checker is running, additional New updates may
be issued by the local site or received from other
sites. An arriving New update may have lower time-
stamp thnn the current lowest-timestamped New or
Invalid update (the update T being processed); this
update will be processed in the next iteration of the
loop.

The crux of the algorithm lies in how it selects
higher-timestamped updates to be marked Invalid
when an updater is first executed or is reexecuted.
Suppose the update T is Invalid and is being reexe-
cuted. The chhngeset of T is the set of objects that
now have different values as a result of T’s reexecu-
tion, and is the union of three disjoint sets:
1. The set of objects that T did not write in its previ-

ous execution and does write on reexecution,
where the value written on reexecution is not the
same as the value written by the previous (next
lower-timestamped) writer of the object.

2. The set of objects that T did write in its previous
execution and does not write on reexecution,
where the value it wrote on the previous execution
is not the same as the value written by the previ-
ous writer of the object.

while true do
T := lowest-timestamped New or Invalid update,

if none: wait for New updates to arrive, repeat
;initialize new readset and writeset
newrset := empty
newwset := empty
execute update T, processing requests as follows:

Read(x): add x to newrset
return Value-Upto(x,T)

Write(x,value): add <x,value> to newwset
determine objects whose values changed:

oldwset := Writeset ;empty if T New
added := (x 1 <x,vZ> in newwset

and x not in oldwset
and vt-=Value-Upto(x,T))

removed := {x i x not in newwset
and <x,vl> in oldwset
and vl-=Value-Upto(x,T)}

changed := {x 1 <x,vZ> in newwset
and <x,vl> in oldwset
and v2-=vl)

changeset := union(added,removed,changed)
for each x in changeset do

;mark future readers Invalid, through next writer
for each update U such that U is Valid

and U>T and Uc=Next-Writer(x,T)
and x in Readset(

mark U Invalid
end for
if T>=Last-Writer(x) then

update x in current database copy
end for
;update history, atomically
replace Readset in history with newrset
replace Writeset in history with newwset
;done with T
mark T Valid

end while

Figure 1. The Checker Algorithm

3. The set of objects that T wrote both in its previous
execution and in its reeexection, where the values
written in the two executions are not the same.

If the update T is New and is being executed for the
first time, then it did not write anything previously
(in Figure 1, “oldwset” is empty). Its changeset has
only one component, corresponding to the first case
above.

If a given object x is in T’s changeset, then
higher-timestamped readers of x must be marked
Invalid and scheduled for reexecution. However, if
some later update, Next-Writer(x,T), also wrote x,
then readers of x having timestamp greater than
Next-Writer(x,T) need not be marked Invalid because
the value they would read is the one written by
Next-Writer(x,T) (or by another higher-timestamped
writer of x) and is unaffected by T’s change to x.

That the algorithm above in fact gives the correct
result can be verified as follows. For each object x in
Readset(we define Value-Seen(x,U) to be the
value of x that was read by U when it was last exe-
cuted. This is the value that Value-Upto(x,U) had in
the history at the time U was executed. So long as

-75-

Value-Upto(x,U) equals Value-Seen(x,U) for every x in
Readset(the effects of U recorded in the history
are still valid and U need not be reexecuted. We
observe that, on executing (or reexecuting) a given
update T, the Checker algorithm marks a Valid
update U.Invalid if and only if the execution of T
caused Value-Upto(x,U) to change for some x in
Readset(Therefore, if an update U is Valid, it
must be the case that Value-Upto(x,U) still equals
Value-Seen(x,U) for every x in Readset(Any
update U for which this is not true must have been
marked Invalid, and will be reexecuted by the
Checker.

While updates whose readsets have been modified
will be reexecuted (guaranteeing correctness of the
algorithm), efficiency requirements dictate that no
update be reexecuted unless its readset has been
modified. This will be true except in cases where
Value-Upto(x,U) has changed more than once since
the last time U was ‘executed and happens to be equal
to Value-Seen(x,U) again. In this unlikely event, U
will be unnecessarily reexecuted and will have the
same writeset as before. Such unnecessary reexecu-
tions could be avoided if Value-Seen were recorded in
the readset entries of updates. We chose to save the
cost of storing these values (instead recording only
the names of objects read), and of comparing them
against Value-Upto before reexecuting an ipdate,
with the expectation that the cost of a few unneces-
sary reexecutions would not be significant in com-
parison.

3.4 Updating the Current Database

Assume that a separate copy of the current database
state is being maintained to service queries from
users and application programs. A change to the his-
tory should cause the database copy to be updated if
the highest-timestamped writeset entry for an object,
say x, is being added or removed or replaced and the
object’s current value is actually changing as a result,
i.e., the object x is in the update T’s “changeset” and
T>=Last-Writer(x). If the highest-timestamped Write
of x is being remqved on reexecution of T, the current
database copy should be updated to reflect the value
written by the previous writer of x; if T is writing a
new current value of x, that value should be installed
in the current database copy.

3.5 Prototype Implementation

The Checker algorithm has been implemented for a
relational database. As described in Section 2, indivi-
dual fields (including the implicit EXISTS field) of
tuples are treated as independently-updatable
objects, with names of the form <relation-name,key-
vaiue,field-name>. The current, database state is
stored in INGRES relations.

The history ifpmation needed by the algorithm is
stored in UNIX files, rather than in the DBMS, in
order to support the Checker’s special processing
requirements. The data.structures we use are:

. A file containing the update descriptions and time-
stamps; updates are asynchronously appended to
this file as they arrive.

. A writeset file that records names and values of
objects written by updates.

. A readset file that records names of objects read
by updates.

. An update status file, with entries linked in time-
stamp order, that records each update’s status
(New or Valid or Invalid) and contains pointers to
the update’s description and to the readset and
writeset entries of the update.

Even though individual fields of a tuple can be
updated independently, we assume that many updates
will read or write more than one field of a tuple.
Such accesses to multiple fields of the same tuple are
grouped into a single Read or Write request. The
resulting readset or writeset entries are stored as a
single record in the corresponding file. Writeset
records from different updates for the same tuple are
chained in timestamp order, to permit efficient
searching for the values of any group of fields of the
tuple as of any desired timestamp. Similarly, readset
records for the same tuple are chained in timestamp
order, so that higher-timestamped readers of any
group of fields of the tuple can be found in a single
scan. We have not attempted further optimizations
of the data structures, because the Checker is not
currently a bottleneck in the system. It would prob-
ably be useful to cluster readset and writeset records
by timestamp, to improve locality and to make
garbage-collection of old information (Section 4.3)
more efficient.

We have not yet made the Checker implementa-
tion fully crash-resistant. What we have done
(reflected in Figure 1) is order the different steps of
an update’s execution or reexecutign (installing the
new readset and writeset, and marking updates
Invalid or Valid) in such a way as to make the execu-
tion restartable. That is, a crash between steps will
at worst cause an unnecessary reexecution of an
update; it will not destroy the integrity of the history
information. Recovering from a crash that occurs
during execution of a step will require performing
each step as an atomic recoverable change, using
known techniques such as intentions lists or shadow
pages. Breaking the processing of an update into
multiple steps will also allow concurrent processing of
multiple updates, as discussed in Section 4.4.

4. Extensions

This section outlines several extensions that we
are considering for the Checker algorithm. While
these have not been worked out in detail, our inten-
tion in describing them is to illustrate that the basic
algorithm and the history database provide a sound
and robust foundation for introducing a variety of
enhancements to the performance and functionality
of the system.

4.1 Specialized Update Operations

Certain types of objects permit update operations
(such as increment and decrement) other than a Write
operation that replaces the current value of an object

-76-

with a given new value. When such operations are
translated into Read and Write requests, the arrival
of a decrement operation after a higher-timestamped
one will cause the latter to be reexecuted (since the
latter’s readset is being changed). While this gives
the correct final result, the reexecution would not
have been necessary if the Checker could take advan-
tage of the commutativity of decrement operations.

To provide better support for specialized update
operations, our history database can be extended to
allow such operations to be stored directly in the his-
tory without executing them. The history information
for an object may then contain a mixture of Writes
and other operations. The computation of the value
of an object is deferred until it is actually needed.
That is, when a Read request is issued for a given
object x as of timestamp T, the desired Value-
URto(x,T) is computed by-finding the most recent
Write of x (with highest timestamo smaller than T)
and then executing i‘;l timestamp order all intervening
operations on x.

If the current value of an object is being main-
tained separately (in the current database copy), it
must be kept up-to-date as Writes or other operations
are added to or removed from the object’s history. In
the worst case, the new current value will have to be
recomputed as described above. Uowever, there are
many special cases where the new value can be com-
puted more efficiently:

l An operation is added, with higher timestamp than
the last Write, that commutes with all higher-
timestamped operations (e.g., all are increments ,or
decrements): simply execute the operation on the
current value. This case applies trivially if there
are no other higher-timestamped operations.

l An operation is removed (because the Invalid
update that had issued the operation did not do so
on reexecution), with higher timestamp than the
last Write, that is invertible and commutes with all
higher-timestamped operations (if there are any):
execute the inverse operation (e.g., decrement
instead of increment) on the current value.

4.2 Query Consistency

If a transaction issues a query against the current
database copy, there is no guarantee that it will see a
consistent database state reflecting the timestamp-
ordered execution of some set of updates. The only
time the database is consistent is when there are no
Invalid updates waiting to be undone and reexecuted.
The Checker could defer installing changes to the
current database copy until there are no Invalid
updates (i.e., the last remaining one is reexecuted);
transactions would then always see consistent infor-
mation. However, the information seen would not
reflect updates received since the last time there
were no Invalid updates. It is possible that some tran-
sactions might prefer to see the latest information
even if it is inconsistent; these would be unnecessarily
penalized. Therefore, it seems preferable to install
changes directly in the current database, and let each
transaction decide whether or not it needs to see con-
sistent information. The Checker can make informa-
tion about the status of updates available for

transactions to examine; a transaction that does wish
to see consistent information simply waits until there
are no Invalid updates.

If a transaction wishes to wait until all Invalid
updates are reexecuted, this may take a very long
time if new updates with old timestamps’eontinue to
arrive and keep causing existing updates to be marked
Invalid. Availabillty could be improved if a transac-
tion only had to wait for that part of the database in
which it is interested to become consistent. It should
be possible to extend the Checker algorithm so that
when an update is marked Invalid a recursive scan is
performed of updates that read its output and updates
that read their output and so on, marking the affected
data items in the current database copy-as potentially
inconsistent. Some additional effort will be needed
to later “unmark” such a potentiaily~inconsistent data
item, if reexecution of the update that wrote it has
the same effect as before.

Further improvements would be possible if the
Checker could selectively schedule New and Invalid
updates for execution (or reexecation) based on query
requirements, rather than treating all updates as
equal and always executing them in timestamp order.
The correctness of the algorithm would not be
affected if updates were executed in some other
order. Certain classes of queries could be favored by
statically assigning priorities to different types of
updates and executing higher-priority updates before
lower-priority ones. It may also be useful to decom-
pose updates into independent pieces that can be
assigned different priorities, e.g., computation of the
flag Overdrawn could be deferred when an account’s
Balance is updated. A more dynamic mechanism
would select New and Invalid updates for execution
based on the data requirements of the queries out-
standing (and anticipated) at any given time; we are
currently looking at what additional information the
Checker would need in order to do this.

4.3 Garbage-Collection

The history database can grow without bound as more
and more updates arrive; this will eventually exhaust
the available storage at a site. It is possible to dis-
card old information from the history once it has been
determined, by agreement among all sites, that no
further updates with timestamps smaller than a
specified “cutoff” will be issued in the future. Once a
site has determined a cutoff timestamp, say TO, the
update descriptions and readset entries of updates
with timestamp smaller than TO can be discarded
from the site’s history database. The writeset entries
of these updates can also be discarded, except that a
newly-arriving update (which can have timestamp as
small as TO) may need to read the value of an object
as far back as TO. Therefore, the site must retain
Value-Upto(x,TO) for each object x (this is in effect a
“checkpoint” of the database as of timestamp TO); all
earlier object values can be discarded.

4.4 Internal Concurrency

The Checker algorithm we have described executes
updates one at a time. This was done mainly for ease

-77-

of exposition and to avoid concurrency issues in the
implementation. The algorithm would continue to
work correctly if updates were executed con-
currently, with appropriate low-level synchronization
of access to the history data structures. The execu-
tion (or reexecution) of a New or Invalid update could
be started immediately whenever some other update’s
execution is waiting for disk I/O and a processor is
available. This would make information available for
queries sooner, but would also increase the likelihood
that an update will be undone and reexecuted because
a concurrently-executing earlier-timestamped update
may invalidate its readset. In the extreme, if a pro-
cessor could be allocated to every update, the
behavior of the algorithm would be very similar to
Jefferson and Metro’s “Time Warp” mechanism [9].
The Time Warp approach and our strict sequential
approach can be viewed as opposite extremes on the
spectrum of optimism versus pessimism. In future
research, we hope tp explore other points along this
spectrum, to achieve a balance between concurrency
and cost of reexecution.

5. Summary

We presented an algorithm that processes updates
arriving out of timestamp order in such a way that the
database state always reflects updates received as if
they had been executed in timestamp order. The
algorithm uses a history of values written and objects
read by all updates, and schedules updates for reexe-
cution based on their conflicts with newly-arriving
earlier-timestamped updates. The algorithm dynami-
cally determines the difference between the effects
of an update’s previous execution and its reexecution
in order to prevent the cascading of unnecessary
reexecutions of updates.

The Checker algorithm has been implemented for a
relational database in the SHARD prototype at CCA,
and its performance under initial testing appears rea-
sonable. We outlined several promising extensions to
the basic algorithm, suggesting that the technique
provides a reasonable framework for adding future
enhancements. It is possible that our technique may
be useful outside its original scenario, in a historical
database where “timestamps” refer to real-world time
rather than system clock time and updates may arrive
with old timestamp because of external delays or
because a prior error needs to be corrected. We leave
this question open for future research.

Acknowledgments: We would like to thank Barbara
Blaustein for many discussions about the log transfor-
mation technique which provided the background and
inspiration for this algorithm, and Arnon Rosenthal
and the referees for their comments and suggestions.

References:
[l] B. Awerbuch and S. Even, “Efficient and Reli-

able Broadcast is Achievable in an Eventually
Connected Network,” Proc. Symp. Principles of
Distributed Computing, 1984, 278-281.

121

[31

141

[51

161

[71

WI

WI

DOI

1111

1121

1131

[141

[151

iI61

A.D. Birrell, R. Levin, R.M. Needham, and M.D.
Schroeder, “Grapevine: An Exercise in Distri-
buted Computing,” Comm. ACM 25, 4 (April
1982), 260-274.
B.T. Blaustein and C.W. Kaufman, “Updating
Replicated Data during Communications
Failures.” Proc. Eleventh ht. Conf. Verv Larue
Data Bases, August 1985, 49-58. ’ * ”
J. Clifford and D.S. Warren, “Formal Semantics
for Time in Databases,” ACM Trans. Database
Systems 8, 2 (June 1983), 214-254.
M.J. Fischer and A. Michael, “Sacrificing Seri-
alizability to Attain High Availability of Data in
an Unreliable Network,” Proc. Symp. Principles
of Database Systems, 1982, 70-75.
H. Garcia-Molina, T. Allen, B. Blaustein, R.M.
Chilenskas, and D.R. Ries, “Data Patch:
Integrating Inconsistent Copies of a Database
after a Partition,” Proc. Third Symp. Reliability
in Distributed Software and Database Systems,
October 1983.
H. Garcia-Molina, N. Lynch, B. Blaustein, C.
Kaufman, S. Sarin, and 0. Shmueli, “Notes on a
Reliable Broadcast Protocol,” CCA technical
report, 1985.
D.K. Gifford, “Weighted Voting for Replicated
Data,” Proc. Seventh Symp. Operating Systems
Principles, November 1979, 150-162.
D. Jefferson and A. Metro, “The Time Warp
Mechanism for Database Concurrency Control,”
Proc. int. Conf. Data Engineering, February
1986, 474-481.
P.R. Johnson and R.H. Thomas, “The Mainte-
nance of Duplicate Databases,” ARPA Network
Working Group Request for Comments (RFC)
677. Bolt Beranek and Newman Inc.. Januarv
197’5.
L. Lamport, “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM
21, 7 (July 1978), 558-565.
V. Lum. P. Dadam, R. Erbe, J. Guenauer, P. Pis-
tor, G; Walch, H. Werner, and J. Woodfill,
“Desienine: DBMS Suooort for the Temooral
Dime&ion,” Proc. ACM SIGMOD Annual donf.,
1984, 115-130.
D.S. Parker, G.J. Popek, G. Rudisin, A. Stough-
ton, B.J. Walker, E. Walton, J.M. Chow, D.
Edwards, S. Kiser, and C. Kline, “Detection of
Mutual Inconsistency in Distributed Systems,”
IEEE Trans. Software Engineering SE-g, 3 (May
1983), 240-246.
S.K. Sarin, “Robust Application Design in Highly
Available Distributed Databases,” Proc. Fifth
Symp. Reliability in Distributed Software and
Database Systems, January 1986, 87-94.
S.K. Sarin, B.T. Blaustein, and C.W. Kaufman,
“System Architecture for Partition-Tolerant
Distributed Databases ,‘I IEEE Trans. Computers
C-34, 12 (December 1985), 1158-1163.
R.H. Thomas, “A Majority Consensus Approach
to Concurrency Control for Multiple Copy Data-
bases,” ACM Trans. Database Systems 4, 2 (June
1979), 180-209.

-78-

