
Implementation Techniques of Complex Objects

Patrick Valduriez, Setrag Khoshajian, George Copeland

MCC, Austin Texas 78759

Abstract: Eflcient support for retrieval and update of
complex objects is a unifying requirement of many areas of
computing such as business, artificial intelligence, ofice
automation, and computer aided design. In this paper, we
investigate and analyze a range of alternative techniques for
the storage of complex objects. These alternatives vary
between the direct storage representation of complex objects
and the fully decomposed storage representation of complex
objects. Qualitative arguments for each of the strategies are
discussed. Analytical results and initial implementation results
based on fully decomposed schemes are presented.

1. Introduction

Many areas of computing such as business
(conventional data processing applications), artificial
intelligence, office automation, and computer aided
design exhibit the common requirement of efficiently
supporting complex objects. An attribute of a complex
object need not be simple but may be an object itself.
Complex hierarchical terms as present in logic [ZANI85],
CAD design objects [BAT0851 or objects used in office
automation systems [ADD3841 are examples of complex
objects. Although relational technology brings many nice
features (e.g., set oriented operations), it relies on
additional tools to provide the complex objects the user
needs (e.g., report generator). This is one reason among
others that the database management systems most used
today remain hierarchical. Several complex object models
[IIASK82, LUM85, OZSOSS] have been proposed to
combine the respective .advantages of the relational and
hierarchical models. In this paper, we assume a particular
conceptual complex object model]BANC86], and we
investigate and analyze several strategies for the storage
and access of complex objects for this model. All of our
examples will be based on a business application.

Permission to copy without fee all or part of this material is
granfed provided that the copies are not made or distributed for
direct commercial advantage? the VLDB copyright notice and the
title of the publication and zts dute appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires CI fee
and!or special permission from the Endowment.

One of our primary concerns for chasing among the
alternative storage schemes is the IO cost. We believe
magnetic disks will remain the main type of home
repository for medium and large sized databases. We also
believe RAM speeds are going to increase at a higher rate
than disk access times. Therefore, in comparing between
particular storage models, the IO overhead is considered
our main criteria.

The main motivation for the efficient manipulation of
complex objects is high performance execution of
database operations which retrieve and manipulate
complex objects. The problem in achieving this goal is
that there are multiple access patterns to the data. For
example, if ,the complex object stores orders within their
customer, one type of query can retrieve all data pertinent 1
to a particular customer, whereas another type of query
can retrieve data pertinent to orders independant of
customers. Since the objects can be clustered in only a
single way (without replication), favoring some access
patterns is generally done at the expenses of others. Also, . *
supporting multiple access patterns leads to additional
complexity of storage structures and algorithms.

After having introduced our complex object model, we
will investigate two alternative implementation techniques
for it. The first one, called direct storage model, maps the
objects directly into a physical address space so that
sub-objects and objects are clustered together. The
second model, called normalized storage model, has several
variants. The idea here is to decompose and store the
atomic objects of same type in flat files, and to capture
the connections between objects and sub-objects (i.e., the
belongs-to relationship) in either flat (binary) or
hierarchical structures called join indices. We give a
qualitative analysis of the trade-offs of these alternative
storage models on various dimensions such as
complexity, efficiency and generality. Finally, we give
analytical and observed performance measures of an
on-going implementation effort of two variations of the
normalized storage model.

The remainder of this paper is organized as follows. In
section 2, we define precisely our complex object model.
Section 3 discusses the direct storage model while section
4 investigates the normalized storage model. Section 5
gives the performance evaluation and measurements.
Section 6 is the conclusion.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

-lOl- Kyoto, August, 1986

2. Complex Object Model

2.1. Definition of Complex Objects

We now expand the notion of a complex object
conceptual model. A formal definition of the model and
the calculus for complex objects is given in [BANC86]. A

functional language for this complex object model is
given in [BANC85]. Objects are defined recursively as
follows :

(I) Integers, floats, booleans and strings are objects
that we call atomic objects.

(2) If 01 (02, 0. are objects and at, az, an are
distinct attribute names, then

[at :OI, a2:02, adOn]

is an object that we call a tuple object.

(3) If 01, 02, On are objects, then
{Ol, 02, On}

is an object that we call a set object.

Tuples can have atomic, tuple or set valued attributes.
The first option puts us in a normalized relational context
and hence provides direct support for normalized
relations in the storage model. The second option
provides us with the possibility of supporting hierarchical
terms as in [ZANI85].

Finally, set valued attributes allow us to have nested
relations as in [BANC82], or simple sets of atomic values
as in [OZSO85]. The recursive definition of objects
allows an unbounded degree of nesting.

The following example illustrates a Researcher
database schema composed of two set objects : Scientist
and Contribution. Tuple is denoted by]] and set is
denoted by {).

[Scientist : {[name,
education : {[degree,

year,
university]],

age,
member : {organization) I),

Contribution : {[name,
research : {[subject,

pub. : {[title,
year,
jourW1 11 II I

A graphical representation of this database schema is
given in Figure 1, where an arc denotes a tuple or an
atom and * a set. The object Scientist gives for each
scientist his education as a set of degrees and his
membership as a set of professional organizations. The
object Contribution gives for each scientist his research as
a set of publications by subject. Note that a relational
representation of this database would require five
relations. Compared to the relational model, a complex

object model essentially decreases the explicit use of joins
(an expensive operation).

/-
database

---A
Sci ntist

f
Contr’bution

1

na Aember n&rch

m J 0 9.
deg ee r.u ‘versity

I

m
title y jo rnal

Figure 1: Example of complex object schema

2.2. Object Identity

In addition to the notion of complex object, there is a
strong need for object identity [KHOS 861. Our database
language [BANC85] allows the manipulation of object
identities through functions. This avoids processing of
large objects when not necessary. Also, object identity
allows coreferencing of objects and hence provides
support of graph structures instead of trees. Each object is
assigned by the system a unique identifier.

An efficient approach for representing identity at the
implementation level is through the use of surrogates
[HALL76, MEIE83]. A surrogate is a globally unique
value created by the system when an object is
instantiated, which the system never modifies and users
are not .permitted to modify. For storage efficiency an
atom’s identifier is the atom’s value itself. We will use
surrogate identifiers for tuples and sets. Furthermore the
surrogate could be made invisible to the user (i.e., at the
level above the complex object model).

Representing identities through surrogates allows us to
have data independence, low-level support for integrity
constraints, uniformity [COPE851 and provision for
capturing joins [VALD85]. Note that clustering schemes
are orthogonal to the existence of surrogates. The use of
surrogates introduces a level of indirection through a
small index which is RAM resident. However, it permits
efficient updates and reorganization since references do
not involve physical pointers which would cause disk
accesses. Surrogates eliminate the need for user-defined
identifier keys which consist of one or more attribute
values. This simplifies the update process for users since
all attributes can be modified in a uniform way, whereas
the use of user-defined identifier keys places restrictions
on updates to those attributes which serve the dual role of
object descriptive data and object identity. Surrogates are

- 102-

fixed-length integers and are usually smaller than
user-defined identifier keys, so that the storage and
processing of entity relationships are more efficient.

Scientist
I

PhD85 UT

MS 76 UT PhD?9 MIT

Figure 2: An instance of the object Scientist

Figure 2 gives an instance of the object Scientist where
si is a set surrogate and tj a tuple surrogate.

3. Direct Storage Model

In the direct storage model, complex objects are stored
directly as they are defined in the conceptual schema.
This is a natural way to store conceptual objects. For
example if the database is composed of set objects, the
direct storage model will store each set object (which can
be a nested set) in a separate file. Each record of a file
represents a complex object (e.g. the tuple for scientist
Doe). Then, we have several solutions for clustering the
attributes of a complex object. All these solutions stem
from an ordering of the nested sets based on the
hierarchy. A simple solution consistent with the
hierarchical manipulation of objects in our language is
pre-order. For instance, the internal schema of the file
storing the set Scientist would be as follows (sur is a
surrogate which identifies the following set or tuple) :

/sur/ (/sur/ [name : value,
education : /sur/ {/sur/ [degree: value,

year: value,
university: value]},

age : value,
member : /sur/ {organization] I}

The clustering of the records in a file can only be done
based on attributes of the root objects. The file Scientist
can only be clustered on sur, name and/or age, using a
single or multi-attribute file structure. Therefore, the

access to objects based on other attributes than those of
the root objects must be done with auxiliary structures
(e.g., secondary indices) or through sequential scans.

The primary advantage of this approach is that
retrievals of entire complex objects are efficient.
Compared to a mapping of a relational schema where
each relation is stored in a file, this model avoids many
joins. Another strong advantage of this model is that the
compilation of queries that deal with conceptual complex
objects is simplified because there is a l-l
correspondance between conceptual object and internal
object.

The main drawback of this approach is that
performance can be hurt by large objects. All clustering
techniques usually assume that a record fits in a disk
page. For a direct storage model, we would choose the
page equal to a track. However, even with increasing disk
track capacities, it can be the case that a record does not
fit in a track. For example, CAD objects could span
several if not many tracks. Since we feel it is not
reasonable to impose size constraints on objects, the
management of large objects adds complexity in the
clustering algorithms. Note that in our model, it is always
possible to flatten at the conceptual level a hierarchical
object and retrieve it through joins. However, this solution
implies a weaker physical independency.

Finally, retrievals of certain sub-objects is inefficient
because they are clustered according to a topological
order. This is typically the main drawback of hierarchical
systems.

4. Normalized Storage Model

In the normalized storage model, complex objects are
not stored directly. Rather, they are decomposed into sets
of tuples of atomic values and/or surrogates. Thus, each
set object corresponds to a normalized relation. For
instance, the object Scientist would be decomposed into
three flat relations as shown in Figure 3. Ed-sur is a
surrogate of education (set of degrees) and D-sur is a
surrogate of a tuple degree. The connection between
Scientist and Education is thus given by Ed-sur (i.e., the
join attribute) in set Education. Note that for optimization
purposes, we can replace Ed-sur by S-sur in Education
because there is only one Ed-sur value per S-sur value
and then remove the attribute education in Scientist.

/- datape -,

S ienkt
9 *

Edu’ ation
P

Member

* !

Ed-sur M-sur

Figure 3: Normalized schema for Scientist

-103-

The main value of this normalized approach is a better
performance of partial object retrievals. In turn, each
relation is mapped into file(s) using a uni-relation storage
structure. In section 4.1., we will discuss the alternative
solutions for the mapping of relations into files. As in the
relational approach, retrieval of complex objects requires
joining relations. In order to make these operations
efficient, we will propose in section 4.2 storage structures
called join indices that store in a uniform and compact
way the complex object structures.

4.1. Uni-Relation Storage Structures

In this section, we summarize the properties of the
known uni-relation storage structures that affect the
processing of the main relational operations (project,
select, join, update). Note that operations on complex
objects can be seen as extended relational operations
(including transitive closure). We distinguish these
structures according to two partitioning functions applied
to relations called vertical and horizontal partitionings.
Vertical partitioning maps relations into files, where a file
corresponds to an attribute, several attributes, or the
entire relation. Horizontal partitioning clusters a file
based on the values of a single attribute or based on
several attributes. In the fohowing, for each possible
vertical partitioning, which we name NSM, DSM and
P-DSM, we discuss the possible horizontal partitionings
and their performance.

4.1.1. NSM

This approach, named N-ary Storage Model, is the
most commonly used in database systems. Each
conceptual relation is stored in a single file. The vertical
partitioning function is thus trivial. The update of tuples is
thus efficient since a single file is affected.

For selections, if horizontal partitioning is performed
on a single attribute then selection .is most efficient for
exact match and range queries on that clustering
attribute. If the selection is based on inverted attributes
there is considerable degradation in performance.
Furthermore, if a multikey clustering scheme is utilized,
the performance of selection gets better as the query
binds more attributes of the multikey.

The best operation supported by NSM is projection on
many attributes. Projection on a few attributes is generally
inefficient since the ratio of data needed to data touched
(entire file) is low.

Join is acceptably efficient only when it is based on
clustered or indexed attributes and only when it is
preceded by selection and projection [SELI79]. Finally,
the presence of a single long attribute in the file degrades
performance of all the operations based on other
attributes.

4.1.2. DSM

This approach, called Decomposition Storage Model,
stores all values of each attribute of a relation together on
a separate file [BAT079, COPE85]. Each attribute value
is associated with the surrogate of its conceptual tuple. In
[COPE85], there are two physical copies per decomposed
binary relation: one copy is clustered on the surrogate and
the other copy is clustered on the attribute values. Having
two copies of each data item is also the only good solution
to reliability. The DSM approach is best suited for
selection and projection on a few attributes.

Complex joins are performed through a cascade of
semi-joins, and are usually very efficient. However, the
result of a join phase provides only the surrogates of the
tuples that match. Therefore, in a final projection phase
additional semi joins are needed to associate attribute
values with the surrogates. Compared with NSM, DSM
requires more operations but on smaller data sets.

Also, tuple insertion/deletion has a poor performance,
for it can generate as many updates as attributes.

4.1.3. P-DSM

This approach, called partial DSM, is a hybrid
between DSM and NSM. This storage model vertically
partitions a relation based on the attribute affinities, such
that attributes which are frequently used together are
stored in the same file [HOFF75, NAVA84J. The
knowledge about the most frequent queries in user
workloads is thus exploited to organize storage structures
for efficient access. Each file contains several attributes
and a surrogate of the corresponding tuple. Therefore, the
operations best supported are selections and projections
on the groups of attributes which are frequently accessed
together.

With a general P-DSM approach some attributes
might be replicated in more than one file. Since the
construction of the P-DSM files is based on affinities and
user hints, replication would enhance the performance of
retrievals but would penalize updates.

The performance of joins depends on the partitioning
by the join attributes and can be good if they are clustered
or indexed. If the attribute groups are based on affinities,
then the projection on many attributes should seldom
involve joining different files. Updates of conceptual
tuples require updating all the partially decomposed files.

The fact that P-DSM is a hybrid of NSM and DSM
provides us opportunities to have a compromise of the
advantages and disadvantages of both schemes. However,
the accurancy of the vertical partitionning is a key factor
of efficiency. Thus, this model supports poorly highly
dynamic workloads.

-104-

4.2. Join Indices

In this section, we present simple data structures
called join indices which capture in a uniform way the
connections existing between objects. We first give the
basic version of the join index called binary join index
proposed in [VALD85] for simple objects and then a
more generalized version called hierarchical join index
adapted to complex objects.

4.2.1. Binary Join Indices

We recall the definition given in [VALD85]. Let R and
S be two relations not necessarily distinct, we consider the
join of R and S on attributes A from R and B from S
giving a result relation. Intuitively, a binary join index
(BJI), or simply join index, is an abstraction of the join of
the two relations. The surrogate of a tuple of R is noted ri
and the surrogate of a tuple of S is noted sl. More
formally, the binary join index on R and S is the set

BJI = ((ri, sj)] f (tuple r1.A , tuple s1.B) is true)

where f is a boolean function that defines the join
predicate.

A BJI is implemented by a binary relation. For
performance reasons, we may keep two copies of this
relation, one clustered on r (using a B+-tree, for example)
and the other clustered on s. A BJI is created by joining
the relations R and S and projecting the result on
attributes (r,s).

For example, the connection between Scientist and
Education (Figure 3) was given by storing explicitely the
surrogate of Education in both relations Scientist and
Education. This connection can be stored separately as
shown in figure 4.

Education

1,

Figure 4: Example of Join Index

BJI are very efficient for optimizing joins. This is
mainly because a join index is separated from base data
and so small that it can fit in RAM. They can be used
systematically for capturing the joins materializing
complex objects. However, they can also be very useful
for optimizing value based joins. For example, the join
between Scientist and Contribution on name can be
captured by a join index. In this latter case, a join index is
an accelerator for joins.

When intended as an acceleration mechanism, BJI’s
should be used only for most important joins. Join indices
are shown to be a very attractive tool for optimizing both
relational queries and recursive queries [VALD86].

Note that binary join indices are subsumed by the
DSM applied to our complex object model. In other
words, with the mapping presented in Section 4.1 (see
Figure 3), DSM will automatically give us the binary join
indices that capture the connections between sub-objects
of the same object. Therefore, join indices are subsequent
decompositions which make sense for NSM and P-DSM
storage models. Here we have attempted to keep the
discussion of join indices more generic since their
properties as join accelerators hold in many models,
including the relational model.

4.2.2. Hierarchical Join Indices

In order to support complex objects, we extend the
notion of join index to this of a more general structure,
called hierarchical join index (HJI). A hierarchical join
index can capture the structure of a complex object by
using the surrogates of the connected relations involved in
the whole object. Figure 5 proposes two examples of I-III
for two different complex objects.

?

i
i
I f/n * *

I C

x m
HJI = (A-sur {B-sur) (C-sue }

n *
B h *

IC

n
HJI = {A-sur (B-sur {C-sur)) }

Figure 5: Examples of hierarchical join indices

Therefore, rather than having several binary join
indices, a single and bigger hierarchical join index can be
used. Similarly to the direct storage model, a HJI can be
only clustered on the root surrogate. When the root
surrogate of a complex object is obtained (through a
secondary index), then the whole structure of the complex
object is given directly. HJI’s are better than BJI’s for
retrievals of entire objects. In fact the tradeoffs between
HJI and BJI is very similar to the tradeoffs between the
DSM and NSM storage organizations. In other words, the
hierarchical scheme will always involve fewer updates,
but if very few joins through the joining surrogate are
performed, some retrievals will be more expensive (this
corresponds to the curves of the number of projected
attributes in [COPE85]).

-105-

One interesting point to remember is that we never
have range queries on surrogates. Therefore, access is
approximately random. Thus, in the comparison of the
binary and the join indices the number of blocks accessed
as a function of the number of surrogates can be
approximated through Yao’s function [YAO77]. The
results in [COPE851 indicate that the main advantage of
the DSM over NSM, when the number of projected
attributes is kept constant, comes through increasing the
number of selected attributes. Therefore, since the
accesses for both the binary and hierarchical join indices
will be “scattered”, and since the HJI’s provide better
performance in updates, we believe this scheme presents
a competitive alternative to BJI’s. Furthermore, since only
surrogates are stored in the join index abstraction of
complex object, recursive structures could be supported
very easily. However, BJI are still necessary to complete
HJI in performing partial object retrievals.

5. Performance Evaluation

Since most of the research efforts have concentrated
so far on NSM, an important goal of our research was to
investigate the po?sibility of storing complex objects
through DSM and binary join indices. Although, as we
have indicated earlier, DSM subsumes binary join indices
for our particular model of complex object representation,
we like to keep our observations more generic since the
implications of this combination (DSM + BJI) also apply
to more normalized models such as the relational model.
Furthermore, even in the framework of complex objects,
some BJI’s might be introduced to accelerate value based
joins of complex sub-objects. These types of join indices
are not subsumed by DSM but are more characteristic of
the BJI’s. In the rest of this paper, we will understand
DSM for short of DSM + BJI’s that represent sub-object
connections.

At first sight this approach seems to be unreasonable
since a fully decomposed storage system for complex
objects will necessarily entail multiple joins for complex
object construction. The semantic clustering of the
complex object will be lost in the storage niodel. It might
be argued that the direct storage representation (or one of
its variants) is the only obvious storage of choice. In the
previous section we attempted to present qualitative
tracleoffs for the alternative storage schemes. The main
problem with the decomposition scheme DSM seems to
be performance.

However, to our knowledge, no quantitative evaluation
has been done to characterize the performance issues for
the range of complex object storage schemes presented in
the previous sections. Therefore we are currently
underway in determining quantitatively the performance
issues of the decomposition schemes for programming
environments which manipulate complex objects.

To this end, we have first attempted to compare the
DSM + BJI storage scheme with the full NSM storage
scheme. Subsequently we shall be measuring the relative
performance of DSM + BJI with respect to the direct
storage scheme.

The analytical results for DSM and join indices are
drawn from [COPE851 and [VALD85] respectively.
Section 5.1 will summarize the DSM results and Section
5.2 will summarize the results pertaining to (binary) join
indices. Finally, in Section 5.3 we shall present some
initial implementation results which show the relative
performance of DSM and (binary) join indices
combination with respect to NSM.

5.1. DSM vs NSM

In [COPE851 an anlytical model for the performances
of 2-copy DSM (one copy clustered on surrogate and the
second clustered on attribute values) was presented. DSM
was compared against the full NSM storage model (i.e.
NSM without join indices). A number of parameters were
evaluated. First it was shown that, using run-length
compression, the data storage requirement of DSM is
more than NSM by, approximately, a factor of 2.1.
Second, on the average, the number of probes for an
update with DSM is worse by a factor of 3 compared to
NSM. However, the most interesting part of the
performance analysis was the retrieval performances of
the two schemes.

A closed form analytical expression was developed,
which 1 gave the total IO requirement of a
select/project/join operation as a function of the relation
sizes, the number of select and project attributes, the
number of joined relations, and the average number r of
records retrieved from the base relations.

It was consitently observed that DSM would
comparatively perform better if the selectivity (i.e.,
r/(number of tuples in base relations)) is beyond a certain
threshold (in most cases approximately 1%). In fact the
performance curves showed that the ratio of number of
blocks accessed by NSM divided by the number of blocks
accessed by DSM as a function of r achieves an optimum
when r is approximately 10% of the average number of
tuples in the base relations. Figure 6 shows a family of
curves where the number of projected attributes is varied
for a select on one base NSM relation. (“npa” stands for
number of projected attributes from each base relation;
“nb” stands for the number of NSM blocks retrieved;
“db” stands for the number of DSM blocks retrieved:
therefore the y-axis presents the ratio (total IO for
NSM)/(total IO for DSM)). It is assumed that base NSM
relations have, on the average, 10 attributes. As can be
seen from these curves that for small values of r and/or
larger number of projected attributes DSM looses. One
could argue that the cases where DSM wins (namely
selectivity greater than 1% and percent of projected
attributes greater than 50%) are the least interesting.

-106-

However, thsese family of curves do not involve any NSM
joins. Figure 7 shows another family of curves where here
the number of preojected attributes is hald fixed, but the
number of NSM joins (i.e.,“njr”) is varied. Observe that
the relative performance of DSM increases as the number
of joins is increase. Therefore, if we were to retrieve a
complex object of several levels of nesting (which would
involve multiple NSM joins), and few attributes from each
level, we would expect DSM to outperform NSM in most
cases. We shall further substantiate this argument in
Section 5.3.

5.2. Join Indices

We now summarize the analytical results of the BJI’s
performance given in [VALD85] and relate them to
complex object retrieval. Join indices are useful with any
vertical partitionning function (DSM, P-DSM, NSM).
However, the mapping of our complex object model into
DSM automatically implies BJI’s that capture the
connections between sub-objects of an object. The
purpose of this section is to show that, more generally,
join indices provide excellent performance in doing
arbitrary joins and can outperform .the best known join
algorithms. In [VALD85], we limited our analysis to the
join algorithm itself since it is the most critical operation.
However, the real value of join indices increases as
queries become complex because the most complex
operations are done on small data structures (select
indices, join indices, etc). The join algorithm using a join
index takes advantage of all available memory and is
easily adaptable to parallel execution.

In order to evaluate the performance of the join
algorithm using BJI noted JOINJI, we compared it against
the hybrid hash join algorithm [DEWI84], noted JOINHH,
because this latter is very efficient (it outperforms easily
the sort-merge join algorithm), takes advantage of large
RAM and is ameanable to parallel execution [DEWI85].
Except for highly selective joins (i.e., producing a small
result), JOINJI outperforms JOINHH. The reason is that
the efficiency of a join index is inversely proportional to
its size. A tuple in a BJI is small. The size of the BJI
depends on the join selectivity factor , noted JS, which
determines the number of tuples in the BJI. If the join has
good selectivity (JS is low), the join index is small. This is
a frequent case in existing databases (e.g. join on foreign
key). However, a join of poor selectivity, which can be
close to the Cartesian product, can make the index quite
large. In this case, we claim that no good optimization is
possible and a simple nested loop join algorithm is
sufficient. The way in which joined relations are
physically clustered have generally an impact on join
performance. Surrogates contained in a join index are
used for retrieving attribute values in relations. Therefore,
a file mapping the relation must be either clustered or
indexed on surrogate.

Assuming a conventional architecture, the main
parameters affecting performance are : the number of
pages in an operand relation, the number of tuples in an
operand relation, the number of RAM pages available to
the operation, the join selectivity factor and the semi-join
selectivity factors. The RAM size allocated to the join was
generally 5% of the operand relation sizes. With high join
selectivity (low JS), JOINJI can outperform JOINI-IH by
two orders of magnitude. Having the joined relations
clustered on surrogate instead of indexed on surrogate
improves join’s performance by a factor 2. For less
selective joins, the performance difference between
JOINJI and JOINHH is much less. Note that we did not
take into account the performance degradation of hashing
in presence of many collisions that arise for low join
selectivities. Finally, varying the RAM size does not
change the performance difference Therefore, we feel
that JOINJI would almost always outperform JOINHH.

5.3. Implementation Results

To substantiate some of the claims made in [COPE851
and [VALD85], we implemented a fully decomposed
storage scheme based on DSM and BJI. The
implementation is based on WISS [CHOU83] -the
Wisconsin Storage model. To compare DSM (+ BJI) with
NSM we have run some tests based on the Wisconsin
Benchmarks [BITT83]. However, we are in the process of
augmenting the Wisconsin benchmarks to test the
performance of the decomposition scheme for complex
object retrievals.

Thus far the implementation results confirmed our
analysis. In Figure 8 we give the ratio for number of
blocks accessed by NSM/DSM for 1% and 10% selects on
10K tuple relations. In the Wisconsin Benchmarks the
projection was done on all of the attributes. However, we
have varied the number of projected attributes in our
runs. Therefore the x-axis is the fraction of the total
number of projected attributes (the total number is 16 - 1
surrogate and 15 attributes). First observe that the relative
performance of DSM is better when the selectivity is
higher. In fact with 10% selectivity, DSM will perform
better if the fraction of projected attributes is less or equal
to approxiamtely 70% of the total number ‘of attributes.
With 1% selectivity DSM is better only if the total number
of projected attributes is about 30% of the total number of
attributes.

To show the performance of the joins with DSM
versus NSM, we have analyzed the performance of
several types of 2-way joins, namely: l-l, l-10, 10-1,
and 10-10. These are illustrated in Figure 9. For all these
joins, there is a 1% select on the first relation and both
relations are 10k tuple relations. First we note that the
total number of tuples retrieved from both relations
decreases in the order l-10, 10-10, I-1,and 10-l. For
example, with l-l a total of 200 (100 from each relation)
tuples will be retrieved. However, with l-10 a total of

-107-

1100 tuples will be retrieved (100 from the first relation
(i.e., the one on which the selection is performed) and
1000 from the second). For the l-10 and 10-10 joins
DSM performs better of the number of projected
attributes is approximately less than or equal to 50% of
the total number of attributes in both relations. For the
l-l and 10-l cases DSM performs better if the total
number of projected attributes is less or equal to
approximately 30% of the total numebr of attributes.
However, we should emphasize that the x-axis here is the
fraction of the total number of attributes from both
relations. In other words a 30% fraction represents 10
attributes (and not 5 as in the previous selection curve).

We feel these results are preliminary. In particular,
these performance measurements were made with at least
1% selectivity of retrieval queries. When selectivity is
reduced to a single object, our analytical model predicts
that the worse case factor for DSM (all attributes
projected) becomes much higher. This is clearly shown
with the update queries. Our goal is to analyze the
performance of DSM for a mix of typical queries in
programming environments which manipulate complex
objects. Furthermore, we will be comparing the
decomposition scheme against the direct storage scheme
to have a precise appreciation of the implied performance
issues due to the decomposition of the complex object.

6. Conclusion

A complex object storage model must be able to
provide efficient support for a wide variety of query types.
The difficulty lies in achieving two conflicting goals :
efficient support for retrieving a single entire complex
object and at the same time retrieving its components.
The first goal leads to clustering of a full complex object
in the same memory extent (Le., direct), while the second
goal leads to clustering of the individual components (i.e.,
DSM).

The relative advantages of DSM (+s BJI’s capturing
sub-objects connections) and direct can be summarized
as follows:

(1) DSM is significantly simpler than direct to
implement. Storage structures, clustering, indexing and
compilation of conceptual queries into internal queries are
much simpler.

(2) DSM is significantly simpler than direct to use.
Users and database administrators need not be involved
in deciding which attributes to cluster or index. Instead,
these are done in a uniform way. Also, reorganization due
to such performance tuning is not needed.

(3) DSM causes significantly less system resources for
reorganization due to either performance tuning or
conceptual schema modification.

(4) DSM causes access to significantly more physical
blocks when the number of projected attributes is large
and selectivity is low.

(5) When locality of use among attributes is higher
than locality among complex objects, DSM causes fewer
disk 10s (accesses to physical blocks are more often in
RAM), since individual attributes can more easily be
buffered. We expect this to usually be the case, since
each application or user view uses a fixed pattern of
attributes but varies predicate bindings as a parameter.

(6) In a parallel disk machine, DSM can more easily
achieve load balancing then direct. A hot complex object
may cause one disk to be overloaded using direct,
whereas DSM can spread the attributes of the complex
object over several disks.

In conclusion, DSM has many advantages over direct.
Its severe disadvantage is point (4) above. DSM is
superior whenever data is shared over multiple
applications, since direct can provide optimal tuning only
for a particular access pattern. Direct is superior when a
particular access pattern heavily dominates and that
access pattern consists of accessing few objects (very low
selectivity), projecting on many attributes , and using the
same attributes as the selection criteria. However, such
applications currently exist in sufficient number (e.g.,
CAD) to warrant database system support. Two open
issues remain regarding the form of support of such
applications.

One open issue is that currently these applications are
usually supported by file systems which store each
complex object as a long bit/byte string file with indexing
by file name. This approach could be supported within
DSM by representing the complex object as a single
attribute whose value is a long string. In other words, if
the complex object is always used as a single monolithic
object within the database system, then a complex direct
representation is unnecessary.

The second open issue is whether such applications
will continue to have a single access pattern. Most long
term visionaries of CAD, for example, argue that
eventually CAD data will be heavily shared by multiple
applications.

Acknowledgements:

The authors wish to thank Francois Bancilhon, Haran
Boral and Marc Smith for their helpful comments on this
research and Thomas Jagodits who was involved in the
implementation effort of the normalized storage model
for complex objects.

-108--

References

[ADIB84j Adiba M., Nguyen G.T., “Handling
Constraints and MetaData on Generalized Data
Management Systems” Int. Workshop on Expert Database
Systems, Kiowah Island, South Carolina, October 1984.

[BANC82] Bancilhon F., Richard P., Scholl M., “On Line
Processing of Compacted Relations” Int. Conf. on VLDB,
Mexico, September 82.

[BANC85] Bancilhon F., Khoshafian S., Valduriez P.,
“FAD, a Database Machine Language: Formal
Semantics” MCC Internal Report, December 1985.

[BANC86] Bancilhon F., Khoshafian S., “A Calculus for
Complex Objects” Proc. of ACM Symp. on PODS,
Boston, March 1986.

[BAT0791 Batory D.S., “On Searching Transposed
Files”” ACM Trans. on Database Systems, vol. 4, no. 4,
December 1979.

[BAT0851 Batory D.S., Kim W., “Modeling Concepts for
VLSI CAD Objects” ACM Trans. on Database Systems,
vol. 10, no. 3, September 1985.

[BITT831 Bitton D., Dewitt D.J., Turbyfill C.,
“Benchmarking Database Systems : A Systematic
Approach” Int. Conf. on VLDB, Florence, September
1983.

[CHOU83] Chou H.T., Dewitt D.J., Katz R.H., Klug
A.C., “Design and Implementation of the Wisconsin
Storage System” Technical Report #524, Dept of
Computer Sciences, U. of Wisconsin, Madison, November
1983.

[COPE851 Copeland G., Khoshafian S., “A
Decomposition Storage Model” ACM-SIGMOD Int.
Conf., Austin (Texas), May 1985.

[DEW1841 Dewitt D.J. et al., “Implementation
Techniques for Large Memory Database Systems”
ACM-SIGMOD Int. Conf., Boston, June 1984.

[DEWI Dewitt D.J., Gerber R., “Multiprocessor
Hash-Based Algorithms” Int. Conf. on VLDB, Stockholm,
August 1985.

[HALL761 Hall P. et al., “Relations and Entities”,
Modeling in DBMS, edited by Nijssen (North-Holland
1976).

[HASK82] Haskin, R., Lorie, R., “On Extending the
Functions of a Relational Database System” ACM
SIGMOD Int. Conf., Orlando (Florida), June 1982.

[HOFF751 Hoffer J.A., Severance D.G., “The Use of
Cluster Analysis in Physical Database Design” Proc. of
2nd Int. Conf. on VLDB, 1975.

[JARK84] Jarke M., Koch J., “Query Optimization in
Database Systems” ACM Computing Surveys, vol. 16, no.
2, June 1984.

[KHOS86] Khoshafian S., Copeland G., “Object Identity”
to appear in Proc. of ACM Conf. on OOPSLA, Portland
(Oregon), October 1986.

[LUM85] Lum V., et al. “Design of an Integrated DBMS
to Support Advanced Applications” Int. Conf. on
Foundations of Data Organization, Kioto, May 1985.

[MEIE83] Meier A., Lorie R., “A Surrogate Concept for
Engineering Databases” Int. Conf. on VLDB, Florence
(Italy), October 1983.

[NAVA84] Navathe S., Ceri S., Wiederhold G., Jinglie
D., “Vertical Partitionning Algorithms for Database
Design” ACM Trans. on Database Systems, vol. 9, no. 4,
December 1984.

[OZSO85] Oisoyoglu G., Ozsoyoglu Z.M., Mata F., “A
Language and a Physical Organization Technique for
Summary Tables” ACM-SIGMOD Int. Conf., Austin
(TX), May 1985.

[SELI79] Selinger P. et al., “Access Path Selection in a
Relational Database Management System” ACM
SIGMOD Int. Conf., Boston (Mass.), May 1979.

[VALD85] Valduriez P., “Join Indices” MCC Technical
Report Number DB-052-85, Submitted for Publication,
July 1985.

[VALD86] Valduriez P., Boral H., “Evaluation of
Recursive Queries using Join Indices” Proc. of First Int.
Conf. on Expert Database Systems, Charleston, April
1986.

[YA077] Yao S.B., “Approximating Block Accesses in
Database Organizations” Comm. ACM, vol. 20, no. 4,
April 1977.

[ZANI85] Zaniolo C., “The Representation and
Deductive Retrieval of Complex Objects” Int. Conf. on
VLDB, Stockholm, August 1985.

-tog-

Figure 6: Varying the Number of Projected Attributes Figure 7: Varying the Number of Joined Attributes

P

Figure 8: Selections

\
I
I

__________ 1% Select

\
-.--- 10% se1e,ct

I
i
I
\
\
\

10 100 1000 10000 100'

P

Figure 9: Joins

-.--.- *-10 join

-----------10-10 join

\

l-l jo1T-l

\ ____________ 10-l jOi”

\

\

\
\

DO

0.0 0.2 0.4 0.6 0.8 1.0

Fraction Of Projected Attributes

-llO-

