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Abstract: Eflcient support for retrieval and update of 
complex objects is a unifying requirement of many areas of 
computing such as business, artificial intelligence, ofice 
automation, and computer aided design. In this paper, we 
investigate and analyze a range of alternative techniques for 
the storage of complex objects. These alternatives vary 
between the direct storage representation of complex objects 
and the fully decomposed storage representation of complex 
objects. Qualitative arguments for each of the strategies are 
discussed. Analytical results and initial implementation results 
based on fully decomposed schemes are presented. 

1. Introduction 

Many areas of computing such as business 
(conventional data processing applications), artificial 
intelligence, office automation, and computer aided 
design exhibit the common requirement of efficiently 
supporting complex objects. An attribute of a complex 
object need not be simple but may be an object itself. 
Complex hierarchical terms as present in logic [ZANI85], 
CAD design objects [BAT0851 or objects used in office 
automation systems [ADD3841 are examples of complex 
objects. Although relational technology brings many nice 
features (e.g., set oriented operations), it relies on 
additional tools to provide the complex objects the user 
needs (e.g., report generator). This is one reason among 
others that the database management systems most used 
today remain hierarchical. Several complex object models 
[IIASK82, LUM85, OZSOSS] have been proposed to 
combine the respective .advantages of the relational and 
hierarchical models. In this paper, we assume a particular 
conceptual complex object model ]BANC86], and we 
investigate and analyze several strategies for the storage 
and access of complex objects for this model. All of our 
examples will be based on a business application. 
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One of our primary concerns for chasing among the 
alternative storage schemes is the IO cost. We believe 
magnetic disks will remain the main type of home 
repository for medium and large sized databases. We also 
believe RAM speeds are going to increase at a higher rate 
than disk access times. Therefore, in comparing between 
particular storage models, the IO overhead is considered 
our main criteria. 

The main motivation for the efficient manipulation of 
complex objects is high performance execution of 
database operations which retrieve and manipulate 
complex objects. The problem in achieving this goal is 
that there are multiple access patterns to the data. For 
example, if ,the complex object stores orders within their 
customer, one type of query can retrieve all data pertinent 1 
to a particular customer, whereas another type of query 
can retrieve data pertinent to orders independant of 
customers. Since the objects can be clustered in only a 
single way (without replication), favoring some access 
patterns is generally done at the expenses of others. Also, . * 
supporting multiple access patterns leads to additional 
complexity of storage structures and algorithms. 

After having introduced our complex object model, we 
will investigate two alternative implementation techniques 
for it. The first one, called direct storage model, maps the 
objects directly into a physical address space so that 
sub-objects and objects are clustered together. The 
second model, called normalized storage model, has several 
variants. The idea here is to decompose and store the 
atomic objects of same type in flat files, and to capture 
the connections between objects and sub-objects (i.e., the 
belongs-to relationship) in either flat (binary) or 
hierarchical structures called join indices. We give a 
qualitative analysis of the trade-offs of these alternative 
storage models on various dimensions such as 
complexity, efficiency and generality. Finally, we give 
analytical and observed performance measures of an 
on-going implementation effort of two variations of the 
normalized storage model. 

The remainder of this paper is organized as follows. In 
section 2, we define precisely our complex object model. 
Section 3 discusses the direct storage model while section 
4 investigates the normalized storage model. Section 5 
gives the performance evaluation and measurements. 
Section 6 is the conclusion. 
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2. Complex Object Model 

2.1. Definition of Complex Objects 

We now expand the notion of a complex object 
conceptual model. A formal definition of the model and 
the calculus for complex objects is given in [BANC86]. A 

functional language for this complex object model is 
given in [BANC85]. Objects are defined recursively as 
follows : 

(I) Integers, floats, booleans and strings are objects 
that we call atomic objects. 

(2) If 01 ( 02, . . . . 0. are objects and at, az, . . . . an are 
distinct attribute names, then 

[at :OI, a2:02, . . . . adOn] 

is an object that we call a tuple object. 

(3) If 01, 02, . . . . On are objects, then 
{Ol, 02, . . . . On} 

is an object that we call a set object. 

Tuples can have atomic, tuple or set valued attributes. 
The first option puts us in a normalized relational context 
and hence provides direct support for normalized 
relations in the storage model. The second option 
provides us with the possibility of supporting hierarchical 
terms as in [ZANI85]. 

Finally, set valued attributes allow us to have nested 
relations as in [BANC82], or simple sets of atomic values 
as in [OZSO85]. The recursive definition of objects 
allows an unbounded degree of nesting. 

The following example illustrates a Researcher 
database schema composed of two set objects : Scientist 
and Contribution. Tuple is denoted by ]] and set is 
denoted by {). 

[Scientist : {[name, 
education : {[degree, 

year, 
university]], 

age, 
member : {organization) I), 

Contribution : {[name, 
research : {[subject, 

pub. : {[title, 
year, 
jourW1 11 II I 

A graphical representation of this database schema is 
given in Figure 1, where an arc denotes a tuple or an 
atom and * a set. The object Scientist gives for each 
scientist his education as a set of degrees and his 
membership as a set of professional organizations. The 
object Contribution gives for each scientist his research as 
a set of publications by subject. Note that a relational 
representation of this database would require five 
relations. Compared to the relational model, a complex 

object model essentially decreases the explicit use of joins 
(an expensive operation). 
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Figure 1: Example of complex object schema 

2.2. Object Identity 

In addition to the notion of complex object, there is a 
strong need for object identity [KHOS 861. Our database 
language [BANC85] allows the manipulation of object 
identities through functions. This avoids processing of 
large objects when not necessary. Also, object identity 
allows coreferencing of objects and hence provides 
support of graph structures instead of trees. Each object is 
assigned by the system a unique identifier. 

An efficient approach for representing identity at the 
implementation level is through the use of surrogates 
[HALL76, MEIE83]. A surrogate is a globally unique 
value created by the system when an object is 
instantiated, which the system never modifies and users 
are not .permitted to modify. For storage efficiency an 
atom’s identifier is the atom’s value itself. We will use 
surrogate identifiers for tuples and sets. Furthermore the 
surrogate could be made invisible to the user (i.e., at the 
level above the complex object model). 

Representing identities through surrogates allows us to 
have data independence, low-level support for integrity 
constraints, uniformity [COPE851 and provision for 
capturing joins [VALD85]. Note that clustering schemes 
are orthogonal to the existence of surrogates. The use of 
surrogates introduces a level of indirection through a 
small index which is RAM resident. However, it permits 
efficient updates and reorganization since references do 
not involve physical pointers which would cause disk 
accesses. Surrogates eliminate the need for user-defined 
identifier keys which consist of one or more attribute 
values. This simplifies the update process for users since 
all attributes can be modified in a uniform way, whereas 
the use of user-defined identifier keys places restrictions 
on updates to those attributes which serve the dual role of 
object descriptive data and object identity. Surrogates are 

- 102- 



fixed-length integers and are usually smaller than 
user-defined identifier keys, so that the storage and 
processing of entity relationships are more efficient. 

Scientist 
I 

PhD85 UT 

MS 76 UT PhD?9 MIT 

Figure 2: An instance of the object Scientist 

Figure 2 gives an instance of the object Scientist where 
si is a set surrogate and tj a tuple surrogate. 

3. Direct Storage Model 

In the direct storage model, complex objects are stored 
directly as they are defined in the conceptual schema. 
This is a natural way to store conceptual objects. For 
example if the database is composed of set objects, the 
direct storage model will store each set object (which can 
be a nested set) in a separate file. Each record of a file 
represents a complex object (e.g. the tuple for scientist 
Doe). Then, we have several solutions for clustering the 
attributes of a complex object. All these solutions stem 
from an ordering of the nested sets based on the 
hierarchy. A simple solution consistent with the 
hierarchical manipulation of objects in our language is 
pre-order. For instance, the internal schema of the file 
storing the set Scientist would be as follows (sur is a 
surrogate which identifies the following set or tuple) : 

/sur/ ( /sur/ [name : value, 
education : /sur/ {/sur/ [degree: value, 

year: value, 
university: value]}, 

age : value, 
member : /sur/ {organization] I} 

The clustering of the records in a file can only be done 
based on attributes of the root objects. The file Scientist 
can only be clustered on sur, name and/or age, using a 
single or multi-attribute file structure. Therefore, the 

access to objects based on other attributes than those of 
the root objects must be done with auxiliary structures 
(e.g., secondary indices) or through sequential scans. 

The primary advantage of this approach is that 
retrievals of entire complex objects are efficient. 
Compared to a mapping of a relational schema where 
each relation is stored in a file, this model avoids many 
joins. Another strong advantage of this model is that the 
compilation of queries that deal with conceptual complex 
objects is simplified because there is a l-l 
correspondance between conceptual object and internal 
object. 

The main drawback of this approach is that 
performance can be hurt by large objects. All clustering 
techniques usually assume that a record fits in a disk 
page. For a direct storage model, we would choose the 
page equal to a track. However, even with increasing disk 
track capacities, it can be the case that a record does not 
fit in a track. For example, CAD objects could span 
several if not many tracks. Since we feel it is not 
reasonable to impose size constraints on objects, the 
management of large objects adds complexity in the 
clustering algorithms. Note that in our model, it is always 
possible to flatten at the conceptual level a hierarchical 
object and retrieve it through joins. However, this solution 
implies a weaker physical independency. 

Finally, retrievals of certain sub-objects is inefficient 
because they are clustered according to a topological 
order. This is typically the main drawback of hierarchical 
systems. 

4. Normalized Storage Model 

In the normalized storage model, complex objects are 
not stored directly. Rather, they are decomposed into sets 
of tuples of atomic values and/or surrogates. Thus, each 
set object corresponds to a normalized relation. For 
instance, the object Scientist would be decomposed into 
three flat relations as shown in Figure 3. Ed-sur is a 
surrogate of education (set of degrees) and D-sur is a 
surrogate of a tuple degree. The connection between 
Scientist and Education is thus given by Ed-sur (i.e., the 
join attribute) in set Education. Note that for optimization 
purposes, we can replace Ed-sur by S-sur in Education 
because there is only one Ed-sur value per S-sur value 
and then remove the attribute education in Scientist. 

/- datape -, 

S ienkt 
9 * 

Edu’ ation 
P 
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Ed-sur M-sur 

Figure 3: Normalized schema for Scientist 
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The main value of this normalized approach is a better 
performance of partial object retrievals. In turn, each 
relation is mapped into file(s) using a uni-relation storage 
structure. In section 4.1., we will discuss the alternative 
solutions for the mapping of relations into files. As in the 
relational approach, retrieval of complex objects requires 
joining relations. In order to make these operations 
efficient, we will propose in section 4.2 storage structures 
called join indices that store in a uniform and compact 
way the complex object structures. 

4.1. Uni-Relation Storage Structures 

In this section, we summarize the properties of the 
known uni-relation storage structures that affect the 
processing of the main relational operations (project, 
select, join, update). Note that operations on complex 
objects can be seen as extended relational operations 
(including transitive closure). We distinguish these 
structures according to two partitioning functions applied 
to relations called vertical and horizontal partitionings. 
Vertical partitioning maps relations into files, where a file 
corresponds to an attribute, several attributes, or the 
entire relation. Horizontal partitioning clusters a file 
based on the values of a single attribute or based on 
several attributes. In the fohowing, for each possible 
vertical partitioning, which we name NSM, DSM and 
P-DSM, we discuss the possible horizontal partitionings 
and their performance. 

4.1.1. NSM 

This approach, named N-ary Storage Model, is the 
most commonly used in database systems. Each 
conceptual relation is stored in a single file. The vertical 
partitioning function is thus trivial. The update of tuples is 
thus efficient since a single file is affected. 

For selections, if horizontal partitioning is performed 
on a single attribute then selection .is most efficient for 
exact match and range queries on that clustering 
attribute. If the selection is based on inverted attributes 
there is considerable degradation in performance. 
Furthermore, if a multikey clustering scheme is utilized, 
the performance of selection gets better as the query 
binds more attributes of the multikey. 

The best operation supported by NSM is projection on 
many attributes. Projection on a few attributes is generally 
inefficient since the ratio of data needed to data touched 
(entire file) is low. 

Join is acceptably efficient only when it is based on 
clustered or indexed attributes and only when it is 
preceded by selection and projection [SELI79]. Finally, 
the presence of a single long attribute in the file degrades 
performance of all the operations based on other 
attributes. 

4.1.2. DSM 

This approach, called Decomposition Storage Model, 
stores all values of each attribute of a relation together on 
a separate file [BAT079, COPE85]. Each attribute value 
is associated with the surrogate of its conceptual tuple. In 
[COPE85], there are two physical copies per decomposed 
binary relation: one copy is clustered on the surrogate and 
the other copy is clustered on the attribute values. Having 
two copies of each data item is also the only good solution 
to reliability. The DSM approach is best suited for 
selection and projection on a few attributes. 

Complex joins are performed through a cascade of 
semi-joins, and are usually very efficient. However, the 
result of a join phase provides only the surrogates of the 
tuples that match. Therefore, in a final projection phase 
additional semi joins are needed to associate attribute 
values with the surrogates. Compared with NSM, DSM 
requires more operations but on smaller data sets. 

Also, tuple insertion/deletion has a poor performance, 
for it can generate as many updates as attributes. 

4.1.3. P-DSM 

This approach, called partial DSM, is a hybrid 
between DSM and NSM. This storage model vertically 
partitions a relation based on the attribute affinities, such 
that attributes which are frequently used together are 
stored in the same file [HOFF75, NAVA84J. The 
knowledge about the most frequent queries in user 
workloads is thus exploited to organize storage structures 
for efficient access. Each file contains several attributes 
and a surrogate of the corresponding tuple. Therefore, the 
operations best supported are selections and projections 
on the groups of attributes which are frequently accessed 
together. 

With a general P-DSM approach some attributes 
might be replicated in more than one file. Since the 
construction of the P-DSM files is based on affinities and 
user hints, replication would enhance the performance of 
retrievals but would penalize updates. 

The performance of joins depends on the partitioning 
by the join attributes and can be good if they are clustered 
or indexed. If the attribute groups are based on affinities, 
then the projection on many attributes should seldom 
involve joining different files. Updates of conceptual 
tuples require updating all the partially decomposed files. 

The fact that P-DSM is a hybrid of NSM and DSM 
provides us opportunities to have a compromise of the 
advantages and disadvantages of both schemes. However, 
the accurancy of the vertical partitionning is a key factor 
of efficiency. Thus, this model supports poorly highly 
dynamic workloads. 
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4.2. Join Indices 

In this section, we present simple data structures 
called join indices which capture in a uniform way the 
connections existing between objects. We first give the 
basic version of the join index called binary join index 
proposed in [VALD85] for simple objects and then a 
more generalized version called hierarchical join index 
adapted to complex objects. 

4.2.1. Binary Join Indices 

We recall the definition given in [VALD85]. Let R and 
S be two relations not necessarily distinct, we consider the 
join of R and S on attributes A from R and B from S 
giving a result relation. Intuitively, a binary join index 
(BJI), or simply join index, is an abstraction of the join of 
the two relations. The surrogate of a tuple of R is noted ri 
and the surrogate of a tuple of S is noted sl. More 
formally, the binary join index on R and S is the set 

BJI = ( (ri, sj) ] f (tuple r1.A , tuple s1.B) is true ) 

where f is a boolean function that defines the join 
predicate. 

A BJI is implemented by a binary relation. For 
performance reasons, we may keep two copies of this 
relation, one clustered on r (using a B+-tree, for example) 
and the other clustered on s. A BJI is created by joining 
the relations R and S and projecting the result on 
attributes (r,s). 

For example, the connection between Scientist and 
Education (Figure 3) was given by storing explicitely the 
surrogate of Education in both relations Scientist and 
Education. This connection can be stored separately as 
shown in figure 4. 

Education 

1, 

Figure 4: Example of Join Index 

BJI are very efficient for optimizing joins. This is 
mainly because a join index is separated from base data 
and so small that it can fit in RAM. They can be used 
systematically for capturing the joins materializing 
complex objects. However, they can also be very useful 
for optimizing value based joins. For example, the join 
between Scientist and Contribution on name can be 
captured by a join index. In this latter case, a join index is 
an accelerator for joins. 

When intended as an acceleration mechanism, BJI’s 
should be used only for most important joins. Join indices 
are shown to be a very attractive tool for optimizing both 
relational queries and recursive queries [VALD86]. 

Note that binary join indices are subsumed by the 
DSM applied to our complex object model. In other 
words, with the mapping presented in Section 4.1 (see 
Figure 3), DSM will automatically give us the binary join 
indices that capture the connections between sub-objects 
of the same object. Therefore, join indices are subsequent 
decompositions which make sense for NSM and P-DSM 
storage models. Here we have attempted to keep the 
discussion of join indices more generic since their 
properties as join accelerators hold in many models, 
including the relational model. 

4.2.2. Hierarchical Join Indices 

In order to support complex objects, we extend the 
notion of join index to this of a more general structure, 
called hierarchical join index (HJI). A hierarchical join 
index can capture the structure of a complex object by 
using the surrogates of the connected relations involved in 
the whole object. Figure 5 proposes two examples of I-III 
for two different complex objects. 

? 

i 
i 
I f/n * * 

I C 

x m 
HJI = (A-sur {B-sur) (C-sue } 

n * 
B h * 

IC 

n 
HJI = {A-sur (B-sur {C-sur) ) } 

Figure 5: Examples of hierarchical join indices 

Therefore, rather than having several binary join 
indices, a single and bigger hierarchical join index can be 
used. Similarly to the direct storage model, a HJI can be 
only clustered on the root surrogate. When the root 
surrogate of a complex object is obtained (through a 
secondary index), then the whole structure of the complex 
object is given directly. HJI’s are better than BJI’s for 
retrievals of entire objects. In fact the tradeoffs between 
HJI and BJI is very similar to the tradeoffs between the 
DSM and NSM storage organizations. In other words, the 
hierarchical scheme will always involve fewer updates, 
but if very few joins through the joining surrogate are 
performed, some retrievals will be more expensive (this 
corresponds to the curves of the number of projected 
attributes in [COPE85]). 
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One interesting point to remember is that we never 
have range queries on surrogates. Therefore, access is 
approximately random. Thus, in the comparison of the 
binary and the join indices the number of blocks accessed 
as a function of the number of surrogates can be 
approximated through Yao’s function [YAO77]. The 
results in [COPE851 indicate that the main advantage of 
the DSM over NSM, when the number of projected 
attributes is kept constant, comes through increasing the 
number of selected attributes. Therefore, since the 
accesses for both the binary and hierarchical join indices 
will be “scattered”, and since the HJI’s provide better 
performance in updates, we believe this scheme presents 
a competitive alternative to BJI’s. Furthermore, since only 
surrogates are stored in the join index abstraction of 
complex object, recursive structures could be supported 
very easily. However, BJI are still necessary to complete 
HJI in performing partial object retrievals. 

5. Performance Evaluation 

Since most of the research efforts have concentrated 
so far on NSM, an important goal of our research was to 
investigate the po?sibility of storing complex objects 
through DSM and binary join indices. Although, as we 
have indicated earlier, DSM subsumes binary join indices 
for our particular model of complex object representation, 
we like to keep our observations more generic since the 
implications of this combination (DSM + BJI) also apply 
to more normalized models such as the relational model. 
Furthermore, even in the framework of complex objects, 
some BJI’s might be introduced to accelerate value based 
joins of complex sub-objects. These types of join indices 
are not subsumed by DSM but are more characteristic of 
the BJI’s. In the rest of this paper, we will understand 
DSM for short of DSM + BJI’s that represent sub-object 
connections. 

At first sight this approach seems to be unreasonable 
since a fully decomposed storage system for complex 
objects will necessarily entail multiple joins for complex 
object construction. The semantic clustering of the 
complex object will be lost in the storage niodel. It might 
be argued that the direct storage representation (or one of 
its variants) is the only obvious storage of choice. In the 
previous section we attempted to present qualitative 
tracleoffs for the alternative storage schemes. The main 
problem with the decomposition scheme DSM seems to 
be performance. 

However, to our knowledge, no quantitative evaluation 
has been done to characterize the performance issues for 
the range of complex object storage schemes presented in 
the previous sections. Therefore we are currently 
underway in determining quantitatively the performance 
issues of the decomposition schemes for programming 
environments which manipulate complex objects. 

To this end, we have first attempted to compare the 
DSM + BJI storage scheme with the full NSM storage 
scheme. Subsequently we shall be measuring the relative 
performance of DSM + BJI with respect to the direct 
storage scheme. 

The analytical results for DSM and join indices are 
drawn from [COPE851 and [VALD85] respectively. 
Section 5.1 will summarize the DSM results and Section 
5.2 will summarize the results pertaining to (binary) join 
indices. Finally, in Section 5.3 we shall present some 
initial implementation results which show the relative 
performance of DSM and (binary) join indices 
combination with respect to NSM. 

5.1. DSM vs NSM 

In [COPE851 an anlytical model for the performances 
of 2-copy DSM (one copy clustered on surrogate and the 
second clustered on attribute values) was presented. DSM 
was compared against the full NSM storage model (i.e. 
NSM without join indices). A number of parameters were 
evaluated. First it was shown that, using run-length 
compression, the data storage requirement of DSM is 
more than NSM by, approximately, a factor of 2.1. 
Second, on the average, the number of probes for an 
update with DSM is worse by a factor of 3 compared to 
NSM. However, the most interesting part of the 
performance analysis was the retrieval performances of 
the two schemes. 

A closed form analytical expression was developed, 
which 1 gave the total IO requirement of a 
select/project/join operation as a function of the relation 
sizes, the number of select and project attributes, the 
number of joined relations, and the average number r of 
records retrieved from the base relations. 

It was consitently observed that DSM would 
comparatively perform better if the selectivity (i.e., 
r/(number of tuples in base relations)) is beyond a certain 
threshold (in most cases approximately 1%). In fact the 
performance curves showed that the ratio of number of 
blocks accessed by NSM divided by the number of blocks 
accessed by DSM as a function of r achieves an optimum 
when r is approximately 10% of the average number of 
tuples in the base relations. Figure 6 shows a family of 
curves where the number of projected attributes is varied 
for a select on one base NSM relation. (“npa” stands for 
number of projected attributes from each base relation; 
“nb” stands for the number of NSM blocks retrieved; 
“db” stands for the number of DSM blocks retrieved: 
therefore the y-axis presents the ratio (total IO for 
NSM)/(total IO for DSM)). It is assumed that base NSM 
relations have, on the average, 10 attributes. As can be 
seen from these curves that for small values of r and/or 
larger number of projected attributes DSM looses. One 
could argue that the cases where DSM wins (namely 
selectivity greater than 1% and percent of projected 
attributes greater than 50%) are the least interesting. 
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However, thsese family of curves do not involve any NSM 
joins. Figure 7 shows another family of curves where here 
the number of preojected attributes is hald fixed, but the 
number of NSM joins (i.e.,“njr”) is varied. Observe that 
the relative performance of DSM increases as the number 
of joins is increase. Therefore, if we were to retrieve a 
complex object of several levels of nesting (which would 
involve multiple NSM joins), and few attributes from each 
level, we would expect DSM to outperform NSM in most 
cases. We shall further substantiate this argument in 
Section 5.3. 

5.2. Join Indices 

We now summarize the analytical results of the BJI’s 
performance given in [VALD85] and relate them to 
complex object retrieval. Join indices are useful with any 
vertical partitionning function (DSM, P-DSM, NSM). 
However, the mapping of our complex object model into 
DSM automatically implies BJI’s that capture the 
connections between sub-objects of an object. The 
purpose of this section is to show that, more generally, 
join indices provide excellent performance in doing 
arbitrary joins and can outperform .the best known join 
algorithms. In [VALD85], we limited our analysis to the 
join algorithm itself since it is the most critical operation. 
However, the real value of join indices increases as 
queries become complex because the most complex 
operations are done on small data structures (select 
indices, join indices, etc). The join algorithm using a join 
index takes advantage of all available memory and is 
easily adaptable to parallel execution. 

In order to evaluate the performance of the join 
algorithm using BJI noted JOINJI, we compared it against 
the hybrid hash join algorithm [DEWI84], noted JOINHH, 
because this latter is very efficient (it outperforms easily 
the sort-merge join algorithm), takes advantage of large 
RAM and is ameanable to parallel execution [DEWI85]. 
Except for highly selective joins (i.e., producing a small 
result), JOINJI outperforms JOINHH. The reason is that 
the efficiency of a join index is inversely proportional to 
its size. A tuple in a BJI is small. The size of the BJI 
depends on the join selectivity factor , noted JS, which 
determines the number of tuples in the BJI. If the join has 
good selectivity (JS is low), the join index is small. This is 
a frequent case in existing databases (e.g. join on foreign 
key). However, a join of poor selectivity, which can be 
close to the Cartesian product, can make the index quite 
large. In this case, we claim that no good optimization is 
possible and a simple nested loop join algorithm is 
sufficient. The way in which joined relations are 
physically clustered have generally an impact on join 
performance. Surrogates contained in a join index are 
used for retrieving attribute values in relations. Therefore, 
a file mapping the relation must be either clustered or 
indexed on surrogate. 

Assuming a conventional architecture, the main 
parameters affecting performance are : the number of 
pages in an operand relation, the number of tuples in an 
operand relation, the number of RAM pages available to 
the operation, the join selectivity factor and the semi-join 
selectivity factors. The RAM size allocated to the join was 
generally 5% of the operand relation sizes. With high join 
selectivity (low JS), JOINJI can outperform JOINI-IH by 
two orders of magnitude. Having the joined relations 
clustered on surrogate instead of indexed on surrogate 
improves join’s performance by a factor 2. For less 
selective joins, the performance difference between 
JOINJI and JOINHH is much less. Note that we did not 
take into account the performance degradation of hashing 
in presence of many collisions that arise for low join 
selectivities. Finally, varying the RAM size does not 
change the performance difference Therefore, we feel 
that JOINJI would almost always outperform JOINHH. 

5.3. Implementation Results 

To substantiate some of the claims made in [COPE851 
and [VALD85], we implemented a fully decomposed 
storage scheme based on DSM and BJI. The 
implementation is based on WISS [CHOU83] -the 
Wisconsin Storage model. To compare DSM (+ BJI) with 
NSM we have run some tests based on the Wisconsin 
Benchmarks [BITT83]. However, we are in the process of 
augmenting the Wisconsin benchmarks to test the 
performance of the decomposition scheme for complex 
object retrievals. 

Thus far the implementation results confirmed our 
analysis. In Figure 8 we give the ratio for number of 
blocks accessed by NSM/DSM for 1% and 10% selects on 
10K tuple relations. In the Wisconsin Benchmarks the 
projection was done on all of the attributes. However, we 
have varied the number of projected attributes in our 
runs. Therefore the x-axis is the fraction of the total 
number of projected attributes (the total number is 16 - 1 
surrogate and 15 attributes). First observe that the relative 
performance of DSM is better when the selectivity is 
higher. In fact with 10% selectivity, DSM will perform 
better if the fraction of projected attributes is less or equal 
to approxiamtely 70% of the total number ‘of attributes. 
With 1% selectivity DSM is better only if the total number 
of projected attributes is about 30% of the total number of 
attributes. 

To show the performance of the joins with DSM 
versus NSM, we have analyzed the performance of 
several types of 2-way joins, namely: l-l, l-10, 10-1, 
and 10-10. These are illustrated in Figure 9. For all these 
joins, there is a 1% select on the first relation and both 
relations are 10k tuple relations. First we note that the 
total number of tuples retrieved from both relations 
decreases in the order l-10, 10-10, I-1,and 10-l. For 
example, with l-l a total of 200 (100 from each relation) 
tuples will be retrieved. However, with l-10 a total of 
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1100 tuples will be retrieved (100 from the first relation 
( i.e., the one on which the selection is performed) and 
1000 from the second). For the l-10 and 10-10 joins 
DSM performs better of the number of projected 
attributes is approximately less than or equal to 50% of 
the total number of attributes in both relations. For the 
l-l and 10-l cases DSM performs better if the total 
number of projected attributes is less or equal to 
approximately 30% of the total numebr of attributes. 
However, we should emphasize that the x-axis here is the 
fraction of the total number of attributes from both 
relations. In other words a 30% fraction represents 10 
attributes (and not 5 as in the previous selection curve). 

We feel these results are preliminary. In particular, 
these performance measurements were made with at least 
1% selectivity of retrieval queries. When selectivity is 
reduced to a single object, our analytical model predicts 
that the worse case factor for DSM (all attributes 
projected) becomes much higher. This is clearly shown 
with the update queries. Our goal is to analyze the 
performance of DSM for a mix of typical queries in 
programming environments which manipulate complex 
objects. Furthermore, we will be comparing the 
decomposition scheme against the direct storage scheme 
to have a precise appreciation of the implied performance 
issues due to the decomposition of the complex object. 

6. Conclusion 

A complex object storage model must be able to 
provide efficient support for a wide variety of query types. 
The difficulty lies in achieving two conflicting goals : 
efficient support for retrieving a single entire complex 
object and at the same time retrieving its components. 
The first goal leads to clustering of a full complex object 
in the same memory extent (Le., direct), while the second 
goal leads to clustering of the individual components (i.e., 
DSM). 

The relative advantages of DSM (+s BJI’s capturing 
sub-objects connections) and direct can be summarized 
as follows: 

(1) DSM is significantly simpler than direct to 
implement. Storage structures, clustering, indexing and 
compilation of conceptual queries into internal queries are 
much simpler. 

(2) DSM is significantly simpler than direct to use. 
Users and database administrators need not be involved 
in deciding which attributes to cluster or index. Instead, 
these are done in a uniform way. Also, reorganization due 
to such performance tuning is not needed. 

(3) DSM causes significantly less system resources for 
reorganization due to either performance tuning or 
conceptual schema modification. 

(4) DSM causes access to significantly more physical 
blocks when the number of projected attributes is large 
and selectivity is low. 

(5) When locality of use among attributes is higher 
than locality among complex objects, DSM causes fewer 
disk 10s (accesses to physical blocks are more often in 
RAM), since individual attributes can more easily be 
buffered. We expect this to usually be the case, since 
each application or user view uses a fixed pattern of 
attributes but varies predicate bindings as a parameter. 

(6) In a parallel disk machine, DSM can more easily 
achieve load balancing then direct. A hot complex object 
may cause one disk to be overloaded using direct, 
whereas DSM can spread the attributes of the complex 
object over several disks. 

In conclusion, DSM has many advantages over direct. 
Its severe disadvantage is point (4) above. DSM is 
superior whenever data is shared over multiple 
applications, since direct can provide optimal tuning only 
for a particular access pattern. Direct is superior when a 
particular access pattern heavily dominates and that 
access pattern consists of accessing few objects (very low 
selectivity), projecting on many attributes , and using the 
same attributes as the selection criteria. However, such 
applications currently exist in sufficient number (e.g., 
CAD) to warrant database system support. Two open 
issues remain regarding the form of support of such 
applications. 

One open issue is that currently these applications are 
usually supported by file systems which store each 
complex object as a long bit/byte string file with indexing 
by file name. This approach could be supported within 
DSM by representing the complex object as a single 
attribute whose value is a long string. In other words, if 
the complex object is always used as a single monolithic 
object within the database system, then a complex direct 
representation is unnecessary. 

The second open issue is whether such applications 
will continue to have a single access pattern. Most long 
term visionaries of CAD, for example, argue that 
eventually CAD data will be heavily shared by multiple 
applications. 
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Figure 6: Varying the Number of Projected Attributes Figure 7: Varying the Number of Joined Attributes 
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Figure 9: Joins 
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