
A Superjoin Algorithm for Deductive Databases

James A. Thorn, Kotagiri Ramamohanarao, Lee Naish

University of Melbourne, Parkville, Victoria 3052. AUSTRALIA

Abstract

This paper describes a join algorithm suitable for deductive and
relational databases which are accessed by computers with large
main memories. Using multi-key hashing and appropriate
buffering, joins can be performed on very large relations more
eficiently than with existing methods. Furthermore, this algorithm

jirs naturally into top-down Prolog computations and can be made
very jlexible by incorporating additional Prolog features.

Keywords: Partial match retrieval, Prolog, hashing, joins,
optimization, database, relational, deductive

1. INTRODUCTION

The join operator is both a frequently used relational operator
and an expensive one in relational database systems. Several join
algorithms have been discussed in the literature; for example,
nested-loops, sort-merge, and hash-join [Bratbergsengen 841,
[Dewitt 841, [Jarke 841, and [Ullman 821.

In this paper we propose another join algorithm, the superjoin
algorithm. This algorithm, based on multi-key hashing, partitions
the join to enable efficient buffer management. The superjoin
algorithm is suitable for large relational databases accessed from
computers with large main memories. One of the properties of the
superjoin algorithm is that it maintains excellent performance from
very small relations to very large relations. The superjoin
algorithm also supports queries containing arbitrary constraints,
disjunctions, negations, and existential quantifiers. These
additional properties are especially useful for deductive database
systems using top-down computation.

Section two provides a background to the superjoin algorithm.
It describes the notation used in this paper, multi-key hashing and
partial match joins. These am illustrated using some examples.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage? the VLDB copyright notice and the
title of the publication and Us d&e appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To CODY otherwise. or to reoublish. reouires a fee
and/or special p&&ion from ihe End&ment.

Section three describes how, using multi-key hashing and
appropriate partitioning, joins can be performed on very large
relations in a very efficient way. If there is suitable buffering of
pages then each page of each relation needs to be read into main
memory at most once. An algorithm is described which minimizes
the number of buffers required. An implementation of this
algorithm, in Prolog, is given in Appendix A and some examples
are listed in Appendix B.

Section four describes how the superjoin fits naturally into
Prolog’s top-down computation, including Prolog features such as
negation and existential quantifiers. A complete deductive database
system would include a higher level which would break the query
up into sub-queries to be processed efficiently by the supejoin.
The superjoin would access a low-level interface to the external
database.

Section five analyses the performance of the supejoin
algorithm, and compares it with other well known join algorithms.

The conclusion, presented in Section six, is that the supejoin
provides a flexible and powerful database “primitive”, and
provides superior efficiency to that of existing join algorithms.

2. BACKGROUND

2.1. Notation

Throughout this paper we shall use a notation based on Prolog
[Clocksin 811. The term predicate is used as equivalent to the
term relation, and fact is used as equivalent to tupfe.

Predicate (relation) names are written in lower case, strings are
written with double quotes, and variables are written in upper case
without any quotes. A fact (tuple) can be written

p(“X1”, “yl”)

which is a fact about “xl” and “yl” from the predicate ‘p’. A
query can be written

?- p(X, “,I”)

which would find all values for the first attribute (the variable x)
for those facts in ‘p’ where the second attribute is “~1”.
Conjunctives are constructed with ‘,’ and disjunctives with I;‘.
Thus, the query

?- p(X,Y), q(Y,Z) QUERY 1

would join ‘p’ with ‘q’, joining on the second attribute of ‘p’ and
the first attribute of ‘q’ (the join variable Y).

Proceedings of the Twelfth International
Conference on Very Large Data Bases

Kyoto, August, 1986

-189-

2.2. Multi-key hashing

There are various schemes for accessing predicates stored
using multi-key hashing. For example, hashing with descriptors
[Ramamohanarao 831, recursive linear hashing
[Ramamohanarao 85a], hashing with superimposed codeword
indexing [Ramamohanarao 85b]. Other methods are described in
[Aho 791, [Lloyd 801, and [Rivest 761. Many schemes are
variations and enhancements on a common scheme which we shall
describe here.

Consider a partial match query on a single predicate. We
assume a predicate is stored on disc in the pages of one file. Each
tuple has a fixed number of attributes, denoted a,, %,...,ak A
partiol match query is a specification of the value of zero or mote
of these k attributes. The answer to a query is the collection of all
tuples in the file which have the specified values for the specified
attributes.

Tuples are allocated to pages within the file by means of a
hashing scheme which allocates zero or more bits to each attribute
of the tuple. Consider a static tile consisting of 2d pages, where d
2 0. The pages are numbered from 0 to 2d-1. Each attribute ai
has a hashing function hi which maps from the key space of ai to a
bit string. From this string di bits are selected, such that
dl+...+dk = d. By computing the hash values of all the attribute
values of a tuple it is possible to compute the page number in
which the tuple is stored. This requires the use of a choice vecror.
which defines a mapping between the strings of di bits and the
page number. The choice vector ‘was introduced for handling
dynamic files in Lloyd 821 and [Ramamohanarao 8’31. Here we
use a slightly simplified notation for choice vectors.

Suppose the hash functions hi map “~0” to the string of bits
“...OOO” and “yl” to “...OOl” and “~2” to “...OlO” and
similarly for “zo”, “zl”, “22” et cereru. For each attribute, we
choose the last di bits to construct the choice vector.

Consider the predicate q(Y,Z), then the hash functions hr and
$ would map the value Y to the string “...Y3YzYI” and the value
Z to the string “... Z,Z,Z,” respectively, where Yi and Zi can take

values 0 or 1. We loosely refer to these strings as bit strings. If
q(Y,Z) is stored in 23 pages, then we might set d, = 2 and d, = 1.
Thus the bits YzYl and Zt would be selected from the bits strings
generated by the hash functions. The choice vector could be any
one permutation of these bits strings, such as YtZtY,. Thus tuples

would be stored in the file as shown in the ‘q’ predicate in Pigure
1.

P

tuples

P(XY)

page tuples

YIZIYZ q(YZ)

000’ d”Y4”, “22”), q(“y4”, “22”)
001 q(“y2”, “22”)
0 1 0 q(“y4”, “Zl”)
0 1 1 q(“y2”, “21”)
100 q(“yl”, “22”)
1 0 1 q(“y3”, “22”)
110 q(“yl”, “Zl”)
I 1 1 q(“Y3”, “Zl”), q(“y7”, “Zl”)

r

me

Vl

00

0 1

1 0
1 1

tuples

r(xzz)

r(“Xo”, “,W), T(LIx2~~, “,,,)

r(“Xo”, “zl”), r(“x2”, “~1”)
r(“Xl”, “Zo”)
r(‘cxl”, “zl”)

pais

s
tuples

xlyly2 s(X,Y)

000 s(“xO”, “yO”), s(“X2”, “y4”)

0 0 I, s(‘Lxo”i “yo”)
0 I 0 s(“Xo”, “,l”), s(“x2”, “yl”)
0 I I s(“xO”, “y3”)

100 S(“Xl”, “y0”)
I 1 0 s(“xl”, “y2”)
110 s(“xl”, “yl”)
1 I I .s(“XI”, “y3”)

Figure 11 ‘p’, ‘q’, ‘r’ & ‘s’ predicates

-190-

For a query containing variables, only some of the bits will be
specified. Thus several pages will need to be searched. Consider
the query:

?- q(“y3”, Z) QUERY 2

Answering this query would require the following steps:

(1)

(2)

(3)

Hash “~3” to the bit string “...Oll” from which we select
just the last two bits since d, = 2, namely Y2Y1 = 11

Since the second attribute is a variable, the bit Zl = *, where
* represents an unknown bit

Search the pages where Y,Z,Y, = l*l (namely pages 101 and
111) for tuples which match the query; this would retrieve the
tuples:

q(“y3”, “22”)
q(“y3”, “Zl”)

2.3. Partial match joins

It is possible to apply these partial match schemes directly, for
instance, in a Prolog system getting answers a tuple at a time
([Naish 831. [Ramamohanamo 85b]). Consider query 1 again.

?- P(X,Y), q(Y,Z)
In answering the query, a straightforward implementation in Prolog
would get the first solution from the first page of the ‘p’ relation,
namely:

p(“Xo”, “y0”)

then try to find facts from the second predicate which match. This
would require reading page 00 from ‘p’ and, since “~0” hashes to
“...OO”, only pages 000 and 010 from ‘q’. However, there are no
matching tuples, so Prolog would proceed with the second solution
from the first page of ‘p’ in a similar fashion. Thus, the second
solution

p(“X2”, “,2”)

would join with the tuples

q(“y2”, “22”)
q(“y2”, “Zl”)

This would require reading additional pages 001 and 011 from ‘q’
since “~2” hashes to “...lO”. After exhausting all the tuples in
the first page of ‘p’ Prolog would proceed in a similar fashion with
subsequent pages of ‘p’.

This scheme for implementing joins fits in naturally with other
relational operators such as selection. Consider the query

?- p(“Xo”,y), q(Y,Z) QUERY 3

This query performs a selection on ‘p’ while performing the join,
reducing the number of pages which need to be considered.

Although using partial match retrieval to implement joins
creates a workable system, there are some important inefficiencies.
For most queries this approach requires that many pages need to be
mad more than once.

3. THE SUPERJOIN ALGORITHM

Multiple reading of pages from disc in the naive tuple at a
time algorithm can be eliminated by keeping pages in main
memory buffers. In query 1 above, if we use twelve buffers (four
for the ‘p’ predicate and eight for the ‘q’ predicate) then no page
needs to be read from disc mom than once. This simple method,
of buffering all pages of both predicates, is not feasible with large
predicates. Since main memory size is limited it is necessary to
reduce the number of buffers required.

If we use multi-key hashing and the join attributes have the
same hash function, then it is possible to partition the join into a
number of srtb-joinr. Each sub-join accesses only some of the
tuples required for the full join. The result of the full join is
simply the union of the results of all the sub-joins. The superjoin
algorithm partitions a join and orders the execution of the sub-joins
so as to minimize the number of buffers required, while still only
reading the pages of each predicate from disc at most once.

3.1. Partitioning into sub-joins

The simplest partitioning of query 1 has each page of the ‘p’
predicate in a separate partition. -This results in four sub-joins,
where each sub-join only considers those tuples with a common
hash value for Y, and Xl. Each partition is a join of one page of
the ‘p’ predicate with four pages of the ‘q’ predicate. If we mad
the pages of ‘p’ sequentially this requires nine buffers (one for the
‘p’ predicate and eight for the ‘q’ predicate).

By changing the order in which we access the pages of the ‘p’
predicate we can reduce the number of buffers needed. Suppose,
instead of accessing tuples from ‘p’ in the order the pages am
numbered (00, 01, 10, 1 l), we read the pages in the order 00, 10,
01, 11. That is, we read all the pages in ‘p’ such that Y, is 0
before reading the pages in ‘p’ in which Y, is 1. While we are
joining tuples from the pages 00 and 10 in ‘p’ the tuples will all
hash to Y, = 0 thus matching tuples will only appear in the pages
000, 001, 010, 011 from ‘4’. Later when we join tuples from the
pages 01 and 11 in ‘p’ the tuples will all hash to Yl = 1 and
matching tuples will only appear in the pages 100, 101, 110, 111
from ‘q’. When this is done the number of buffers required is
reduced to only five (one for the ‘p’ predicate and four for the ‘q’
predicate).

It is possible to further reduce the number of buffers required
by a mom complex partitioning. In the optimal partitioning, each
partition consists of tuples with common hash values for Yl, Y2
and Zl. This partitions the join into eight sub-joins. Each sub-join
consists of all tuples in one page of the ‘q’ predicate and, on
average, half the tuples in two pages of the ‘p’ predicate. For
example, the sub-join where YlZlY, = 001, consists of all tuples
in page 001 of ‘q’ and the tuples in pages 00 and 10 of ‘p’ with
hash value such that Yz = 1. If the sub-joins are done in
increasing values of YlZlY, then the number of buffers required is
three (two for ‘p’ and one for ‘9’). The same is true with

-191-

increasing values of Y,Y,Z,, but with no other permutation (see The s&vectors should be constructed so that this cost function is
section 3.3). minimized.

3.2. Sib-vector

Our use of bit strings, such as YtZtYz, in the previous section
can be formalized by defining an sfb-vecror (slow-fast bits vector).
The bits in the &-vector define the partitioning and the order of
the bits defines the order in which the sub-joins are done (compare
with the choice vector which specifies the order of hashed page
addresses in which tuples are stored).

Given an &-vector of length f, a choice vector and a number
in the range 0 to 2’-11 a set of pages in the tile is identified. For
example, if the sfb-vector was,Y,YZZ1 and the choice vector was
X,Y, rhen the number 101 would identify the pages *l (that is 01

1 A

and 11). ’
The superjoin generates a sequence of numbers from 0 to 2’-1

and uses the &-vector to access the corresponding pages of the
file. Tuples are retrieved from each predicate in such a way that
all matching tuples which hash to., a particular value. of the sfb-
vector (an sfb-v&e) am retrieved together. These tuples need only
be joined with tuples in the other predicates which match the same
r&-value.

3.3. Superjoin execution

We now describe the execution mechanism in more detail,
including the management of buffers. Associated with each
predicate call is a pool of buffers. Consider a predicate with a
choice vector of length c, say. Let the &-vector be B1,...,B,,:..,Bf
where B,,...,B, are ally in the choice vector and, if e is less than f,
B e+, is not. That is, the most significant e bits of the &-vector
are used for indexing the predicate. These are called the slow bits
for this predicate.

During execution, different partial match queries are made to
the predicate for each partition ,of the join. In answering these
queries, we only consider tuples whose hash values match both the
query and the entire current &-value. That is, only those
matching tuples which are in the current partition are retrieved. If
pages on disc need to be accessed, new buffers are allocated on
demand. These pages (in ‘the buffers) may be accessed several
more times while the current values of the slow bits remain the
same. However, when these bits change, the pages are never
accessed again, since the sub-joins are done in order of increasing
r&-value. Therefore, the whole buffer pool for that call can be
deallocated.

During execution of the superjoin, the addresses of the pages
in the buffers always match the current value of the slow bits.
Thus there is a maximum of 2’* buffers in the buffer pool of the
relation at any one time. The number of buffer pages for an n-way
join is the sum of those needed for each relation:

n fmej
nbufs= x2

i=l

where

freei = Ci-ei

3.4. An algorithm to construct sIbvectors

A greedy algorithm (implemented in Prolog) to construct sfb-
vectors is given in Appendix A. We will illustrate the algorithm
with the following example.

?- q(Y,Z), r(X,Z), SKY) QUERY 4

With a null &-vector the cost (number of buffer pages) for the
join would be 23+22+23=20 pages.

The bits for the &-vector can come from any of X, Y, or Z.
If we chose X, for the first bit this would reduce the cost to

23+2’+22=14 pages. Similarly, if we chose Zt this would reduce

the cost to 22+21+23=14 pages. However, if we chose Y, the cost

would only be 22+22+22=12 pages. The greedy algorithm chooses
Yt as the first bit of the &-vector since that results in the greatest
reduction in the number of buffers pages required.

The next bit to be chosen would again be from Y since the
&-vector “YtY,“, would ,mean the join only required 21+22+21=8

pages. With the sfb-vector “YtXt” we need 22+22+21=10 pages,

and with “YtZt” we ,need 21+22+22*10 pages. Note that after
choosing a Y bit, we -cannot reduce the number of buffers required
for the ‘r’ predicate, since the number of slow bits of ‘r’ has been
fixed at zero.

The final bit to be chosen will be either Xt or Z, since both
the &-vectors “YIY2Xt” and “Y,Y2ZI” would reduce the

number of buffers required to 2’+22+20=7 pages and 2°+22+2’=7
pages respectively. Any mote X, Y or Z bits will not finther
reduce the number of buffer pages required.

Some larger examples are given in Appendix B. One property
of the algorithm is that the number of buffers needed will be one
for at least one of the predicates. It also produces an optimal sfb-
vector for two way joins. However, for multi-way joins, the
algorithm may produce sub-optimal solutions. We are currently
investigating other algorithms for constructing r&-vectors. Other
methods for defining partitions and orderings are also being
considered.

Even using the minimal number of buffers, it is possible that
there will be insufficient main memory for the superjoin algorithm.
This may be because there is only a small amount of main memory

available or because the relations themselves are so huge. In such
cases it is possible to resort to a secondary partitioning of the
problem,using the method described in [Bratbergsengen 841.

4. SUPERJOIN AND DEDUCTIVE DATABASES

We now show how the super-join algorithm is ideally suited to
Prolog-style deductive databases. It can be implemented with a
few quite simple system predicates and can be made very flexible
by incorporating mom of the features of Prolog. With these
additions the superjoin can be applied to almost any query,
including those containing ordinary Prolog predicates as well as
external database predicates. We outline a possible implementation
on top of MU-Prolog [Naish 85~1.

ci is the choice vector length of the i”’ predicate and ei is

the number of slow bits for the i” predicate.

-19%

4.1. Implementation in Prolog

The method of evaluating joins in Prolog, tuple at a time
using backtracking, is very similar to the superjoin algorithm. Two
additional features are needed. The first is the use of buffer pools.
The implementation uses the primitive pool~open(Poo1) to create
an empty buffer pool and pool-close(Poo1) to deallocate and close
a pool of buffers. Secondly, we need the ability to call a predicate
using a buffer pool and only return answers matching the r&value.
For this, we use the primitive db-call(Call, Pool, Sfb), which
allocates new buffers on demand. Sfb is a data structure specifying
the current &-value and the mapping between the s&vector and
the choice vector.

A conjunction of calls to database relations in Prolog is
translated into a conjunction of calls to db_call, plus a call to
db-super-join. For example,

?- p(X,Y), q(Y,Z), r(X,Z) QUERY 5

is translated into

?- db superjoin(...), db-call(p(X,Y), PPool,‘PSlb), -
db-caWq(YZ), QPooL QSfi),
db-call(r(X,Z), RPool, RSfb)

The call to db-super-join calculates PSfb, QSfb and RSfb using the
current sib-value, choice vectors, and s&-vector, and allocates and
deallocates buffer pools. It returns one answer for each r&-value,
in increasing order. The set of answers to the query is found by
Prolog’s normal backtracking mechanism.

4.2. Additional Prolog features

Since the join is implemented as a Prolog conjunction,
arbitrary constraints can be implemented, by simply adding extra
calls. For example, if Y was an integer rather than a string, the
constraint Y < 100 could be inserted after p(X,Y). Calls to
procedures using the full power of Prolog’s recursion and
nondetemlinism can be used. The superjoin algorithm can ignore
all extra calls which do not bind any variables. Calls which
generate bindings for variables can also be handled, by adding tests
to check the hash values match the current &-value. There is also
considerable flexibility in how calls to database relations are
arranged. The method of partitioning works for disjunctions as
well as conjunctions. The superjoin algorithm can ignore the
connective.

It is also possible to incorporate negation and an if-then-else
construct. Prolog uses the negation as failure rule [Clark 781,
which is a weaker form of the closed world assumption [Reiter 781.
Use of the partitioning scheme described in this paper and only
negating ground calls ensures soundness of the negation as failure
rule. Any ground call must match the current sfb-value, so the
relevant facts in the relation are all considered. However, the use
of some other partitioning schemes or negating non-ground calls
can result in unsoundness.

Considerably more power can be provided, at very little cost,
by allowing quantifiers [Naish 85b]. Negations with quantified
variables, for example VX,p(X,Y), are implemented by calling the
predicate with the quantified (local) variables uninstantiated.
Soundness is still guaranteed providing these local variables do not
appear in the r&-vector. The insertion of existential quantifiers
(also known as decomposition [Wong 761 and isolating
independent sub-queries [Warren 8 11) is particularly useful for
optimization. For example in query 5, if only the values of X and
Y are needed, Z can be existentially quantified:

?- p(X,Y), 3Z (q(Y,Z), r(X,Z))

The effect of the existential quantifier is that if one value of Z is
found for particular values of X and Y, then no more are sought.
Subsequent backtracking skips over the calls to ‘q’ and ‘r’ entirely,
potentially saving much computation and disc reading. If Z is
included in the &r-vector the computation is sound, but for
particular values of X and Y more than one value of Z may be
found. Using the scheme we have outlined so far, it is most
efficient to exclude the local variable from the &-vector (possibly
increasing the number of buffers needed).

Another important higher level optimization is the creation of
temporary predicates. This can be implemented by allowing
Prolog’s assert and retract primitives in superjoins. To avoid
reading and writing pages more than once, they am also translated
into primitives which use buffer pools: db-assert(Fact, Pool, Sfb)
and db-retract(Fact, Pool, Sfb). The only type of goal we must
avoid is one which modifies some of the relations we are reading.
Even when Prolog does not include the superjoin the result of such
goals is not well defined.

In summary, superjoins can be applied to any reasonable
Prolog goal containing calls to database predicates. This great
flexibility enables many higher level optimizations.

5. ANALYSIS

In this section we analyse the performance of the superjoin
with two relations ‘p’ and ‘9’. We assume there is only one join
attribute. We use the following parameters in the analysis:

P = size of relation ‘p’ in pages
Q = size of relation ‘q’ in pages
kp = number of attributes in relation ‘p’
kq = number of attributes in relation ‘q’
np = number of tuples in relation ‘p’
nq = number of tuples in relation ‘q’
pn = number of bits allocated for the n”’ attribute of relation ‘p’

q, = number of bits allocated for the n* attribute of relation ‘q’
ti = average insertion cost/tuple in the buffer pool
ts = average search cost/tuple

Storage requirements:
The maximum number of buffets required is

nbufs = 1+2min(wm)

where

PP = (2 Pnkrn
n=l

qq = (2 qJmrn
n=l

m = miIl(pi,q$

where i and j are the join attributes of ‘p’
and ‘q’ respectively

-193-

InpudOutput cost: 6. CONCLUSIONS

Research into deductive database systems based on partial
match retrieval motivated the development of the superjoin
algorithm. Partitioning joins using the superjoin method described
in this paper will also be very useful in relational database systems.

Some of the features of the superjoin algorithm which make it
particularly attractive when sufficient memory is available are:

l each relation is read at most only once;
0 the algorithm outperforms any other algorithm;
l it fits naturally into Prolog’s top-down computation; and
l arbitrary constraints, negation and quantifiers can easily

be incorporated.

Further work needs to be done to integrate the superjoin with
other optimizations. Two areas are choice vector determination and
predicate reordering, extending the work of [Ramamohanano 831,
[Warren 811 and [Naish 85a].

ACKNOWLEDGEMENT

This work was performed as part of the Machine Intelligence
Project at the University of Melbourne. It was supported by the
Commonwealth Department of Science and, during 1985, by
Pyramid Technology, Australia.

We would like to thank Justin Zobel and other members of
the Machine Intelligence Project for their careful reading of earlier
drafts of this paper.

APPENDIX A

Assuming sufficient buffets ate available and ignoring any
overhead of the operating system, the number of disc pages
read during the superjoin is

disc reads 5 Pi-Q pages

CPU cost:
We need to build some form of indexing in main memory for
each buffer pool for efficiency. The CPU cost of the
superjoin operation would then be

cpu cost = (np+nq).ti+np.ts
However we can reduce the join cost by having further
indexing, such as superimposed coding, on the disc files. This
eliminates the need for additional indexing in main memory
and CPU cost is then reduced to

cpu cost = np.ts

Values for ts and ti depend on the indexing scheme used, size
of the relations and the distribution of join attribute values; that is
the selectivity factor. To reduce the CPU cost it is worth
considering re-ordering of predicates, for example see [Warren 811
and [Naish 85a].

5.1. Comparison with other join algorithms

The superjoin algorithm does not require the expensive sorting
phase of the sort-merge join algorithm and the physical partitioning
of the hash-join algorithm. Hence the scheme is very efficient with
respect to input/output and CPU time requirements. Another
feature of the scheme is that it has at least the efficiency of the
nested-loop join algorithm. When one of the relations is small
other algorithms can be much less efficient.

One drawback with the scheme is that it may require a large
number of buffer pages. However, for binary relations, if we give
equal number of bits to both attributes the number of buffets
required will be

‘Imino

In comparison, the hybrid-hash join algorithm of [Dewitt 841
requires

5.2. Interaction with host operating system

When one develops a database system on top an existing file
system provided by the host operating system (such as Unix) it is
important to control the way the pages are accessed from the files.
For example, accessing pages sequentially will be mote efficient
than a random access. In Unix, for. small files both access methods
require only one page access. However, accessing pages at random
from a larger file (containing up to 2*’ pages of size 4096 bytes)
requires on average two disc reads, whereas a sequential access
requires one disc read.

Although the superjoin does not guarantee that the disc pages
will be read in sequential order (the optimal order from the point of
view of the tile system), pages in the disc file will be read in
ascending order in one or more passes of the tile, which is almost
as good. This quasi-sequential access is achieved because the slow
bits of the sfb-vector tend to come from the more significant bits of
the choice vector.

% usage: ?- sfb([v ,... l,[[x ,... I ,...],[[n ,... I,...],Stb,Cost).
%
% [v,...] is list of variables in expression
% [[x,...],...] is list of variables in each predicate
% [[n ,...] ,...] is list of sizes of attributes in
% choice vectors in each predicate
% Sfb is the resulting sfb-vector
% Cost is the resulting number of buffer pages

% Calculate &-vector for superjoin (greedy algorithm)
%
sfb(Vs,Preds,Sizes,Choice.Sfb,TotCost):-

choose(Vs,Preds.NewPs,Sizes,NewSizes,Choice,FixedC,FreeC),
length(NewPs,L),
(if FreeC > L then

sfb(Vs,NewPs,NewSizes,Sfb,Cost),
TotCost is FixedC + Cost

else
3% = [I,
TotCost is FixedC + FreeC

1.

-194-

%
% choose next bit for sfb-vector from list V.Vs so that cost is
% mininmized when that variable is used for partitioning
%
choose(V.[],Preds,NewPreds,Sizes,NewSizes,V,FixedC,FreeC):-

partition(V,Preds,NewPreds,Sizes,NewSizes,FixedC,FreeC).
choose(V.VsQreds,NewPreds,Sizes,NewSizes,Choice,FixedC,FreC):-

choose(Vs,Preds,XPreds,Sizes,XSizes,X,XFixedC,XFreeC),
Xcost is XFixedC + XFreeC,
partition(V,Preds,VPreds,Sizes,VSizes,VFixedC,VF~eC),
Vcost is VFixedC + VFmeC,
(if Vcost < Xcost; Vcost = Xcost,VFixedC =< XFixedC then

Choice = V,
NewPreds = VPreds,
NewSizes = VSizes,
FixedC = VFixedC,
FteeC = VFreeC

else
Choice = X,
NewPreds = XPreds,
NewSizes = XSizes,
FixedC = XFixedC,
FreeC = XFreeC

1.

%
% partition join using V
%
p~~~~~~~~~,Il,il,~l,~l,O,O~.
partition(V,P.Preds,NewPreds,S.Sizes,NewSizes,FixedC,FreeC):-

partition(V,Preds,NewPs,Sizes,NewSs,Fixed,Free),
(pred- partition(V,P,S,PartitionSize) -->

NewPreds = P.NewPs,
NewSizes = PartitionSize.NewSs,
FixedC = Fixed,
sum(PartitionSize,Sum),
FreeC is Free + 1 << Sum

,
/* no arguments of P match with V so make P fixed

and remove from further partitioning *I
NewPreds = NewPs,
NewSizes = NewSs,
sum(S,Sum),
FixedC is Fixed + 1 << Sum,
FreeC = Free

).

%
% partition a predicate using V
%
pred_partition(V,Arg.Args,Size.Sizes,NewSize.NewSizes):-

V == Arg,
/* this argument matches *I
Size > 0,
NewSize is Size - 1,
(pred-partition(V,Args,Sizes,NewSizesl) -->

I* other arguments of this predicate also match */
NewSizes = NewSizesl

I* no other arguments of this predicate match *I
NewSizes = Sizes

1.

pred_partition(V,Arg.Args,Size.Sizes,Size.NewSizes):-
(

V \== Arg

Size = 0
1,
I* this argument does not match - see if any other matches *I
pred- partition(V,Args,Size.s,NewSizes).

%
8 Sum a list of integers
%
sum(W).
sum(L.ListJum):-

sum(List,S),
Sum is S + L.

APPENDIX B

Examples of &-vector generation.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Preds = [lx, ~1, [Y, ~11 46 ?- P(X,Y], qvn
Bits = [[I, 11, [2, l]] % bits for each attribute
sfb = ry, y, 4 % &-vector Y,YzZl
Nbufs = 3 9% number of buffers

Preds = [Ix, yl, IY, ~1. Ix, ~11
Bits = [[4, 41, L 31, [2, 311
3-b = [Y, y. y, Y. x9 x9 x, xl
Nbufs = 21

Preds = [[a, bl, [b, cl, [a, b, cl1
Bits = 113, 21, [3, 21, [2, 2, 311
Sfb = [b, b, a, a, c, c, cl
Nbufs = 11

Preds = Kb, d, al, [d, cl. [a, b, cl, [a, b, cl1
Bits = [[2, 1, 21, 15, 21, [3, 0, 31, [3,0, 311
Sfb = [c, c, a, a, a, c]
Nbufs = 66

Pm& = HY. ~1, be ~1, [z, ~111
Bits = U7, 51, [3, 61, [4, 711
3% = [z. z, z, z, y. YP YP Y, Y, Y, y. zl
Nbufs = 641

Pmk = [ix, Y, ~1. [Y, ~11, [Y, z, ~111
Bits = H7, 4, 31, [4, 71, [6, 4, 411
SflJ = [Y, y, y, y. G G z, x, x, x, x, x, x, xl
Nbufs = 257

Pmk = [ix, y, xl. [Y, x, ~11 % note repeated variable
Bits = [[3, 1, 41, [2, 3, 511
3-b = Lx, x, x, y, Y, z, z, z, z, zl
Nbufs = 3

-19%

REFERENCES

[Aho 791
A. V. Aho and J, D. Ullman, “Optimal partial-match retrieval
when fields are independently specified”, ACM Transactions
on Darabase Systems 4, 2 (June 1979), 168-179.

[Bratbergsengen 841
K. Bratbergsengen, “Hashing Methods and Relational Algebra
Operations”, Proceedings of the Tenth International
Conference on Very Large Data Bases, Singapore, August
1984, 323-333.

[Clark 781
K. L. Clark, “Negation as Failure”, in Logic and Darabases,
H. Gallaim and J. Minker (editor), Plenum Press, 1978.

[Clocksin 8 11
W. F. Clocksin and C. S. Mellish, Programming in PROLQG,
Springer-Verlag, Berlin, 1981.

[Dewitt 841
D. J. Dewitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker and D.. Wood, “Implementation Techniques for
Main Memory Database Systems”, SIGMOD Conference on
Ihe Management of Data, 1984, l-8.

[Jarke 841
M. Jarke and J. Koch, “Query Optimization in Database
Systems”, ACM Computing Surveys 16, 2 (June 1984), lil-
1.52.

[Lloyd 801
J. W. Lloyd, “Optimal P’artial-match Retrieval”, Bif 20
(1980). 406-413.

[Lloyd 821
J. W. Lloyd and K. Ramamohanarao, “Partial-match Retrieval

for Dynamic Files”, Bit 22 (1982), 150-168.

[Naish 831
L. Naish and J. A. Thorn, “The MU-Prolog Deductive
Database”, Technical Report 83/10, Department of Computer
Science, University of Melbourne, November 1983.

[Naish 85a]
L. Naish, “Negation and Control in Prolog”, Technical
Report 85/12, Department of Computer Science, University of
Melbourne, 1985. Ph.D. thesis.

[Nnish 85b]
L. Naish, “Negation and Quantifiers in NU-Prolog”,
Technical Report 85/13, Department of Computer Science,
University of Melbourne, October 1985.

[Naish 85~1
L. Naish, “The MU-Prolog 3.2 Reference Manual”, Technical
Report 85/l l., Department of Computer Science, University of
Melbourne, October 1985.

[Ramamohanarao 831
K. Ramamohanarao, J. W. Lloyd and J. A. Thorn, ‘Partial
Match Retrieval Using Hashing and Descriptors”, ACM
Transacrions on Database Systems 8 (1983), 553-576.

[Ramamohanarao 85a]
K. Ramamohanarao and R. Sacks-Davis, ,“Partial Match
Retrieval Using Recursive Linear Hashing”, Bit 25 (1985),
477-484.

[Ramamohanarao 85b]
K. Ramamohanarao and J. A. Shepherd, “A Superimposed
Codeword Indexing Scheme for Very Large Prolog
Databases”, Technical Report 85/17, Department of Computer
Science, University of Melbourne, November 1985.

[Reiter 781
R. Reiter, “On Closed World Databases”, in Logic and
Databases, 11. Gallaire and J. Minker (editor), Plenum Press,
1978, 55-76.

[Rivest 761
R. L. Rivest, “Partial match retrieval algorithms”, SIAM
Journal ofCo/nputing 5, 1 (1976). 19-50.

[Ullman 821
J. D. Ullman, Principles of Database Systems, Pitman,
London, 1982. Second Edition.

[Warren 811
D. H. D. Warren, “Efficient Processing of Interactive
Relational Database Queries Expressed in Logic”,
Proceedings of the Seventh International Conference on Very
Large Data Bases, Cannes, France, 1981, 272-281.

[Wang 761
E. Wong and K. Youssefi, “Decomposition - a strategy for
query processing”, ACM Transactions on Database Systems I,
3 (1976), 223-241.

196-

