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Abstract 

This paper describes a join algorithm suitable for deductive and 
relational databases which are accessed by computers with large 
main memories. Using multi-key hashing and appropriate 
buffering, joins can be performed on very large relations more 
eficiently than with existing methods. Furthermore, this algorithm 

jirs naturally into top-down Prolog computations and can be made 
very jlexible by incorporating additional Prolog features. 
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1. INTRODUCTION 

The join operator is both a frequently used relational operator 
and an expensive one in relational database systems. Several join 
algorithms have been discussed in the literature; for example, 
nested-loops, sort-merge, and hash-join [Bratbergsengen 841, 
[Dewitt 841, [Jarke 841, and [Ullman 821. 

In this paper we propose another join algorithm, the superjoin 
algorithm. This algorithm, based on multi-key hashing, partitions 
the join to enable efficient buffer management. The superjoin 
algorithm is suitable for large relational databases accessed from 
computers with large main memories. One of the properties of the 
superjoin algorithm is that it maintains excellent performance from 
very small relations to very large relations. The superjoin 
algorithm also supports queries containing arbitrary constraints, 
disjunctions, negations, and existential quantifiers. These 
additional properties are especially useful for deductive database 
systems using top-down computation. 

Section two provides a background to the superjoin algorithm. 
It describes the notation used in this paper, multi-key hashing and 
partial match joins. These am illustrated using some examples. 
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Section three describes how, using multi-key hashing and 
appropriate partitioning, joins can be performed on very large 
relations in a very efficient way. If there is suitable buffering of 
pages then each page of each relation needs to be read into main 
memory at most once. An algorithm is described which minimizes 
the number of buffers required. An implementation of this 
algorithm, in Prolog, is given in Appendix A and some examples 
are listed in Appendix B. 

Section four describes how the superjoin fits naturally into 
Prolog’s top-down computation, including Prolog features such as 
negation and existential quantifiers. A complete deductive database 
system would include a higher level which would break the query 
up into sub-queries to be processed efficiently by the supejoin. 
The superjoin would access a low-level interface to the external 
database. 

Section five analyses the performance of the supejoin 
algorithm, and compares it with other well known join algorithms. 

The conclusion, presented in Section six, is that the supejoin 
provides a flexible and powerful database “primitive”, and 
provides superior efficiency to that of existing join algorithms. 

2. BACKGROUND 

2.1. Notation 

Throughout this paper we shall use a notation based on Prolog 
[Clocksin 811. The term predicate is used as equivalent to the 
term relation, and fact is used as equivalent to tupfe. 

Predicate (relation) names are written in lower case, strings are 
written with double quotes, and variables are written in upper case 
without any quotes. A fact (tuple) can be written 

p(“X1”, “yl”) 

which is a fact about “xl” and “yl” from the predicate ‘p’. A 
query can be written 

?- p(X, “,I”) 

which would find all values for the first attribute (the variable x) 
for those facts in ‘p’ where the second attribute is “~1”. 
Conjunctives are constructed with ‘,’ and disjunctives with I;‘. 
Thus, the query 

?- p(X,Y), q(Y,Z) QUERY 1 

would join ‘p’ with ‘q’, joining on the second attribute of ‘p’ and 
the first attribute of ‘q’ (the join variable Y). 
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2.2. Multi-key hashing 

There are various schemes for accessing predicates stored 
using multi-key hashing. For example, hashing with descriptors 
[Ramamohanarao 831, recursive linear hashing 
[Ramamohanarao 85a], hashing with superimposed codeword 
indexing [Ramamohanarao 85b]. Other methods are described in 
[Aho 791, [Lloyd 801, and [Rivest 761. Many schemes are 
variations and enhancements on a common scheme which we shall 
describe here. 

Consider a partial match query on a single predicate. We 
assume a predicate is stored on disc in the pages of one file. Each 
tuple has a fixed number of attributes, denoted a,, %,...,ak A 
partiol match query is a specification of the value of zero or mote 
of these k attributes. The answer to a query is the collection of all 
tuples in the file which have the specified values for the specified 
attributes. 

Tuples are allocated to pages within the file by means of a 
hashing scheme which allocates zero or more bits to each attribute 
of the tuple. Consider a static tile consisting of 2d pages, where d 
2 0. The pages are numbered from 0 to 2d-1. Each attribute ai 
has a hashing function hi which maps from the key space of ai to a 
bit string. From this string di bits are selected, such that 
dl+...+dk = d. By computing the hash values of all the attribute 
values of a tuple it is possible to compute the page number in 
which the tuple is stored. This requires the use of a choice vecror. 
which defines a mapping between the strings of di bits and the 
page number. The choice vector ‘was introduced for handling 
dynamic files in Lloyd 821 and [Ramamohanarao 8’31. Here we 
use a slightly simplified notation for choice vectors. 

Suppose the hash functions hi map “~0” to the string of bits 
“...OOO” and “yl” to “...OOl” and “~2” to “...OlO” and 
similarly for “zo”, “zl”, “22” et cereru. For each attribute, we 
choose the last di bits to construct the choice vector. 

Consider the predicate q(Y,Z), then the hash functions hr and 
$ would map the value Y to the string “...Y3YzYI” and the value 
Z to the string “... Z,Z,Z,” respectively, where Yi and Zi can take 

values 0 or 1. We loosely refer to these strings as bit strings. If 
q(Y,Z) is stored in 23 pages, then we might set d, = 2 and d, = 1. 
Thus the bits YzYl and Zt would be selected from the bits strings 
generated by the hash functions. The choice vector could be any 
one permutation of these bits strings, such as YtZtY,. Thus tuples 

would be stored in the file as shown in the ‘q’ predicate in Pigure 
1. 

P 
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P(XY) 

page tuples 

YIZIYZ q(YZ) 

000’ d”Y4”, “22”), q(“y4”, “22”) 
001 q(“y2”, “22”) 
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0 1 1 q(“y2”, “21”) 
100 q(“yl”, “22”) 
1 0 1 q(“y3”, “22”) 
110 q(“yl”, “Zl”) 
I 1 1 q(“Y3”, “Zl”), q(“y7”, “Zl”) 
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r(“Xl”, “Zo”) 
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000 s(“xO”, “yO”), s(“X2”, “y4”) 

0 0 I, s(‘Lxo”i “yo”) 
0 I 0 s(“Xo”, “,l”), s(“x2”, “yl”) 
0 I I s(“xO”, “y3”) 

100 S(“Xl”, “y0”) 
I 1 0 s(“xl”, “y2”) 
110 s(“xl”, “yl”) 
1 I I .s(“XI”, “y3”) 

Figure 11 ‘p’, ‘q’, ‘r’ & ‘s’ predicates 
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For a query containing variables, only some of the bits will be 
specified. Thus several pages will need to be searched. Consider 
the query: 

?- q(“y3”, Z) QUERY 2 

Answering this query would require the following steps: 

(1) 

(2) 

(3) 

Hash “~3” to the bit string “...Oll” from which we select 
just the last two bits since d, = 2, namely Y2Y1 = 11 

Since the second attribute is a variable, the bit Zl = *, where 
* represents an unknown bit 

Search the pages where Y,Z,Y, = l*l (namely pages 101 and 
111) for tuples which match the query; this would retrieve the 
tuples: 

q(“y3”, “22”) 
q(“y3”, “Zl”) 

2.3. Partial match joins 

It is possible to apply these partial match schemes directly, for 
instance, in a Prolog system getting answers a tuple at a time 
([Naish 831. [Ramamohanamo 85b]). Consider query 1 again. 

?- P(X,Y), q(Y,Z) 
In answering the query, a straightforward implementation in Prolog 
would get the first solution from the first page of the ‘p’ relation, 
namely: 

p(“Xo”, “y0”) 

then try to find facts from the second predicate which match. This 
would require reading page 00 from ‘p’ and, since “~0” hashes to 
“...OO”, only pages 000 and 010 from ‘q’. However, there are no 
matching tuples, so Prolog would proceed with the second solution 
from the first page of ‘p’ in a similar fashion. Thus, the second 
solution 

p(“X2”, “,2”) 

would join with the tuples 

q(“y2”, “22”) 
q(“y2”, “Zl”) 

This would require reading additional pages 001 and 011 from ‘q’ 
since “~2” hashes to “...lO”. After exhausting all the tuples in 
the first page of ‘p’ Prolog would proceed in a similar fashion with 
subsequent pages of ‘p’. 

This scheme for implementing joins fits in naturally with other 
relational operators such as selection. Consider the query 

?- p(“Xo”,y), q(Y,Z) QUERY 3 

This query performs a selection on ‘p’ while performing the join, 
reducing the number of pages which need to be considered. 

Although using partial match retrieval to implement joins 
creates a workable system, there are some important inefficiencies. 
For most queries this approach requires that many pages need to be 
mad more than once. 

3. THE SUPERJOIN ALGORITHM 

Multiple reading of pages from disc in the naive tuple at a 
time algorithm can be eliminated by keeping pages in main 
memory buffers. In query 1 above, if we use twelve buffers (four 
for the ‘p’ predicate and eight for the ‘q’ predicate) then no page 
needs to be read from disc mom than once. This simple method, 
of buffering all pages of both predicates, is not feasible with large 
predicates. Since main memory size is limited it is necessary to 
reduce the number of buffers required. 

If we use multi-key hashing and the join attributes have the 
same hash function, then it is possible to partition the join into a 
number of srtb-joinr. Each sub-join accesses only some of the 
tuples required for the full join. The result of the full join is 
simply the union of the results of all the sub-joins. The superjoin 
algorithm partitions a join and orders the execution of the sub-joins 
so as to minimize the number of buffers required, while still only 
reading the pages of each predicate from disc at most once. 

3.1. Partitioning into sub-joins 

The simplest partitioning of query 1 has each page of the ‘p’ 
predicate in a separate partition. -This results in four sub-joins, 
where each sub-join only considers those tuples with a common 
hash value for Y, and Xl. Each partition is a join of one page of 
the ‘p’ predicate with four pages of the ‘q’ predicate. If we mad 
the pages of ‘p’ sequentially this requires nine buffers (one for the 
‘p’ predicate and eight for the ‘q’ predicate). 

By changing the order in which we access the pages of the ‘p’ 
predicate we can reduce the number of buffers needed. Suppose, 
instead of accessing tuples from ‘p’ in the order the pages am 
numbered (00, 01, 10, 1 l), we read the pages in the order 00, 10, 
01, 11. That is, we read all the pages in ‘p’ such that Y, is 0 
before reading the pages in ‘p’ in which Y, is 1. While we are 
joining tuples from the pages 00 and 10 in ‘p’ the tuples will all 
hash to Y, = 0 thus matching tuples will only appear in the pages 
000, 001, 010, 011 from ‘4’. Later when we join tuples from the 
pages 01 and 11 in ‘p’ the tuples will all hash to Yl = 1 and 
matching tuples will only appear in the pages 100, 101, 110, 111 
from ‘q’. When this is done the number of buffers required is 
reduced to only five (one for the ‘p’ predicate and four for the ‘q’ 
predicate). 

It is possible to further reduce the number of buffers required 
by a mom complex partitioning. In the optimal partitioning, each 
partition consists of tuples with common hash values for Yl, Y2 
and Zl. This partitions the join into eight sub-joins. Each sub-join 
consists of all tuples in one page of the ‘q’ predicate and, on 
average, half the tuples in two pages of the ‘p’ predicate. For 
example, the sub-join where YlZlY, = 001, consists of all tuples 
in page 001 of ‘q’ and the tuples in pages 00 and 10 of ‘p’ with 
hash value such that Yz = 1. If the sub-joins are done in 
increasing values of YlZlY, then the number of buffers required is 
three (two for ‘p’ and one for ‘9’). The same is true with 
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increasing values of Y,Y,Z,, but with no other permutation (see The s&vectors should be constructed so that this cost function is 
section 3.3). minimized. 

3.2. Sib-vector 

Our use of bit strings, such as YtZtYz, in the previous section 
can be formalized by defining an sfb-vecror (slow-fast bits vector). 
The bits in the &-vector define the partitioning and the order of 
the bits defines the order in which the sub-joins are done (compare 
with the choice vector which specifies the order of hashed page 
addresses in which tuples are stored). 

Given an &-vector of length f, a choice vector and a number 
in the range 0 to 2’-11 a set of pages in the tile is identified. For 
example, if the sfb-vector was,Y,YZZ1 and the choice vector was 
X,Y, rhen the number 101 would identify the pages *l (that is 01 

1 A 

and 11). ’ 
The superjoin generates a sequence of numbers from 0 to 2’-1 

and uses the &-vector to access the corresponding pages of the 
file. Tuples are retrieved from each predicate in such a way that 
all matching tuples which hash to., a particular value. of the sfb- 
vector (an sfb-v&e) am retrieved together. These tuples need only 
be joined with tuples in the other predicates which match the same 
r&-value. 

3.3. Superjoin execution 

We now describe the execution mechanism in more detail, 
including the management of buffers. Associated with each 
predicate call is a pool of buffers. Consider a predicate with a 
choice vector of length c, say. Let the &-vector be B1,...,B,,:..,Bf 
where B,,...,B, are ally in the choice vector and, if e is less than f, 
B e+, is not. That is, the most significant e bits of the &-vector 
are used for indexing the predicate. These are called the slow bits 
for this predicate. 

During execution, different partial match queries are made to 
the predicate for each partition ,of the join. In answering these 
queries, we only consider tuples whose hash values match both the 
query and the entire current &-value. That is, only those 
matching tuples which are in the current partition are retrieved. If 
pages on disc need to be accessed, new buffers are allocated on 
demand. These pages (in ‘the buffers) may be accessed several 
more times while the current values of the slow bits remain the 
same. However, when these bits change, the pages are never 
accessed again, since the sub-joins are done in order of increasing 
r&-value. Therefore, the whole buffer pool for that call can be 
deallocated. 

During execution of the superjoin, the addresses of the pages 
in the buffers always match the current value of the slow bits. 
Thus there is a maximum of 2’* buffers in the buffer pool of the 
relation at any one time. The number of buffer pages for an n-way 
join is the sum of those needed for each relation: 

n fmej 
nbufs= x2 

i=l 

where 

freei = Ci-ei 

3.4. An algorithm to construct sIbvectors 

A greedy algorithm (implemented in Prolog) to construct sfb- 
vectors is given in Appendix A. We will illustrate the algorithm 
with the following example. 

?- q(Y,Z), r(X,Z), SKY) QUERY 4 

With a null &-vector the cost (number of buffer pages) for the 
join would be 23+22+23=20 pages. 

The bits for the &-vector can come from any of X, Y, or Z. 
If we chose X, for the first bit this would reduce the cost to 

23+2’+22=14 pages. Similarly, if we chose Zt this would reduce 

the cost to 22+21+23=14 pages. However, if we chose Y, the cost 

would only be 22+22+22=12 pages. The greedy algorithm chooses 
Yt as the first bit of the &-vector since that results in the greatest 
reduction in the number of buffers pages required. 

The next bit to be chosen would again be from Y since the 
&-vector “YtY,“, would ,mean the join only required 21+22+21=8 

pages. With the sfb-vector “YtXt” we need 22+22+21=10 pages, 

and with “YtZt” we ,need 21+22+22*10 pages. Note that after 
choosing a Y bit, we -cannot reduce the number of buffers required 
for the ‘r’ predicate, since the number of slow bits of ‘r’ has been 
fixed at zero. 

The final bit to be chosen will be either Xt or Z, since both 
the &-vectors “YIY2Xt” and “Y,Y2ZI” would reduce the 

number of buffers required to 2’+22+20=7 pages and 2°+22+2’=7 
pages respectively. Any mote X, Y or Z bits will not finther 
reduce the number of buffer pages required. 

Some larger examples are given in Appendix B. One property 
of the algorithm is that the number of buffers needed will be one 
for at least one of the predicates. It also produces an optimal sfb- 
vector for two way joins. However, for multi-way joins, the 
algorithm may produce sub-optimal solutions. We are currently 
investigating other algorithms for constructing r&-vectors. Other 
methods for defining partitions and orderings are also being 
considered. 

Even using the minimal number of buffers, it is possible that 
there will be insufficient main memory for the superjoin algorithm. 
This may be because there is only a small amount of main memory 

available or because the relations themselves are so huge. In such 
cases it is possible to resort to a secondary partitioning of the 
problem,using the method described in [Bratbergsengen 841. 

4. SUPERJOIN AND DEDUCTIVE DATABASES 

We now show how the super-join algorithm is ideally suited to 
Prolog-style deductive databases. It can be implemented with a 
few quite simple system predicates and can be made very flexible 
by incorporating mom of the features of Prolog. With these 
additions the superjoin can be applied to almost any query, 
including those containing ordinary Prolog predicates as well as 
external database predicates. We outline a possible implementation 
on top of MU-Prolog [Naish 85~1. 

ci is the choice vector length of the i”’ predicate and ei is 

the number of slow bits for the i” predicate. 
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4.1. Implementation in Prolog 

The method of evaluating joins in Prolog, tuple at a time 
using backtracking, is very similar to the superjoin algorithm. Two 
additional features are needed. The first is the use of buffer pools. 
The implementation uses the primitive pool~open(Poo1) to create 
an empty buffer pool and pool-close(Poo1) to deallocate and close 
a pool of buffers. Secondly, we need the ability to call a predicate 
using a buffer pool and only return answers matching the r&value. 
For this, we use the primitive db-call(Call, Pool, Sfb), which 
allocates new buffers on demand. Sfb is a data structure specifying 
the current &-value and the mapping between the s&vector and 
the choice vector. 

A conjunction of calls to database relations in Prolog is 
translated into a conjunction of calls to db_call, plus a call to 
db-super-join. For example, 

?- p(X,Y), q(Y,Z), r(X,Z) QUERY 5 

is translated into 

?- db superjoin(...), db-call(p(X,Y), PPool,‘PSlb), - 
db-caWq(YZ), QPooL QSfi), 
db-call(r(X,Z), RPool, RSfb) 

The call to db-super-join calculates PSfb, QSfb and RSfb using the 
current sib-value, choice vectors, and s&-vector, and allocates and 
deallocates buffer pools. It returns one answer for each r&-value, 
in increasing order. The set of answers to the query is found by 
Prolog’s normal backtracking mechanism. 

4.2. Additional Prolog features 

Since the join is implemented as a Prolog conjunction, 
arbitrary constraints can be implemented, by simply adding extra 
calls. For example, if Y was an integer rather than a string, the 
constraint Y < 100 could be inserted after p(X,Y). Calls to 
procedures using the full power of Prolog’s recursion and 
nondetemlinism can be used. The superjoin algorithm can ignore 
all extra calls which do not bind any variables. Calls which 
generate bindings for variables can also be handled, by adding tests 
to check the hash values match the current &-value. There is also 
considerable flexibility in how calls to database relations are 
arranged. The method of partitioning works for disjunctions as 
well as conjunctions. The superjoin algorithm can ignore the 
connective. 

It is also possible to incorporate negation and an if-then-else 
construct. Prolog uses the negation as failure rule [Clark 781, 
which is a weaker form of the closed world assumption [Reiter 781. 
Use of the partitioning scheme described in this paper and only 
negating ground calls ensures soundness of the negation as failure 
rule. Any ground call must match the current sfb-value, so the 
relevant facts in the relation are all considered. However, the use 
of some other partitioning schemes or negating non-ground calls 
can result in unsoundness. 

Considerably more power can be provided, at very little cost, 
by allowing quantifiers [Naish 85b]. Negations with quantified 
variables, for example VX,p(X,Y), are implemented by calling the 
predicate with the quantified (local) variables uninstantiated. 
Soundness is still guaranteed providing these local variables do not 
appear in the r&-vector. The insertion of existential quantifiers 
(also known as decomposition [Wong 761 and isolating 
independent sub-queries [Warren 8 11) is particularly useful for 
optimization. For example in query 5, if only the values of X and 
Y are needed, Z can be existentially quantified: 

?- p(X,Y), 3Z (q(Y,Z), r(X,Z)) 

The effect of the existential quantifier is that if one value of Z is 
found for particular values of X and Y, then no more are sought. 
Subsequent backtracking skips over the calls to ‘q’ and ‘r’ entirely, 
potentially saving much computation and disc reading. If Z is 
included in the &r-vector the computation is sound, but for 
particular values of X and Y more than one value of Z may be 
found. Using the scheme we have outlined so far, it is most 
efficient to exclude the local variable from the &-vector (possibly 
increasing the number of buffers needed). 

Another important higher level optimization is the creation of 
temporary predicates. This can be implemented by allowing 
Prolog’s assert and retract primitives in superjoins. To avoid 
reading and writing pages more than once, they am also translated 
into primitives which use buffer pools: db-assert(Fact, Pool, Sfb) 
and db-retract(Fact, Pool, Sfb). The only type of goal we must 
avoid is one which modifies some of the relations we are reading. 
Even when Prolog does not include the superjoin the result of such 
goals is not well defined. 

In summary, superjoins can be applied to any reasonable 
Prolog goal containing calls to database predicates. This great 
flexibility enables many higher level optimizations. 

5. ANALYSIS 

In this section we analyse the performance of the superjoin 
with two relations ‘p’ and ‘9’. We assume there is only one join 
attribute. We use the following parameters in the analysis: 

P = size of relation ‘p’ in pages 
Q = size of relation ‘q’ in pages 
kp = number of attributes in relation ‘p’ 
kq = number of attributes in relation ‘q’ 
np = number of tuples in relation ‘p’ 
nq = number of tuples in relation ‘q’ 
pn = number of bits allocated for the n”’ attribute of relation ‘p’ 

q, = number of bits allocated for the n* attribute of relation ‘q’ 
ti = average insertion cost/tuple in the buffer pool 
ts = average search cost/tuple 

Storage requirements: 
The maximum number of buffets required is 

nbufs = 1+2min(wm) 

where 

PP = ( 2 Pnkrn 
n=l 

qq = ( 2 qJmrn 
n=l 

m = miIl(pi,q$ 

where i and j are the join attributes of ‘p’ 
and ‘q’ respectively 
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InpudOutput cost: 6. CONCLUSIONS 

Research into deductive database systems based on partial 
match retrieval motivated the development of the superjoin 
algorithm. Partitioning joins using the superjoin method described 
in this paper will also be very useful in relational database systems. 

Some of the features of the superjoin algorithm which make it 
particularly attractive when sufficient memory is available are: 

l each relation is read at most only once; 
0 the algorithm outperforms any other algorithm; 
l it fits naturally into Prolog’s top-down computation; and 
l arbitrary constraints, negation and quantifiers can easily 

be incorporated. 

Further work needs to be done to integrate the superjoin with 
other optimizations. Two areas are choice vector determination and 
predicate reordering, extending the work of [Ramamohanano 831, 
[Warren 811 and [Naish 85a]. 
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APPENDIX A 

Assuming sufficient buffets ate available and ignoring any 
overhead of the operating system, the number of disc pages 
read during the superjoin is 

disc reads 5 Pi-Q pages 

CPU cost: 
We need to build some form of indexing in main memory for 
each buffer pool for efficiency. The CPU cost of the 
superjoin operation would then be 

cpu cost = (np+nq).ti+np.ts 
However we can reduce the join cost by having further 
indexing, such as superimposed coding, on the disc files. This 
eliminates the need for additional indexing in main memory 
and CPU cost is then reduced to 

cpu cost = np.ts 

Values for ts and ti depend on the indexing scheme used, size 
of the relations and the distribution of join attribute values; that is 
the selectivity factor. To reduce the CPU cost it is worth 
considering re-ordering of predicates, for example see [Warren 811 
and [Naish 85a]. 

5.1. Comparison with other join algorithms 

The superjoin algorithm does not require the expensive sorting 
phase of the sort-merge join algorithm and the physical partitioning 
of the hash-join algorithm. Hence the scheme is very efficient with 
respect to input/output and CPU time requirements. Another 
feature of the scheme is that it has at least the efficiency of the 
nested-loop join algorithm. When one of the relations is small 
other algorithms can be much less efficient. 

One drawback with the scheme is that it may require a large 
number of buffer pages. However, for binary relations, if we give 
equal number of bits to both attributes the number of buffets 
required will be 

‘Imino 

In comparison, the hybrid-hash join algorithm of [Dewitt 841 
requires 

5.2. Interaction with host operating system 

When one develops a database system on top an existing file 
system provided by the host operating system (such as Unix) it is 
important to control the way the pages are accessed from the files. 
For example, accessing pages sequentially will be mote efficient 
than a random access. In Unix, for. small files both access methods 
require only one page access. However, accessing pages at random 
from a larger file (containing up to 2*’ pages of size 4096 bytes) 
requires on average two disc reads, whereas a sequential access 
requires one disc read. 

Although the superjoin does not guarantee that the disc pages 
will be read in sequential order (the optimal order from the point of 
view of the tile system), pages in the disc file will be read in 
ascending order in one or more passes of the tile, which is almost 
as good. This quasi-sequential access is achieved because the slow 
bits of the sfb-vector tend to come from the more significant bits of 
the choice vector. 

% usage: ?- sfb([v ,... l,[[x ,... I ,... ],[[n ,... I,... ],Stb,Cost). 
% 
% [v,...] is list of variables in expression 
% [[x,...],...] is list of variables in each predicate 
% [[n ,... ] ,... ] is list of sizes of attributes in 
% choice vectors in each predicate 
% Sfb is the resulting sfb-vector 
% Cost is the resulting number of buffer pages 

% Calculate &-vector for superjoin (greedy algorithm) 
% 
sfb(Vs,Preds,Sizes,Choice.Sfb,TotCost):- 

choose(Vs,Preds.NewPs,Sizes,NewSizes,Choice,FixedC,FreeC), 
length(NewPs,L), 
(if FreeC > L then 

sfb(Vs,NewPs,NewSizes,Sfb,Cost), 
TotCost is FixedC + Cost 

else 
3% = [I, 
TotCost is FixedC + FreeC 

1. 
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% 
% choose next bit for sfb-vector from list V.Vs so that cost is 
% mininmized when that variable is used for partitioning 
% 
choose(V.[],Preds,NewPreds,Sizes,NewSizes,V,FixedC,FreeC):- 

partition(V,Preds,NewPreds,Sizes,NewSizes,FixedC,FreeC). 
choose(V.VsQreds,NewPreds,Sizes,NewSizes,Choice,FixedC,FreC):- 

choose(Vs,Preds,XPreds,Sizes,XSizes,X,XFixedC,XFreeC), 
Xcost is XFixedC + XFreeC, 
partition(V,Preds,VPreds,Sizes,VSizes,VFixedC,VF~eC), 
Vcost is VFixedC + VFmeC, 
(if Vcost < Xcost; Vcost = Xcost,VFixedC =< XFixedC then 

Choice = V, 
NewPreds = VPreds, 
NewSizes = VSizes, 
FixedC = VFixedC, 
FteeC = VFreeC 

else 
Choice = X, 
NewPreds = XPreds, 
NewSizes = XSizes, 
FixedC = XFixedC, 
FreeC = XFreeC 

1. 

% 
% partition join using V 
% 
p~~~~~~~~~,Il,il,~l,~l,O,O~. 
partition(V,P.Preds,NewPreds,S.Sizes,NewSizes,FixedC,FreeC):- 

partition(V,Preds,NewPs,Sizes,NewSs,Fixed,Free), 
( pred- partition(V,P,S,PartitionSize) --> 

NewPreds = P.NewPs, 
NewSizes = PartitionSize.NewSs, 
FixedC = Fixed, 
sum(PartitionSize,Sum), 
FreeC is Free + 1 << Sum 

, 
/* no arguments of P match with V so make P fixed 

and remove from further partitioning *I 
NewPreds = NewPs, 
NewSizes = NewSs, 
sum(S,Sum), 
FixedC is Fixed + 1 << Sum, 
FreeC = Free 

). 

% 
% partition a predicate using V 
% 
pred_partition(V,Arg.Args,Size.Sizes,NewSize.NewSizes):- 

V == Arg, 
/* this argument matches *I 
Size > 0, 
NewSize is Size - 1, 
( pred-partition(V,Args,Sizes,NewSizesl) --> 

I* other arguments of this predicate also match */ 
NewSizes = NewSizesl 

I* no other arguments of this predicate match *I 
NewSizes = Sizes 

1. 

pred_partition(V,Arg.Args,Size.Sizes,Size.NewSizes):- 
( 

V \== Arg 

Size = 0 
1, 
I* this argument does not match - see if any other matches *I 
pred- partition(V,Args,Size.s,NewSizes). 

% 
8 Sum a list of integers 
% 
sum(W). 
sum(L.ListJum):- 

sum(List,S), 
Sum is S + L. 

APPENDIX B 

Examples of &-vector generation. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Preds = [lx, ~1, [Y, ~11 46 ?- P(X,Y], qvn 
Bits = [[I, 11, [2, l]] % bits for each attribute 
sfb = ry, y, 4 % &-vector Y,YzZl 
Nbufs = 3 9% number of buffers 

Preds = [Ix, yl, IY, ~1. Ix, ~11 
Bits = [[4, 41, L 31, [2, 311 
3-b = [Y, y. y, Y. x9 x9 x, xl 
Nbufs = 21 

Preds = [[a, bl, [b, cl, [a, b, cl1 
Bits = 113, 21, [3, 21, [2, 2, 311 
Sfb = [b, b, a, a, c, c, cl 
Nbufs = 11 

Preds = Kb, d, al, [d, cl. [a, b, cl, [a, b, cl1 
Bits = [[2, 1, 21, 15, 21, [3, 0, 31, [3,0, 311 
Sfb = [c, c, a, a, a, c] 
Nbufs = 66 

Pm& = HY. ~1, be ~1, [z, ~111 
Bits = U7, 51, [3, 61, [4, 711 
3% = [z. z, z, z, y. YP YP Y, Y, Y, y. zl 
Nbufs = 641 

Pmk = [ix, Y, ~1. [Y, ~11, [Y, z, ~111 
Bits = H7, 4, 31, [4, 71, [6, 4, 411 
SflJ = [Y, y, y, y. G G z, x, x, x, x, x, x, xl 
Nbufs = 257 

Pmk = [ix, y, xl. [Y, x, ~11 % note repeated variable 
Bits = [[3, 1, 41, [2, 3, 511 
3-b = Lx, x, x, y, Y, z, z, z, z, zl 
Nbufs = 3 
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