
A RELIABLE PARALLEL BACKEND USING MULTIATTRIBUTE
CLUSTERING AND SELECT- JOIN OPERATOR

Jean-Pierre CHEINEY*, Pascal FAUDEMAY**,
Rodolphe MICHEL**, Jean-Marc THEVENIN**

SABRE Project
INRIA , BP 10578153 Le Chesnay-Cedex France

Abstract

An access method based upon muhi-afiribure clustering allows
fhe database administrafor to define muhiply parlilioned relalions. For
each attribute in the clusrering, we can consider the set of subrelations as
a relarion view. Such a method has been implemented in SABRE. II
relies on muhi-a~tribute digital hashing and a linearly growing directory.
Using this method, we show that it is possible IO improve the
multiprocessor hashing join algorilhms by a ratio of 3 to 5, with rhe
same hardware configurarion. According IO our evaluation, the memory
requirements are approximately the same as wirh the hashing algori#uns,
and the common bus used for disk accesses does not salurate. Any
configurarion can be linearly extended by adding or removing a disk or a
processor, and reIiabilily is guaranteed by a simple management of
multiple copies. In case of a disk breakdown, the conrinualion of
operalion is possible wirh minimum loss of speed.

1. Introduction.

The join is one of the “non linear” relational algebra
operations; their duration grows with the volume of data, but
more rapidly. Beyond a certain volume of data, present
algorithms are too slow. It is therefore useful to build fast
parallel algorithms for this operation. In order to obtain
sufficiently rapid algorithms, solutions have been proposed
which are linear up to a large volume df data. Linearization is
obtained by a large increase of the logarithm base in the
complexity formula. The execution time may be divided by
distributing the I/O and processing load among several
processors and disks. Such solutions have been proposed,
based upon hashing aIgorithms. In this paper, we present a
faster parallel solution, based upon multi-attribute clustering.

A second goal in a multiprocessor system is to keep
an access to all data and good performances in crippled mode,
with one processor or disk down. We present a solution
based upon data duplication, and access of disks through a
common bus. During insertions, tuples are sent to processors
together with a logical address, which is recognized by the
processors which must insert the tuple or its copy. During
reads, the search patterns are modified in case of a disk
breakdown so that the processor would access the copy in
place of the faulty disk. The multi-attribute clustering allows
partitioning of each relation according to the qrery; each
subrelation has an index i, and is read by processor (i mod p),
where p is the number of processors. In case of a processor
breakdown, the mapping between processors and disks is
changed by a simple change of the value of p.

* lnstitut National des T61Ccommunications
** INRIA, MASJ Laboratory (CNRSI University Paris VI)

We first present some previous results concerning
hashing join algorithms and multi-attribute clustering.

To “linearize” the joins, the solution presented by
[KITS83],[DEWI84] is to hash both relations R and S which
must be joined, upon the join attribute Aj. This hashing gives
two sets of subrelations {Ri} and {Si}, where the tuples of
the subrelation Ri have a hashing value i with respect to the
join attribute. We shall say that this hashing gives the
partitioned views {Ri}Aj and {Si},j of relations R and S. Any
pair of tuples from R and S which joins on this attribute
belongs to subrelations having the same index. The R IX] S
join is then reduced to the union of smaller joins, where at
least one of the source relations holds in memory: R IX] S =
Ui Ri IX] Si. The hashing phase must be completed before any
join operation, it needs two read-writes of R and S. The join
cannot be done in pipe-line with hashing. It needs a third
read-write of R and S from the disks. This algorithm can be
executed in three read-writes of each source relation with
some conditions concerning the cache memory size, which are
recalled in par. 2.2.

An improvement of this solution is to use a
multi-attribute clustering of each relation on the join and
selection attributes [CHEI86], using predicate trees
[GARD84], [VALD84b], [GARD86]. The hashing value of
each attribute is represented by a bit string. Each hashing
function is called a level of the multi-attribute clustering. The
corresponding bit strings are concatenated to form the tuple
signature, which is a multi-attribute hashing value. Tuples are
clustered on disk by digital hashing on the signature. Tuples
on the same page have a same signature prejix, which indexes
a physical address in a directory. Tuples with the same
hashing value for one attribute, and possibly corresponding to
some selection criteria, are characterized by one or several
signature profiles, where some bits have an unknown value
(“*“= “0” or “1”). To access these tuples, the program filters
the directory with the list of profiles. In the “predicate trees”
method , the directory volume is proportional to the data
volume; this property is important in this approach. The
result of the directory filtering with a profiles list is a set of
subrelations {Ri}. When filtering with several profiles lists,
we get several partitioned views (Ri}Aj according to several
join or selection attributes Aj. Annex A shows an example of
clustering using the predicate trees.

For a join on the attribute Aj, we use the views
{Ri}A.
fact ah

and {Si) . . When there is also a selection, we use in
intersection between each Ri and Si and a list of

subrelations from {Ri},, and {Si)A, , where As is a
selection attribute. Its pages are obtained by filtering the
directory, using the appropriate profiles. The join is done in
one read of R and S, which corresponds to the third
read-write phase of the hashing algorithm. The selection is

Permission to copy wifhout fee all or part o this material is granted prouideed that the copies are nof made or distributed for direct commercial
aduanfage, the VLDJ3 copyright notice an d the fitle of the publication and ifs date appear, and notice is given that copyin is by permission of
the Very Large Data Base Endowment. To cop

I
otherwise, or to republish, requires a fee ano!Jor special permission from 1 f e Endowment.

Proceedings of the Twelfth International Con erence on Very Large Data Bases Kyoto, August, 1986

-220-

done in parallel with this read phase. Unlike the previous
algorithm, this selection can be pipe-lined with the join.

The parallel implementation of the hashing and
clustering join algorithms is simple. For the hashing algorithm
this has been presented in [DEWI85]. Other solutions are
proposed in [GOOD81], [VALD84], [OZKA85]. In the
parallel algorithm by hashing, let us consider p processors
and a hashing into h buckets. Relations R and S are divided
into p fragments of approximately the same size, and each one
is hashed by one of the processors into h buckets. This phase
is fully parallel, unlike multiprocessor sorting used for some
join algorithms. The result pages are transfered on disks
corresponding to the bucket number (after some coding of this
number), through the common bus. This phase is the only
one which is not parallel. The joins of the {Ri, Si} pairs are
then uniformly distributed among the p processors. The
re-reading of the Ri and Si is done on the common bus or on
local busses according to the hardware architecture.

In this paper, we present a parallel join algorithm by
clustering. With this approach, the only read and operation
phase is the third one. As the data may be accessed through
the common bus, each processor with an index (i mod p)
reads the pair of subrelations Ri and Si and joins them. This
transfer on the common bus is symetrical to that of the data
re-writing in the hashing algorithm. We show that this does
not cause any bus saturation either. Some complementary
calculus is needed when {Ri) or {Si} is an incomplete
partition of R or S, i.e. when the hashing value of some
tuples regarding the join attribute is not given by the
clustering. Pages corresponding to these tuples are given by
the directory filtering, their signature prefix does not contain
all the bits concerning the clustering attribute.

The proposed algorithms lead to a parallel reliable
architecture, which we call “reliable multiple backend” ,
according to [HSIA85]. This architecture is presently being
implemented in the Sabre.3 version of the Sabre database
machine, which includes three levels of software: an
“interface machine”, which analyses queries, an “assertional
machine” (ASSM) which breaks down the queries into a
sequence of relational operations, the “algebraic machine”
(ALGM) which executes the operations of this algebra. The
algebraic machine is here replicated into one sample per
available processor, each one processing a subset of the
database; the subset varies according to the query. This
solution is built upon a hardware architecture where all
processors can access all disks through a common bus. This
architecture is presented in figure 1.

prcceaor

\ >
common bus I I I

In our proposal, the only data which use the common
bus are commands, results and I/O page transfers. We show
that the bus is not saturated. The “reliable multiple backend”
may also be implemented with disks connected to local
busses; additional replications of some relations are then
needed; this option will be presented in a later paper.In par.
2.1., we present the algorithms for the parallel join by
clustering. In par. 2.2., we give its feasability conditions,
from the points of view of the cache memory and relation
sizes, and of the common bus throughput. In par. 3.1., we
propose a simple adaptation to the growth and decrease (in
case of breakdown) of the number of processors, and we
examine its efficiency conditions. In par. 3.2., we describe
the adaptation of algorithms to reliability targets. Par. 4.
concludes.

2. Parallel selection-joins: algorithms and
evaluation.

2.1. Parallel algorithms ‘using predicate trees and
partitioned views.

In the introduction we have presented the notion of
predicate trees and of a partitioned view defined on a relation,
clustered by predicate trees; this is the basis of the algorithms
described in this paragraph. We first recall this definition,
then give indications on the physical distribution of data
among the disks, and present the algorithms themselves.
These algorithms reduce the I/O time from 3 read-writes of
both relations (with the hashing joins algorithms) to 1 read.

2.1.1. Partitioned views of a relation.

The clustering of a relation R using directory K
allows definition of several partitioned views of K and R,
according to attributes Aj 1 ..Ajm. There is a partitioned view
according to attribute Aj when a level of the multi-attribute
clustering is defined on attribute Aj. A particular physical page
of R (or an entry of K) may belong to several subrelations
Ri ., Ri’,.,, Ri”,j,s, etc.. (or Ki ., KY&.., etc..). Each page
pre lx is the concatenation of rt stn “r %” d gs representing the
hashing values H(t)Aj of tuples t of the same page, according
to attributes Ajl , ..Ajm. We suppose that the hashing
function H(t),j has h values. Each page of R belongs either to
a subrelation Ri, i=l..h, when its hashing value i=H(t)
according to Aj is defined in the page prefix, or to a
subrelation RO which we call the residue, when its hashing
value is not defined.

More formally, we say that {Ri} is a partitioned view
of R according to attribute Aj (written {Ri}Aj), if the
following conditions are true

l {Ri} is a partition of R; any tuple of R belongs to a
subrelation Ri of {Ri}, and only one.

l let H(t),j be the uniform hashing function defined
by the multiattribute clustering on attribute Aj, and h
be the number of possible values of H (H(t)a).
H(t)Aj is constant within subrelation Ri, for i&l. For
any possible value of H(t) (O<H(t)lh) there is a
subrelation Ri with an index value i=H(t).

l Any tuple t of R either belongs to a subrelation Ri,
O&h, or to the subrelation RO.

figure I: hardvare architecture

-221-

There may be tuples with hashing value i in RO and tuples
with the same hashing value i in Ri. We call RO the residue of
the relation. If there is at least one tuple in RO, then we shall
say that {Ri},j is incompfere.

For each relation, part of the directory describes the
mapping between the prefix of each page of the relation and
its physical address (usually on disk). The prefix is said to be
“developed’ on attribute Aj for which there is a hashing
function HAj with 2k values, if the prefix has k bits relative to
this attribute. The index i of subrelation Ri,. is the integer
defined by these k bits. A tuple belongs to thk residue RO of
the partition defined on Aj (RO .) if its signature has less than
k bits defined on attribute AJ. . ?A’ he partitioning of R on Aj may
thus be done by filtering the directory, in one read of it. A
partition of R may be associated with a partition of the
directory, {Ki)
the prefix and a $/’ where each subset of the directory holds

resses of pages of the same subrelation.

The proposed algorithms use a uniform partitioning of
the relations which must be joined, according to the join
attribute.The first levels of the clustering are uniformizing
hashing functions, such as folding or modulo, defined on the
join attributes. Each processor makes the selection of one or
several pairs of subrelations Ri and Si, and joins the selected
tuples of each Ri with those of the corresponding subrelation
Si. To find the pages which contain the tuples of a subrelation
Ri of {Ri)Aj, the ALGM filters the directory with the
following srgnature profile: all bits of the profile are
positioned at “*” (“0 or l”), except those which correspond to
the join attribute Aj and are forced at the hashing value which
defines subrelation Ri.

2.1.2. Distribution of tuples among the disks.

In Sabre.3, the ALGM level is replicated on p
processors. Each ALGM processes a subset of the database.
This subset may vary according to the operation. The different
subsets are subrelations of one of the partitioned views
defined in the last paragraph. Sabre.3 also relies upon the fact
that we may possibly use several different disks, each being
connected to the common bus in order for each processor to
access it directly. To manage the distribution of data among
the disks, a logical disk is associated to each ALGM for
insertions, modifications and linear queries (selections and
projection without suppressing doubles). Several logical disks
may be situated on a single physical disk. However, to
simplify the presentation of the degraded mode we shall
suppose that there is one physical disk per ALGM.

The distribution among disks is done according to the
first level of the predicate tree (each level describes a hashing
function, beginning by the one which corresponds to the first
signature bits). For this distribution, we apply a modulo
function p on the hashing value of the first clustering attribute.
Two possibilities may be considered. First the join may be
done upon the distribution attribute, then all relations Ri and
Si read by one processor are on the index i disk. As each

processor addresses a different disk, the parallelism between
I/O done by different processors is guaranteed. Secondly the
join may be done on another attribute. In this case the
distribution of each subrelation Ri among the disks is usually
uniform. This also guarantees the narallelism between I/O.
However the tasks of the diffeient processors may be
serialized by I/O coming from several disks to a same
processor. To avoid this, it is useful that the disk managers
should serve the different processors in a circular way. This
point is developed in the next paragraph.

2.1.3. Selection-join algorithms.

Selection and join are done in pipe-line, and may be
seen as one operation, the selection-join. Up to a certain
point, the case of several levels of joins in a query may also
be treated with our algorithms, but will not be considered in
this paper. A first phase of the selection-join is represented by
the directorv vartitioninn. which is used both for selection and
join. Contrary to the hailring approach, the I/O for this phase
are limited to one read of the directory; A second phase is
represented by the select-join operation, done in one read.

During the first phase, each processor accesses the
whole directory -at least the part relative to the relations used
in the following operations. Part of the directory is associated
to a logical disk, which usually holds part of each relation.
However all directories can be accessed through the common
bus. They can be considered globally as one common
directory. Using this directory, each processor calculates the
directory partitioning (and in that way, the relation
partitioning); each subdirectory is made of the addresses of
pages having the same hashing value regarding the join
attribute, and of a signature prefix corresponding to the
subrelation. The subrelations are practically restricted to pages
whose signature bits for the selection attributes belong to a
profiles list which results from the selection expression. This
allows a preselection at the directory level during the
partitioning. Each ALGM calculates the subrelations which it
must process by applying a modulo p function to the hashing
values defined bv the vartitioned view. A subrelation must be
processed when the >esult is equal to the number of the
ALGM. Simplifications are possible when the data useful for
the processor are known to be on one logical disk, which
should happen frequently. The directory part accessed by each
processor is then limited to this logical disk. It is also possible
that the join attribute should be a selection attribute. In this
case a preselection on this attribute is possible if there is both
a folding or modulo clustering on it (a uniform function) and a
secondary clustering by intervals (non uniform but order
preserving function).

We call R the smallest of the two relations (when
considering the probable size after selection), and S the other
one. For each i processor and each hashing value j on the join
attribute, the selection is first made on relation Rij. For
relation Sij, the selection is made page after page; after each
page selection we do the join of the result with Rij. The join
algorithm must be hashing or index building , which are

-222-

practically linear in the number of pages of S, after the index
has been built. A Cartesian product algorithm would be in
O(llRll.llSll), where these two quantities are the cardinalities of
R and S; a sort join would not allow the join before a
complete reading of Rij and Sij. This simplified algorithm is
presented below.

On each processor Pi (i=l..p) do
begin

partition-directory (R, K, KPAR.R)
partition-directory (S, K, KPARS)
{K is the directory, KPAR is the partitioned
directory }
for j=l to h do
begin

SEL (Rij)
while not end of Sij do
begin

SELPAGE (Sij)
JOIN (Rij, Sij)

end
end

end

figure 2: selection-join algorithm,
simplified version.

We shall now present a more complete version of this
algorithm. Indeed the last version does not describe the
management of the subrelation “residue”, which can be done
by hashing or copying according to the subrelation size.
Transfers may be directly managed by the “producers”
processors after calculating RO and SO, or directly by the
“consumer” processors when selecting data (“producers” and
“consumers” processors are of course the same but considered
at different times). The order of selections may also be
considered.

A first choice is the processing of the “residue”
relations RO and SO. These relations may be empty, in which
case the algorithm goes on as before. If they contain only a
few tuples, or at least if each subrelation Ri plus RO fits in
memory, it is possible to add RO to each other subrelation
without any other calculus. This solution may be a good one if
the transfer time of RO to all processors is small, and if the
calculation time is little increased, e.g. if:

IROl < F.IRllp*

where F is the uniformity ratio of hashing (size ratio between
the largest bucket and the mean one).

This solution will only slow down the machine by a
ratio of less than l/p, which seems to be a good limit in a
machine with p processors. If these conditions are not
fulfilled, the splitting of RO is forced in as many pages as the
number of values of the hashing function. These page prefixes
are added to the partitioned directory with an address value
showing that it is a page in memory in processor i (if there is
no overflow of RO on disk). The logical processors which
manage the I/O may then read these pages in the
corresponding local memories. A transfer done by the source
ALGM processor at the end of the hashing is also possible; the
partitioned directory will then reference the after-transfer
addresses. Subrelation SO is treated like RO.

Another aspect of the selection-join algorithm is the
intertwinning of selections and joins, and possibly the
sequencing of these two operations in order to avoid their
serialization. Selections on the argument relations of the join
are pipe-lined with it. Thus, when retrieving the pages of a
subrelation. the ALGM makes an intersection between the
signature profile that characterizes the subrelation and the
selection profile, before filtering the directory. The ALGM
then performs a partial selection on the pages subset which it
has obtained, just before doing the local join with the result
tuples of the selection.

A partial selection is materialized by a set of selections
sent in parallel to each disk. When all ALGM access the same
disk at the same time, the ALGM work is serialized by the
disk. Much of the parallelism between the ALGM is then lost.
To avoid this situation, the following rule may be used: each
processor first reads its disk, then the other ones by rotation
on the disk number. This insures a good parallelism between
each disk and each ALGM operation. The intertwinning of
partial selections and of joins also avoids the writing and
re-reading on disk to do the join. The selection-join algorithm
is finally the following:

On each processor i (i=l..p) do
begin

calculate-profiles (Aj, Q)
{Q is the selection expression, <Aj> the join attributes
list}
partition directory (R, K; KPAR.R)
partition-&rectory (S, K; KPAR.S)
If RO not empty then do
begin

if (IROl + F.lRl/h < IMI-2) and
(IROl I lRl/p2) then
{ [Ml is the cache memory size in pages }
RESU R=RO
{ REST holds the pages of RO after their splitting.
It is an input of SEL like KPAR. For
simplicity we omit those two inputs in SEL
occ&renees.}
else Hash (RO, RESU.R, KPAR.R)
{the transfer of RESU pages in destination
processors is asked by these ones in SEL}

end
If SO not empty then do
begin

if ISOl I /Sl/p2 then do RESU S= SO
else Hash (SO, RESU.S, KPAR.S)

end
for j=l to h do
begin

k=i
repeat SEL, (Sij); k= (k+l) mod p
until k=i
repeat SEL, (Rij); k= (k+l) mod p
until k=i

endJOIN (Rij, Sij)

end

figure 3 : selection-join algorithm,
detailed version

-223-

2.2. Evaluations.

2.2.1. evaluations of the hashing algorithm.

During external hashing (with a re-writing’of relations
on disk) of relations R and S. the maximum number of
hashingbuckets is lMl-1, where (Ml is the cache memory size
in pages. In order for the smaller relation to stay in memory
during the join, its size must be under [Ml-2 pages (one page
is kept for the other relation and another for the result). The
relation size is therefore:

lR] I (lMl-l)(lMl-2)/F, (condition 1)

that is about IR] I IMl’/F; F is the uniformity ratio of the
hashing function (ratio between the size of the largest of the
subrelations and their mean size).

With a multiprocessor hashing, the same condition
must be true, lM1 being the local memory size. If lB1 is the
global size of memory in pages (]B]= p.JMl), then:

IRI s IBI*/P*, (condition 2)

which gives lBl2 pJlR1. , in some cases, this may imply that lB1
> lR1. The conditions regarding the cache memory size are
more constraining when the number of processors is larger;
the same observation is made later with the “multiple
back-end’ architecture.

If condition 2 is not true, it is necessary to do a first
hashing in p buckets, followed by a second hashing in n=
F.lRlIlBl buckets. This re-hashing implies two additional
read-writes of R and S. To avoid this, it is possible to
pipe-line the distribution and the second hashing. It is then
necessary to have (p+l) more pages on each processor for
re-hashing, and condition 1 becomes:

lR1 I p(lMl-2)(lMl-1-(p+l))/F* (condition 3)

If this condition is not fulfilled, 5 read-writes of R and S
become inevitable. In the “multiple backend” architecture,
these conditions apply to the size of subrelation RO, which
contains the non-partitioned tuples, in case of an incomplete
partitioning.

2.2.2. Case of the “multiple backend”.

The efficiency of the “multiple backend” algorithms,
as a function of the cache memory size and of the number of
processors, depends on three factors: the possible overflow of
the cache memory, the minimum size of the smaller relation,
the possible saturation of the common bus.

problem of the cache memory overflow.
Let us suppose that IR] < ISI. In order to make the join

on attribute Aj in one read of R and S, each Ri in {Ri},i must
fit in the cache memory. We suppose that the clustermg is
done on m attributes, each one having the same weight (same
number of hashing bits in the signature). The number of
signature bits is then log lR1, the number of hashing bits on
the join attribute is (log lRl)/m, and the cardinality of {Ri} is
2(t”a lRl)‘m=lRlt’m. The size of a subrelation Ri is then
lRl/lRlt/m= lRl(m-l)‘m. Condition 1 becomes:

[RI I (lMl-2)““(m-‘). (condition 4)

As before, the same condition is also true in the
multi-processor. The number of clustering attributes with the
same weight is typically of 2 to 3. The case where m=2 is that

of a relation with one key and a frequent selection attribute
(there can also be several selection attributes, each with a
smaller weight), or a relation with two keys and no selection
attribute (association relation). With some adequate
normalisation, it is always possible to be in that case. When
m=2, the memory size constraints are practically identical to
those of the parallel hashing algorithm. If m=3, reasonable
parameters for a multiprocessor architecture (b=16 k.bytes,
where b is the page size, lMl=400 with eg: p=lO) allow a
relation size of relation R of 128 M.bytes; with usual tuples,
and a load factor of 0.7, this size corresponds to a smallest
relation of up to 700,000 tuples. The size of R may be k times
larger, if a selection of selectivity s < I/k is done before the
join.

problem of the small relations
For small relations, some pages may have an

insufficient number of signature bits on the join attribute to
determine their subrelation. We speak of an “incomplete
partitioning”; the corresponding pages must be distributed
among the subrelations by hashing. If the clustering tree is
balanced, which is an approximation, the number of bits of
prefixes is (log lR1). The partition can be complete if:

1% IRI 2 2 Ilog PI (condition 5)

where [x] is the smallest integer superior or equal to x. For
p=16, this will be the case if log]R(2 8, i.e. if lR1 2 256
pages. With optimal pages of one track (about 16 k.bytes),
this corresponds to a subrelation of 4 M.bytes, which is
already a large relation.

However with usual relation sizes, most pages have a
longer signature than the theoretical value. In experiments
which we have done in Sabre.2 with “predicate trees”
clustering [GARD86], most pages of the 2 M.bytes relations
had 12 to 13 bits in their signature prefix,so that these pages
would not have needed any hashing. The number of pages
which must be hashed in order to obtain a complete
partitioning should be very small, so that they would almost
always fit in cache memory. It follows that this phenomenon
should not increase the number of I/O operations.

Conditions for the saturation of the global bus
In the architecture presented here, the reading of

pages from each subrelation is done through a common bus.
It’s possible saturation could limit the useful number of disks
and processors. A first approach is to suppose that all disks
are permanently read. As there are no other data on the bus,
except from the result tuples, the bus is saturated when V=
Dq, where V is the bus throughput, q the number of disks,
and D is the disk throughput. With usual disks having a
maximal throughput of 1.8 M.bytes, like the Fujitsu Eagle,
and a common bus throughput of 10 M.bytes per second,
saturation would appear with more than 5 disks. The useful
number of processors would then be the number needed to do
joins on the corresponding volume of data, at the same time.

An other approach is to suppose that the data transfer
is done in a cyclic way, first towards processor 1, then
towards processor 2, then again towards processor 1, and
so on - each processor receiving at each time one subrelation
of R and S. The bus will then be saturated if the time needed
to transfer a subrelation from R and S to each processor is
larger than the time needed by the slower processor to do the
join, i.e. if:

rl/V + r’l/V 2 J(Fr/p, Fr’lp) + K(r) + K(r) (condition 6)

where r and r’ are the cardinalities of R and S, 1 is the mean

-224-

length of a tuple, V the throughput of the bus, .T(r, r’) the time
to join two relations with cardinalities r and r’, K(r) the time
to filter the directory of a relation of cardinal&y r. K is small
compared to J (approximately K(r)= a.lRI, with a near from
3~s). The saturation is then a function of the other factors.
We shall suppose that r=r’, and J(r, r’)= 2kr. The bus is then
saturated if:

2 rl/V 2 2 kFr/p , i.e.: V I pl/kF (condition 7)

where F is the uniformity ratio of hashing.
With l=lOO, F=1.2, r=lOOOOO, V=lO M.bytes/sec or V= 256
M.bytes/sec, the array gives the values of p and T (the join
duration) at saturation:

I : ‘IVIP’

I 10-j I 10 \I20
i ;;I: I (256 10 I I306 12

1 10-5 1256 (30

T

I

2s. 1
2s. I
0.08s. 1
0.08s. 1

V is the throughput of the common bus in megabytes per
second. Current busses have a throughput of 10
Megabyteslsec. With high performance algorithms, higher
throughputs may be necessary. The present technological limit
seems tQ be represented by interconnection arrays of up
to128x128 bits, and a 16 Mhz frequency; such arrays will
have a throughput of 256 Megabyteslsec. Regarding the join
duration, ‘k=10e2 corresponds to present values [BITT83],
k= 10e3 corresponds to the expected duration of some
micro-programmed algorithms with index building; k= 1 Om4
could correspond to future VLSI processors using the same
algorithms; k=10m5 corresponds to the optimistic evaluations
of [DEW1841 for hashing algorithms in memory, or to the
aims presented in [MOT0821 for the joiti by sorters. With
present values of k, current busses are fast enough to avoid
saturation, up to a high number of processors.

3. Growth and reliability.

3.1. Linear growth of the number of processors.

The way of adding new disks is compatible with the
distribution mechanism, which uses the first signature bits.
The mapping with a disk number is done by applying a
modulo function to the k first bits, p being the number of
disks. There is no change in the hashing functioni of the PT
nor any re-hashing of tuples.

This mechanism makes it.possible to duplicate the
database while keeping a uniform distribution. Annex Bl
presents an example of insertion. A replication in four copies
(or any power n of 2) is as simple and uses 2 bits (or n) at “*”
in the insertion profile; with the algorithms presented here, the
number of disks must be superior or equal to the number of
copies. All accesses are done by a query modification
mechanism. When accessing a disk, the aIgebraic machine
must ensure the duplicated data are not accessed. The following
algorithm is then used:

A firsi constraint is that the addition of the plh disk
must cause an improvement with respect to a configuration
with (p-l) disks. This implies ihat the propqrtion of ihe
database which is stor&d on the disk with the heaviest load
must decrease. A second constraint is to minimise the relative
difference between the buckets number pf the more loaded
disk and of the less loaded one.

Due to space limitation we do not present the
algorithm which gives tlie number of bits as a function of a
number of processors and the accepted lack of balance. With
up to 8 processors, the ndmber of bits needed per join
attribute is less than or equal to 6; a clustering on 2 attributes

-225-

needs at most 12 bits ofsignatuie. With real distributions,
even small relations of 2 M.bytes are nearly fully partitioned
on the join attributes. Good performances of joins are
compatible with any variation of the processors number from
1 to 8 at least.

This is a simple positioning of the first k bits which are
successively replaced by all the values which verify ‘the
physical distribution predicate. An example of search is given
in annex B2. In cast of a disk breakdown, all pages are’
duplicated on a different disk; a crippled mode is possible
without any interruption. When inverting the kti bit during the
distribution, the result of the modulo function will always be
different from the search distribution, as the kth bit is the
lowest weight bit taken into account.

3.2. An integrated reliability.

The proposed method allows a good integration of
reliability and a simple approach of the problem by defining a
replication of the database on several disks. Updated copies
are available in case of crash and allow a degraded mode
without interruption, and secondly if disks are coupled on
local busses (which’is probabl,y not the best architecture),
transfers between processors are limited; this aspect is not
developed in this paper.

We separate the physical distribution of tuples, which
is used for insertions, and the logical distribution which is
used for queries and makes it possible to limit the search to
some part ,of a relation. The,data which are physically present
on the disk managed by a disk will be a Superset of one of its
views.

A drita replication cari be considered under two
conditions. First the storage cost inust not be too expensive.
The evolntion in disk ‘capacities is &c&raging. Second, the
increase in ‘the search Space must not’imbly an important
increase in search times. From this point of view, the
predicate trees access method is very interesting; the directory
and its filtering time are proportional to the volume of data,
which is not the case with other m+mds. A simple replication
is done by using two copies. When updating, an insertion is
made on two disks. If the disks are defined by the first k bits
of the signature, the insertion on two disks may be defined by
replacing the tuple signature with an insertion profile where
the kth bit is replaced by an “*” (unknown bit). The general
insertion procedure iS then:

1) calculate the tuple signature
2) build the insertion profile by setting aC “*‘I
the kth bit of the signature
3) according to the inshrtion profiIe, the
insertion is then made on two disks

1) generation. of a list of k bit prefixes
{Pi}, according to the physical distribution
predicate i.e.:

Pi modulo P = disk number.
2) intersection between the signature
profile which sum up the search criterium
and the prefix list.

3.3. Degraded mode.

In case of a processor breakdown, the system is
reconfigured by renumbering each available processor with a
number between 1 and p-l. Thus, the logical partitioning is
re-defined on p-l processors. The physical distribution is still
done on q disks. If q=p, one of the processors will make
insertions and modifications on two disks.

In case of a disk breakdown, the data no longer
available on the crashed disk can be accessed from their copies
read over the other disks. The selection algorithm in degraded
mode is the following:

1) generation of the list of the k bits
prefixes {Pi} corresponding to the crashed
disk.
2) generation of the list of k bits prefixes
{Pi) corresponding to the disk accessed.
3) jntersection between the signature profile
and the union of the two set of former lists.

With this algorithm, all subsets which must be
accessed are read one time and only one time. In degraded
mode the insertion is not modified but only one copy is
updated. Annex B3 gives an exa.mple of a selection with disk 1
unavailable.

For the recovery, there is a very simple mode. During
the restart of the faulty disk, its subsets are restored from
copies located among the others disks. It is possible to continue
the queries; only updates are stopped during the recovery.
During this operation, the restarting disk is still considered
unavailable, and queries are applied in degraded mode to the
other disks. The normal mode can be used as soon as the
copies are done.

The selection of the copies to re-write on the
previously faulty disk is done by the degraded selection
algorithm, but without normal search criteria. The union is
applied to an empty profile, which means that the search
profiles of the copies are not modified. The bits which do not
take part in the distribution (i.e. from the k+l ti) are set at “*”
in order to select full subsets.

In this architecture we have supposed that one disk
unit is updated by one processor in a disk. This is realistic
when there are few processors. However, if there are several
tens of processors, there are disks which are common to
several processors. In this case the reliability algorithms must
insure the distribution of subsets and their copies on different
disks. A parity element may then be added to the first k bits of
the signature in order to guarantee that a subset and its copy
will be written on a different disk.

4. Conclusion

We have presented an architecture and multiprocessor
algorithms which speed up as well joins as selections, and
allow to keep using the machine in case of a disk or processor
breakdown. This architecture is easily extendible according to
the volume of data or the performances needed. It gives an
improvement by 3 to 5 versus the algorithms presented in
[DEWI85], with the same configuration. The cache memory
size requirements are identical to those of the hashing
algorithms, with a clustering on up to 2 join attributes; some
clustering on selection algorithms is also possible. Real
relations can always be limited to this number of join attributes

by adequate normalization. A number of processors varying
from 10 to 150 can be used with even very fast internal join
algorithms (i.e. joins in memory). This limit could be increased
in another architecture with disks connected on local busses,
but this would lead to a full replication of some relations; this
possibility will be considered in a forthcoming paper. The
improvement ratio versus mono-processor existing algorithms
is currently a factor 3p/F, where F is the uniformity ratio of
hashing; according to our simulations F is usually under 1.2,
thus the multiprocessor efficiency may be above 0.8 .

Acknowledgments

The authors want to thank G. Gardarin for fruitful1
comments. This work has been supported by INRIA,
CNRS-Paris VI-MASI and the French Ministry of Research
and Industry (PRC-BD3).

5. References

[BI-I-T83]

[CHEI86]

[DEW1841

IDEW

[GARD84]

[GARD86]

[GOOD8 11

[HSIA85]

[KITS831

BITTON D, DEWITT D J, TURBYFILL C :
“Benchmarking Database Systems: a Systematic
Approach”, Computer Sciences Technical Report
N”256, 1983, University of Wisconsin-Madison.

CHElNEY JP, FAUDEMAY P, MICHEL R : “An
Extension of Access Paths to Improve loins and
Selections”, Second Int. Conf. on Data
Engineering, Los Angeles, 1986.

DEWITT D J et al : “Implementation Techniques
for Main Memory Database System”. ACM
SIGMOD , Boston, 1984.

DEWITT D J , GERBER R : “Multiprocessor
Hash-based Join Algorithms” . Int. Conf. on
VLDB , Stockholm 1985 .

GARDARIN G, VALDURIEZ P, VIEMONT Y:
“Predicate Tree: an Approach to Optimize
Relational Query Operations”, Database
Engineering Conf., Los Angeles 1984.

GARDARIN G, FAUDEMAY P, MICHEL R,
VALDURIEZ P, VIEMONT Y: “An Integrated
Approach to Multi-dimentional Searching Using
Predicate Trees and Filtering” in preparation.

GOODMAN J R: “An Investigation of
Multiprocessor Structures and Algorithms for
Database Management”, University of California
at Berkeley, Technical Report UCBIERL,
M81/33, 1981.

HSIAO D K, DEMURJIAN S : “Benchmarking,
Database Systems in Multiple Backend
Configuration”, A Quatterly Bulletin of the
I.E.E.E. Computer Society, Technical Comitee on
Database Systems, V8, N”1, 1985 .

KITSUREGAWA M et al: “Application of Hash to
Database Machine and Its Architecture”. New
Generation Computing, N”1, 1983 .

-226-

[MOT0821

[OZKA85]

[VALDM]

MOTO-OKA, ed., Proc. Int. Conf. on Fifth
Generation Computer Systems, North Holland,
Amsterdam 1982.

OZKARAHAN E, OUKSEL M : ” Dynamic and
Order Preserving Data Partitioning for Database
Machine “. Int. Conf. on Very Large Databases ,
Stockholm 1985.

VALDURIEZ P., GARDARIN G. : ” Join and
Semi-join Algorithms for a Multiprocessor
Database Machine”. ACM Transaction on
Database Systems, V9, N-1, 1984

[VALDMb] VALDURIEZ P., VIEMONT Y.: ” A Multikey
Hashing Schema Using Predicate Trees”, ACM
SIGMOD, Boston, 1984.

6. Annexes

Annex A: clustering and partitionning on a relation

PRODUCT (WINE# , PRODUCER# , QUANTITY)

Predicate tree definition:
1” level: branch number = WINE# MODULO 4
2nd level: branch number = PRODUCER# MODULO 4
3”d level: i;~: number = 0 if QUANTITY < 100,

Clustering tree:

. b d a’ D klm n p qr SI “V w

There are 2 ALGMs and 2 disks, the physical repartition on
those disks is given by the function:
disk number = (Is’ level branch number) MOD 2

Directory part of disk0 Directory part of disk1

iR’l,,2 signature address {WA2 signature address
prefix

Rl 00000
Rl 00001
R2 0001
R3 00100
R3 00101
R4 00110
R4 00111
Rl 1000
R2 10010
R2 10011
R3 10100
R3 10101
R4 1011

6
J
k
1
m
n
0

prefix

RO 010 h
RO 011 ’
Rl 11000 ;
Rl 11001 q
R2 11010 r
R2 11011
R3 11100. :
R3 11101
R4 11110 :
R4 11111 w

(Ri),l=Rl(a b c de f g}, R2{h i}, R3Cj k 1 m n o}, R4{p q
rstuvw}
{Ri),,=RO{h i}, Rl{a b j p q}, R2{c k 1 r s}, R3{d e m n t
u}, R4{f g o v w}
Signature profile according to Rl,= l *OO*
Signature profile for the criterium QUANTITY=“50” = l ***O
profiles intersection = l *OOO

Annex B: management of multiple copies

This example is based on the relation PRODUCT of
Annex A. We use only two disks. Thus each disk holds a
sample of all relations. However, in normal use, each disk
addresses one half of the data.

Bl: insertion of tuple l23/lOl/SOl

1) Calculation of the tuple signature S = 11010
2) Calculation of the insertion profile; set 2”d bit at ‘0’

PI = 1.010
3) apply MOD 2 on the two first bits of the insertion profile

(lO)MOD2=0 and (Il)MOD2= 1 => insertion
on disk 0 and 1

B2: query

Which producers have produced wines with QTY-SO?

1) Selection profile: l ***O

search on disk 0 search on disk 1

2) determination of prefixes list:
(.* h44g)lyOD 2 = 0

,
(.* MO;:)I) 2 = 1

,

3) intersection of the selection profile with the preftxes list:
prl= m*O (prl= Ol**O]
pr2= lo**0] => l O**O pr2= ll**O] => l l**O

B3: breakdown of disk 1

Search of the list of prefixes of disk 2:
e*MOD4)MOD2= 1 =>Ol, 11
Each ALGM adds to its prefLx list prefixes 01 and 11.
For the preceding query, we have four profiles:
pr 1: OO**O (
pr2: lo**0 (
pr3: Ol**O (
pr4: 1 l**O] => l ***O (the whole disk 0 is then accessed)

-227-

