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Abstract 

An access method based upon muhi-afiribure clustering allows 
fhe database administrafor to define muhiply parlilioned relalions. For 
each attribute in the clusrering, we can consider the set of subrelations as 
a relarion view. Such a method has been implemented in SABRE. II 
relies on muhi-a~tribute digital hashing and a linearly growing directory. 
Using this method, we show that it is possible IO improve the 
multiprocessor hashing join algorilhms by a ratio of 3 to 5, with rhe 
same hardware configurarion. According IO our evaluation, the memory 
requirements are approximately the same as wirh the hashing algori#uns, 
and the common bus used for disk accesses does not salurate. Any 
configurarion can be linearly extended by adding or removing a disk or a 
processor, and reIiabilily is guaranteed by a simple management of 
multiple copies. In case of a disk breakdown, the conrinualion of 
operalion is possible wirh minimum loss of speed. 

1. Introduction. 

The join is one of the “non linear” relational algebra 
operations; their duration grows with the volume of data, but 
more rapidly. Beyond a certain volume of data, present 
algorithms are too slow. It is therefore useful to build fast 
parallel algorithms for this operation. In order to obtain 
sufficiently rapid algorithms, solutions have been proposed 
which are linear up to a large volume df data. Linearization is 
obtained by a large increase of the logarithm base in the 
complexity formula. The execution time may be divided by 
distributing the I/O and processing load among several 
processors and disks. Such solutions have been proposed, 
based upon hashing aIgorithms. In this paper, we present a 
faster parallel solution, based upon multi-attribute clustering. 

A second goal in a multiprocessor system is to keep 
an access to all data and good performances in crippled mode, 
with one processor or disk down. We present a solution 
based upon data duplication, and access of disks through a 
common bus. During insertions, tuples are sent to processors 
together with a logical address, which is recognized by the 
processors which must insert the tuple or its copy. During 
reads, the search patterns are modified in case of a disk 
breakdown so that the processor would access the copy in 
place of the faulty disk. The multi-attribute clustering allows 
partitioning of each relation according to the qrery; each 
subrelation has an index i, and is read by processor (i mod p), 
where p is the number of processors. In case of a processor 
breakdown, the mapping between processors and disks is 
changed by a simple change of the value of p. 
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We first present some previous results concerning 
hashing join algorithms and multi-attribute clustering. 

To “linearize” the joins, the solution presented by 
[KITS83],[DEWI84] is to hash both relations R and S which 
must be joined, upon the join attribute Aj. This hashing gives 
two sets of subrelations {Ri} and {Si}, where the tuples of 
the subrelation Ri have a hashing value i with respect to the 
join attribute. We shall say that this hashing gives the 
partitioned views {Ri}Aj and {Si},j of relations R and S. Any 
pair of tuples from R and S which joins on this attribute 
belongs to subrelations having the same index. The R IX] S 
join is then reduced to the union of smaller joins, where at 
least one of the source relations holds in memory: R IX] S = 
Ui Ri IX] Si. The hashing phase must be completed before any 
join operation, it needs two read-writes of R and S. The join 
cannot be done in pipe-line with hashing. It needs a third 
read-write of R and S from the disks. This algorithm can be 
executed in three read-writes of each source relation with 
some conditions concerning the cache memory size, which are 
recalled in par. 2.2. 

An improvement of this solution is to use a 
multi-attribute clustering of each relation on the join and 
selection attributes [CHEI86], using predicate trees 
[GARD84], [VALD84b], [GARD86]. The hashing value of 
each attribute is represented by a bit string. Each hashing 
function is called a level of the multi-attribute clustering. The 
corresponding bit strings are concatenated to form the tuple 
signature, which is a multi-attribute hashing value. Tuples are 
clustered on disk by digital hashing on the signature. Tuples 
on the same page have a same signature prejix, which indexes 
a physical address in a directory. Tuples with the same 
hashing value for one attribute, and possibly corresponding to 
some selection criteria, are characterized by one or several 
signature profiles, where some bits have an unknown value 
(“*“= “0” or “1”). To access these tuples, the program filters 
the directory with the list of profiles. In the “predicate trees” 
method , the directory volume is proportional to the data 
volume; this property is important in this approach. The 
result of the directory filtering with a profiles list is a set of 
subrelations {Ri}. When filtering with several profiles lists, 
we get several partitioned views (Ri}Aj according to several 
join or selection attributes Aj. Annex A shows an example of 
clustering using the predicate trees. 

For a join on the attribute Aj, we use the views 
{Ri}A. 
fact ah 

and {Si) . . When there is also a selection, we use in 
intersection between each Ri and Si and a list of 

subrelations from {Ri},, and {Si)A, , where As is a 
selection attribute. Its pages are obtained by filtering the 
directory, using the appropriate profiles. The join is done in 
one read of R and S, which corresponds to the third 
read-write phase of the hashing algorithm. The selection is 
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done in parallel with this read phase. Unlike the previous 
algorithm, this selection can be pipe-lined with the join. 

The parallel implementation of the hashing and 
clustering join algorithms is simple. For the hashing algorithm 
this has been presented in [DEWI85]. Other solutions are 
proposed in [GOOD81], [VALD84], [OZKA85]. In the 
parallel algorithm by hashing, let us consider p processors 
and a hashing into h buckets. Relations R and S are divided 
into p fragments of approximately the same size, and each one 
is hashed by one of the processors into h buckets. This phase 
is fully parallel, unlike multiprocessor sorting used for some 
join algorithms. The result pages are transfered on disks 
corresponding to the bucket number (after some coding of this 
number), through the common bus. This phase is the only 
one which is not parallel. The joins of the {Ri, Si} pairs are 
then uniformly distributed among the p processors. The 
re-reading of the Ri and Si is done on the common bus or on 
local busses according to the hardware architecture. 

In this paper, we present a parallel join algorithm by 
clustering. With this approach, the only read and operation 
phase is the third one. As the data may be accessed through 
the common bus, each processor with an index (i mod p) 
reads the pair of subrelations Ri and Si and joins them. This 
transfer on the common bus is symetrical to that of the data 
re-writing in the hashing algorithm. We show that this does 
not cause any bus saturation either. Some complementary 
calculus is needed when {Ri) or {Si} is an incomplete 
partition of R or S, i.e. when the hashing value of some 
tuples regarding the join attribute is not given by the 
clustering. Pages corresponding to these tuples are given by 
the directory filtering, their signature prefix does not contain 
all the bits concerning the clustering attribute. 

The proposed algorithms lead to a parallel reliable 
architecture, which we call “reliable multiple backend” , 
according to [HSIA85]. This architecture is presently being 
implemented in the Sabre.3 version of the Sabre database 
machine, which includes three levels of software: an 
“interface machine”, which analyses queries, an “assertional 
machine” (ASSM) which breaks down the queries into a 
sequence of relational operations, the “algebraic machine” 
(ALGM) which executes the operations of this algebra. The 
algebraic machine is here replicated into one sample per 
available processor, each one processing a subset of the 
database; the subset varies according to the query. This 
solution is built upon a hardware architecture where all 
processors can access all disks through a common bus. This 
architecture is presented in figure 1. 

prcceaor 

\ > 
common bus I I I 

In our proposal, the only data which use the common 
bus are commands, results and I/O page transfers. We show 
that the bus is not saturated. The “reliable multiple backend” 
may also be implemented with disks connected to local 
busses; additional replications of some relations are then 
needed; this option will be presented in a later paper.In par. 
2.1., we present the algorithms for the parallel join by 
clustering. In par. 2.2., we give its feasability conditions, 
from the points of view of the cache memory and relation 
sizes, and of the common bus throughput. In par. 3.1., we 
propose a simple adaptation to the growth and decrease (in 
case of breakdown) of the number of processors, and we 
examine its efficiency conditions. In par. 3.2., we describe 
the adaptation of algorithms to reliability targets. Par. 4. 
concludes. 

2. Parallel selection-joins: algorithms and 
evaluation. 

2.1. Parallel algorithms ‘using predicate trees and 
partitioned views. 

In the introduction we have presented the notion of 
predicate trees and of a partitioned view defined on a relation, 
clustered by predicate trees; this is the basis of the algorithms 
described in this paragraph. We first recall this definition, 
then give indications on the physical distribution of data 
among the disks, and present the algorithms themselves. 
These algorithms reduce the I/O time from 3 read-writes of 
both relations (with the hashing joins algorithms) to 1 read. 

2.1.1. Partitioned views of a relation. 

The clustering of a relation R using directory K 
allows definition of several partitioned views of K and R, 
according to attributes Aj 1 ..Ajm. There is a partitioned view 
according to attribute Aj when a level of the multi-attribute 
clustering is defined on attribute Aj. A particular physical page 
of R (or an entry of K) may belong to several subrelations 
Ri ., Ri’,.,, Ri”,j,s, etc.. (or Ki ., KY&.., etc..). Each page 
pre lx is the concatenation of rt stn “r %” d gs representing the 
hashing values H(t)Aj of tuples t of the same page, according 
to attributes Ajl , ..Ajm. We suppose that the hashing 
function H(t),j has h values. Each page of R belongs either to 
a subrelation Ri, i=l..h, when its hashing value i=H(t) 
according to Aj is defined in the page prefix, or to a 
subrelation RO which we call the residue, when its hashing 
value is not defined. 

More formally, we say that {Ri} is a partitioned view 
of R according to attribute Aj (written {Ri}Aj), if the 
following conditions are true 

l {Ri} is a partition of R; any tuple of R belongs to a 
subrelation Ri of {Ri}, and only one. 

l let H(t),j be the uniform hashing function defined 
by the multiattribute clustering on attribute Aj, and h 
be the number of possible values of H (H(t)a). 
H(t)Aj is constant within subrelation Ri, for i&l. For 
any possible value of H(t) (O<H(t)lh) there is a 
subrelation Ri with an index value i=H(t). 

l Any tuple t of R either belongs to a subrelation Ri, 
O&h, or to the subrelation RO. 

figure I: hardvare architecture 
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There may be tuples with hashing value i in RO and tuples 
with the same hashing value i in Ri. We call RO the residue of 
the relation. If there is at least one tuple in RO, then we shall 
say that {Ri},j is incompfere. 

For each relation, part of the directory describes the 
mapping between the prefix of each page of the relation and 
its physical address (usually on disk). The prefix is said to be 
“developed’ on attribute Aj for which there is a hashing 
function HAj with 2k values, if the prefix has k bits relative to 
this attribute. The index i of subrelation Ri,. is the integer 
defined by these k bits. A tuple belongs to thk residue RO of 
the partition defined on Aj (RO .) if its signature has less than 
k bits defined on attribute AJ. . ?A’ he partitioning of R on Aj may 
thus be done by filtering the directory, in one read of it. A 
partition of R may be associated with a partition of the 
directory, {Ki) 
the prefix and a $/’ where each subset of the directory holds 

resses of pages of the same subrelation. 

The proposed algorithms use a uniform partitioning of 
the relations which must be joined, according to the join 
attribute.The first levels of the clustering are uniformizing 
hashing functions, such as folding or modulo, defined on the 
join attributes. Each processor makes the selection of one or 
several pairs of subrelations Ri and Si, and joins the selected 
tuples of each Ri with those of the corresponding subrelation 
Si. To find the pages which contain the tuples of a subrelation 
Ri of {Ri)Aj, the ALGM filters the directory with the 
following srgnature profile: all bits of the profile are 
positioned at “*” (“0 or l”), except those which correspond to 
the join attribute Aj and are forced at the hashing value which 
defines subrelation Ri. 

2.1.2. Distribution of tuples among the disks. 

In Sabre.3, the ALGM level is replicated on p 
processors. Each ALGM processes a subset of the database. 
This subset may vary according to the operation. The different 
subsets are subrelations of one of the partitioned views 
defined in the last paragraph. Sabre.3 also relies upon the fact 
that we may possibly use several different disks, each being 
connected to the common bus in order for each processor to 
access it directly. To manage the distribution of data among 
the disks, a logical disk is associated to each ALGM for 
insertions, modifications and linear queries (selections and 
projection without suppressing doubles). Several logical disks 
may be situated on a single physical disk. However, to 
simplify the presentation of the degraded mode we shall 
suppose that there is one physical disk per ALGM. 

The distribution among disks is done according to the 
first level of the predicate tree (each level describes a hashing 
function, beginning by the one which corresponds to the first 
signature bits). For this distribution, we apply a modulo 
function p on the hashing value of the first clustering attribute. 
Two possibilities may be considered. First the join may be 
done upon the distribution attribute, then all relations Ri and 
Si read by one processor are on the index i disk. As each 

processor addresses a different disk, the parallelism between 
I/O done by different processors is guaranteed. Secondly the 
join may be done on another attribute. In this case the 
distribution of each subrelation Ri among the disks is usually 
uniform. This also guarantees the narallelism between I/O. 
However the tasks of the diffeient processors may be 
serialized by I/O coming from several disks to a same 
processor. To avoid this, it is useful that the disk managers 
should serve the different processors in a circular way. This 
point is developed in the next paragraph. 

2.1.3. Selection-join algorithms. 

Selection and join are done in pipe-line, and may be 
seen as one operation, the selection-join. Up to a certain 
point, the case of several levels of joins in a query may also 
be treated with our algorithms, but will not be considered in 
this paper. A first phase of the selection-join is represented by 
the directorv vartitioninn. which is used both for selection and 
join. Contrary to the hailring approach, the I/O for this phase 
are limited to one read of the directory; A second phase is 
represented by the select-join operation, done in one read. 

During the first phase, each processor accesses the 
whole directory -at least the part relative to the relations used 
in the following operations. Part of the directory is associated 
to a logical disk, which usually holds part of each relation. 
However all directories can be accessed through the common 
bus. They can be considered globally as one common 
directory. Using this directory, each processor calculates the 
directory partitioning (and in that way, the relation 
partitioning); each subdirectory is made of the addresses of 
pages having the same hashing value regarding the join 
attribute, and of a signature prefix corresponding to the 
subrelation. The subrelations are practically restricted to pages 
whose signature bits for the selection attributes belong to a 
profiles list which results from the selection expression. This 
allows a preselection at the directory level during the 
partitioning. Each ALGM calculates the subrelations which it 
must process by applying a modulo p function to the hashing 
values defined bv the vartitioned view. A subrelation must be 
processed when the >esult is equal to the number of the 
ALGM. Simplifications are possible when the data useful for 
the processor are known to be on one logical disk, which 
should happen frequently. The directory part accessed by each 
processor is then limited to this logical disk. It is also possible 
that the join attribute should be a selection attribute. In this 
case a preselection on this attribute is possible if there is both 
a folding or modulo clustering on it (a uniform function) and a 
secondary clustering by intervals (non uniform but order 
preserving function). 

We call R the smallest of the two relations ( when 
considering the probable size after selection), and S the other 
one. For each i processor and each hashing value j on the join 
attribute, the selection is first made on relation Rij. For 
relation Sij, the selection is made page after page; after each 
page selection we do the join of the result with Rij. The join 
algorithm must be hashing or index building , which are 
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practically linear in the number of pages of S, after the index 
has been built. A Cartesian product algorithm would be in 
O(llRll.llSll), where these two quantities are the cardinalities of 
R and S; a sort join would not allow the join before a 
complete reading of Rij and Sij. This simplified algorithm is 
presented below. 

On each processor Pi (i=l..p) do 
begin 

partition-directory (R, K, KPAR.R) 
partition-directory (S, K, KPARS) 
{K is the directory, KPAR is the partitioned 
directory } 
for j=l to h do 
begin 

SEL (Rij) 
while not end of Sij do 
begin 

SELPAGE (Sij) 
JOIN (Rij, Sij) 

end 
end 

end 

figure 2: selection-join algorithm, 
simplified version. 

We shall now present a more complete version of this 
algorithm. Indeed the last version does not describe the 
management of the subrelation “residue”, which can be done 
by hashing or copying according to the subrelation size. 
Transfers may be directly managed by the “producers” 
processors after calculating RO and SO, or directly by the 
“consumer” processors when selecting data (“producers” and 
“consumers” processors are of course the same but considered 
at different times). The order of selections may also be 
considered. 

A first choice is the processing of the “residue” 
relations RO and SO. These relations may be empty, in which 
case the algorithm goes on as before. If they contain only a 
few tuples, or at least if each subrelation Ri plus RO fits in 
memory, it is possible to add RO to each other subrelation 
without any other calculus. This solution may be a good one if 
the transfer time of RO to all processors is small, and if the 
calculation time is little increased, e.g. if: 

IROl < F.IRllp* 

where F is the uniformity ratio of hashing (size ratio between 
the largest bucket and the mean one). 

This solution will only slow down the machine by a 
ratio of less than l/p, which seems to be a good limit in a 
machine with p processors. If these conditions are not 
fulfilled, the splitting of RO is forced in as many pages as the 
number of values of the hashing function. These page prefixes 
are added to the partitioned directory with an address value 
showing that it is a page in memory in processor i (if there is 
no overflow of RO on disk). The logical processors which 
manage the I/O may then read these pages in the 
corresponding local memories. A transfer done by the source 
ALGM processor at the end of the hashing is also possible; the 
partitioned directory will then reference the after-transfer 
addresses. Subrelation SO is treated like RO. 

Another aspect of the selection-join algorithm is the 
intertwinning of selections and joins, and possibly the 
sequencing of these two operations in order to avoid their 
serialization. Selections on the argument relations of the join 
are pipe-lined with it. Thus, when retrieving the pages of a 
subrelation. the ALGM makes an intersection between the 
signature profile that characterizes the subrelation and the 
selection profile, before filtering the directory. The ALGM 
then performs a partial selection on the pages subset which it 
has obtained, just before doing the local join with the result 
tuples of the selection. 

A partial selection is materialized by a set of selections 
sent in parallel to each disk. When all ALGM access the same 
disk at the same time, the ALGM work is serialized by the 
disk. Much of the parallelism between the ALGM is then lost. 
To avoid this situation, the following rule may be used: each 
processor first reads its disk, then the other ones by rotation 
on the disk number. This insures a good parallelism between 
each disk and each ALGM operation. The intertwinning of 
partial selections and of joins also avoids the writing and 
re-reading on disk to do the join. The selection-join algorithm 
is finally the following: 

On each processor i (i=l..p) do 
begin 

calculate-profiles (Aj, Q) 
{Q is the selection expression, <Aj> the join attributes 
list} 
partition directory (R, K; KPAR.R) 
partition-&rectory (S, K; KPAR.S) 
If RO not empty then do 
begin 

if (IROl + F.lRl/h < IMI-2) and 
(IROl I lRl/p2) then 
{ [Ml is the cache memory size in pages } 
RESU R=RO 
{ REST holds the pages of RO after their splitting. 
It is an input of SEL like KPAR. For 
simplicity we omit those two inputs in SEL 
occ&renees.} 
else Hash (RO, RESU.R, KPAR.R) 
{the transfer of RESU pages in destination 
processors is asked by these ones in SEL} 

end 
If SO not empty then do 
begin 

if ISOl I /Sl/p2 then do RESU S= SO 
else Hash (SO, RESU.S, KPAR.S) 

end 
for j=l to h do 
begin 

k=i 
repeat SEL, (Sij); k= (k+l) mod p 
until k=i 
repeat SEL, (Rij); k= (k+l) mod p 
until k=i 

endJOIN (Rij, Sij) 

end 

figure 3 : selection-join algorithm, 
detailed version 

-223- 



2.2. Evaluations. 

2.2.1. evaluations of the hashing algorithm. 

During external hashing (with a re-writing’of relations 
on disk) of relations R and S. the maximum number of 
hashingbuckets is lMl-1, where (Ml is the cache memory size 
in pages. In order for the smaller relation to stay in memory 
during the join, its size must be under [Ml-2 pages (one page 
is kept for the other relation and another for the result). The 
relation size is therefore: 

lR] I (lMl-l)(lMl-2)/F, (condition 1) 

that is about IR] I IMl’/F; F is the uniformity ratio of the 
hashing function (ratio between the size of the largest of the 
subrelations and their mean size). 

With a multiprocessor hashing, the same condition 
must be true, lM1 being the local memory size. If lB1 is the 
global size of memory in pages (]B]= p.JMl), then: 

IRI s IBI*/P*, (condition 2) 

which gives lBl2 pJlR1. , in some cases, this may imply that lB1 
> lR1. The conditions regarding the cache memory size are 
more constraining when the number of processors is larger; 
the same observation is made later with the “multiple 
back-end’ architecture. 

If condition 2 is not true, it is necessary to do a first 
hashing in p buckets, followed by a second hashing in n= 
F.lRlIlBl buckets. This re-hashing implies two additional 
read-writes of R and S. To avoid this, it is possible to 
pipe-line the distribution and the second hashing. It is then 
necessary to have (p+l) more pages on each processor for 
re-hashing, and condition 1 becomes: 

lR1 I p(lMl-2)(lMl-1-(p+l))/F* (condition 3) 

If this condition is not fulfilled, 5 read-writes of R and S 
become inevitable. In the “multiple backend” architecture, 
these conditions apply to the size of subrelation RO, which 
contains the non-partitioned tuples, in case of an incomplete 
partitioning. 

2.2.2. Case of the “multiple backend”. 

The efficiency of the “multiple backend” algorithms, 
as a function of the cache memory size and of the number of 
processors, depends on three factors: the possible overflow of 
the cache memory, the minimum size of the smaller relation, 
the possible saturation of the common bus. 

problem of the cache memory overflow. 
Let us suppose that IR] < ISI. In order to make the join 

on attribute Aj in one read of R and S, each Ri in {Ri},i must 
fit in the cache memory. We suppose that the clustermg is 
done on m attributes, each one having the same weight (same 
number of hashing bits in the signature). The number of 
signature bits is then log lR1, the number of hashing bits on 
the join attribute is (log lRl)/m, and the cardinality of {Ri} is 
2(t”a lRl)‘m=lRlt’m. The size of a subrelation Ri is then 
lRl/lRlt/m= lRl(m-l)‘m. Condition 1 becomes: 

[RI I (lMl-2)““(m-‘). (condition 4) 

As before, the same condition is also true in the 
multi-processor. The number of clustering attributes with the 
same weight is typically of 2 to 3. The case where m=2 is that 

of a relation with one key and a frequent selection attribute 
(there can also be several selection attributes, each with a 
smaller weight), or a relation with two keys and no selection 
attribute (association relation). With some adequate 
normalisation, it is always possible to be in that case. When 
m=2, the memory size constraints are practically identical to 
those of the parallel hashing algorithm. If m=3, reasonable 
parameters for a multiprocessor architecture (b=16 k.bytes, 
where b is the page size, lMl=400 with eg: p=lO) allow a 
relation size of relation R of 128 M.bytes; with usual tuples, 
and a load factor of 0.7, this size corresponds to a smallest 
relation of up to 700,000 tuples. The size of R may be k times 
larger, if a selection of selectivity s < I/k is done before the 
join. 

problem of the small relations 
For small relations, some pages may have an 

insufficient number of signature bits on the join attribute to 
determine their subrelation. We speak of an “incomplete 
partitioning”; the corresponding pages must be distributed 
among the subrelations by hashing. If the clustering tree is 
balanced, which is an approximation, the number of bits of 
prefixes is (log lR1). The partition can be complete if: 

1% IRI 2 2 Ilog PI (condition 5) 

where [x] is the smallest integer superior or equal to x. For 
p=16, this will be the case if log ]R( 2 8, i.e. if lR1 2 256 
pages. With optimal pages of one track (about 16 k.bytes), 
this corresponds to a subrelation of 4 M.bytes, which is 
already a large relation. 

However with usual relation sizes, most pages have a 
longer signature than the theoretical value. In experiments 
which we have done in Sabre.2 with “predicate trees” 
clustering [GARD86], most pages of the 2 M.bytes relations 
had 12 to 13 bits in their signature prefix,so that these pages 
would not have needed any hashing. The number of pages 
which must be hashed in order to obtain a complete 
partitioning should be very small, so that they would almost 
always fit in cache memory. It follows that this phenomenon 
should not increase the number of I/O operations. 

Conditions for the saturation of the global bus 
In the architecture presented here, the reading of 

pages from each subrelation is done through a common bus. 
It’s possible saturation could limit the useful number of disks 
and processors. A first approach is to suppose that all disks 
are permanently read. As there are no other data on the bus, 
except from the result tuples, the bus is saturated when V= 
Dq, where V is the bus throughput, q the number of disks, 
and D is the disk throughput. With usual disks having a 
maximal throughput of 1.8 M.bytes, like the Fujitsu Eagle, 
and a common bus throughput of 10 M.bytes per second, 
saturation would appear with more than 5 disks. The useful 
number of processors would then be the number needed to do 
joins on the corresponding volume of data, at the same time. 

An other approach is to suppose that the data transfer 
is done in a cyclic way, first towards processor 1, then 
towards processor 2, . . . . then again towards processor 1, and 
so on - each processor receiving at each time one subrelation 
of R and S. The bus will then be saturated if the time needed 
to transfer a subrelation from R and S to each processor is 
larger than the time needed by the slower processor to do the 
join, i.e. if: 

rl/V + r’l/V 2 J(Fr/p, Fr’lp) + K(r) + K(r) (condition 6) 

where r and r’ are the cardinalities of R and S, 1 is the mean 
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length of a tuple, V the throughput of the bus, .T(r, r’) the time 
to join two relations with cardinalities r and r’, K(r) the time 
to filter the directory of a relation of cardinal&y r. K is small 
compared to J (approximately K(r)= a.lRI, with a near from 
3~s). The saturation is then a function of the other factors. 
We shall suppose that r=r’, and J(r, r’)= 2kr. The bus is then 
saturated if: 

2 rl/V 2 2 kFr/p , i.e.: V I pl/kF (condition 7) 

where F is the uniformity ratio of hashing. 
With l=lOO, F=1.2, r=lOOOOO, V=lO M.bytes/sec or V= 256 
M.bytes/sec, the array gives the values of p and T (the join 
duration) at saturation: 

I : ‘IVIP’ 

I 10-j I 10 \I20 
i ;;I: I (256 10 I I306 12 

1 10-5 1256 (30 

T 

I 

2s. 1 
2s. I 
0.08s. 1 
0.08s. 1 

V is the throughput of the common bus in megabytes per 
second. Current busses have a throughput of 10 
Megabyteslsec. With high performance algorithms, higher 
throughputs may be necessary. The present technological limit 
seems tQ be represented by interconnection arrays of up 
to128x128 bits, and a 16 Mhz frequency; such arrays will 
have a throughput of 256 Megabyteslsec. Regarding the join 
duration, ‘k=10e2 corresponds to present values [BITT83], 
k= 10e3 corresponds to the expected duration of some 
micro-programmed algorithms with index building; k= 1 Om4 
could correspond to future VLSI processors using the same 
algorithms; k=10m5 corresponds to the optimistic evaluations 
of [DEW1841 for hashing algorithms in memory, or to the 
aims presented in [MOT0821 for the joiti by sorters. With 
present values of k, current busses are fast enough to avoid 
saturation, up to a high number of processors. 

3. Growth and reliability. 

3.1. Linear growth of the number of processors. 

The way of adding new disks is compatible with the 
distribution mechanism, which uses the first signature bits. 
The mapping with a disk number is done by applying a 
modulo function to the k first bits, p being the number of 
disks. There is no change in the hashing functioni of the PT 
nor any re-hashing of tuples. 

This mechanism makes it.possible to duplicate the 
database while keeping a uniform distribution. Annex Bl 
presents an example of insertion. A replication in four copies 
(or any power n of 2) is as simple and uses 2 bits (or n) at “*” 
in the insertion profile; with the algorithms presented here, the 
number of disks must be superior or equal to the number of 
copies. All accesses are done by a query modification 
mechanism. When accessing a disk, the aIgebraic machine 
must ensure the duplicated data are not accessed. The following 
algorithm is then used: 

A firsi constraint is that the addition of the plh disk 
must cause an improvement with respect to a configuration 
with (p-l) disks. This implies ihat the propqrtion of ihe 
database which is stor&d on the disk with the heaviest load 
must decrease. A second constraint is to minimise the relative 
difference between the buckets number pf the more loaded 
disk and of the less loaded one. 

Due to space limitation we do not present the 
algorithm which gives tlie number of bits as a function of a 
number of processors and the accepted lack of balance. With 
up to 8 processors, the ndmber of bits needed per join 
attribute is less than or equal to 6; a clustering on 2 attributes 
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needs at most 12 bits ofsignatuie. With real distributions, 
even small relations of 2 M.bytes are nearly fully partitioned 
on the join attributes. Good performances of joins are 
compatible with any variation of the processors number from 
1 to 8 at least. 

This is a simple positioning of the first k bits which are 
successively replaced by all the values which verify ‘the 
physical distribution predicate. An example of search is given 
in annex B2. In cast of a disk breakdown, all pages are’ 
duplicated on a different disk; a crippled mode is possible 
without any interruption. When inverting the kti bit during the 
distribution, the result of the modulo function will always be 
different from the search distribution, as the kth bit is the 
lowest weight bit taken into account. 

3.2. An integrated reliability. 

The proposed method allows a good integration of 
reliability and a simple approach of the problem by defining a 
replication of the database on several disks. Updated copies 
are available in case of crash and allow a degraded mode 
without interruption, and secondly if disks are coupled on 
local busses (which’is probabl,y not the best architecture), 
transfers between processors are limited; this aspect is not 
developed in this paper. 

We separate the physical distribution of tuples, which 
is used for insertions, and the logical distribution which is 
used for queries and makes it possible to limit the search to 
some part ,of a relation. The,data which are physically present 
on the disk managed by a disk will be a Superset of one of its 
views. 

A drita replication cari be considered under two 
conditions. First the storage cost inust not be too expensive. 
The evolntion in disk ‘capacities is &c&raging. Second, the 
increase in ‘the search Space must not’imbly an important 
increase in search times. From this point of view, the 
predicate trees access method is very interesting; the directory 
and its filtering time are proportional to the volume of data, 
which is not the case with other m+mds. A simple replication 
is done by using two copies. When updating, an insertion is 
made on two disks. If the disks are defined by the first k bits 
of the signature, the insertion on two disks may be defined by 
replacing the tuple signature with an insertion profile where 
the kth bit is replaced by an “*” (unknown bit). The general 
insertion procedure iS then: 

1) calculate the tuple signature 
2) build the insertion profile by setting aC “*‘I 
the kth bit of the signature 
3) according to the inshrtion profiIe, the 
insertion is then made on two disks 

1) generation. of a list of k bit prefixes 
{Pi}, according to the physical distribution 
predicate i.e.: 

Pi modulo P = disk number. 
2) intersection between the signature 
profile which sum up the search criterium 
and the prefix list. 



3.3. Degraded mode. 

In case of a processor breakdown, the system is 
reconfigured by renumbering each available processor with a 
number between 1 and p-l. Thus, the logical partitioning is 
re-defined on p-l processors. The physical distribution is still 
done on q disks. If q=p, one of the processors will make 
insertions and modifications on two disks. 

In case of a disk breakdown, the data no longer 
available on the crashed disk can be accessed from their copies 
read over the other disks. The selection algorithm in degraded 
mode is the following: 

1) generation of the list of the k bits 
prefixes {Pi} corresponding to the crashed 
disk. 
2) generation of the list of k bits prefixes 
{Pi) corresponding to the disk accessed. 
3) jntersection between the signature profile 
and the union of the two set of former lists. 

With this algorithm, all subsets which must be 
accessed are read one time and only one time. In degraded 
mode the insertion is not modified but only one copy is 
updated. Annex B3 gives an exa.mple of a selection with disk 1 
unavailable. 

For the recovery, there is a very simple mode. During 
the restart of the faulty disk, its subsets are restored from 
copies located among the others disks. It is possible to continue 
the queries; only updates are stopped during the recovery. 
During this operation, the restarting disk is still considered 
unavailable, and queries are applied in degraded mode to the 
other disks. The normal mode can be used as soon as the 
copies are done. 

The selection of the copies to re-write on the 
previously faulty disk is done by the degraded selection 
algorithm, but without normal search criteria. The union is 
applied to an empty profile, which means that the search 
profiles of the copies are not modified. The bits which do not 
take part in the distribution (i.e. from the k+l ti) are set at “*” 
in order to select full subsets. 

In this architecture we have supposed that one disk 
unit is updated by one processor in a disk. This is realistic 
when there are few processors. However, if there are several 
tens of processors, there are disks which are common to 
several processors. In this case the reliability algorithms must 
insure the distribution of subsets and their copies on different 
disks. A parity element may then be added to the first k bits of 
the signature in order to guarantee that a subset and its copy 
will be written on a different disk. 

4. Conclusion 

We have presented an architecture and multiprocessor 
algorithms which speed up as well joins as selections, and 
allow to keep using the machine in case of a disk or processor 
breakdown. This architecture is easily extendible according to 
the volume of data or the performances needed. It gives an 
improvement by 3 to 5 versus the algorithms presented in 
[DEWI85], with the same configuration. The cache memory 
size requirements are identical to those of the hashing 
algorithms, with a clustering on up to 2 join attributes; some 
clustering on selection algorithms is also possible. Real 
relations can always be limited to this number of join attributes 

by adequate normalization. A number of processors varying 
from 10 to 150 can be used with even very fast internal join 
algorithms (i.e. joins in memory). This limit could be increased 
in another architecture with disks connected on local busses, 
but this would lead to a full replication of some relations; this 
possibility will be considered in a forthcoming paper. The 
improvement ratio versus mono-processor existing algorithms 
is currently a factor 3p/F, where F is the uniformity ratio of 
hashing; according to our simulations F is usually under 1.2, 
thus the multiprocessor efficiency may be above 0.8 . 
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6. Annexes 

Annex A: clustering and partitionning on a relation 

PRODUCT ( WINE# , PRODUCER# , QUANTITY ) 

Predicate tree definition: 
1” level: branch number = WINE# MODULO 4 
2nd level: branch number = PRODUCER# MODULO 4 
3”d level: i;~: number = 0 if QUANTITY < 100, 

Clustering tree: 

. b d a’ D klm n p qr SI “V w 

There are 2 ALGMs and 2 disks, the physical repartition on 
those disks is given by the function: 
disk number = (Is’ level branch number) MOD 2 

Directory part of disk0 Directory part of disk1 

iR’l,,2 signature address {WA2 signature address 
prefix 

Rl 00000 
Rl 00001 
R2 0001 
R3 00100 
R3 00101 
R4 00110 
R4 00111 
Rl 1000 
R2 10010 
R2 10011 
R3 10100 
R3 10101 
R4 1011 

6 
J 
k 
1 
m 
n 
0 

prefix 

RO 010 h 
RO 011 ’ 
Rl 11000 ; 
Rl 11001 q 
R2 11010 r 
R2 11011 
R3 11100. : 
R3 11101 
R4 11110 : 
R4 11111 w 

(Ri),l=Rl(a b c de f g}, R2{h i}, R3Cj k 1 m n o}, R4{p q 
rstuvw} 
{Ri),,=RO{h i}, Rl{a b j p q}, R2{c k 1 r s}, R3{d e m n t 
u}, R4{f g o v w} 
Signature profile according to Rl,= l *OO* 
Signature profile for the criterium QUANTITY=“50” = l ***O 
profiles intersection = l *OOO 

Annex B: management of multiple copies 

This example is based on the relation PRODUCT of 
Annex A. We use only two disks. Thus each disk holds a 
sample of all relations. However, in normal use, each disk 
addresses one half of the data. 

Bl: insertion of tuple l23/lOl/SOl 

1) Calculation of the tuple signature S = 11010 
2) Calculation of the insertion profile; set 2”d bit at ‘0’ 

PI = 1.010 
3) apply MOD 2 on the two first bits of the insertion profile 

(lO)MOD2=0 and (Il)MOD2= 1 => insertion 
on disk 0 and 1 

B2: query 

Which producers have produced wines with QTY-SO? 

1) Selection profile: l ***O 

search on disk 0 search on disk 1 

2) determination of prefixes list: 
(.* h44g)lyOD 2 = 0 

, 
(.* MO;:)$I$) 2 = 1 

, 

3) intersection of the selection profile with the preftxes list: 
prl= m*O ( prl= Ol**O ] 
pr2= lo**0 ] => l O**O pr2= ll**O ] => l l**O 

B3: breakdown of disk 1 

Search of the list of prefixes of disk 2: 
e*MOD4)MOD2= 1 =>Ol, 11 
Each ALGM adds to its prefLx list prefixes 01 and 11. 
For the preceding query, we have four profiles: 
pr 1: OO**O ( 
pr2: lo**0 ( 
pr3: Ol**O ( 
pr4: 1 l**O ] => l ***O ( the whole disk 0 is then accessed ) 
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