
An Observation on Database Buffering
Performance Metrics

Robert B. Hagmann

Xerox Palo Alto Research Center

Abstract: Database buffering normally assumes that a
proper measure of performance is the number of pages
transferred. This paper justifies that the number of I/O’s is
the proper unit of measure. From this we derive a buffering
policy that improves over known buffering policies for
nested loop joins, we derive some buffering policies for
hashing joins, and we make an observation about selections
and query optimization.

1. Introduction

Buffer management is a component ofdatabase systems that
has received much attention over the years. Normally, the
performance metric used was the number of page replacements
(e.g.. [Seli79. Chou85]). With changing hardware costs and
performance. there should be a shift in the metric used to judge
the performance of the algorithms. In this paper, we will
propose a change in the metric, and show three instances where
the metric change is important.

Performance metrics for buffer management are used in at
least three ways in a database system and its measurement. First,
the query optimizer has to estimate the cost of a query using a
metric. Second, query execution implicitly or explicitly uses a
metric when it makes buffering decisions. Finally, performance
measurement of database systems uses a metric to compare
different systems or to tune a system.

In this paper. we will develop some initial results using as
our metric the number of Disk I/O’s instead of the conventional
metric of the number of page replacements. This metric is
justified because of three changes: in software systems. hardware
cost. and hardware performance. Throughout this paper. we will
use the term “disk” to refer to any secondary storage device, but
our example and primary model will be moving head. rotating,
magnetic disks. We also assume that the database system has
control over the granularity of the transfer to secondary memory.
The control may be probabilistic or approximate (e.g., bad page
substitution may slow down some transfers).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage? the VLDB copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
a&or special permission from the Endowment.

First of all. adjacent pages in files are now often clustered
together on the disk. For the UNIX Operating System, the high
performance file system for 4.2 BSD [McKu84] has replaced the
original file system [Ritc74]. Where the original file system
would often allocate adjacent file pages to widely separated disk
addresses. the new file system allocates pages in contiguous runs
(with high probability). Many systems have always had this
property (e.g., System R [Astr76]), but many of the studies of
database systems were done using an INGRES Database System
[Ston76] which used the original UNIX file system.

Second. main memory costs have decreased so that large
buffers of thousands of pages are possible. It is common to buy
high performance workstations with 2. 4. or more megabytes of
main memory. It is therefore possible to allocate more than a
few pages to operations such as joins.

Third, while disk access times have decreased over the years.
the real performance gain has been in the transfer rate. The
Fujitsu M2350A transfers, in parallel, on up to five disk heads at
once and has a sustained formatted transfer rate of 8 megabytes
per second [Fuji84]. The Fujitsu M2351 “Eagle” has one fifth of
this transfer rate, and is a common high performance drive. The
characteristics of this drive are a 5.5 millisecond track to track
seek, an 18 millisecond average seek, a 35 millisecond maximum
seek, a 7.6 millisecond average latency, and about a 1.57
megabyte per second sustained formatted transfer rate. To see
whether access or transfer times dominate for the “Eagle.” we
will compare the times for some transfer sizes (a similar
discussion occurs in [Wein82]). Access time (average seek plus
average latency) accounts for 95% of the total time when two
1024 byte pages are read. Access and transfer time are equal
when 39 pages are read. Transfer time accounts for 95% of the
l/O time when 748 pages are read. For the M2350A, the number
of pages for 5%. 50%. and 95% transfer time are 10, 200. and
3800. From this we infer that the time cost of doing a typical I/O
for a database system will be dominated by, or at least can be
approximated by, the access cost.

By using the “rotational synchronization” feature of the
Fujitsu M2350A, up to 8 drives can be synchronized to transfer
in parallel. Hence, this disk subsystem has a sustained formatted
transfer rate of 64 megabytes per second. If the transfer size
remains the same, the use of this feature emphasizes the
dominance of the access time even more.

One further observation is that the CPU cost of an I/O is
usually nearly the same irrespective of how many pages are read
or written. The system call time. context switch times. and
interrupt processing are mostly constant for any disk I/O.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

-289-

Kyoto, August, 1986

Therefore. doing fewer I/O’s for the same number of pages will
save CPU time. As many systems are CPU bound, saving
processor time may be the dominant effect from a change in the
buffering.

However. extending transfer size per I/O can have a
negative performance impact if the additional data is not used.
The I/O’s require additional main memory for buffers. may
force out desirable data, and contend for the machine’s
backplane. memory modules. and memory bus. Virtual memory
systems face a similar problem while satisfying a page fault. and
many systems read in an interval of pages including the faulted
page in the expectation that the extra pages will be useful (the
author added this to the Cedar Programming Environment
[SwinfG]). In addition, there has been, over the years, an
increase in the page size for file systems and database systems
because of the decrease in cost of main memory and the increase
in transfer rate.

For some types of channels. the channel controller is used to
initiate the I/O to a disk and then the controller is freed. The
controller is reacquired when the transfer is about to occur. If
the controller is a bottleneck. then making larger transfers may
degrade system performance.

Some systems have many disk drives per disk controller and
allow parallel seeks to occur on multiple drives. The seek time is
thus overlapped with other seeks and transfers. This lessens the
impact of the seek time on the bun&vi&h of the disk sub-system,
but in no way decreases the query response time (latency). Even
the bandwidth is affected since rotational latency (average of 7.6
milliseconds above) often consumes a large part of the time the
controller is dedicated to an l/O. With disks storing more data
per spindle (sometimes with slower access times, as is common
with today’s optical disks). the benefits of parallel seeks
decreases. since contention for each drive increases.

It is only reasonable to do extensive buffering where tuples
are clustered and stored in (nearly) contiguous tile pages based
on the clustering criterion. Most implementations of ISAM,
B-Tree, and heap satisfy this requirement. Hashed access also
partially satisfies this requirement if few pages contain no tuples
and we are doing a full relation scan. We must avoid buffering
pages that contain no useful information.

We will use a relational database system in the examples
below. Relational systems are non-navigational. Because of this,
buffering decisions can be made during query planning.

2. Buffer Management for Database Systems

Buffer management can be critical for good database
performance. It has been studied by many researchers. We will
not attempt a full literature survey here, but only attempt to
show the breadth of the field. There have been studies of the
double paging problem and operating system interference
[Tuel76. Lang77. Ston81, Wein82, Trai82]. Query optimization
normally estimates CPU. communication. and page replacement
cost [Ston76. Seli79. Good79, Yao79. Brat84]. A few papers that
deal directly with buffer management are [Reit’lB, Kapl80,
Sacc82. Nybe84. Chou85J. Many researchers have studied
sequentiality [Powe77. Smit78].

The prime difference of this paper from preceding work is

the buffering component of the optimization metric. As stated in
the abstract, this paper justifies the number of Disk I/U.s instead
of the conventional metric the number ofpage replucemenls as
the new metric to be used for disk accesses.

A very recent paper [Mack86] uses the number of l/O’s as
the l/O metric. We also assume that many commercial database
systems use the number of l/O’s as their metric, but the literature
still uses the page replacements.

Won Kim introduced the nested-block method of
computing nested loop joins [KimSO]. A nested loop join was
previously performed by joining a single tuple from the inner
relation with all the tuples of the outer relation. The nested-
block method loads pages from the inner relation and joins them
with the outer relation. Part of his cost function, however. is the
count page replacements-not the number of disk 110’s. His
paper proposes a heuristic, where we have an approximation of
an exact solution for a two way join. Our solution can be exact
because our metric yields a cost function which is mathematically
simpler to minimize and because we only deal with a two way
join.

3. Nested Loop Join

Consider the example of a nested loop join [Seli79]. Nested
loop joins are simple to program and appear in many relational
database systems. Conventional wisdom is that nested loop joins
only work well when all of the smaller relation. plus one or more
pages of the larger relation fits in memory.

We will consider the case where no pre-selection of either
relation is possible (e.g.. a Cartesian product or natural join with
no selection conditions) and there is no collocation of tuples
from different relations (i.e., tuples on a page are all from the
same relation). It is thus necessary to process all the tuples in one
relation against all the tuples in the other relation. Let us derive
the number of l/o’s necessary to read all the data to perform the
join. We will omit any I/O’s necessary to write the join results
since the amount of data will be the same when generated using
any method.

We have two relations. R1 and R2, where we can assume,
without loss of generality. that R1 is smaller than R2 (although
we do not use this fact in the derivation but only in the
comparison to previous methods). The sizes of R1 and R2 will be
denoted by]]Rl]] and]]R2]]. Assume that we have assigned N
pages for the join from the buffer pool, and have divided the
pages into Nf pages for RI and N2 pages for R2 (Nl + N2 = N).
Conventional wisdom states that you load one page from the
larger relation, R2. and as much of the smaller relation, RI. into
the buffer pool as will fit. and then do the join. Some algorithms
actually do only one tuple at a time from the R2 page. but it is
much better to do all the tuples on the page at once [Kim80].
The inner loop is reading pages from R2 a page at a time into the
buffer. and the outer loop is bringing in sections of RI.

Below we will need to know the “number of buffer-fulls” it
takes to read a whole relation. We will call these BufferFull and
BufferFull and these are just the RoundUp(]]Rl(]/Nl) and
RoundUp(]]R#N2) respectively (Roundup is a function from
reals to integers that returns the smallest integer greater than or
equal to its argument).

-290-

Using a typical algorithm to do the join, the number of
pages read and number of I/O’s necessary to do the join are:

pages read:]]Rr]] +]]Rz]] * BufferFullt

number of l/O’s: (BufferFull + 1) * BufferFullt

The system repeatedly loads up Nt pages of Rt into the
buffer pool. and joins all of R2 with it. The join is done by
reading R2 from start to finish. There are BufferFullt iterations,
and each iteration takes one I/O to read pages from Rt and
BufferFull I/O’s to read R2.

To see how this works, consider a case where we have 100
pages in a pool for a join.]]Rt]] is 99 pages, and]]Rz]] is 10.000
pages. Conventional wisdom says to read all 99 pages of Rt into
the buffer and process R2 a page at a time against RI. This takes
10.001 l/O’s, but only transfers each page once. If we split the
buffer space. then it now takes 2 I/O’s to read RI, but 200 I/O’s
to read R2 forward, and 199 l/O’s to read R2 backward. The
total is 401 l/O’s. We read more pages (about double). but we
do only about 4% as many I/03.

An extension of this technique is to do double buffering of

This is not the best that can be done. Instead of reading the
relation from start to finish each iteration. the system can process
the inner relation first forward, then backward (“rocking the
relation through the buffer”) [Kim80]. This decreases by one the
number of I/O’s per iteration, except for the first iteration. More
important to our purpose here, it simplifies the “number of l/O”
equation.

pages read:

the outer relation so as to overlap the join execution with the
fetch of the next run of pages. This will do more disk I/O. but
may decrease response time since the join may run in less time
due to the overlap.

4. Hashing Join

There are many variants of the hashing join. The one
considered here is the hashing ioin that oartitions both relations

]]Rt]].+ N2 + (]]R2]] - N2) * BufferFullt described in [Brat84]. The id&“is to first hash one relation, then

number of I/O’s:
1 + 1 + (BufferFull - 1 + 1) * BufferFull

N2 fewer pages per iteration are read. There is only one I/O
saved per iteration, but there is an addition of one extra I/O to
get the algorithm started.

The number of l/O’s reduces nicely to 2 + BufferFull *
BufferFull2. If we assume that the relations are quite a bit bigger
than the buffers, then we can approximate the discrete case,
computed here, by the continuous case. To do this we just omit
the “Roundup” in the computation of the “number of buffer-
fulls”. and we get

number of l/O’s:
2 + RoundUp(]]Rt]]/Nt)*RoundUp(]]R2]]/N2)

= 2 + (llRdVN1) * (llM~W
= 2 + ((IlRdl * llR2llW1 * N2N

Differentiating by N, and setting the result to zero to find
the maximum:

0 = ((IlRdl * llR211VW-N1)2 * Nd - ((11~~11 * IlRzllV
(N-NI) * N12)

Now. if Nt f 0.]]Rt]] *]]R2]] f 0. and N f N1

(i.e.. neither relation is empty and we give at least one
page for buffering to each relation)

0 = (l/(N-Nt)) - (l/Nt)

+ N1 - (N - Nl) = 0

=2*Nl-N=O

* N1 = N/2

=$ Nl = N2

Thus, the best buffering policy is to split the buffers evenly
between the two relations! Note that this was computed by
approximating the discrete case with the continuous one. so care
should be used to insure the approximation is reasonable. For
example. if]]Rt]] < N/2. then Rt clearly does not need N/2
buffers.

the other. The corresponding hash buckets from the two
relations can then be joined. The hash should be chosen so that
(ideally) the corresponding hash buckets both fit in memory.

Assuming we are using single buffering, what is the best
division of the buffers for a hash partition? Assume that we have
assigned a total of N pages from the buffer pool. Let F denote
the number of pages fetched for input of relation R. The output
for the hash buckets uses c buffers (one for each value of the
hash) of size W pages each. The value of c is the size of the range
of the hash function. Both N (total buffer pages) and c (number
of hash buckets) are constants for the derivation. As each tuple is
hashed. restriction processing and duplicate elimination is also
done. There will be less fragmentation in the hashed output than
in the original relation since page boundaries do not have to be
observed in the output. The combined compression effect of
restriction, duplicate elimination, and less fragmentation will be
combined into one factor called Compression.

number of buffers(N) = F + c * W

number of l/O’s: RoundUp(]]R]]/F) +
c * RoundUp(Compression * (]]R]]/c)/W)

The first factor in the number of I/O’s is for reading the
input relation. For each output buffer, it must be written about
Compression * (]]R]]/c)/W times if we assume a uniform
distribution (]]R]]/c is about the number of output pages: they
are written W pages at a time with a compression of
Compression). Taking an upper bound for Roundup gives:

]]R]]/F + l+ c * Compression * (]]R]] /c) / W + c

=]]R]]/F + Compression *]]R][/ W + c + 1

The distribution of the tuples now makes no difference since
we took the upper bound. Differentiating by F gives:

-]]R]]/X2 +]]R]] * Compression * (c / ((N - F)‘))

Assuming]]R]] f 0. N f F. and F f 0. and setting the result
to 0 to find the minimum gives:

0 = - 1/X2 -t N * Compression /(N - F)’

= N2 - 2 * F * N + X2 - X2 * c * Compression

-291-

= (1 - c * Compression) X2 - 2 * F * N + N* computed the buffering for the partitioning of a hashing join.

If c * Compression = 1, this reduces to F = N / 2 (use half
the buffer space for input). Otherwise. apply the quadratic
formula to find F:

F = (2 * N f SQRT(4*N* - 4*(1-c*Compression)*N*))/
(1 - c * Compression)

= (N - N * SQRT(c * Compression)) /
(1 - c * Compression)

Normally. 1 - c * Compression 5 1, so only the I’-” term
applies.

For example, an eight way partition with compression of 0.5
has F = N / 3 while a 16 way partition with no compression has
F=N/5.

5. Selecting by an Attribute that is Indexed and

Clustered

Suppose we have a relation that is clustered by an attribute,
and we wish to fetch the tuples via this attribute. where we also
have an index on the attribute. A B-Tree, indexed by the
appropriate attribute. is an example of such a storage structure
for a relation. We may be doing the inner or outer relation scan
for a nested loop join. doing a semi-join step, initializing for a
hashing join. or performing a combined selection and projection.

A typical way to find the tuples is to use the index (e. g.. the
internal nodes of the B-Tree) to successively find tuples for the
join. and let the page buffering take care of itself. The access to
the disk may appear to have some sequentiality or may appear to
be somewhat random.

If the order of the tuples is not important (e.g.. they are
going to be sorted anyway), then a better way to find all the
tuples and minimize I/o’s is to tirst use the index to discover all
the pages that contain tuples we need. Compose these page
numbers into page runs (sets of contiguous pages) of a size
appropriate for the buffer pool. Finally, read in and process each
page run.

At worst. this takes the same number of l/O’s as doing a
triple at a time access. However, it is likely that this algorithm
will do fewer l/O’s, but will read the same number of pages.

Runs that are near to each other can be processed together
by adding the pages in between the runs to form one run.
reading the merged run. and ignoring the extra pages once they
have been read. Head scheduling may also be done to minimize
seek time.

A database system can often predict the l/O’s it will need
ahead of time [Stongl]. An operating system can only react to
stimuli or take hint7 as they are given. Here we compute the
pages necessary to be read before running (part of) the query,
and plan how to read the pages minimizing the number of I/O’s.

6. Conclusions

In this paper we have justified the use of the number ofDisk
I/O’s instead of the conventional rlumber ofpage replacemenfs as
a performance metric for database buffering. From this metric.
we then derived a new buffering policy for nested loop joins.

and made an observation about how to process selections for
attributes that are indexed and clustered.

Trademarks

UNIX is a trademark of Bell Telephone Laboratories.

References

[Astr76] Astrahan. M. et al. System R: Relational Approach to
Database Management. ACM TODS I, 2. June 1976.97-137.

[Brat841 Bratbergsengen. B. Hashing Methods and Relational
Algebra Operations, Proceeding of the IOth lnternalional
Conference of Very Large Data Bases. Singapore. Aug. 1984.
323-333.

[Chou85] Chou. H., and Dewitt, D. An Evaluation of Buffer
Management Strate ies

a
for Relational Database Systems,

Proceeding of the I I’ Inrernalional Conference of Very Large
Da/a Buses, Stockholm, Aug. 1985,127-141.

[Fuji841 Fujitsu America, Inc. “OEM Parallel Data Transfer
Disk Drive,” Dec. 1984.

[Good791 Goodman. N.. Bernstein. P.. Wong, E.. Reeve, C.. and
Rothnie, J. Query Processing in SDD-I: A Sysrem for
Disfribufed Databases. Computer Corporation of America
Technical Report CCA-79-06, Oct. 1979.

[Kapl80] Kaplan, J. Buffer Managemen Policies in a Database
Environment. Master’s Report. UC Berkeley, 1980.

[KimSO] Kim. W. A New Way to Compute the Product and
Join of Relations, Proceeding of ACM-SIGMOD 1980. Santa
Monica, May 1980.179-187.

[Lang771 Lang. T.. Wood, C.. and Fernhndez, I. Database
Buffer Paging in Virtual Storage Systems. ACM TODS 2. 4.
Dec. 1977,339-351.

[Mack86] Mackert, L. F.. and Lohman. G. M. R* Optimizer
Validation and Performance Evaluation for Local Queries,
Proceedings of SIGMOD ‘86. Washington. May 1986.84-95.

[McKu84] McKusick, M., Joy, W., Leffler. S.. and Fabry, R.
A Fast File System for UNIX. ACM TOCS 2. 3, Aug. 1984,
181-197.

[Nybe84] Nyberg. C. Disk Scheduling and Cache Replucemenf
for a Database Machine. Master’s Report, UC Berkeley. 1984.

[Powe77] Powell. M. The DEMOS File System. Proceedings of
the Sixth Symposium on Operating Sysrems Principles. West
Lafayette. Nov. 1977,33-42.

[Reit76] Reiter. A. A Study of Buffer Managemenl Policies for
Dara Management Sysfems. Technical Summary Report
1619. Mathematics Research Center, University of
Wisconsin-Madison, March 1976.

[Ritc74] Ritchie, D.. and Thompson, K. The UNIX Time-
sharing System. CACM 17. 7. July 1974,265-375.

[Sacc82] Sacco. G., and Schkolnick. M. A Mechanism for
Managing the Buffer Pool in a Relational Database System
using the Hot Set Model. Proceedings of /he srh lnfernalional
Conference of Very Large Dala Bases, Mexico City. Sept.
1982.257-262.

(Seli79] Selinger. P., Astranhan. M.. Chamberlin, D.. Lorie. R.,
and Price. 7‘. Access Path Selection in a Relarional Dalabase
Managetnenl System. IBM San Jose RJ2429. 1979.

-292-

[Smit78] Smith. A. Sequentiality and Prefetching in Database
Systems. ACM TODS 3, 3. Sept. 1978. 223-247.

[Ston76] Stonebraker, M, Wong, E.. and Kreps, P. The Design
and Implementation of INGRES. ACM TODS I. 3. Sept.
1976. 189-222.

[Ston81] Stonebraker. M. Operating System Support of
Database Management CACM 24, 7. July 1981,412-418.

[Swin85] Swinehart. D.. Zellweger, P.. and Hagmann. R. The
Structure of Cedar, Proceeding of the ACM SIGPLAN 85
S~vr77posium on Language Issues in Programming
Environments, Seattle. June 1985. 230-244 (SIGPLAN
Notices 20. 7).

[Trai82] Traiger. I. Virtual Memory Management for Data
Base Systems OS’R 16. 4, Oct. 1982.

[Tuel76] Tuel. W.. Jr. An Analysis of Buffer Paging in Virtual
Storage Systems. IBM Journal of Research and Development
20. 5. Sept. 1976. 518-520.

[Wein82] Weinberger. P. Making UNIX Operating Systems
Safe for Databases. Bell Sysfem Technical Journal61. 9. Nov.
1982.2407-2422.

[Yao7Y] Yao. S. B. Optimization of Query Evaluation
Algorithms. ACM TODS4. 2. June 197.9. 133-155.

-293-

