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Abstract: Database buffering normally assumes that a 
proper measure of performance is the number of pages 
transferred. This paper justifies that the number of I/O’s is 
the proper unit of measure. From this we derive a buffering 
policy that improves over known buffering policies for 
nested loop joins, we derive some buffering policies for 
hashing joins, and we make an observation about selections 
and query optimization. 

1. Introduction 

Buffer management is a component ofdatabase systems that 
has received much attention over the years. Normally, the 
performance metric used was the number of page replacements 
(e.g.. [Seli79. Chou85]). With changing hardware costs and 
performance. there should be a shift in the metric used to judge 
the performance of the algorithms. In this paper, we will 
propose a change in the metric, and show three instances where 
the metric change is important. 

Performance metrics for buffer management are used in at 
least three ways in a database system and its measurement. First, 
the query optimizer has to estimate the cost of a query using a 
metric. Second, query execution implicitly or explicitly uses a 
metric when it makes buffering decisions. Finally, performance 
measurement of database systems uses a metric to compare 
different systems or to tune a system. 

In this paper. we will develop some initial results using as 
our metric the number of Disk I/O’s instead of the conventional 
metric of the number of page replacements. This metric is 
justified because of three changes: in software systems. hardware 
cost. and hardware performance. Throughout this paper. we will 
use the term “disk” to refer to any secondary storage device, but 
our example and primary model will be moving head. rotating, 
magnetic disks. We also assume that the database system has 
control over the granularity of the transfer to secondary memory. 
The control may be probabilistic or approximate (e.g., bad page 
substitution may slow down some transfers). 
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First of all. adjacent pages in files are now often clustered 
together on the disk. For the UNIX Operating System, the high 
performance file system for 4.2 BSD [McKu84] has replaced the 
original file system [Ritc74]. Where the original file system 
would often allocate adjacent file pages to widely separated disk 
addresses. the new file system allocates pages in contiguous runs 
(with high probability). Many systems have always had this 
property (e.g., System R [Astr76]), but many of the studies of 
database systems were done using an INGRES Database System 
[Ston76] which used the original UNIX file system. 

Second. main memory costs have decreased so that large 
buffers of thousands of pages are possible. It is common to buy 
high performance workstations with 2. 4. or more megabytes of 
main memory. It is therefore possible to allocate more than a 
few pages to operations such as joins. 

Third, while disk access times have decreased over the years. 
the real performance gain has been in the transfer rate. The 
Fujitsu M2350A transfers, in parallel, on up to five disk heads at 
once and has a sustained formatted transfer rate of 8 megabytes 
per second [Fuji84]. The Fujitsu M2351 “Eagle” has one fifth of 
this transfer rate, and is a common high performance drive. The 
characteristics of this drive are a 5.5 millisecond track to track 
seek, an 18 millisecond average seek, a 35 millisecond maximum 
seek, a 7.6 millisecond average latency, and about a 1.57 
megabyte per second sustained formatted transfer rate. To see 
whether access or transfer times dominate for the “Eagle.” we 
will compare the times for some transfer sizes (a similar 
discussion occurs in [Wein82]). Access time (average seek plus 
average latency) accounts for 95% of the total time when two 
1024 byte pages are read. Access and transfer time are equal 
when 39 pages are read. Transfer time accounts for 95% of the 
l/O time when 748 pages are read. For the M2350A, the number 
of pages for 5%. 50%. and 95% transfer time are 10, 200. and 
3800. From this we infer that the time cost of doing a typical I/O 
for a database system will be dominated by, or at least can be 
approximated by, the access cost. 

By using the “rotational synchronization” feature of the 
Fujitsu M2350A, up to 8 drives can be synchronized to transfer 
in parallel. Hence, this disk subsystem has a sustained formatted 
transfer rate of 64 megabytes per second. If the transfer size 
remains the same, the use of this feature emphasizes the 
dominance of the access time even more. 

One further observation is that the CPU cost of an I/O is 
usually nearly the same irrespective of how many pages are read 
or written. The system call time. context switch times. and 
interrupt processing are mostly constant for any disk I/O. 
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Therefore. doing fewer I/O’s for the same number of pages will 
save CPU time. As many systems are CPU bound, saving 
processor time may be the dominant effect from a change in the 
buffering. 

However. extending transfer size per I/O can have a 
negative performance impact if the additional data is not used. 
The I/O’s require additional main memory for buffers. may 
force out desirable data, and contend for the machine’s 
backplane. memory modules. and memory bus. Virtual memory 
systems face a similar problem while satisfying a page fault. and 
many systems read in an interval of pages including the faulted 
page in the expectation that the extra pages will be useful (the 
author added this to the Cedar Programming Environment 
[SwinfG]). In addition, there has been, over the years, an 
increase in the page size for file systems and database systems 
because of the decrease in cost of main memory and the increase 
in transfer rate. 

For some types of channels. the channel controller is used to 
initiate the I/O to a disk and then the controller is freed. The 
controller is reacquired when the transfer is about to occur. If 
the controller is a bottleneck. then making larger transfers may 
degrade system performance. 

Some systems have many disk drives per disk controller and 
allow parallel seeks to occur on multiple drives. The seek time is 
thus overlapped with other seeks and transfers. This lessens the 
impact of the seek time on the bun&vi&h of the disk sub-system, 
but in no way decreases the query response time (latency). Even 
the bandwidth is affected since rotational latency (average of 7.6 
milliseconds above) often consumes a large part of the time the 
controller is dedicated to an l/O. With disks storing more data 
per spindle (sometimes with slower access times, as is common 
with today’s optical disks). the benefits of parallel seeks 
decreases. since contention for each drive increases. 

It is only reasonable to do extensive buffering where tuples 
are clustered and stored in (nearly) contiguous tile pages based 
on the clustering criterion. Most implementations of ISAM, 
B-Tree, and heap satisfy this requirement. Hashed access also 
partially satisfies this requirement if few pages contain no tuples 
and we are doing a full relation scan. We must avoid buffering 
pages that contain no useful information. 

We will use a relational database system in the examples 
below. Relational systems are non-navigational. Because of this, 
buffering decisions can be made during query planning. 

2. Buffer Management for Database Systems 

Buffer management can be critical for good database 
performance. It has been studied by many researchers. We will 
not attempt a full literature survey here, but only attempt to 
show the breadth of the field. There have been studies of the 
double paging problem and operating system interference 
[Tuel76. Lang77. Ston81, Wein82, Trai82]. Query optimization 
normally estimates CPU. communication. and page replacement 
cost [Ston76. Seli79. Good79, Yao79. Brat84]. A few papers that 
deal directly with buffer management are [Reit’lB, Kapl80, 
Sacc82. Nybe84. Chou85J. Many researchers have studied 
sequentiality [Powe77. Smit78]. 

The prime difference of this paper from preceding work is 

the buffering component of the optimization metric. As stated in 
the abstract, this paper justifies the number of Disk I/U.s instead 
of the conventional metric the number ofpage replucemenls as 
the new metric to be used for disk accesses. 

A very recent paper [Mack86] uses the number of l/O’s as 
the l/O metric. We also assume that many commercial database 
systems use the number of l/O’s as their metric, but the literature 
still uses the page replacements. 

Won Kim introduced the nested-block method of 
computing nested loop joins [KimSO]. A nested loop join was 
previously performed by joining a single tuple from the inner 
relation with all the tuples of the outer relation. The nested- 
block method loads pages from the inner relation and joins them 
with the outer relation. Part of his cost function, however. is the 
count page replacements-not the number of disk 110’s. His 
paper proposes a heuristic, where we have an approximation of 
an exact solution for a two way join. Our solution can be exact 
because our metric yields a cost function which is mathematically 
simpler to minimize and because we only deal with a two way 
join. 

3. Nested Loop Join 

Consider the example of a nested loop join [Seli79]. Nested 
loop joins are simple to program and appear in many relational 
database systems. Conventional wisdom is that nested loop joins 
only work well when all of the smaller relation. plus one or more 
pages of the larger relation fits in memory. 

We will consider the case where no pre-selection of either 
relation is possible (e.g.. a Cartesian product or natural join with 
no selection conditions) and there is no collocation of tuples 
from different relations (i.e., tuples on a page are all from the 
same relation). It is thus necessary to process all the tuples in one 
relation against all the tuples in the other relation. Let us derive 
the number of l/o’s necessary to read all the data to perform the 
join. We will omit any I/O’s necessary to write the join results 
since the amount of data will be the same when generated using 
any method. 

We have two relations. R1 and R2, where we can assume, 
without loss of generality. that R1 is smaller than R2 (although 
we do not use this fact in the derivation but only in the 
comparison to previous methods). The sizes of R1 and R2 will be 
denoted by ]]Rl]] and ]]R2]]. Assume that we have assigned N 
pages for the join from the buffer pool, and have divided the 
pages into Nf pages for RI and N2 pages for R2 (Nl + N2 = N). 
Conventional wisdom states that you load one page from the 
larger relation, R2. and as much of the smaller relation, RI. into 
the buffer pool as will fit. and then do the join. Some algorithms 
actually do only one tuple at a time from the R2 page. but it is 
much better to do all the tuples on the page at once [Kim80]. 
The inner loop is reading pages from R2 a page at a time into the 
buffer. and the outer loop is bringing in sections of RI. 

Below we will need to know the “number of buffer-fulls” it 
takes to read a whole relation. We will call these BufferFull and 
BufferFull and these are just the RoundUp(]]Rl(]/Nl) and 
RoundUp(]]R#N2) respectively (Roundup is a function from 
reals to integers that returns the smallest integer greater than or 
equal to its argument). 
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Using a typical algorithm to do the join, the number of 
pages read and number of I/O’s necessary to do the join are: 

pages read: ]]Rr]] + ]]Rz]] * BufferFullt 

number of l/O’s: (BufferFull + 1) * BufferFullt 

The system repeatedly loads up Nt pages of Rt into the 
buffer pool. and joins all of R2 with it. The join is done by 
reading R2 from start to finish. There are BufferFullt iterations, 
and each iteration takes one I/O to read pages from Rt and 
BufferFull I/O’s to read R2. 

To see how this works, consider a case where we have 100 
pages in a pool for a join. ]]Rt]] is 99 pages, and ]]Rz]] is 10.000 
pages. Conventional wisdom says to read all 99 pages of Rt into 
the buffer and process R2 a page at a time against RI. This takes 
10.001 l/O’s, but only transfers each page once. If we split the 
buffer space. then it now takes 2 I/O’s to read RI, but 200 I/O’s 
to read R2 forward, and 199 l/O’s to read R2 backward. The 
total is 401 l/O’s. We read more pages (about double). but we 
do only about 4% as many I/03. 

An extension of this technique is to do double buffering of 

This is not the best that can be done. Instead of reading the 
relation from start to finish each iteration. the system can process 
the inner relation first forward, then backward (“rocking the 
relation through the buffer”) [Kim80]. This decreases by one the 
number of I/O’s per iteration, except for the first iteration. More 
important to our purpose here, it simplifies the “number of l/O” 
equation. 

pages read: 

the outer relation so as to overlap the join execution with the 
fetch of the next run of pages. This will do more disk I/O. but 
may decrease response time since the join may run in less time 
due to the overlap. 

4. Hashing Join 

There are many variants of the hashing join. The one 
considered here is the hashing ioin that oartitions both relations 

]]Rt]].+ N2 + (]]R2]] - N2) * BufferFullt described in [Brat84]. The id&“is to first hash one relation, then 

number of I/O’s: 
1 + 1 + (BufferFull - 1 + 1) * BufferFull 

N2 fewer pages per iteration are read. There is only one I/O 
saved per iteration, but there is an addition of one extra I/O to 
get the algorithm started. 

The number of l/O’s reduces nicely to 2 + BufferFull * 
BufferFull2. If we assume that the relations are quite a bit bigger 
than the buffers, then we can approximate the discrete case, 
computed here, by the continuous case. To do this we just omit 
the “Roundup” in the computation of the “number of buffer- 
fulls”. and we get 

number of l/O’s: 
2 + RoundUp(]]Rt]]/Nt)*RoundUp(]]R2]]/N2) 

= 2 + (llRdVN1) * (llM~W 
= 2 + ((IlRdl * llR2llW1 * N2N 

Differentiating by N, and setting the result to zero to find 
the maximum: 

0 = ((IlRdl * llR211VW-N1)2 * Nd - ((11~~11 * IlRzllV 
(N-NI) * N12) 

Now. if Nt f 0. ]]Rt]] * ]]R2]] f 0. and N f N1 

(i.e.. neither relation is empty and we give at least one 
page for buffering to each relation) 

0 = (l/(N-Nt)) - (l/Nt) 

+ N1 - (N - Nl) = 0 

=2*Nl-N=O 

* N1 = N/2 

=$ Nl = N2 

Thus, the best buffering policy is to split the buffers evenly 
between the two relations! Note that this was computed by 
approximating the discrete case with the continuous one. so care 
should be used to insure the approximation is reasonable. For 
example. if ]]Rt]] < N/2. then Rt clearly does not need N/2 
buffers. 

the other. The corresponding hash buckets from the two 
relations can then be joined. The hash should be chosen so that 
(ideally) the corresponding hash buckets both fit in memory. 

Assuming we are using single buffering, what is the best 
division of the buffers for a hash partition? Assume that we have 
assigned a total of N pages from the buffer pool. Let F denote 
the number of pages fetched for input of relation R. The output 
for the hash buckets uses c buffers (one for each value of the 
hash) of size W pages each. The value of c is the size of the range 
of the hash function. Both N (total buffer pages) and c (number 
of hash buckets) are constants for the derivation. As each tuple is 
hashed. restriction processing and duplicate elimination is also 
done. There will be less fragmentation in the hashed output than 
in the original relation since page boundaries do not have to be 
observed in the output. The combined compression effect of 
restriction, duplicate elimination, and less fragmentation will be 
combined into one factor called Compression. 

number of buffers(N) = F + c * W 

number of l/O’s: RoundUp(]]R]]/F) + 
c * RoundUp(Compression * (]]R]]/c)/W) 

The first factor in the number of I/O’s is for reading the 
input relation. For each output buffer, it must be written about 
Compression * (]]R]]/c)/W times if we assume a uniform 
distribution (]]R]]/c is about the number of output pages: they 
are written W pages at a time with a compression of 
Compression). Taking an upper bound for Roundup gives: 

]]R]]/F + l+ c * Compression * (]]R]] /c) / W + c 

= ]]R]]/F + Compression * ]]R][ / W + c + 1 

The distribution of the tuples now makes no difference since 
we took the upper bound. Differentiating by F gives: 

- ]]R]]/X2 + ]]R]] * Compression * ( c / ((N - F)‘)) 

Assuming ]]R]] f 0. N f F. and F f 0. and setting the result 
to 0 to find the minimum gives: 

0 = - 1/X2 -t N * Compression /(N - F)’ 

= N2 - 2 * F * N + X2 - X2 * c * Compression 

-291- 



= (1 - c * Compression) X2 - 2 * F * N + N* computed the buffering for the partitioning of a hashing join. 

If c * Compression = 1, this reduces to F = N / 2 (use half 
the buffer space for input). Otherwise. apply the quadratic 
formula to find F: 

F = (2 * N f SQRT(4*N* - 4*(1-c*Compression)*N*))/ 
(1 - c * Compression) 

= (N - N * SQRT(c * Compression)) / 
(1 - c * Compression) 

Normally. 1 - c * Compression 5 1, so only the I’-” term 
applies. 

For example, an eight way partition with compression of 0.5 
has F = N / 3 while a 16 way partition with no compression has 
F=N/5. 

5. Selecting by an Attribute that is Indexed and 

Clustered 

Suppose we have a relation that is clustered by an attribute, 
and we wish to fetch the tuples via this attribute. where we also 
have an index on the attribute. A B-Tree, indexed by the 
appropriate attribute. is an example of such a storage structure 
for a relation. We may be doing the inner or outer relation scan 
for a nested loop join. doing a semi-join step, initializing for a 
hashing join. or performing a combined selection and projection. 

A typical way to find the tuples is to use the index (e. g.. the 
internal nodes of the B-Tree) to successively find tuples for the 
join. and let the page buffering take care of itself. The access to 
the disk may appear to have some sequentiality or may appear to 
be somewhat random. 

If the order of the tuples is not important (e.g.. they are 
going to be sorted anyway), then a better way to find all the 
tuples and minimize I/o’s is to tirst use the index to discover all 
the pages that contain tuples we need. Compose these page 
numbers into page runs (sets of contiguous pages) of a size 
appropriate for the buffer pool. Finally, read in and process each 
page run. 

At worst. this takes the same number of l/O’s as doing a 
triple at a time access. However, it is likely that this algorithm 
will do fewer l/O’s, but will read the same number of pages. 

Runs that are near to each other can be processed together 
by adding the pages in between the runs to form one run. 
reading the merged run. and ignoring the extra pages once they 
have been read. Head scheduling may also be done to minimize 
seek time. 

A database system can often predict the l/O’s it will need 
ahead of time [Stongl]. An operating system can only react to 
stimuli or take hint7 as they are given. Here we compute the 
pages necessary to be read before running (part of) the query, 
and plan how to read the pages minimizing the number of I/O’s. 

6. Conclusions 

In this paper we have justified the use of the number ofDisk 
I/O’s instead of the conventional rlumber ofpage replacemenfs as 
a performance metric for database buffering. From this metric. 
we then derived a new buffering policy for nested loop joins. 

and made an observation about how to process selections for 
attributes that are indexed and clustered. 

Trademarks 

UNIX is a trademark of Bell Telephone Laboratories. 
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