
Toward a General Spatial Data Model
for an Object-Oriented DBMS

Frank Manola, Jack A. Orenstein
Computer Corporation of America
Cambridge, Massachusetts U.S.A.

Abstract

This paper describes the development of a general
spatial data model for PROBE, a knowledge-oriented
DBMS being developed at CCA [DAYA85, DAYASG].
The data model, called PDM, is an extension to the
Daplex functional data model [SHIPII, FOX84]. The
paper first describes the approach taken to defining
spatial semantics in the model, and how these seman-
tics were incorporated into the non-spatial aspects of
the model. Second, some implementation aspects are
discussed.

1. Introduction

It is widely recognized that existing database
management systems do not address the needs of many
“non-traditional” applications such as geographic
information systems and computer-aided design. The
underlying data models, query languages, and access
methods were designed to deal with simple data types
such as integers and strings, while the new applica-
tions are characterized by spatial data, temporal data,
and other forms of data having both complex structure
and semantics. While spatial data can usually be
stored in conventional DBMS data types,, it is
extremely difficult to specify even the simplest

This work was supported by the Defence Advanced
Research Projects Agency and by the Space and Na-
val Warfare Systems Command under Contract No.
N00039-85-C-0263. The views and conclusions con-
tained in this paper are those of the authors and do
not necessarily represent the official policies of the
Defense Advanced Research Projects Agency, the
Space and Naval Warfare Systems Command, or the
U.S. Government.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage! the VLDB copyright notice and the
title of the publication and rts date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

spatial operations in such a DBMS. Moreover, the
implementation will have poor performance because
the query will be complicated and difficult to optim-
ize, because the access paths were not designed for
spatial data, and because the clustering of data nor-
mally provided by a DBMS (e.g. on a numeric attri-
bute) is a poor choice for spatial data. In order to deal
with spatial data, more support is needed at all levels
of the DBMS.

One approach that has been taken to address this
problem is to define specific extensions for various
nontraditional data types, and add them to conven-
tional DBMSs, in many cases borrowing from the
extensive literature on abstract data types (from
which we also borrow, e.g., [MALL82]). For example,
various special-purpose extensions to DBMSs have
been proposed for dealing with text [STON82,
SCHE82], images ([IEEE77, CHANII] contain many
relevant papers), and geographic data [IEEE77,
MORE85].

The problem with this approach does not lie in
starting with conventional DBMS facilities. In any
real application for databases of spatial data there are
databases of non-spatial data that must be dealt with,
and for th.is data conventional DBMS facilities are
often ideal. Instead, the difficulty is that in each case
the specific extensions added are application-specific,
and limited in generality. For example, the spatial
capabilities required for geographic data would be at
best of limited use in a mechanical CAD application.
Moreover, even for a single type of data, e.g. geo-
graphic data, there are many different ways to
represent and manipulate the data, and each way may
be the best in some specific application. It does not
seem possible to select one approach to build in and
maintain generality. At the same time, it is clearly
impossible to provide all useful approaches in the
same DBMS.

One of the goals of the PROBE DBMS being
developed at CCA [DAYA85, DAYA is to
efficiently process a variety of spatial and temporal
data types. The approach being taken in PROBE is to
design an “extensible” object-oriented DBMS. This
allows the inclusion of specific object classes that sup-
port the required spatial data types, while maintaining
generality by allowing additional types to be defined
as applications grow or change.

An extensible DBMS stores and manipulates
members of object classes. The set of operations in
the data model includes conventional database opera-
tions like select, and operations supplied with the
object class definitions. Certain common object

Kyoto, August, 1986

-328-

classes (e.g. numeric and string object classes) are
needed by all users. More specialized object classes
can be added as needed. The definition of an object
class includes implementations of operations, the
representation of object class instances, a description
of the algebraic properties of the operations and infor-
mation about the cost of the operations. These last
two items will be used by an extensible query optim-
izer.

This paper describes the basic concepts supporting
spatial data handling in PROBE, and the facilities of a
specific object class being implemented in PROBE for
handling spatial data. This object class is intended pri-
marily to support spatial query processing. To allow
wide applicability, the object class is not tailored to a
particular dimension or representation. This object
class will implement “approximate geometry”.
Approximate geometry (AG) is based on the idea that
approximate answers to spatial queries can be calcu-
lated much more quickly than exact answers. As
developed here, AG can be used in conjunction with a
wide variety of established representations that would
be hidden in other object classes. The algorithms and
data structures we will describe are well-supported by
the facilities of conventional DBMS implementations.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes the characteristics of the
PROBE data model. Section 3 describes the concepts
underlying PROBE’s spatial data model. Section 4
presents a short example illustrating the use of these
concepts. Approximate geometry is discussed in sec-
tion 5. Section 6 contains concluding remarks.

2. Data Model Overview

Like others who have investigated the problems of
DBMSs for spatial data, we begin with an existing data
model. The model we have chosen is the Daplex func-
tional data model [SHIPIl, FOX84]. The extension is
referred to here as PDM (for PROBE Data Model).
Due to lack of space, and our intent to concentrate on
spatial data handling, we can only present here a brief
description of the basics of PDM. A more detailed
description of PDM is found in [MAN086].

As in Daplex, there are two basic types of objects
in PDM, entities and functions. An entity is a data-
base object that denotes some individual thing. It may
be though of as being denoted by a surrogate value
(system-generated unique identifier). The basic pro-
perty of an entity in the model is its distinct identity.
Attributes and relationships of entities are
represented by functions (see below). Entities are
grouped into classes called entity types. The same
entity may be associated with one or more entity
types in the database, as defined by metadata
specifications.

In Daplex, a function is a mapping from entities
either to other entities, to scalar values, or sets of
entities or scalar values. PDM generalizes this con-
cept by defining a function as a mapping from collec-
tions of entities and scalar values (the parameters of
the function) to other collections of entities or scalar
values. Thus, a function is defined over one or more

input arguments (of specified types), and returns one
or more output arguments, also of specified types.
This is indicated by the notation:

function-name(inputt ,...,input,): (output1output.)

Each entity type has defined for it (via metadata
specifications) a collection of functions that may be
applied to entities of that type. There are two classes
of these functions. The first class consists of generic
data model operations that apply to all entities in the
database, such as “selection”. These functions have
been defined in the form of a “PDM algebra” that
plays the same role in PDM as the relational algebra
does in the relational model. The second class consists
of functions defined by users using the data descrip-
tion facilities of PDM. These functions are used to
represent entity attributes and relationships. PDM
makes no distinction between functions that have
explicit stored representations (similar to relations)
and functions whose output is computed procedurally
on demand. Thus, arbitrarily-complex functions may
be specified in a database, and referenced in queries.
Entity types may be defined as subtypes of other
entity types. In such cases, entities of a subtype may
inherit functions from their supertypes. The use of
entities and functions in spatial modeling is discussed
in the next section.

3. Spatial Data Model

3.1 Point Sets and Spaces

Given a data model supporting conventional data
types, such as PDM, it is necessary to do several things
to define spatial enhancements. The first of these is
to find a way to represent spatial characteristics of
the entities defined in the data model, and to associ-
ate these characteristics with the non-spatial charac-
teristics. The second is to define the precise seman-
tics of the various spatial characteristics. Finally,
implementations of the defined semantics must be
provided.

A spatial representation of an entity in a given
space can be modeled by a function that maps from
the entity to one or more points in that space. Intui-
tively, this function says, for the entity, what points in
the space it “occupies”. Similarly, non-spatial attri-
butes of entities that vary over the spatial representa-
tion of the entity, such as the color of a mechanical
part, can be modeled by a function that maps from the
attribute value to one or more points in the spatial
representation of the entity. Note that, in the
absence of constraints to the contrary, several entities
may occupy the same space.

A problem that must be considered is how to gen-
erate the point set values of such functions. Many
applications involve a continuous (non-discrete) space,
in which most useful point sets contain an uncountable
number of points. In order to be practical, however, it

-329-

must be possible to construct a value of interest in a and other shapes (including text). In 3D solid model-
finite number of operations. To do this, we first con- ing, the entity subtypes could include the various solid
sider these functions as mapping from real entities to shapes, such as blocks, spheres, cones, etc., found in
special entities that denote point sets, rather than solid modelers. In the case of boundary representa-
mapping to actual (enumerated) sets of points tions, subtypes of PTSET would be formed from other
(although this will still be permitted in practice). subtypes of PTSET with the special semantics of boun-
These special entities are defined as entities of type daries, using special operations for forming structured
PTSET. objects from entities of these types [MANT82].

With the development so far, the basic elements of
our approach to incorporating spatial data in the
model can be identified with reference to Figure 3.1.
(The arrows denote entity-valued functions; double-
headed arrows denote entity-set-valued functions).

Only the most general point set semantics are
defined for the PTSET type. The detailed behavior
and characteristics of spatial entities required for par-
ticular applications are defined in the various special-
ized subtypes of PTSET. For example, [REQUIO]
identifies “r-sets” (bounded, closed, and regular sets)
as having the required characteristics for representing
3-dimensional solids (r-sets, for example, are finite
and have well-formed boundaries). In PROBE, we
anticipate adding these specialized entity subtypes
using PROBE’s extensibility features. The new types
would either inherit the definitions of operations from
the PTSET type, or would provide specialized versions
of such operations. For example, a subtype 3DSOLID
of type PTSET might be provided for representing 3-D
solid objects using “r-sets” as its representation. How-
ever, [REQUIO] notes that ordinary point set opera-
tions (such as union) are not closed for these objects
(they can create “dangling edges” of zero thickness).
Thus, it would be necessary to use “regularized set
operations” (described in [REQUIO]) that preserve the
properties of “r-sets” for subtype JDSOLID instead of
the generic point set operations provided for its super-
type PTSET (described below). Specialized types
could also have additional specialized functions that
apply to them (such as a “boundary” function), as well
as specialized predicates.

iz
representation
rekionships

Figure 3.1 Elements of Spatial Data Model Ektensions

Entities of type PTSET that have the semantics of
points or point sets (such as lines, areas, or volumes)
are included in the model, and serve as the values of
spatial attributes, such as “shape” or “boundary”, of
ordinary database entities, such as “parts”. Using
PTSET entities allows both spatial and non-spatial
attributes (such as “PART#“) to be associated with the
same database entities in a straightforward way, as
shown in Figure 3.1. Attributes, such as COLOR or
DENSITY, that vary over the shape of the part may be
handled in two ways in PDM. First, the attribute, e.g.
COLOR, can be defined as one or more multiargument
functions, such as COLOR(PART,EXTENT). Alterna-
tively, a separate entity can be defined, as shown in
the figure.

It must be possible to specify entities of type
PTSET that denote required point sets in a finite
number of operations. The usual solution (and the one
adopted here) is to provide specific entity subtypes of
the general entity type PTSET that denote shapes
needed in a particular range of applications, together
with operations for combining entities of type PTSET
(and its subtypes) to produce new entities of type
PTSET. A given entity could then be specified by
specifying one of the specialized entity subtypes,
together with values for its various parameters, e.g.,
“CONE (RADIUS=>12, HEIGHT=>40)“. The set of
points denoted by this entity would be implicit in the
underlying definition of “cone” (e.g., an equation, pos-
sibly defined in terms of a default coordinate system
and origin) together with the specified parameters.
More complex shapes could be built by combining such
specialized shapes. In graphics, the entity subtypes
would typically include boxes, points, line segments,

In addition to dealing with PTSET entities as indi-
vidual objects, there are many situations in which it is
necessary to deal with PTSETs contained within other
PTSETs. For example, a map feature might have a
PTSET describing its shape. The PTSET for the con-
taining map would have to contain all the PTSETS of
features contained within the map (Figure 3.2).

MAP

TITLE
SCALE AREA

FEATURES

FEATURE

TYPE
FEATURED

SHAPE

CONTAINS

T

Figure 3.2 A Map and its Component Features

Similarly, PTSET entities that represent individual
parts within an assembly may be grouped as com-
ponents of the PTSET entity that represents the entire
assembly.

-330-

When we deal with a PTSET in its role as a “con-
tainer” of other PTSETs, we refer to the “container”
PTSET as a “space”. Since a PTSET contained in one
space can itself contain other PTSETs, PTSETs natur-
ally exhibit a hierarchical structure. We represent the
hierarchical structure in the model by a set-valued
CONTAINS function from the space to the spatial
entities contained within the space. Multiple decom-
positions of the same set of points (such as a geo-
graphic area) can be defined using multiple PTSET
entities denoting the same set of points.

A database entity may be related to multiple
PTSET entities (e.g. in different spaces) in a straight-
forward way, using the normal capabilities of the data
model to support l-n relationships. This allows an
entity to be associated with any number of different
versions of its “shape”. For example, a bridge might
be represented as a point in one map, as a line in a
map showing greater detail, as a space frame in its
design data, etc. This provides a method for associat-
ing all representations of the bridge (assuming they
are known). Also, each of the Z-D point sets
representing the bridge in a particular map, for exam-
ple, would be associated with the point set represent-
ing the area covered by the entire map, enabling the
bridge to be associated (and located) with respect to
the other features in the same map.

Finally, figure 3.1 shows that the model also
allows aspects of the implementation of PTSET enti-
ties to be visible in the database, if this is appropriate,
via “representation entities” (and relationships).

3.2 Operations

Since entities of type PTSET are first class PDM
entities, they can be used as arguments of generic
PDM functions in the same way as conventional PDM
entities. In addition, specialized operations associated
specifically with entities of type PTSET are defined.
The operations provided for operating on generic
PTSET entities fall into two categories, point set
operations and structural operations.

The point set operations include set operations on
PTSET entities, spatial selection, overlay, and
geometric transformations. The point set operations
intersection, union, and difference, provide the pri-
mary means for combining PTSET entities into new
PTSET entities. These operations are defined for enti-
ties Pl and P2 of type PTSET as follows:

- Point set union -- The point set union
ptunion(Pl,PP) is an entity Pr of type PTSET that
denotes the set of points belonging to either Pl or
P2 (or both).

- Point set intersection -- The point set intersec-
tion ptintersect(Pl,P2) is an entity Pr of type
PTSET that denotes the set of points belonging to
both Pl and P2.

- Point set difference -- The point set difference
ptdiff(Pl,PZ) is an entity Pr of type PTSET that
denotes the set of points belonging to Pl and not
to P2 (note that difference is not symmetric).

Also defined as point set operations are special
variants of generic PDM functions that are tailored to
operate with PTSET entities. Specifically, predicates
are added to functions such as selection that test vari-
ous spatial conditions, such as whether a point set is
empty, contains another point set, or intersects
another point set. A whole range of other spatial rela-
tionships (e.g. “left-of”, “above”, “adjacent-to”) can be
added in the same way.

Given a space containing objects that may overlap
with one another, it is often useful to identify maxi-
mal subspaces that do not contain any object boun-
daries. For example, a crucial operation in geographic
information systems is “polygon overlay”. This opera-
tion superimposes two maps of the same area (e.g.
land usage and political districts) and creates all the
regions due to the intersection of regions from the
input maps. PROBE’s spatial data model includes an
overlay operator to facilitate this kind of processing.

In discussing overlay it is useful to have the con-
cept of a uniform region. Let obj(p,S) be the set of
objects in a space, S, where p is a point of S. Then a
uniform region is a maximal subspace u, in a space S,
such that for every point p in u, obj(p,S) is the same.
I.e. u is a uniform region if v pl, p2 e u: obj(pl,S) =
obj(p2,S) and no subspace containing u has this pro-
perty. To support operations such as polygon overlay,
it is useful to be able to turn uniform regions into
first-class objects. This is the finest partitioning that
can be obtained given a set of objects (using only
object boundaries to define partitions.) Any desired
partitioning can be created from the uniform regions.
From the point of view of the data model, a space
containing objects is indistinguishable from a space
containing the uniform regions derived from a set of
objects. They are both represented by a space con-
taining spatial objects.

Based on this discussion of uniform regions, we can
now define overlay: Overlay(S) returns a space con-
taining a spatial object for each uniform region of
space S. The overlay operation can be used to com-
pute polygon overlay as follows. Each input map is
represented by a space containing a PTSET for each
polygon of that map. The PTSETs from the two maps
are placed in a single space by the obunion operation
(discussed below). The overlay operator is applied to
the output from obunion.

It is useful to be able to compute attributes of uni-
form regions from attributes of the objects (e.g. area).
An approach to this problem is discussed in [OREN851.

A geometric transformation is an operation that
moves the points of a PTSET entity without changing
its identity (in effect, the transformation changes the
definition of the set of points denoted by the entity);
thus, any geometric transformation can be character-
ized by a function between points. Application of a
geometric transformation to a PTSET entity S can be
denoted:

tran.sfonn(T.S)

where T is a specification of the transformation to be
performed. Syntactically, transformation
specifications can be defined “on the fly” in a query or
PDM algebra expression, or declared in the database

-331-

and stored for later access. Transformations can be
supported directly through the use of multiargument
functions. Transformations between entire spaces
may be defined in the same way as those between indi-
vidual spatial entities, since both individual spatial
entities and whole spaces are denoted by entities of
type PTSET.

The point set operations defined above form an
algebra on point sets. As a result, given these opera-
tions, PTSET entities denoting complex “shapes” can
be constructed by specifying “algebraic expressions”
of point set operations applied on (possibly
transformed) PTSET entities.

The structural operations are concerned with the
hierarchical structure of spaces described earlier. In
general, these are convenient “macros”, as they can be
defined in terms of the non-spatial operators of the
PDM algebra. The object set operations are defined
for spaces Sl and S2 denoting the same point set, but
having possibly different contained PTSETs (i.e. Sl
and S2 register different information about a single
point set). The definitions are as follows:

- Object union -- The object union obunion(Sl,SP) is
a space S3 denoting the same point set as Sl and
52 that contains the set of PTSET objects con-
tained in Sl, S2, or both. (The objects in S3 may
not be spatially distinct although their identities
are retained.)

- Object intersection -- The object intersection
obintersect(Sl,S2) is a space S3 denoting the
same point set as Sl and S2 that contains the set
of PTSET objects contained in both Sl and S2.

- Object difference -- The object difference
obdiff(Sl,SO) is a space S3 denoting the same
point set as Sl and S2 that contains the set of
PTSET objects contained in Sl and not in S2
(again, difference is not symmetric).

The operation sinsert(Pl,PS) takes an entity Pl of
type PTSET and inserts an entity P2 of type PTSET
into it (P2 must be capable of being fully contained
within Pl). The semantics of sinsert can be described
in terms of operations on the CONTAINS function
described above. In its most primitive form,
sinsert(Pl,PS) simply adds P2 to entity Pi’s CONTAINS
function. More complete information may be cap-
tured by allowing P2 to be the result of some spatial
transformation operation on another PTSET entity, as
in sinsert(Pl,transform(P2,spec)), where “spec”
denotes the specification of of the transformation to
be performed on P2 prior to inserting it in Pl. This
captures not only the fact that P2 is contained in Pl,
but where within Pl entity P;! is actually located.
Such specifications may be more or less precise,
depending on the subclass of PTSET entities involved.

The expand and reduce operators provide addi-
tional control over the CONTAINS relationship in
spaces. If S is a space, X is in S’s CONTAINS function,
and Y is in X’s CONTAINS function, expand(S) pro-
duces a space S’ denoting the same point set, having

moved Y into S’s CONTAINS function without altering
X’s CONTAINS function. That is, for each immediate
child X of S, expand(S) effectively copies each child
of X so that it is also an immediate child of S. Note
that placing an object in a new space (Y in the space
of S in the above example), requires computation of
the position of the object within the space. If the posi-
tion is specified as a transformation, then a composi-
tion of transformations is necessary (e.g. multiplica-
tion of 4 x 4 matrices). Reduce is, in some sense, the
inverse of expand. Reduce(S) produces a space S’ hav-
ing no immediate children that are also contained in
some other (immediate or indirect) child object of S.

Finally, since the substructure of a particular spa-
tial representation is structured hierarchically, it is
possible to use recursive processing techniques to
search this hierarchical structure, by traversing the
CONTAINS relationship. Such recursive processing
techniques are also being developed in the PROBE
DBMS [DAYA85, ROSE861.

4. Example

This example illustrates the type of definitions
possible within the model, once the appropriate sub-
types are defined. It shows the definition of the shape
of a simple missile in 3 dimensions, using a “construc-
tive solid geometry” approach, in which primitive 3D
shapes are combined using point set operations to give
a complex result. The entire shape might then be
assigned as the value of the SHAPE function of a
PART entity defining the missile.

create new C in CONE (NAME=>NOSE.R=>l2.H=>40)
create new CY in CyLImm (NAME=>B~DY.R=>Iz.H=>u~o)
create new W in RECTANGLE (NAME=>WING,2=>2o,X=>2.Y=>180)
create new H in RECTANGLE (NAME=>HORIZ.Z=>2O.X=>2,Y=>80)
create new V in RECTANGLE (NAME=>VERT.Z=>~O,X=>~O.Y=>~)
create new G in SPHERE (NAME=>GYROSCOPE.R=>8)

create new CS1 in GTFtANS (OP=>translate(0.0.4).WRT=>C)
create new CS2 in GTTUNS (OP=>translate(O.O.G),WRT=>CSl)
create new CS3 in GTRANS (OP=>translate(O.O.S).WRT=>CS2)
create new CS4 in GlRANS (OP=>translate(0.0,10).WRT=>C)

C := C sinsert transform(G.CS4)

create new S in 3DSOLID (NAME=>MISSILESHAPE,
DEFINITION=> C ptunion transform(CY.CSl) ptunion

transfonn(W.CS2) ptunion transform(H,CS3)
ptunion transform(V.CS3))

Object. structure: missile
I ptunion

+-------+-------i--------+--------+
trans--sinsert->nose trans trans trans trans

I (cone) I I I I
gyroscope MY a3 hstab vstab

(sph) kyl) (rect) (rect) (red)

Figure 4.1 Cruise Missile Definition

The definition is shown in Figure 4.1.

-332-

Each primitive shape is predefined as an entity
type (a subtype of the specialized spatial data type
“3DSOLID”, which is itself a subtype of the general
spatial data type PTSET). Thus, when new entities of
these types are created with specific values of their
parameters (e.g. a specific radius and height), 3D
objects are actually being created. For example, CY
is a cylinder defining the missile body.

In subtype 3DSOLID, each primitive object is
defined with its own default coordinate system. In
order to combine objects, they must be transformed
into the same coordinate system (as opposed to requir-
ing all objects to be defined absolutely with respect to
the same coordinate system). The necessary transfor-
mations are defined as objects of type GTRANS. For
example, CSl translates the body with respect to the
nose cone. The shape of the missile is then defined by
performing combinations of transformations and set
operations on the primitive shapes. Syntactically, the
definition of this shape is assigned to the DEFINITION
function of the generic BDSOLID entity representing
the shape, since, unlike a CONE, the definition is not
implicit in the type of entity involved.

The insertion of an independent spatial object (a
gyroscope) into the set of points defined by the
missile’s shape (specifically, into the missile’s nose
cone) is also illustrated. In this case, the nose cone is
considered as a “space”, into which other objects
might be inserted. The operator used for this purpose
is the I’sinsert” operator. The resulting missile shape is
shown in Figure 4.2 inside a “shipping box”.

To illustrate show such spatial data might be used
in queries, suppose we’ve defined a shipping box shape
and want to see if certain versions of the missile will
fit in it. This is a simple example of “interference
checking”, performed quite often in CAD systems.

T

Y
M

l-J&-

l

I

I

I

Figure 4.2 Missile (partially) in Shipping Box

The shape of the box would be defined, using a
declaration such as “create new B in RECTANGLE
(NAME=>BOX, Z=>250, X=>160, Y=>75) (this box is a
solid representing the inside space of the shipping
box).

A query would then be specified to access the
shapes of both the box and specific missile versions
and test them to see whether the missile shape can be
entirely contained within the box shape. If not, an
indication that the particular version does not fit in
the box would be printed. The query (in the PDM
Daplex query language) would be:

for each M in PART where NAME(M) = 9'missile"
for each V in VERSIONS(M) where

RELF.kSE-DATE(V) > "09-26-82"
for each T in PART where NAME(T) = "shipbox"

if SHAPE(V) is not contained in SHAPE(T) then
print(R.EP(RELEASE-DATE(V)) .“does not fit”) ;

end; end; end;

While this example is necessarily rather simple, it
illustrates the basic ideas involved. Quite complex
shapes can be constructed, and spatial relationships
tested, using the basic set operators.

5. Supporting the spatial data model

This section is concerned with the implementation
of the spatial data model. As discussed above, the
structural operations can be defined and implemented
in terms of PDM algebra. In this section we concen-
trate on the point set operations since they cannot be
handled using “conventional” DBMS facilities. It is
possible to represent point sets using known techniques
(e.g. boundary representation), implement algorithms
for each geometric operator, and encapsulate all this
in an object class. There are two problems with this
approach. First, it is difficult to do. The algorithms
would have to be concerned with sets of spatial
objects (and with attendant problems relating to
secondary storage and buffering). This complicates
the implementation of the spatial object class.
Secondly, it is likely to be very slow. With common
representations such as constructive solid geometry
and boundary representation, it is difficult to avoid
doing work that is “obviously” unnecessary (i.e. obvi-
ous if you look at a picture.) For example, to find all
polygons in a set, S, that overlap a given polygon P (in
2d), a boundary representation algorithm would have
to compare edges of polygons in S against edges in P.
Any optimizations would have to be explicitly coded.
(For example, ignore a polygon p of S if a box contain-
ing p and a box containing P do not overlap.)

Ideally, the DBMS would take care of collections
of objects while the spatial object class would take
care of individual objects and interactions among
them. This would reduce the amount of work required
to extend the DBMS with a new object class. Taking
this approach means that optimization involving col-
lections of objects must take place in the DBMS.

This is the motivation behind including “approxi-
mate geometry” (AG) in the DBMS. AG can “take care
of collections of objects”, implement optimizations on
collections of objects, and make use of an “object-at-
a-time” interface to spatial object classes. Generally,
algorithms can be optimized using AG if they rely on
1) iteration over the objects in one or two spaces, 2) a
spatial predicate to detect “interesting” objects or
pairs of objects, and 3) a procedure to handle these
objects or pairs. Parts (1) and (2) can be done very
efficiently using widely applicable AG techniques. The
spatial object class would have to supply parts (2) and
(3). (Part (2) is done approximately in AG and pre-
cisely in the spatial object class.)

-333-

Our approach to AG is based on a “grid” or “raster”
representation of spatial objects. Many complex spa-
tial operations can be implemented with very simple
algorithms given a grid representation. The algorithms
usually involve iteration over all cells or pixels of the
grid, performing the same basic step for each pixel. In
practice, it is not feasible to store grids explicitly. At
high resolution, the space requirements are too high
and iteration over all pixels is too slow. The tech-
niques to be presented can be thought of as methods
that optimize the handling of grid or raster represen-
tations. Support for the geometric operations using
approximate geometry will be discussed in section 5.2.

5.1 Supporting the structural operations

The structural operations create new spaces and
manipulate the CONTAINS function of spaces. These
operations can be implemented using the operations of
PDM algebra. The implementation of the object set
operations is fairly straightforward. For expand and
reduce, it is necessary to compute the “square” of the
containment relationship (as reflected in the CON-
TAINS function). That is, for all spaces, find objects
that are contained in contained objects. To compute
expand, these indirect containment relationships are
added to the current set; for reduce they are removed.

5.2 Supporting the geometric operations

In this section we will discuss the basic ideas of
approximate geometry and show how these ideas are
used in supporting the geometric operations of the
spatial data model. The details of the algorithms are
beyond the scope of this paper; see [OREN85,
OREN86] for more complete discussions.

The essential idea behind approximate geometry is
the decomposition of PTSET entities into box-shaped
elements; each entity is approximated by the ptunion
of its elements. The approximation covers at least the
space occupied by the PTSET entity. Thus, approxi-
mate geometry provides a filter. For example, if the
approximations of objects A and B do not overlap,
then A and B definitely do not overlap. If the approxi-
mations do overlap, then A and B do not definitely
overlap.

The decomposition of PTSET entities is carried out
in a highly constrained way. The decomposition stra-
tegy used leads to 1) a very concise representation of
the elements, 2) very simple spatial relationships
between elements, and 3) a useful ordering of the ele-
ments, “z order”. For any two elements, either one
contains the other, or one precedes the other in z
order.

The absence of overlap (other than containment)
and the presence of a total ordering allows the use of
very simple algorithms based on the merging or
traversal of z-ordered sequences of elements. All the
geometric operations discussed in section 3 can be
supported in AG by such algorithms. Spatial selection

can be supported by the “spatial join”. Given two sets
of objects, S and T, the spatial join detects all pairs of
objects (s, t), such that s is in CONTAINS(S), t is in
CONTAINS(T), and the approximations of s and t over-
lap.

A very attractive feature of the spatial join is that
it can be incorporated into existing DBMSs with very
little effort. The access methods and buffering stra-
tegies in current use (e.g. B-trees and LRU page
replacement) provide exactly the right foundation for
the implementation of AG. Furthermore, it appears
that performance comparable to the best obtainable
with “custom” algorithms can be obtained.

Note that the refinement of the approximate
results by an “exact geometry” object class is simple.
The interface to the DBMS (implementing AG) is
“instance-at-a-time”, not “set-at-a-time”. Therefore,
adding such an object class to the PROBE DBMS
should be simpler than what would be required in
[STON83].

Overlay is a more difficult spatial operation to
support in a DBMS because, unlike spatial selection, it
does not resemble any common database operation
(e.g. from PDM algebra or relational algebra). How-
ever, a short, “one-pass” AG algorithm for computing
overlay of an AG representation is known [OREN85].
Following the computation of overlay on the AG
representation, the exact version can be computed
quickly - the AG version identifies which objects par-
ticipate in which non-empty uniform regions.

Ptunion, ptintersect, and ptdiff are easy to com-
pute by merging sequences of elements. The details
are in [OREN85]. With the spatial selection and over-
lay operations, the computation of the AG version of
the operation reduced the amount of work that had to
be carried out with the exact representation. That
does not appear to be the ease here. For example,
computing the AG version of ptunion does not appear
to be useful in computing the exact version. However,
it is imporant to provide AG versions of PTSET opera-
tions because later processing may benefit. For exam-
ple, if solids are described using constructive solid
geometry, then AG representations of the objects can
be built also (using the point set operations). Having
constructed the AG representations, interference
detection (for example) can be optimized using AG.
This would not have been possible had the AG versions
of the point set operations not been computed.

6. Current Work

Current PROBE activities include further develop-
ment of the ideas described above. For example, we
are working on augmenting the “containment” rela-
tionships described above with other relationships,
such as adjacency, that are important in dealing with
spatial data. We are also working to incorporate tem-
poral data as a special case within the spatial data
framework. Current results indicate that this is valid
from both the modelling and implementation
viewpoints. Finally, we are developing a “breadboard”

-334-

imlementation that will demonstrate some of the
PROBE facilities, including approximate geometry,
using a VLSI CAD application.

Acknowledgements

We gratefully acknowledge the contributions of Alex
Buchmann, Umesh Dayal, David Goldhirsch, Sandra
Heiler, and Arnie Rosenthal to the ideas described
here, and the contributions of one of the referees to
the presentation.

7. References

[CHANIl]
S.-K. Chang, ed., “Pictorial Information Sys-
tems”, special issue, Computer, 14, 11
(November 1981).

[DAYA85]
Dayal, U., et.al., “PROBE - A Research Pro-
ject in Knowledge-Oriented Database Sys-
tems: Preliminary Analysis”, Technical
Report CCA-85-03, Computer Corporation of
America, July 1985.

[DAYASG]
Dayal, U., and J.M. Smith, “PROBE: A
Knowledge-Oriented Database Management
System”, to appear in M.L. Brodie and J.
Mylopoulos (eds.), On Knowledge Base
Management Systems: Integrating Artificial
Inteltigence and Database Technologies,
Springer-Verlag, 1986.

(~0x841

[IEEE771

S. Fox, T. Landers, D. R. Ries, R. L. Rosen-
berg, “Daplex User’s Manual”, CCA-84-01,
Computer Corporation of America,
November 1984.

Proc. 1EEE Workshop on Picture Data
Description and Management, 1977.

[MALL821
W.R. Mallgren, “Formal Specification of
Graphic Data Types”, ACM Trans. Prog.
Languages and Systems, 4,4, October 1982.

[MAN0861
Frank Manola and Umeshwar Dayal, “PDM:
An Object-Oriented Data Model”, submitted
for publication, April 1986.

[MANT82]
M. Mantyla and R. Sulonen, “GWB: A Solid
Modeler with Euler Operators”, IEEE Com-
puter Graphics and Applications, September
1982.

[MORE851
Scott Morehouse, “ARC/INFO: A Geo-
Relational Model for Spatial Information”,
Proc. Seventh Intl. Symp. on Computer-
Assisted Cartography, American Congress on
Surveying and Mapping, 1985.

[OREN85]
Jack A. Orenstein, “Spatial Query Processing
in PROBE”, CCA Working Paper, December
1985.

[OREN86]
Jack A. Orenstein, “Spatial Query Processing
in an Object-Oriented Database System”,
Proc. 1986 ACM-SIGMOD lnt’l Conf. on
Management of Data.

[REQUIO]
Aristides A.G. Requicha, “Representations
for Rigid Solids: Theory, Methods, and Sys-
tems”, Computing Surveys 12, 2 (December
1980).

[ROSE861
A. Rosenthal, S. Heiler, U. Dayal, F. Manola,
“A DBMS Approach to Recursion”, Proc.
1986 ACM-SlGMOD Intl Conf. on Manage-
ment of Data.

[SCHE82]
H.-J. Schek, P. Pistor, “Data Structures for
an Integrated Data Base Management and
Information Retrieval System”, Proc. VLDB
8, (1982), 197-207.

[SHIPBI]
Shipman, David, “The Functional Data Model
and the Data Language DAPLEX”, ACM
Trans. Database Systems, 6,l (March 1981).

@TON821
M. Stonebraker, et. al., “Document Process-
ing in a Relational Data Base System”, ACM
TOOK 1, 2 (1983), 143-158.

[STON83]
Michael Stonebraker, Brad Rubenstein, and
Antonin Guttman, “Application of Abstract
Data Types and Abstract Indices to CAD
Databases”, Proc. Database Week: Engineer-
ing Design Applications, IEEE Computer
Society, 1983.

