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Abstract 

Consider a database containing not only base rela- 
tions but also stored derived relations (also called 
materialized or concrete views). When a base rela- 
tion is updated, it may also be necessary to update 
some of the derived relations. This paper gives suf- 
ficient and necessary conditions for detecting when 
an update of a base relation cannot affect a derived 
relation (an irrelevant update), and for detecting 
when a derived relation can be correctly updated 
using no data other than the derived relation itself 
and the given update operation (an autonomously 
computable update). The class of derived relations 
considered is restricted to those defined by PSJ - 
expressions, that is, any relational algebra expression 
constructed from an arbitrary number of project, 
select and join operations. The class of update 
operations consists of insertions, deletions, and 
modifications, where the set of tuples to be deleted 
or modified is specified by a PSJ -expression. 
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1. Introduction 
In a relational database system, the database may 
contain &rived relations in addition to base relations. 
A derived relation is defined by a relational expres- 
sion (query) over the base relations. A derived rela- 
tion may be virtual, which corresponds to the tradi- 
tional concept of a view, or materialized, meaning 
that the relation resulting from evaluating the 
expression over the current database instance is actu- 
ally stored. In the sequel all derived relations are 
assumed to be materialized, unless stated otherwise. 
As base relations are modified by update operations, 
the derived relations may also have to be changed. 
A derived relation can always be brought upto-date 
by re-evaluating the relational expression defining it, 
provided that the necessary base relations are avail- 
able. However, doing so after every update opera- 
tion appears extremely wasteful and would probably 
be unacceptable, both from a performance and a 
cost point of view. 

Consider a database D = {D , S } consisting of 
a set of base relationsD = {Rr,Rz,...&} and a set 
of derived relations S = {E l,E 2,. . . ,E,, }, where each 
Ei ES is a relational algebra expression over some 
subset of D . Suppose that an update operation U is 
posed against the database D specifying an update 
of base relation R, ED . To keep the derived rela- 
tions consistent with the base relations, those derived 
relations whose definition involves R, may have to 
be updated as well. The general update problem for 
derived relations consists of: (1) determining which 
derived relations may be affected by the update U , 
and (2) performing the necessary updates to the 
affected derived relations efficiently. 

As a first step towards the solution of this 
problem, we consider the following two important 
subproblems. Given an update operation U and a 
potentially affected derived relation Ei , 
l determine the conditions under which the update 

U has no effect on the derived relation Ei , 
regardless of the database instance. In this case, 
the update U is said to be irrelevant to Ei 
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0 if the update U is not irrelevant to Ei , then 
determine the conditions under which Ei can be 
correctly updated using only U and the current 
instance of Ei , for every instance of the data- 
base. That is, no additional data from the base 
relations D is required. In this case, U is said 
to be autonomously computable over Ei . 

The update problem for derived relations is 
part of an ongoing project at the University of 
Waterloo on the use of derived relations. The pro- 
ject is investigating a new approach to structuring 
the database in a relational system at the internal 
level [TK 781. In current systems there is a one-to- 
one correspondence between conceptual relations 
and stored relations, that is, each conceptual relation 
exists as a separate stored relation (file). This is a 
simple and straightforward solution, but its drawback 
is that the processing of a query often requires data 
to be collected from several stored relations. Instead 
of directly storing each conceptual relation, we pro- 
pose structuring the stored database as a set of 
derived relations. The choice of relations should be 
guided by the actual or anticipated query load so 
that frequently occurring queries can be processed 
rapidly. To speed up query processing, some data 
may be redundantly stored in several derived rela- 
tiOIlS. 

The structure of the stored database should be 
completely transparent at the user level. This 
requires a system capable of automatically 
transforming any user update against a conceptual 
relation, into equivalent updates against all stored 
relations affected. The same type of transformation 
is necessary to process user queries. That is, any 
query posed against the conceptual relations must be 
transformed into an equivalent query against the 
stored relations. The query transformation problem 
has been addressed in a paper by Larson and Yang 
[LY 851. 

Although our main motivation for studying the 
problem stems from the above project, its solution 
also has applications in other areas of relational 
databases. Buneman and Clemons [BC 791 proposed 
using views (that is, virtual derived relations) for the 
support of alerters. An alerter monitors the data- 
base and reports when a certain state (defined by the 
view associated with the alerter) has been reached. 
Hammer and Sarin [HS 781 proposed a method for 
detecting violations of integrity constraints. Certain 
types of integrity constraints can be seen as defining 
a view. If we can show that an update operation has 
no effect on the view associated with an alerter or 
integrity constraint, then the update cannot possibly 
trigger the alerter or result in a database instance 

violating the integrity constraint. The use of derived 
relations (called concrete views) for the support of 
real-time queries was considered by Gardarin et. al. 
[GSV 841, but it was discarded because of the lack 
of an efficient update mechanism. Our results have 
direct application in this area. 

The detection of irrelevant or autonomously 
computable updates also has applications in distri- 
buted databases. Suppose that a derived relation is 
stored at some site and that an update request, possi- 
ble affecting the derived relation, is submitted at the 
same site. If the update is autonomously comput- 
able, then the derived relation can be correctly 
updated locally without requiring data from remote 
sites. On the other hand, if the request is submitted 
at a remote site, then we need to send only the 
update request itself to the site of the derived rela- 
tion. As well, the results presented here provide a 
starting point for devising a general mechanism for 
database snapshot refresh [AL 80, BLT 86, L 861. 

2. Notation and Basic Assumptions 
We assume that the reader is familiar with the basic 
ideas of relational databases as in Maier [M 831. A 
derived relation is a relation instance resulting from 
the evaluation of a relational algebra expression over 
a database instance. We consider a restricted but 
important class of derived relations, namely those 
defined by a relational algebra expression con- 
structed from any combination of project, select and 
join operations, called a PSJ -expression. We often 
identify a derived relation with its defining expres- 
sion even though, strictly speaking, the derived rela- 
tion is the result of evaluating that expression. 

We state the following without proof: every 
valid PSJ -expression can be transformed into an 
equivalent expression in a standard form consisting 
of a Cartesian product, followed by a selection, fol- 
lowed by a projection. It is easy to see this by con- 
sidering the query tree corresponding to a PSJ - 
expression. The standard form is obtained by first 
pushing all projections to the root of the tree and 
thereafter all selection and join conditions. >From 
this it follows that any PSJ -expression can be written 
in the fOITl E = TAUC (ril X ri2 X * * * X rik), 
where Ril$i2,...)rRi are relation schemes, C is a 
selection condition,’ and A = {A I,A 2, . . . , AI } are 
the attributes of the projection. We can therefore 
represent any PSJ -expression by a triple 
E = (A, R, C ), where A = {A l,A 2, . . . , Al } is 
called the attribute set, R = (Ri ,&i,, . . . , Rik } is 
the relation set or base, and C is a selection condition 
composed from the conditions of all the select and 
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join operations of the relational algebra expression 
defining E . The attributes in A will often be 
referred to as the visible attributes of the derived 
relation. For simplicity, we assume that each rela- 
tion of R occurs only once in the relational algebra 
form of the PSJ -expression, that is, we do not allow 
self-joins. We also use the notation: 

4c > The set of all attributes appearing in condi- 
tion C 

a@ > The set of all attributes of relation R 
V (E ,d ) The relation resulting from evaluating the 

relational expression E over the instance 
d ofD 

tuple alone. The update expressions are computed 
simultaneously, that is, all “new” values are com- 
puted from “old” values. The type of expressions 
we have in mind are simple, for example, 
H := H + 5, Z := 5. Further details are given in 
section 4.3. We make the assumption that all the 
attributes involved in the update expressions are 
from relation R, . That is, both the attributes modi- 
fied and the attributes from which the new values 
are computed, are Tom relation R, . If the attri- 
butes from which the new values are computed, are 
from a relation R, , R, # R,, , then it is unclear 
which tuple in R,, should be used to compute the 
new values. 

The update operations considered are inser- 
tions, deletions, and modifications. Each update 
operation affects only one (conceptual) relation. 
The following notation will be used for update opera- 
tions: 
INSERT (R, , T) 

Insert into relation R, the set of tuples T 

DEIETE (4 , &, , CD ) 
Delete from relation R, all tuples satisfying con- 
dition C, , where Cn is a selection condition 
over the relations Rn , Rn c D 

MODJJWR,,R,,C,,F,) 
Modify all tuples in R, that satisfy the condition 
C, , where C, is a selection condition over the 
relations & , Q C D . FM is a set of expres- 
sions, each expression specifying how an attri- 
bute of R, is to be modified 

All attribute names in the base relations are 
taken to be unique. We also assume that all attri- 
butes have discrete and finite domains. Any such 
domain can be mapped onto an interval of integers, 
and therefore we will in the sequel treat all attributes 
as being defined over some interval of integers. For 
Boolean expressions, the logical connectives will be 
denoted by “v” for OR, juxtaposition or “A” for 
AND, “4’ for NOT, “a” for implication, and “M” 
for equivalence. To indicate that all variables of a 
condition C , are universally quantified, we write 
VC ; similarly for existential quantification. If we 
need to explicitly identify which variables are quanti- 
fied, we write Vx (C ) where X is a set of variables. 

Every DELETE or MODIFY operation must 
specify the set of tuples from R, to be updated. 
Selecting the set of tuples to be deleted from or 
modified in R, can be seen as a query to the data- 
base. In the same way as derived relations, these 
“selection queries” are restricted to those defined by 
PSJ -expressions. For the update operation 
DELETE(R* , Rn , C, ), the set of tuples to be 
deleted from R, is selected by the PSJ -expression 
E. = ((.y(Ru ), Rn , Cn ). Similarly, for the opera- 
tion MODIFY (R, , & , C, , FM ), the set of tuples 
to be modified in R, is selected by the PSJ - 
expression EM = (cr(R, ), & , CM ). 

An evaluation of a condition is obtained by 
replacing all the variable names (attribute names) by 
values from the appropriate domains. The result is 
either true or false. A partial evaluation (or substitu- 
tion) of a condition is obtained by replacing some of 
its variables by values from the appropriate domains. 
Let C be a condition and t a tuple over some set of 
attributes. The partial evaluation of C with respect 
to t is denoted by C [t 1. The result is a new condi- 
tion with fewer variables. 

3. Basic Concepts 

The set FM is assumed to contain an update 
expression for each attribute in R, . We restrict the 
update expressions in FM to unconditional functions 
that can be computed “tuple-wise”. Unconditional 
means that the expression does not include any 
further conditions (all conditions are in CM ). 
Tuple-wise means that, for any tuple in R, selected 
for modification, the value of the expression can be 
computed from the values of the attributes of that 

Detecting whether an update operation is irrelevant 
or autonomously computable involves testing 
whether or not certain Boolean expressions are valid, 
or equivalently, whether or not certain Boolean 
expressions are unsatisfiable. 
Deftition: Let C (x 1,. . . pn ) be a Boolean expres- 
sion over variables x I,...,x~ . C is valid if 
vx 1 ,... ,x,, C(x, ,... ,x,,) is true , and C is umatisji- 
able if p x1 ,... ,x,, C (x1 ,... ,x,, ) is true , where each 
variable xi ranges over its associated domain. 0 
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values of its variables. Proving the validity of a 
Boolean expression is equivalent to disproving the 
satisfiability of its complement. Proving the satisfia- 
bility of Boolean expressions is, in general, 
NP-complete. However, for a restricted class of 
Boolean expressions, polynomial algorithms exist. 
Rosenkrantz and Hunt [RH SO] developed such an 
algorithm for conjunctive Boolean expressions. 
Each expression B must be of the form 
B = B1/U2~ * - - AB,,, , where each Bi is an 
atomic condition. An atomic condition must be of 
the form xopy+c or nope, where 
op E {=, <, 5, >, >}, x and y are variables, and 

c is a (positive or negative) constant. Each variable 
is assumed to ran e over the integers. The algo 
rithm runs in 0 (n 8 ) time where n is the number of 
distinct variables in B . 

In this paper, we are interested in the case 
when each variable ranges over a finite interval of 
integers. For this case, Larson and Yang [LY 851 
developed an algorithm whose running time is 
0 (n 2). However, it does not handle expressions of 
the form x op y +c where c # 0. We have 
developed a modified version of the algorithm by 
Rosenkrantz and Hunt for the case when each vari- 
able ranges over a finite interval of integers. Full 
details are given in [BCL 861. 

An expression not in conjunctive form can be 
handled by first converting it into disjunctive normal 
form and then testing each conjunct separately. 
Several of the theorems in sections 4 and 5 will 
require testing the validity of expressions of the form 
c**cz. The implication can be eliminated by 
converting to the form (7 C i) v C2. Similarly, 
expressions of the form C i a C 2 can be converted 
to Cl c2 v (43(-C,). 

The concepts covered by the three definitions 
below were introduced in Larson and Yang [LY 851. 
As they will be needed in sections 4 and 5 of this 
paper, we include them here for completeness. 
lkftition: Let C be a Rookan expression over the 
variables x~,x~,...,x,, . The variable xi is said to be 
nonessential in C if 

Otherwise, Xi is essential in C . 0 
A nonessential variable can be eliminated 

from the condition simply by replacing it with any 
value from its domain. This will in no way change 
the value of the condition. For example, variable H 
is nonessential in the following two conditions: 

(1) (Z > 5)(J = Z )((ZZ > 5) v (ZZ < 10)) , and 
(2) (Z > 5)(H > 5)(H 5 5). 

Definition: Let Co and C r be Roolean expressions 
over the variables x1,x2,. . . ,x,, . The variable xi is 
said to be computationally nonessential in Cc with 
respect to C i if 

Otherwise, Xi is computationally essential in Co. q 

If a variable Xi (or a subset of the variables 
x1+2,*-* *n ) is computationally nonessential in Co 
with respect to C t, we can correctly evaluate the 
condition C 0 without knowing the exact value of xi . 
That is, given tuple t = (Xi ,*** &-i&+1 )... $n) 
where the full tuple (including xi ) is known to 
satisfy C t, we can correctly determine whether or 
not t satisfies Co. This can be done by determining 
a surrogate value for xi as explained in Larson and 
Yang [LY 851. 
Example: Consider the conditions C r = (ZZ > 5) 
and Cc E (ZZ > O)(Z = 5)(J > 10). It is easy to 
see that if we are given a tuple (i , j ) for which it is 
known that the full tuple (h , i , j ) satisfies C 1, then 
we can correctly evaluate C 0. If (h , i , j ) satisfies 
C r, then the value of h must be greater than 5, and 
consequently it also satisfies (ZZ > 0). Hence, we 
can correctly evaluate Cs for the tuple (i , j ) by 
assigning to H any surrogate value greater than 5. 
cl 
Deftition: Let C be a Boolean expression over the 
variables x l ,X 2,. . . ,x,, ,y 1 ,y 2,. . . ,y,,, . The variable yi 
is said to be uniquely determined by C and x i,. . . ,x,, 
if 

vx 17*..Al ,Y l,.**?Ym ,Y i Y ’ ,--*, m 

c (Xl,...?% >Y 1 ,...,Ym )C h...A ,Y i ,...,Ym’) 

If a variable yi (or a subset of the variables 
YlPY2 ,. . . ,ym ) is uniquely determined by a condition 
C and the variables x i,. . . ,x,, , then given any tuple 
t = h,...9-% h such that the full tuple 
(Xl,...?-% ,Y l,***,Ynr ) is known to satisfy C , the miss- 
ing value of the variable yi can be correctly recon- 
structed. How to reconstruct the values of uniquely 
determined variables was also shown in Larson and 
Yang [LY 851. If the variable yi is not uniquely 
determined, then we cannot guarantee that its value 
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is reconstructible for every tuple. However, it may 
still be reconstructible for some tuples. 
Example: Let C G (I = H )(H > 7)(K = 5). It is 
easy to prove that Z and K are uniquely determined 
by H and the condition C . Suppose that we are 
given a tuple that satisfies C but only the value of 
H is known. Assume that H = 10. Then we can 
immediately determine that the values of I and K 
must be 10 and 5, respectively. q 

Deftition: Let E = (A, R, C ) be a derived relation 
and let A, be the set of all attributes uniquely deter- 
mined by the attributes in A and the condition C . 
Then A+=A u A, is called the extended attribute set 
ofE. q 

Note that A+ is the maximal set of attributes for 
which values can be reconstructed for every tuple of 
E. 

4. Detecting Irrelevant Updates 
This section considers irrelevant updates. We deal 
with insertions, then deletions, and finally the most 
difficult case, modifications. First we define what it 
means for an update to be irrelevant [BLT 861. 
Deftition: Let d denote an instance of the base 
relations D and d’ the resulting instance after apply- 
ing the update operation U to d . Let E be a 
derived relation. The update operation U is 
irrelevant to E if V (E , d’) = V (E , d ) for all 
instances d and d’. q 

If the update operation U does not modify any 
of the relations over which E is defined then, obvi- 
ously, U cannot have any effect on the derived rela- 
tion. In this case U is said to be trivially irrelevant 
to E . 

4.1. Irrelevant Insertions 

An insert operation INSERT&, , T) is irrelevant to 
a derived relation if none of the new tuples will be 
visible in the derived relation. Note that this should 
hold regardless of the state of the database. The fol- 
lowing theorem was proven in [BLT 861 and is 
included here for completeness only. 
Theorem 1: The operation INSERT(R, , T ) is 
irrelevant to the derived relation 
E = (A,R,C),R, ER,ifandonlyifC[t]isunsa- 
tisfiable for every tuple t E T . 0 

4.2. Irrelevant Deletions 
A delete operation is irrelevant to a derived relation 
if none of the tuples in the derived relation will be 
deleted. We have the following theorem. 
Theorem 2: The operation DELETE@,, , &, , C,, ) 
is irrelevant to the derived relation 
E = (A, R, C ), Z?,, E R, if and only if the condition 
C, AC is unsatisfiable. 
proof: Let B = RIJ b = {Ril$i,,...$ik}. B is 
called the combined bare of the derived relation and 
the delete operation. We first show that we can 
extend the base of E to B without affecting the 
resulting derived relation in any way. Without loss 
of generality, we can assume that IQ, - R = {Ri 1} 
SO that R = {Ri,$i,,... pi, }. Let t be a tuple in the 
Cartesian product ri2 X ri 3 X f * * X rik (the base 
before adding R,,). If t satisfies C , then t [A] (the 
projection of t onto A) will be visible in the derived 
relation, otherwise it will not. Extending the base to 
ri1Xri2X .* - X rik may give rise to a number of 
“copies” of t in the extended base. The copies 
differ only in the attributes of Ri 1. Since 

k 

4c ) c ,U-J@ij) 
then a(Ri 1) n CY(C ) = 0. Hence, if t dsfies C , 
then all its copies will satisfy C . Similarly, if t does 
not satisfy C , then none of its copies will satisfy C 
either. The projection onto A will finally reduce all 
copies of t to a single tuple, exactly t [A]. This 
proves that extending the base of E does not change 
the resulting derived relation. In the same way, we 
can show that extending the base of the delete query 
ED = (a(R, ), R. , C, ) to B has no effect. We 
now complete the proof of the theorem. 

(Sufficiency) Let t be a tuple over the com- 
bined base B and assume that t satisfies C . Then 
t [A] is visible in the derived relation. If C, AC is 
unsatisfiable, then t cannot at the same time satisfy 
CD. Hence t [A] will not be deleted from the 
derived relation. 

(Necessity) Assume that Co AC is satisfiable. 
We can then construct an instance of each relation 
in B such that deleting a tuple from r, , (Ry E B), 
will indeed change the derived relation. Let 
a(c) u &(cD) = {xl~2,...~~}. &cause cDr\c is 
satisfiable, there exists a value combination 
x0 = <xp $2 ,...,x,‘> such that C[Xo]CD[Xo] is 
true. We now construct one tuple tij for each rela- 
tion Rij E B. The attribute values of tij are assigned 
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as follows: if the attribute occurs in a(C 
b 

u a(Co ), 
assign it the corresponding value from X , otherwise 
assign it an arbitrary value in its domain, the 
minimum value, for example. We now have a data- 
base instance where each relation, as well as the 
Cartesian product ri 1 X ri2 X * * + X ‘;;, contains 
one tuple. The tuple in the Cartesian product obvi- 
ously satisfies C and hence the derived relation also 
contains one tuple. It also satisfies C, and hence 
the relation r, , will be empty after the deletion 
operation has been performed. Therefore, evaluat- 
ing E over the new instance of the database will 
result in the empty set. This proves that the stated 
condition is necessary. q 

Example: Consider two relations R l(H , Z , J ) and 
R 2(K , L ) and the following derived relation and 
delete operation: 
E = ({H , L 1, {RI, Rd,(J = K )(K > lO)(Z = 5)) 
and DELETE(R 1, {R 1}, (J < 5)(Z < 10)). 

To show that the deletion is irrelevant to the 
derived relation we must prove that the following 
condition holds: 

VZ,J,K 

7 [(J = K )(K > lO)(Z = 5)(J < 5)(Z < lo)] . 

This is equivalent to proving that 

P Z,J,K 

[(J = K )(K > lO)(Z = 5)(J < 5)(Z < lo)] 

which can be simplified to 

fl I, J , K [(J = K )(Z = 5)(K > lO)(K < 5)] . 

The condition (K > lO)(K < 5) can never be satis- 
fied and therefore the delete operation is irrelevant 
to the derived relation. q 

4.3. Irrelevant Modifications 
Modifications are somewhat more complicated than 
insertions or deletions. Consider a tuple that is to be 
modified. It will not affect the derived relation if 
one of the following conditions applies: 
0 it does not qualify for the derived relation, nei- 

ther before nor after the modification 

l it does qualify for the derived relation both 
before and after the modiiication and, further- 
more, all the attributes visible in the derived 
relation remain unchanged 

Some additional notation is needed at this 
point. Consider a modify operation 
MODIFY’ (Ru > RM ,CM 7 FM ) and a derived relation 

E= (A, R, C). Let cr(R,) = {Bl,B2 ,... ,Bt}. For 
simplicity we will associate an update expression 
with every attribute in R, , that is, 
F,+, = {fB i,fB 2,. . . ,f B, } where each update expres- 
sion is of the form f Bi c (Bi := <arithmetic 
expression>). If an attribute Bj is not to be modi- 
fied, we associate with it a trivial update expression 
of the form f Bi G (Bi := Bi ). If the attribute is 
assigned a fixed value c , then the corresponding 
update expression is f si = (Bi := c ). The notation 
p (f 8i ) will be used to denote the right hand side of 
the update expression f Bi, that is, the expression 
after the assignment sign. The notation a(p(f Bi)) 
denotes the set of variables mentioned in p (f Bi). 
For example, if f Bi G (Bi := Bj + c ) then 

P(f Bi) = Bj + c ad h(f Bi)) = {Bi )a 
By substituting every occurrence of an attri- 

bute Bi in C by p (f Bi ) a new condition is obtained. 
We will use the notation C (FM ) to denote the con- 
dition obtained by performing this substitution for 
every variable Bi E a(R,, ) n cr(C ). 

A modification may result in a value outside 
the domain of the modified attribute. We make the 
assumption that such an update will not be per- 
formed, that is, the entire tuple will remain 
unchanged. Each attribute Bi of R, must satisfy a 
condition of the form (Bi 5 UBi )(Bi > LBi) where 
LBi and Uei are the lower and upper bound, respec- 
tively, of its domain. Hence, the updated value of 
Bi must satisfy the condition (p (f Bi ) 5 UBi ) 
& (f Bi ) 2 LBi ) and this must hold for every 
Bi E Q(R,, ). The conjunction of all these conditions 
will be denoted by Ca (FM ), that is, 

CB (FM > = B. EaR ,(I’ (f Bi ) 2 uBi >(P (f Bi ) 2 LBi ) 
I Y 

Theorem 3: The modify operation 
MODIFY (4, , RM , G, , FEA ) is irrelevant to the 
derived relation E = (A, R, C ), R, E R, if and only 
if 

v [ (CM A CB (FM >> 

=$ (C-C> A (-C@‘M)) > 

V ( C AC 0’~ > ,/\E, (Bi = P (f Bi >) > ] 
I 

where Z = A n a(R, ) . 0 
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The proof is omitted due to space limitations; for the 
full proof see [BCL 861. The following example 
illustrates the theorem. 
Example: Suppose the database consists of the two 
relations Ri(ZZ,Z) and R#,K) where H,Z,J 
and K each have the domain [0, 301. Let the 
derived relation and modify operation be defined as: 

E = ((1 , J 1, {R lr R2), (H > lO)(Z = K >> 

MODIFY (RI, {RI), W > 2% 

{(H := H + S), (Z := Z )}) . 

Thus the condition given in Theorem 3 becomes 

VH,Z,K 

[ (H >2O)(H + 5>O)(H + 5230) 

* ( -((H > lO)(Z = K))) 

A ( - ((H + 5 > lo)@ = K >>) 

v (H > lO)(Z = K )(H +5 > lO)(Z = K )(I = Z ) ] 

which can be simplified to 

VH,Z,K 

[ (H >2O)(H 125) 

* ( 7 ((H > lO)(Z = K ))) 

A ( 7 ((H > 5)(1 = K >>> 

v (H > lO)(Z = K ) ] . 

By inspection we see that if Z = K , then the second 
term of the consequent will be satisfied whenever the 
antecedent is satisfied. If Z # K , the first term of 
the consequent is always satisfied. Hence, the impli- 
cation is valid and we conclude that the update is 
irrelevant to the derived relation. q 

5. Autonomously Computable Updates 
If an update operation is not irrelevant to a derived 
relation, then some data from the database is needed 
to correctly update the derived relation. The sim- 
plest case is when all the data needed is contained in 
the derived relation itself. In other words, the new 
state of the derived relation can be computed solely 
from the current state of the derived relation and the 
information contained in the update expression. 
Definition. Consider a derived relation E and an 
update operation U , both defined over base rela- 
tions D . Let d denote an instance of D before 
applying U and d’ the corresponding instance after 
applying U . The effect of the operation U on E is 
said to be autonomously computable if there exists a 

function Fu such that 

V (E , 4 = Fu (V (E , d >> 

for all database instances d and d’. Apart from the 
information in U itself, the only other data required 
by Fu must be contained in the current instance of 
E. •I 

5.1. Inserti~ 
Consider an operation INSERT (Ry , T ) where T is 
a set of tuples to be inserted into R, . Let the 
derived relation be E = (A, R, C ), R, E R. The 
effect of the INSERT operation on the derived rela- 
tion is autonomously computable if 

A. given a tuple t E T we can correctly decide 
whether t will satisfy the selection condition C 
(regardless of the database instance) and hence 
should be inserted into the derived relation 

and 

B. the values for all attributes visible in the derived 
relation can be obtained from t . 

Note that if t could cause the insertion of 
more than one tuple into the derived relation, then 
the update is not autonomously computable. Sup 
pose that t generates two different tuples to be 
inserted: t t and t 2. Then t i and t 2 must differ in at 
least one attribute visible in the derived relation; oth- 
erwise only one tuple would be inserted. Suppose 
that they differ on Ai E A. Ai cannot be an attribute 
of R, because the exact value of every attribute in 
R, is given by t . Hence, the values of Ai in f t and 
t 2 would have to be obtained from tuples elsewhere 
in the database. 

Theorem 4A: Let E = (A, R, C ) be a derived rela- 
tion and t a tuple to be inserted into relation R,, , 
where R,, E R. Whether or not t will create an 
insertion into the derived relation is guaranteed to be 
autonomously computable if and only if one of the 
folIowing holds: 

I. R = {R,, } 
or 
II. R # {Ru } and all the variables of C [t ] are 

nonessential and the current instance of E is 
non-empty. 

Prook (Sufficiency) 
Case I: Since R = {Ry } then a(C ) E.@,, ). 
Hence, C [t ] can be completely evaluated, i.e. will 
yield frue or false . 
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Case II: The fact that all variables in cr(C [t 1) are 
nonessential guarantees that C [t ] will evaluate to 
the same value regardless of the values assigned to 
those variables. Since the current instance of E is 
non-empty, the Cartesian product of all relations in 
R - {R, } will contain at least one tuple. Combining 
t with a tuple from this Cartesian product gives a 
tuple with fixed values for all variables in a(C ) and 
the condition can be evaluated. Whatever the values 
of the attributes in a(C [t 1) are, the condition will 
always evaluate to the same truth value. Hence, 
whatever the current instance of the database the 
decision will always be the same. 

(Necessity) Assume that whether or not t will 
create on insertion into the derived relation is auto- 
nomously computable but that neither of the two 
cases holds. Since the second case contains three 
conditions, three possibilities arise: 

0 (R # {R, }) and (R = {R, }). This is obviously a 
contradiction. 

0 (R z {R, }) and there exists some variable, 
x E a(C [t I), which is essential in C [t 1. 
Without loss of generality we can assume that x 
is the only variable in (Y(C [t I). This means that 
there exists two different values x’ and x” such 
that C [t , x’] is true and C [t , x”] is false. In 
the same way as in the proof of Theorem 2, we 
can construct two different instances d’ and d” 
of D . Instance d’ is constructed from x’ and 
instance d” from x”, such that, except for the 
given values of x , all the corresponding attribute 
values agree. In both instances relation R, is 
empty and every other relation in D consists of 
a single tuple. Hence, 

V (E , d’) = V (E , d”) = 0 

Now insert tuple t into relation R,, . Since 
C [t , x’] is true, V (E , d’) must have a new 
tuple inserted, whereas V (E , d “) will not, as 
C [t , XII] is false. Consequently, whether or not 
insertion of t will affect the derived relation 
depends on the existence of tuples not seen in 
the derived relation. 

l (R # {Ru }) and the current instance of E is 
empty. There are two situations which would 
cause E to be empty; either no tuple in the 
Cartesian product of the base relations satisfies 
C or one of the base relations is empty. If 
R, E R, R, # R, , is empty then even if C [t ] is 
true ,t will not cause an insertion into E . Con- 
sequently, whether or not the insertion of r will 
affect the derived relation depends on the 
existence of tuples in the other relations in the 

base of E , that is, on the existence of tuples out- 
side the derived relation. q 

Theorem 4B: Assume that a tuple in T has been 
shown to cause the insertion of a new tuple into the 
derived relation. The values of all visible attributes 
in the new tuple are guaranteed to be autonomously 
computable if and only if A c Q(R,, ). 
proof: (Sufficiency) Obvious. 

(Necessity) Without loss of generality we can 
assume that A - a(Ru ) contains only one attribute 
X E a(Ri ), Ri # R, e Assume that t E T causes the 
insertion of a new tuple. To insert the new tuple 
into the derived relation we must determine the 
value of x . Even if the value of x is uniquely 
determined by the attribute values of t , this is not 
sufficient. The value of x must correspond to the x 
value in some tuple in Ri , and the existence of such 
a tuple cannot be guaranteed without checking the 
current instance of the relation Ri . 0 

5.2. Deletions 
To handle deletions autonomously, we must be able 
to determine, for every tuple in the derived relation, 
whether or not it satisfies the delete condition. This 
is covered by the following theorem. 

Theorem 5: The effect on the derived relation 
E = (A, R, C ) of the update operation 
DELETE (R, , I&, , C’ ), R,, E R, is guaranteed to 
be autonomously computable if and only if every 
attribute in a(& ) - A is computationally nonessen- 
tial in Co with respect to C . 

proof: (Sufficiency) If the variables in Q(C, ) - A 
are all computationally nonessential, we can 
correctly evaluate the condition by assigning surro 
gate values. 

(Necessity) Without loss of generality we can 
assume that a(Co ) - A consists of a single attribute 
x . Assume that x is computationally essential in 
CD with respect to C . We can then construct two 
tuples cl and t2 over the attributes in 
A u cr(C ) u a(& ) such that they both satisfy C , 
I 1 satisfies Co but c2 does not, and c l and r 2 agree 
on all attributes except attribute x . Each of tt and 
t2 can now be extended into an instance of D . Both 
instances will give the same instance of the derived 
relation, consisting of a single tuple t t[A] (or t 2[A]). 
In one instance, the tuple should be deleted from the 
derived relation, in the other one it should not. The 
decision depends on the value of attribute x which is 
not visible in the derived relation. Hence the deci- 
sion cannot be made without additional data. q 
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Excnnpfe: Consider two relations R l(H , I ) and 
R &Z , K ). Let the derived relation and delete 
operation be defined as: 

E = ({J , K 1, {RI, R2h (1 = J >(H < 20)) 

DELETE ( R 1 , {R 1} , (Z = 2O)(H < 30)) 

The attributes in the set cr(Co) - A 
=W,Z~-{J,K~ = {H , Z } must be computa- 

tionally nonessential in Co with respect to C in 
order for the deletion to be autonomously comput- 
able. That is, the following condition must hold: 

VH,Z,H’,Z’,J,K 

(Z = J )(H < 2O)(Z’ = J )(H’ < 20) 

==t ((Z = 2O)(H < 30)) = ((I’ = 2O)(H < 30))] . 

The conditions (H < 30) and (H’ < 30) will both be 
true whenever (H < 20) and (H’ < 20) are true. 
For any choice of values that make the antecedent 
true, we must have J = Z = I’. Because Z =I’, the 
conditions Z =20 and Z/=20 are either both true or 
both false, and hence the consequent will always be 
satisfied. Therefore, the variables H and Z are 
computationally nonessential in Co with respect to 
C . This guarantees that for any tuple in the derived 
relation we can always correctly evaluate the delete 
condition by assigning surrogate values to the vari- 
ablesH andI. 

To further clarify the concept of computation- 
ally nonessential, consider the following instance of 
the derived relation E . 

E: J K 
10 15 
20 25 

We now have to determine on a tuple by tuple basis 
which tuples in the derived relation should be 
deleted. Consider tuple I r = (10, 15) and the condi- 
tion C G (Z = J )(H < 20). We substitute for the 
variables J and K in C the values 10 and 15, 
respectively, to obtain C [t t] = (Z = lO)(H < 20). 
Any values for H , Z that make C [t r] = true, are 
valid surrogate values, say Z = 10, H = 19. We 
can then evaluate Co using these surrogate values, 
and find that (10 = 20)( 19 < 30) = false. There- 
fore, tuple tt = (10, 15) should not be deleted from 
E. Similarly, for t2 = (20,25) we obtain 
C [t 2] G (Z = 2O)(H < 20). Surrogate values for 
H andZ thatmakeC[t2]=trueareZ=20and 
H = 19. We then evaluate Co using these surro- 
gate values and find that (20 = 20)(19 < 30) = true. 
Therefore, tuple t2 = (20, 25) should be deleted 
fromE. •I 

5.3. ModitIcations 
Deciding whether modifications can be performed 
autonomously is more complicated than for either 
insertions or deletions. In general, a modify opera- 
tion may generate insertions into, deletions from, 
and modifications of existing tuples of the derived 
relation as a result of updating a base relation. 
Proving that an update is autonomously computable 
can be divided into the following four steps: 

Prove that every tuple selected for modification 
which does not satisfy C before modification, 
will not satisfy C after modification. This 
means that no new tuples will be inserted into 
the derived relation. 
Prove that we can autonomously compute which 
tuples in the derived relation should be modi- 
fied. Call this the modify set. 
Prove that we can autonomously compute which 
tuples in the modify set will not satisfy C after 
modification and hence can be deleted from the 
derived relation. 
Prove that, for every tuple in the modify set 
which will not be deleted, we can autonomously 
compute the new values for all attributes in A. 

For each of these four steps we have found 
both sufficient and necessary conditions. Lack of 
space prevents us from including the results here, 
full details are available in [BCL ss]. The condi- 
tions are of a similar nature to those of previous 
theorems, but are somewhat more complicated. As 
before, they can be tested at run-time and without 
accessing the database. Again, the concepts of com- 
putationally nonessential, uniquely determined, and 
satisfiability play a crucial role in these conditions. 

6. conclusions 
Necessary and sufficient conditions for detecting 
when an update operation is irrelevant to a derived 
relation (or view, or integrity constraint) have not 
previously been available for any nontrivial class of 
updates and derived relations. The concept of auto 
nomously computable updates is completely new. 
Limiting the class of derived relations to those 
defined by PSI -expressions does not seem to be a 
severe restriction, at least not as it applies to struc- 
turing the stored database in a relational system. 
The class of update operations considered is fairly 
general. In particular, this seems to be one of a few 
papers on update processing where modify opera- 
tions are considered explicitly and separately from 
insert and delete operations. Previously, modifica- 
tions have commonly been treated as a sequence of 
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deletions followed by insertion of the modified 
tuples. 

Testing the conditions given in the theorems 
above is efficient in the sense that it does not require 
retrieval of any data from the database. According 
to our definitions, if an update is irrelevant or auto- 
nomously computable, then it is so for every instance 
of the base relations. The fact that an update is not 
irrelevant does not mean that it will always affect the 
derived relation. Determining whether or not it will, 
requires checking the current instance. The same 
applies for autonomously computable updates. 

It should be emphasized that the theorems 
hold for any class of Boolean expressions. However, 
actual testing of the conditions requires an algorithm 
for proving the satisfiability of Boolean expressions. 
Currently, efficient algorithms exist only for a res- 
tricted class of expressions, the main restriction 
being on the atomic conditions allowed. An impor- 
tant open problem is to find efficient algorithms for 
more general types of atomic conditions. The core 
of such an algorithm is a procedure for testing 
whether a set of inequalities/equalities can all be 
simultaneously satisfied. The complexity of such a 
procedure depends on the type of expressions (func- 
tions) allowed and the domains of the variables. If 
linear functions with variables ranging over the real 
numbers (integers) are allowed, the problem is 
equivalent to finding a feasible solution to a linear 
programming (integer programming) problem. 

We have not imposed any restrictions on valid 
instances of base relations, for example, functional 
dependencies or inclusion dependencies. Any com- 
bination of attribute values drawn from their respec- 
tive domains represents a valid tuple. Any set of 
valid tuples is a valid instance of a base relation. If 
relation instances are further restricted, then the 
given conditions are still sufficient, but they may not 
be necessary. 

If an update is not autonomously computable 
some additional data may be required. An open 
problem is to determine the minimal amount of 
additional data reauired from the database, and how 
to retrieve it efficiently. 
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