
Updating Derived Relations: Detecting
Irrelevant and Autonomously Computable Updates

Jo& A. Blakeley. Neil Coburn. and Per-he Larson

University of Waterloo, Canada

Abstract

Consider a database containing not only base rela-
tions but also stored derived relations (also called
materialized or concrete views). When a base rela-
tion is updated, it may also be necessary to update
some of the derived relations. This paper gives suf-
ficient and necessary conditions for detecting when
an update of a base relation cannot affect a derived
relation (an irrelevant update), and for detecting
when a derived relation can be correctly updated
using no data other than the derived relation itself
and the given update operation (an autonomously
computable update). The class of derived relations
considered is restricted to those defined by PSJ -
expressions, that is, any relational algebra expression
constructed from an arbitrary number of project,
select and join operations. The class of update
operations consists of insertions, deletions, and
modifications, where the set of tuples to be deleted
or modified is specified by a PSJ -expression.

This research was supported by Cognos, Inc., Ottawa under con-
tract WRI 502-12, by the Natural Sciences and Engineering
Research Council of Canada under grants No. A-2460 and No.
A-9292, and by the National Council of Science and Technology
of Mexico (CONACYT).
Authors’ address: Department of Computer Science, University
of Waterloo, Waterloo, Ontario, N2L 3Gl Canada.
Electronic mail: {jablakeley,ncobum,palarson}@waterloo.csnet.

1. Introduction
In a relational database system, the database may
contain &rived relations in addition to base relations.
A derived relation is defined by a relational expres-
sion (query) over the base relations. A derived rela-
tion may be virtual, which corresponds to the tradi-
tional concept of a view, or materialized, meaning
that the relation resulting from evaluating the
expression over the current database instance is actu-
ally stored. In the sequel all derived relations are
assumed to be materialized, unless stated otherwise.
As base relations are modified by update operations,
the derived relations may also have to be changed.
A derived relation can always be brought upto-date
by re-evaluating the relational expression defining it,
provided that the necessary base relations are avail-
able. However, doing so after every update opera-
tion appears extremely wasteful and would probably
be unacceptable, both from a performance and a
cost point of view.

Consider a database D = {D , S } consisting of
a set of base relationsD = {Rr,Rz,...&} and a set
of derived relations S = {E l,E 2,. . . ,E,, }, where each
Ei ES is a relational algebra expression over some
subset of D . Suppose that an update operation U is
posed against the database D specifying an update
of base relation R, ED . To keep the derived rela-
tions consistent with the base relations, those derived
relations whose definition involves R, may have to
be updated as well. The general update problem for
derived relations consists of: (1) determining which
derived relations may be affected by the update U ,
and (2) performing the necessary updates to the
affected derived relations efficiently.

As a first step towards the solution of this
problem, we consider the following two important
subproblems. Given an update operation U and a
potentially affected derived relation Ei ,
l determine the conditions under which the update

U has no effect on the derived relation Ei ,
regardless of the database instance. In this case,
the update U is said to be irrelevant to Ei

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
aduantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copyi is by permission of
the Very Large Data Base Endowment. To co
Proceedings of the Twelfth International Con erence on Very large Data Bases 9

“a otherwise, or to republish, requires a fee a&or specral permrssron from t e Endowment.
Kyoto, August, 1986

-457-

0 if the update U is not irrelevant to Ei , then
determine the conditions under which Ei can be
correctly updated using only U and the current
instance of Ei , for every instance of the data-
base. That is, no additional data from the base
relations D is required. In this case, U is said
to be autonomously computable over Ei .

The update problem for derived relations is
part of an ongoing project at the University of
Waterloo on the use of derived relations. The pro-
ject is investigating a new approach to structuring
the database in a relational system at the internal
level [TK 781. In current systems there is a one-to-
one correspondence between conceptual relations
and stored relations, that is, each conceptual relation
exists as a separate stored relation (file). This is a
simple and straightforward solution, but its drawback
is that the processing of a query often requires data
to be collected from several stored relations. Instead
of directly storing each conceptual relation, we pro-
pose structuring the stored database as a set of
derived relations. The choice of relations should be
guided by the actual or anticipated query load so
that frequently occurring queries can be processed
rapidly. To speed up query processing, some data
may be redundantly stored in several derived rela-
tiOIlS.

The structure of the stored database should be
completely transparent at the user level. This
requires a system capable of automatically
transforming any user update against a conceptual
relation, into equivalent updates against all stored
relations affected. The same type of transformation
is necessary to process user queries. That is, any
query posed against the conceptual relations must be
transformed into an equivalent query against the
stored relations. The query transformation problem
has been addressed in a paper by Larson and Yang
[LY 851.

Although our main motivation for studying the
problem stems from the above project, its solution
also has applications in other areas of relational
databases. Buneman and Clemons [BC 791 proposed
using views (that is, virtual derived relations) for the
support of alerters. An alerter monitors the data-
base and reports when a certain state (defined by the
view associated with the alerter) has been reached.
Hammer and Sarin [HS 781 proposed a method for
detecting violations of integrity constraints. Certain
types of integrity constraints can be seen as defining
a view. If we can show that an update operation has
no effect on the view associated with an alerter or
integrity constraint, then the update cannot possibly
trigger the alerter or result in a database instance

violating the integrity constraint. The use of derived
relations (called concrete views) for the support of
real-time queries was considered by Gardarin et. al.
[GSV 841, but it was discarded because of the lack
of an efficient update mechanism. Our results have
direct application in this area.

The detection of irrelevant or autonomously
computable updates also has applications in distri-
buted databases. Suppose that a derived relation is
stored at some site and that an update request, possi-
ble affecting the derived relation, is submitted at the
same site. If the update is autonomously comput-
able, then the derived relation can be correctly
updated locally without requiring data from remote
sites. On the other hand, if the request is submitted
at a remote site, then we need to send only the
update request itself to the site of the derived rela-
tion. As well, the results presented here provide a
starting point for devising a general mechanism for
database snapshot refresh [AL 80, BLT 86, L 861.

2. Notation and Basic Assumptions
We assume that the reader is familiar with the basic
ideas of relational databases as in Maier [M 831. A
derived relation is a relation instance resulting from
the evaluation of a relational algebra expression over
a database instance. We consider a restricted but
important class of derived relations, namely those
defined by a relational algebra expression con-
structed from any combination of project, select and
join operations, called a PSJ -expression. We often
identify a derived relation with its defining expres-
sion even though, strictly speaking, the derived rela-
tion is the result of evaluating that expression.

We state the following without proof: every
valid PSJ -expression can be transformed into an
equivalent expression in a standard form consisting
of a Cartesian product, followed by a selection, fol-
lowed by a projection. It is easy to see this by con-
sidering the query tree corresponding to a PSJ -
expression. The standard form is obtained by first
pushing all projections to the root of the tree and
thereafter all selection and join conditions. >From
this it follows that any PSJ -expression can be written
in the fOITl E = TAUC (ril X ri2 X * * * X rik),
where Ril$i2,...)rRi are relation schemes, C is a
selection condition,’ and A = {A I,A 2, . . . , AI } are
the attributes of the projection. We can therefore
represent any PSJ -expression by a triple
E = (A, R, C), where A = {A l,A 2, . . . , Al } is
called the attribute set, R = (Ri ,&i,, . . . , Rik } is
the relation set or base, and C is a selection condition
composed from the conditions of all the select and

-458-

join operations of the relational algebra expression
defining E . The attributes in A will often be
referred to as the visible attributes of the derived
relation. For simplicity, we assume that each rela-
tion of R occurs only once in the relational algebra
form of the PSJ -expression, that is, we do not allow
self-joins. We also use the notation:

4c > The set of all attributes appearing in condi-
tion C

a@ > The set of all attributes of relation R
V (E ,d) The relation resulting from evaluating the

relational expression E over the instance
d ofD

tuple alone. The update expressions are computed
simultaneously, that is, all “new” values are com-
puted from “old” values. The type of expressions
we have in mind are simple, for example,
H := H + 5, Z := 5. Further details are given in
section 4.3. We make the assumption that all the
attributes involved in the update expressions are
from relation R, . That is, both the attributes modi-
fied and the attributes from which the new values
are computed, are Tom relation R, . If the attri-
butes from which the new values are computed, are
from a relation R, , R, # R,, , then it is unclear
which tuple in R,, should be used to compute the
new values.

The update operations considered are inser-
tions, deletions, and modifications. Each update
operation affects only one (conceptual) relation.
The following notation will be used for update opera-
tions:
INSERT (R, , T)

Insert into relation R, the set of tuples T

DEIETE (4 , &, , CD)
Delete from relation R, all tuples satisfying con-
dition C, , where Cn is a selection condition
over the relations Rn , Rn c D

MODJJWR,,R,,C,,F,)
Modify all tuples in R, that satisfy the condition
C, , where C, is a selection condition over the
relations & , Q C D . FM is a set of expres-
sions, each expression specifying how an attri-
bute of R, is to be modified

All attribute names in the base relations are
taken to be unique. We also assume that all attri-
butes have discrete and finite domains. Any such
domain can be mapped onto an interval of integers,
and therefore we will in the sequel treat all attributes
as being defined over some interval of integers. For
Boolean expressions, the logical connectives will be
denoted by “v” for OR, juxtaposition or “A” for
AND, “4’ for NOT, “a” for implication, and “M”
for equivalence. To indicate that all variables of a
condition C , are universally quantified, we write
VC ; similarly for existential quantification. If we
need to explicitly identify which variables are quanti-
fied, we write Vx (C) where X is a set of variables.

Every DELETE or MODIFY operation must
specify the set of tuples from R, to be updated.
Selecting the set of tuples to be deleted from or
modified in R, can be seen as a query to the data-
base. In the same way as derived relations, these
“selection queries” are restricted to those defined by
PSJ -expressions. For the update operation
DELETE(R* , Rn , C,), the set of tuples to be
deleted from R, is selected by the PSJ -expression
E. = ((.y(Ru), Rn , Cn). Similarly, for the opera-
tion MODIFY (R, , & , C, , FM), the set of tuples
to be modified in R, is selected by the PSJ -
expression EM = (cr(R,), & , CM).

An evaluation of a condition is obtained by
replacing all the variable names (attribute names) by
values from the appropriate domains. The result is
either true or false. A partial evaluation (or substitu-
tion) of a condition is obtained by replacing some of
its variables by values from the appropriate domains.
Let C be a condition and t a tuple over some set of
attributes. The partial evaluation of C with respect
to t is denoted by C [t 1. The result is a new condi-
tion with fewer variables.

3. Basic Concepts

The set FM is assumed to contain an update
expression for each attribute in R, . We restrict the
update expressions in FM to unconditional functions
that can be computed “tuple-wise”. Unconditional
means that the expression does not include any
further conditions (all conditions are in CM).
Tuple-wise means that, for any tuple in R, selected
for modification, the value of the expression can be
computed from the values of the attributes of that

Detecting whether an update operation is irrelevant
or autonomously computable involves testing
whether or not certain Boolean expressions are valid,
or equivalently, whether or not certain Boolean
expressions are unsatisfiable.
Deftition: Let C (x 1,. . . pn) be a Boolean expres-
sion over variables x I,...,x~ . C is valid if
vx 1 ,... ,x,, C(x, ,... ,x,,) is true , and C is umatisji-
able if p x1 ,... ,x,, C (x1 ,... ,x,,) is true , where each
variable xi ranges over its associated domain. 0

-459-

A Roolean expression is valid if it always
evaluates to ice, unsatisfiable if it never evaluates to
true, and satisfiable if it evaluates to true for some

values of its variables. Proving the validity of a
Boolean expression is equivalent to disproving the
satisfiability of its complement. Proving the satisfia-
bility of Boolean expressions is, in general,
NP-complete. However, for a restricted class of
Boolean expressions, polynomial algorithms exist.
Rosenkrantz and Hunt [RH SO] developed such an
algorithm for conjunctive Boolean expressions.
Each expression B must be of the form
B = B1/U2~ * - - AB,,, , where each Bi is an
atomic condition. An atomic condition must be of
the form xopy+c or nope, where
op E {=, <, 5, >, >}, x and y are variables, and

c is a (positive or negative) constant. Each variable
is assumed to ran e over the integers. The algo
rithm runs in 0 (n 8) time where n is the number of
distinct variables in B .

In this paper, we are interested in the case
when each variable ranges over a finite interval of
integers. For this case, Larson and Yang [LY 851
developed an algorithm whose running time is
0 (n 2). However, it does not handle expressions of
the form x op y +c where c # 0. We have
developed a modified version of the algorithm by
Rosenkrantz and Hunt for the case when each vari-
able ranges over a finite interval of integers. Full
details are given in [BCL 861.

An expression not in conjunctive form can be
handled by first converting it into disjunctive normal
form and then testing each conjunct separately.
Several of the theorems in sections 4 and 5 will
require testing the validity of expressions of the form
c**cz. The implication can be eliminated by
converting to the form (7 C i) v C2. Similarly,
expressions of the form C i a C 2 can be converted
to Cl c2 v (43(-C,).

The concepts covered by the three definitions
below were introduced in Larson and Yang [LY 851.
As they will be needed in sections 4 and 5 of this
paper, we include them here for completeness.
lkftition: Let C be a Rookan expression over the
variables x~,x~,...,x,, . The variable xi is said to be
nonessential in C if

Otherwise, Xi is essential in C . 0
A nonessential variable can be eliminated

from the condition simply by replacing it with any
value from its domain. This will in no way change
the value of the condition. For example, variable H
is nonessential in the following two conditions:

(1) (Z > 5)(J = Z)((ZZ > 5) v (ZZ < 10)) , and
(2) (Z > 5)(H > 5)(H 5 5).

Definition: Let Co and C r be Roolean expressions
over the variables x1,x2,. . . ,x,, . The variable xi is
said to be computationally nonessential in Cc with
respect to C i if

Otherwise, Xi is computationally essential in Co. q

If a variable Xi (or a subset of the variables
x1+2,*-* *n) is computationally nonessential in Co
with respect to C t, we can correctly evaluate the
condition C 0 without knowing the exact value of xi .
That is, given tuple t = (Xi ,*** &-i&+1)... $n)
where the full tuple (including xi) is known to
satisfy C t, we can correctly determine whether or
not t satisfies Co. This can be done by determining
a surrogate value for xi as explained in Larson and
Yang [LY 851.
Example: Consider the conditions C r = (ZZ > 5)
and Cc E (ZZ > O)(Z = 5)(J > 10). It is easy to
see that if we are given a tuple (i , j) for which it is
known that the full tuple (h , i , j) satisfies C 1, then
we can correctly evaluate C 0. If (h , i , j) satisfies
C r, then the value of h must be greater than 5, and
consequently it also satisfies (ZZ > 0). Hence, we
can correctly evaluate Cs for the tuple (i , j) by
assigning to H any surrogate value greater than 5.
cl
Deftition: Let C be a Boolean expression over the
variables x l ,X 2,. . . ,x,, ,y 1 ,y 2,. . . ,y,,, . The variable yi
is said to be uniquely determined by C and x i,. . . ,x,,
if

vx 17*..Al ,Y l,.**?Ym ,Y i Y ’ ,--*, m

c (Xl,...?% >Y 1 ,...,Ym)C h...A ,Y i ,...,Ym’)

If a variable yi (or a subset of the variables
YlPY2 ,. . . ,ym) is uniquely determined by a condition
C and the variables x i,. . . ,x,, , then given any tuple
t = h,...9-% h such that the full tuple
(Xl,...?-% ,Y l,***,Ynr) is known to satisfy C , the miss-
ing value of the variable yi can be correctly recon-
structed. How to reconstruct the values of uniquely
determined variables was also shown in Larson and
Yang [LY 851. If the variable yi is not uniquely
determined, then we cannot guarantee that its value

-460-

is reconstructible for every tuple. However, it may
still be reconstructible for some tuples.
Example: Let C G (I = H)(H > 7)(K = 5). It is
easy to prove that Z and K are uniquely determined
by H and the condition C . Suppose that we are
given a tuple that satisfies C but only the value of
H is known. Assume that H = 10. Then we can
immediately determine that the values of I and K
must be 10 and 5, respectively. q

Deftition: Let E = (A, R, C) be a derived relation
and let A, be the set of all attributes uniquely deter-
mined by the attributes in A and the condition C .
Then A+=A u A, is called the extended attribute set
ofE. q

Note that A+ is the maximal set of attributes for
which values can be reconstructed for every tuple of
E.

4. Detecting Irrelevant Updates
This section considers irrelevant updates. We deal
with insertions, then deletions, and finally the most
difficult case, modifications. First we define what it
means for an update to be irrelevant [BLT 861.
Deftition: Let d denote an instance of the base
relations D and d’ the resulting instance after apply-
ing the update operation U to d . Let E be a
derived relation. The update operation U is
irrelevant to E if V (E , d’) = V (E , d) for all
instances d and d’. q

If the update operation U does not modify any
of the relations over which E is defined then, obvi-
ously, U cannot have any effect on the derived rela-
tion. In this case U is said to be trivially irrelevant
to E .

4.1. Irrelevant Insertions

An insert operation INSERT&, , T) is irrelevant to
a derived relation if none of the new tuples will be
visible in the derived relation. Note that this should
hold regardless of the state of the database. The fol-
lowing theorem was proven in [BLT 861 and is
included here for completeness only.
Theorem 1: The operation INSERT(R, , T) is
irrelevant to the derived relation
E = (A,R,C),R, ER,ifandonlyifC[t]isunsa-
tisfiable for every tuple t E T . 0

4.2. Irrelevant Deletions
A delete operation is irrelevant to a derived relation
if none of the tuples in the derived relation will be
deleted. We have the following theorem.
Theorem 2: The operation DELETE@,, , &, , C,,)
is irrelevant to the derived relation
E = (A, R, C), Z?,, E R, if and only if the condition
C, AC is unsatisfiable.
proof: Let B = RIJ b = {Ril$i,,...$ik}. B is
called the combined bare of the derived relation and
the delete operation. We first show that we can
extend the base of E to B without affecting the
resulting derived relation in any way. Without loss
of generality, we can assume that IQ, - R = {Ri 1}
SO that R = {Ri,$i,,... pi, }. Let t be a tuple in the
Cartesian product ri2 X ri 3 X f * * X rik (the base
before adding R,,). If t satisfies C , then t [A] (the
projection of t onto A) will be visible in the derived
relation, otherwise it will not. Extending the base to
ri1Xri2X .* - X rik may give rise to a number of
“copies” of t in the extended base. The copies
differ only in the attributes of Ri 1. Since

k

4c) c ,U-J@ij)
then a(Ri 1) n CY(C) = 0. Hence, if t dsfies C ,
then all its copies will satisfy C . Similarly, if t does
not satisfy C , then none of its copies will satisfy C
either. The projection onto A will finally reduce all
copies of t to a single tuple, exactly t [A]. This
proves that extending the base of E does not change
the resulting derived relation. In the same way, we
can show that extending the base of the delete query
ED = (a(R,), R. , C,) to B has no effect. We
now complete the proof of the theorem.

(Sufficiency) Let t be a tuple over the com-
bined base B and assume that t satisfies C . Then
t [A] is visible in the derived relation. If C, AC is
unsatisfiable, then t cannot at the same time satisfy
CD. Hence t [A] will not be deleted from the
derived relation.

(Necessity) Assume that Co AC is satisfiable.
We can then construct an instance of each relation
in B such that deleting a tuple from r, , (Ry E B),
will indeed change the derived relation. Let
a(c) u &(cD) = {xl~2,...~~}. &cause cDr\c is
satisfiable, there exists a value combination
x0 = <xp $2 ,...,x,‘> such that C[Xo]CD[Xo] is
true. We now construct one tuple tij for each rela-
tion Rij E B. The attribute values of tij are assigned

-461-

as follows: if the attribute occurs in a(C
b

u a(Co),
assign it the corresponding value from X , otherwise
assign it an arbitrary value in its domain, the
minimum value, for example. We now have a data-
base instance where each relation, as well as the
Cartesian product ri 1 X ri2 X * * + X ‘;;, contains
one tuple. The tuple in the Cartesian product obvi-
ously satisfies C and hence the derived relation also
contains one tuple. It also satisfies C, and hence
the relation r, , will be empty after the deletion
operation has been performed. Therefore, evaluat-
ing E over the new instance of the database will
result in the empty set. This proves that the stated
condition is necessary. q

Example: Consider two relations R l(H , Z , J) and
R 2(K , L) and the following derived relation and
delete operation:
E = ({H , L 1, {RI, Rd,(J = K)(K > lO)(Z = 5))
and DELETE(R 1, {R 1}, (J < 5)(Z < 10)).

To show that the deletion is irrelevant to the
derived relation we must prove that the following
condition holds:

VZ,J,K

7 [(J = K)(K > lO)(Z = 5)(J < 5)(Z < lo)] .

This is equivalent to proving that

P Z,J,K

[(J = K)(K > lO)(Z = 5)(J < 5)(Z < lo)]

which can be simplified to

fl I, J , K [(J = K)(Z = 5)(K > lO)(K < 5)] .

The condition (K > lO)(K < 5) can never be satis-
fied and therefore the delete operation is irrelevant
to the derived relation. q

4.3. Irrelevant Modifications
Modifications are somewhat more complicated than
insertions or deletions. Consider a tuple that is to be
modified. It will not affect the derived relation if
one of the following conditions applies:
0 it does not qualify for the derived relation, nei-

ther before nor after the modification

l it does qualify for the derived relation both
before and after the modiiication and, further-
more, all the attributes visible in the derived
relation remain unchanged

Some additional notation is needed at this
point. Consider a modify operation
MODIFY’ (Ru > RM ,CM 7 FM) and a derived relation

E= (A, R, C). Let cr(R,) = {Bl,B2 ,... ,Bt}. For
simplicity we will associate an update expression
with every attribute in R, , that is,
F,+, = {fB i,fB 2,. . . ,f B, } where each update expres-
sion is of the form f Bi c (Bi := <arithmetic
expression>). If an attribute Bj is not to be modi-
fied, we associate with it a trivial update expression
of the form f Bi G (Bi := Bi). If the attribute is
assigned a fixed value c , then the corresponding
update expression is f si = (Bi := c). The notation
p (f 8i) will be used to denote the right hand side of
the update expression f Bi, that is, the expression
after the assignment sign. The notation a(p(f Bi))
denotes the set of variables mentioned in p (f Bi).
For example, if f Bi G (Bi := Bj + c) then

P(f Bi) = Bj + c ad h(f Bi)) = {Bi)a
By substituting every occurrence of an attri-

bute Bi in C by p (f Bi) a new condition is obtained.
We will use the notation C (FM) to denote the con-
dition obtained by performing this substitution for
every variable Bi E a(R,,) n cr(C).

A modification may result in a value outside
the domain of the modified attribute. We make the
assumption that such an update will not be per-
formed, that is, the entire tuple will remain
unchanged. Each attribute Bi of R, must satisfy a
condition of the form (Bi 5 UBi)(Bi > LBi) where
LBi and Uei are the lower and upper bound, respec-
tively, of its domain. Hence, the updated value of
Bi must satisfy the condition (p (f Bi) 5 UBi)
& (f Bi) 2 LBi) and this must hold for every
Bi E Q(R,,). The conjunction of all these conditions
will be denoted by Ca (FM), that is,

CB (FM > = B. EaR ,(I’ (f Bi) 2 uBi >(P (f Bi) 2 LBi)
I Y

Theorem 3: The modify operation
MODIFY (4, , RM , G, , FEA) is irrelevant to the
derived relation E = (A, R, C), R, E R, if and only
if

v [(CM A CB (FM >>

=$ (C-C> A (-C@‘M)) >

V (C AC 0’~ > ,/\E, (Bi = P (f Bi >) >]
I

where Z = A n a(R,) . 0

-462-

The proof is omitted due to space limitations; for the
full proof see [BCL 861. The following example
illustrates the theorem.
Example: Suppose the database consists of the two
relations Ri(ZZ,Z) and R#,K) where H,Z,J
and K each have the domain [0, 301. Let the
derived relation and modify operation be defined as:

E = ((1 , J 1, {R lr R2), (H > lO)(Z = K >>

MODIFY (RI, {RI), W > 2%

{(H := H + S), (Z := Z)}) .

Thus the condition given in Theorem 3 becomes

VH,Z,K

[(H >2O)(H + 5>O)(H + 5230)

* (-((H > lO)(Z = K)))

A (- ((H + 5 > lo)@ = K >>)

v (H > lO)(Z = K)(H +5 > lO)(Z = K)(I = Z)]

which can be simplified to

VH,Z,K

[(H >2O)(H 125)

* (7 ((H > lO)(Z = K)))

A (7 ((H > 5)(1 = K >>>

v (H > lO)(Z = K)] .

By inspection we see that if Z = K , then the second
term of the consequent will be satisfied whenever the
antecedent is satisfied. If Z # K , the first term of
the consequent is always satisfied. Hence, the impli-
cation is valid and we conclude that the update is
irrelevant to the derived relation. q

5. Autonomously Computable Updates
If an update operation is not irrelevant to a derived
relation, then some data from the database is needed
to correctly update the derived relation. The sim-
plest case is when all the data needed is contained in
the derived relation itself. In other words, the new
state of the derived relation can be computed solely
from the current state of the derived relation and the
information contained in the update expression.
Definition. Consider a derived relation E and an
update operation U , both defined over base rela-
tions D . Let d denote an instance of D before
applying U and d’ the corresponding instance after
applying U . The effect of the operation U on E is
said to be autonomously computable if there exists a

function Fu such that

V (E , 4 = Fu (V (E , d >>

for all database instances d and d’. Apart from the
information in U itself, the only other data required
by Fu must be contained in the current instance of
E. •I

5.1. Inserti~
Consider an operation INSERT (Ry , T) where T is
a set of tuples to be inserted into R, . Let the
derived relation be E = (A, R, C), R, E R. The
effect of the INSERT operation on the derived rela-
tion is autonomously computable if

A. given a tuple t E T we can correctly decide
whether t will satisfy the selection condition C
(regardless of the database instance) and hence
should be inserted into the derived relation

and

B. the values for all attributes visible in the derived
relation can be obtained from t .

Note that if t could cause the insertion of
more than one tuple into the derived relation, then
the update is not autonomously computable. Sup
pose that t generates two different tuples to be
inserted: t t and t 2. Then t i and t 2 must differ in at
least one attribute visible in the derived relation; oth-
erwise only one tuple would be inserted. Suppose
that they differ on Ai E A. Ai cannot be an attribute
of R, because the exact value of every attribute in
R, is given by t . Hence, the values of Ai in f t and
t 2 would have to be obtained from tuples elsewhere
in the database.

Theorem 4A: Let E = (A, R, C) be a derived rela-
tion and t a tuple to be inserted into relation R,, ,
where R,, E R. Whether or not t will create an
insertion into the derived relation is guaranteed to be
autonomously computable if and only if one of the
folIowing holds:

I. R = {R,, }
or
II. R # {Ru } and all the variables of C [t] are

nonessential and the current instance of E is
non-empty.

Prook (Sufficiency)
Case I: Since R = {Ry } then a(C) E.@,,).
Hence, C [t] can be completely evaluated, i.e. will
yield frue or false .

-463-

Case II: The fact that all variables in cr(C [t 1) are
nonessential guarantees that C [t] will evaluate to
the same value regardless of the values assigned to
those variables. Since the current instance of E is
non-empty, the Cartesian product of all relations in
R - {R, } will contain at least one tuple. Combining
t with a tuple from this Cartesian product gives a
tuple with fixed values for all variables in a(C) and
the condition can be evaluated. Whatever the values
of the attributes in a(C [t 1) are, the condition will
always evaluate to the same truth value. Hence,
whatever the current instance of the database the
decision will always be the same.

(Necessity) Assume that whether or not t will
create on insertion into the derived relation is auto-
nomously computable but that neither of the two
cases holds. Since the second case contains three
conditions, three possibilities arise:

0 (R # {R, }) and (R = {R, }). This is obviously a
contradiction.

0 (R z {R, }) and there exists some variable,
x E a(C [t I), which is essential in C [t 1.
Without loss of generality we can assume that x
is the only variable in (Y(C [t I). This means that
there exists two different values x’ and x” such
that C [t , x’] is true and C [t , x”] is false. In
the same way as in the proof of Theorem 2, we
can construct two different instances d’ and d”
of D . Instance d’ is constructed from x’ and
instance d” from x”, such that, except for the
given values of x , all the corresponding attribute
values agree. In both instances relation R, is
empty and every other relation in D consists of
a single tuple. Hence,

V (E , d’) = V (E , d”) = 0

Now insert tuple t into relation R,, . Since
C [t , x’] is true, V (E , d’) must have a new
tuple inserted, whereas V (E , d “) will not, as
C [t , XII] is false. Consequently, whether or not
insertion of t will affect the derived relation
depends on the existence of tuples not seen in
the derived relation.

l (R # {Ru }) and the current instance of E is
empty. There are two situations which would
cause E to be empty; either no tuple in the
Cartesian product of the base relations satisfies
C or one of the base relations is empty. If
R, E R, R, # R, , is empty then even if C [t] is
true ,t will not cause an insertion into E . Con-
sequently, whether or not the insertion of r will
affect the derived relation depends on the
existence of tuples in the other relations in the

base of E , that is, on the existence of tuples out-
side the derived relation. q

Theorem 4B: Assume that a tuple in T has been
shown to cause the insertion of a new tuple into the
derived relation. The values of all visible attributes
in the new tuple are guaranteed to be autonomously
computable if and only if A c Q(R,,).
proof: (Sufficiency) Obvious.

(Necessity) Without loss of generality we can
assume that A - a(Ru) contains only one attribute
X E a(Ri), Ri # R, e Assume that t E T causes the
insertion of a new tuple. To insert the new tuple
into the derived relation we must determine the
value of x . Even if the value of x is uniquely
determined by the attribute values of t , this is not
sufficient. The value of x must correspond to the x
value in some tuple in Ri , and the existence of such
a tuple cannot be guaranteed without checking the
current instance of the relation Ri . 0

5.2. Deletions
To handle deletions autonomously, we must be able
to determine, for every tuple in the derived relation,
whether or not it satisfies the delete condition. This
is covered by the following theorem.

Theorem 5: The effect on the derived relation
E = (A, R, C) of the update operation
DELETE (R, , I&, , C’), R,, E R, is guaranteed to
be autonomously computable if and only if every
attribute in a(&) - A is computationally nonessen-
tial in Co with respect to C .

proof: (Sufficiency) If the variables in Q(C,) - A
are all computationally nonessential, we can
correctly evaluate the condition by assigning surro
gate values.

(Necessity) Without loss of generality we can
assume that a(Co) - A consists of a single attribute
x . Assume that x is computationally essential in
CD with respect to C . We can then construct two
tuples cl and t2 over the attributes in
A u cr(C) u a(&) such that they both satisfy C ,
I 1 satisfies Co but c2 does not, and c l and r 2 agree
on all attributes except attribute x . Each of tt and
t2 can now be extended into an instance of D . Both
instances will give the same instance of the derived
relation, consisting of a single tuple t t[A] (or t 2[A]).
In one instance, the tuple should be deleted from the
derived relation, in the other one it should not. The
decision depends on the value of attribute x which is
not visible in the derived relation. Hence the deci-
sion cannot be made without additional data. q

-464-

Excnnpfe: Consider two relations R l(H , I) and
R &Z , K). Let the derived relation and delete
operation be defined as:

E = ({J , K 1, {RI, R2h (1 = J >(H < 20))

DELETE (R 1 , {R 1} , (Z = 2O)(H < 30))

The attributes in the set cr(Co) - A
=W,Z~-{J,K~ = {H , Z } must be computa-

tionally nonessential in Co with respect to C in
order for the deletion to be autonomously comput-
able. That is, the following condition must hold:

VH,Z,H’,Z’,J,K

(Z = J)(H < 2O)(Z’ = J)(H’ < 20)

==t ((Z = 2O)(H < 30)) = ((I’ = 2O)(H < 30))] .

The conditions (H < 30) and (H’ < 30) will both be
true whenever (H < 20) and (H’ < 20) are true.
For any choice of values that make the antecedent
true, we must have J = Z = I’. Because Z =I’, the
conditions Z =20 and Z/=20 are either both true or
both false, and hence the consequent will always be
satisfied. Therefore, the variables H and Z are
computationally nonessential in Co with respect to
C . This guarantees that for any tuple in the derived
relation we can always correctly evaluate the delete
condition by assigning surrogate values to the vari-
ablesH andI.

To further clarify the concept of computation-
ally nonessential, consider the following instance of
the derived relation E .

E: J K
10 15
20 25

We now have to determine on a tuple by tuple basis
which tuples in the derived relation should be
deleted. Consider tuple I r = (10, 15) and the condi-
tion C G (Z = J)(H < 20). We substitute for the
variables J and K in C the values 10 and 15,
respectively, to obtain C [t t] = (Z = lO)(H < 20).
Any values for H , Z that make C [t r] = true, are
valid surrogate values, say Z = 10, H = 19. We
can then evaluate Co using these surrogate values,
and find that (10 = 20)(19 < 30) = false. There-
fore, tuple tt = (10, 15) should not be deleted from
E. Similarly, for t2 = (20,25) we obtain
C [t 2] G (Z = 2O)(H < 20). Surrogate values for
H andZ thatmakeC[t2]=trueareZ=20and
H = 19. We then evaluate Co using these surro-
gate values and find that (20 = 20)(19 < 30) = true.
Therefore, tuple t2 = (20, 25) should be deleted
fromE. •I

5.3. ModitIcations
Deciding whether modifications can be performed
autonomously is more complicated than for either
insertions or deletions. In general, a modify opera-
tion may generate insertions into, deletions from,
and modifications of existing tuples of the derived
relation as a result of updating a base relation.
Proving that an update is autonomously computable
can be divided into the following four steps:

Prove that every tuple selected for modification
which does not satisfy C before modification,
will not satisfy C after modification. This
means that no new tuples will be inserted into
the derived relation.
Prove that we can autonomously compute which
tuples in the derived relation should be modi-
fied. Call this the modify set.
Prove that we can autonomously compute which
tuples in the modify set will not satisfy C after
modification and hence can be deleted from the
derived relation.
Prove that, for every tuple in the modify set
which will not be deleted, we can autonomously
compute the new values for all attributes in A.

For each of these four steps we have found
both sufficient and necessary conditions. Lack of
space prevents us from including the results here,
full details are available in [BCL ss]. The condi-
tions are of a similar nature to those of previous
theorems, but are somewhat more complicated. As
before, they can be tested at run-time and without
accessing the database. Again, the concepts of com-
putationally nonessential, uniquely determined, and
satisfiability play a crucial role in these conditions.

6. conclusions
Necessary and sufficient conditions for detecting
when an update operation is irrelevant to a derived
relation (or view, or integrity constraint) have not
previously been available for any nontrivial class of
updates and derived relations. The concept of auto
nomously computable updates is completely new.
Limiting the class of derived relations to those
defined by PSI -expressions does not seem to be a
severe restriction, at least not as it applies to struc-
turing the stored database in a relational system.
The class of update operations considered is fairly
general. In particular, this seems to be one of a few
papers on update processing where modify opera-
tions are considered explicitly and separately from
insert and delete operations. Previously, modifica-
tions have commonly been treated as a sequence of

-465-

deletions followed by insertion of the modified
tuples.

Testing the conditions given in the theorems
above is efficient in the sense that it does not require
retrieval of any data from the database. According
to our definitions, if an update is irrelevant or auto-
nomously computable, then it is so for every instance
of the base relations. The fact that an update is not
irrelevant does not mean that it will always affect the
derived relation. Determining whether or not it will,
requires checking the current instance. The same
applies for autonomously computable updates.

It should be emphasized that the theorems
hold for any class of Boolean expressions. However,
actual testing of the conditions requires an algorithm
for proving the satisfiability of Boolean expressions.
Currently, efficient algorithms exist only for a res-
tricted class of expressions, the main restriction
being on the atomic conditions allowed. An impor-
tant open problem is to find efficient algorithms for
more general types of atomic conditions. The core
of such an algorithm is a procedure for testing
whether a set of inequalities/equalities can all be
simultaneously satisfied. The complexity of such a
procedure depends on the type of expressions (func-
tions) allowed and the domains of the variables. If
linear functions with variables ranging over the real
numbers (integers) are allowed, the problem is
equivalent to finding a feasible solution to a linear
programming (integer programming) problem.

We have not imposed any restrictions on valid
instances of base relations, for example, functional
dependencies or inclusion dependencies. Any com-
bination of attribute values drawn from their respec-
tive domains represents a valid tuple. Any set of
valid tuples is a valid instance of a base relation. If
relation instances are further restricted, then the
given conditions are still sufficient, but they may not
be necessary.

If an update is not autonomously computable
some additional data may be required. An open
problem is to determine the minimal amount of
additional data reauired from the database, and how
to retrieve it efficiently.

References

w ml
Adiba, M., and Lindsay, B.G.,
Snapshots,” Proc. 6th International
Very Large Databases, (1980), 86-91.

“Database
Cord. on

[BcL.W
Blakeley, J.A., cobum, N., and Larson, P.-A.,
“Updating DtXiVd Relations: Detecting
Irrelevant and Autonomously Computable
Updates,” Technical Report CS 86-17, Univer-
sity of Waterloo (1986).

[BLT 861
Blakeley, J.A., Larson, P.-A., and Tompa,
F.W., “Efficiently Updating Materialized
Views,” Proc. ACM SIGMOD International
Conf. on Management of Data, (1986), 61-71.

[I= 791
Buneman, O.P., and Clemons, E.K., “Effi-
ciently Monitoring Relational Databases,” ACM
Trans. on Database Systems, 4, 3 (1979), 368-
382.

WV Ml
Gardarin, G., Simon, E., and Verlaine, E.,
“Querying Real Time Relational Data Bases,”
IEEE-ICC International Conference (1984),
757-761.

[HS 781
Hammer, M. and Sarin, S.K., “Efficiently Mon-
itoring of Database Assertions,” Supplement,
Proc. ACM SIGMOD International Conf. on
Management of Data, (1978), 38-48.

[LY 851
Larson, P.-A. and Yang, H.Z., “Computing
Queries from Derived Relations,” Proc. 11th
International Conf. on Very Large Databases,
(1985)) 259-269.

Lw
Lindsay, B.G., etal., “A Snapshot Differential
Refresh Algorithm,” Proc. ACM SIGMOD
International Conf. on Management of Data,
(1986), 53-60.

[M 831
Maier, D., The Theory of Relational Databases,
Computer Science Press, Rockville, MD, 1983.

1RI-I 801
Rosenkrantz, D.J. and Hunt, H.B. III, “Pro
cessing Conjunctive Predicates and Queries,”
Proc. 6th International Conf. on Very Large
Data Bases, (1980), 64-72.

D-K 781
Tsichritzis, D.C. and Klug, A. (eds.), “The
ANSI/X3/SPARC DBMS Framework: Report of
the Study Group on Database Management Sys-
tems,” Information Systems 3 (1978).

-466-

