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ABSTRACT 

Several methods have been proposed to compile recursive 
Datalog programs. The most well-known perform a 
rewriting of rules using MAGIC or PROBLEM predicates 
in order to push selections before recursion. Rewritten rule 
systems are generally complex and difficult to translate into 
optimized relational algebra programs. Moreover, they often 
generate too many results; thus, the query must be applied 
to the generated results to eliminate non relevant answers. 
In this paper, after a survey of the existing compilation 
techniques which points out their limitations, we develop 
the magic function method iutroduced in [Gardariu- 
DeMaindreville86]. It is based on an understanding of the 
query as a function which maps columns of a relation to 
other columns. A query against recursive rules is then 
translated into a fixpoint functional equation. The 
resolution of this fixpoint equation using Tarski’s theorem 
leads to efficient computation of the query answer. In 
particular, the derived algorithms push selections through 
recursion, because selections appear as function arguments. 
They generate only relevant answers to a given query, 
without redundant data computation. The purpose 
of this paper is the introduction of a generalized method to 
obtain and resolve the fixpoint functional equation. The 
method is general enough to handle non-binary rules, cyclic 
rules and function symbols. The main advantages of the 
method are : (1) It directly generates an optimized relational 
algebra program. (2) It performs a symbolic pre- 
computation which permits rule redundancy elimination. (3) 
It fully supports function symbols and range queries. 
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1. INTRODUCTION 

Assuming the reader to be familiar with recursion in 
deductive databases [Gallaire84, Bancilhon86, Ullman86], 
we address the problem of evaluating queries referencing 
rule defined relations. We assume that the rules may include 
recursive predicates referencing unary, finite and inversible 
function symbols. 

Two types of strategies have been proposed to handle 
recusive queries. The simplest one is based on query 
interpretation. This approach is mainly derived from 
backward chaining “a la Prolog” and works in a top- 
down manner. The derived methods generally push 
restriction before recursion [Vieille86, Lozinskii85], 
although certain methods do not work in all cases with 
function symbols [Gardarin-DeMaindteville85, Kifer- 
Lozinskii86]. As these methods do not pre-compile the 
queries, they generate call loops to the DBMS which are 
rather inefficient. However, a clever optimization of 
interpreted techniques known as query/sub-query has been 
developped at ECRC [Vieille86]. In this method, sub- 
queries and answers are kept in main memory to reduce 
costs. 

Although the limits of the query/subquery interpreted 
method are not well known, several researchers claims that 
the fanciest methods are based on a compilation of the 
query and rules before going to the database. This pre- 
compilation often rewrites the rule system using “magic” 
or “problem” predicates. These intermediate predicates 
simulate the moving up of constants before recursion, in 
such a way that a semi-naive bottom-up evaluation of the 
compiled rules presents two interesting features 
[Bancilhon85] : 
(a) No redundant work is performed, that is, tuples are not 
produced twice using the same rules; 
@No useless tuples are generated, that is, tuples are 
eliminated through restrictions as soon as possible. 
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Two compilation techniques claim to reach objectives (a) 
and (b) and are the most popular : the magic set approach 
and the Alexander method. We examine them in the first 
section of this paper. Using a simple example, we show 
that the Alexander method is among the most general ones. 
Also, the magic set approach has recently been extended 
(Extended supplementary magic sets [Beeri87]) toward a 
method which is similar to Alexander with a reordering of 
predicates. This reordering allows the algorithm to perform 
maximum sideways information passings to evaluate the 
query. A serious drawback of Alexander or Extended 
supplementary magic set is the complexity of the 
transformed rule system which generally, needs further 
optimizations and simplifications. 

The motivations of this paper are three folds : (1) There 
is a need for a general method to compile a query against 
rules directly into an optimized relational algebra program 
performing selections before recursions; (2) Such a method 
must support rules with function symbols; (3) The method 
must provide a basic tool for simplifying certain classes of 
redundant rules. Steps toward such a method have already 
been taken [Chang81, Henschen84, Gardarin- 
DeMaindrevikg6, Cerig6]. The magic function 
approach developed here is a new step toward such an 
efficient compilation technique. More specifically, we 
propose a general and formally based method to translate a 
query and the associated rules into a functional equation. 
The method applies to any kind of rules which may include 
unary reversible function symbols. 

The paper is organized as follows. The second section is 
mainly a survey. We summarize the Magic set and 
Alexander methods. We discuss their power. Then, we recall 
and precise the formalism presented in [Gardatin- 
DeMaindreville86] which consists in interpreting relations 
and queries as magic functions. Magic functions are set 
valued. In basic form, they map one column of a relation to 
another column. The fourth section is devoted to the 
description of the algorithm to translate a query over a set 
of rules into a fixpoint functional equation of the form 
Q(X) = F(m), where Q is the query seen as a magic 
function. This algorithm computes symbolically the query 
answer in term of functions by performing a resolution of a 
system of simultaneous equations in the module of 
variables. The fifth section gives a differential algorithm to 
translate a magic function fixpoint equation directly into a 
relational algebra program. Finally, we show that the 
symbolic computation process allows the system to 
eliminate certain equivalent rules which are redundant An 
example is given. In conclusion, we discuss the limits of 
the method. 

2. A SURVEY OF SOME COMPILATION 
METHODS 

2.1 The magic set method 

The magic set approach [Bancilhon86] performs 
sideways information passing and then rewrite the rules 
using magic predicates. These predicates correspond to 
demons which reject useless tuples when applied in forward 
chaining. The basic magic set method is supported by a 
rather complex rewriting algorithm. The method does not 
apply to rules such as the odd ancestors derived from a base 
relation Pamnt(young.old) lBancilhon861 : 

(rl) Ancestor(x,y) c-- Parent(x,y) 
(12) Ancestor(x,z) c-- Parent(x,y),Ancestor(y,v), 

~cestor(vJz) 

with query such as: 
?Ancestor(c& 

An extended version of the magic set algorithm called 
the Generalized magic set has just been proposed 
[Beeri87]. The algorithm first requires to build an adorned 
rule set using maximum sideways information passing 
(sideways information passing may be portrayed by a SIP 
graph lBeeri871). In our case, we obtain : 
(rl-a) Ancesdf(x,y) <-- Patent(x,y) 
W-a) Ancestorbf(x~) <-- Parent(x, 

P 
+4rlcestorbf(y,v), 

Ancesto w 
For each recursive predicate R, a magic predicate 
MAGIC-R is created whose variables are bound variables in 
R. Each rule is then modified by the addition of the required 
magic predicate in its body. The generation of tuples in the 
magic predicate is given by : (a) the query; (b) rules which 
model the sideways information passing to the recursive 
predicate. In our examples, we obtain the rewritten rule 
system: 
(rl-m) : 
MagicJhesto~f(x), Parent(x,y) --> Ancestorbf(xy) 

. 
!g$imestopf x Pamnt(x,y), Ancestorbf(y,v), 

tou Antes &->Ancesto~f(x~) 
(sip-l) : 
IvIagic~Ancesto~f(x), Parent(x,y) -->Magic&cestorbf(y) 
(sip-2) : 
Magic~Ancestorbf(x), Parent(x,y), Ancestorbf(y,v) --> 

Magic Ancestorbf(v) 
twery): - 

Magic~Ancesto~f(c). 
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The resulting modified rule system is rather complex 
(mutually recursive) and redundant (condition parts are 
repeated). The generalized supplementary magic set 
algorithm [Beeri87] has been proposed to save redundant 
condition parts : the result is approximately the Alexander 
method described below. 

2.2 The Alexander method 

The Alexander method [Rohmer85] consists in rewriting 
rules in terms of problems and solutions for each recursive 
predicate. Thus, as the Gordian node was cut in two by 
Alexander, the Alexander method cuts recursive predicates 
in two parts: the problem and the solution. The method 
also starts with an adorned rule set (adorned predicates are 
written with a boolean adornment of type Rxxx, where xxx 
is a binary vector; we keep here the notation of 
[ullman86]). Then, the rewriting of a recursive rule 
Bl,B2,...R,Ql,Q2 ,... -a R in several optimized rules is 
performed as follows: 
(1) Add the problem predicate PB-Rxx to the rule 
condition. 
(2) Propagate linearly the bound variables using sideways 
information passing up to an occurrence of the recursive 
predicate; this process is done by scanning the rule 
predicates, from the condition to the head; to guarantee a 
good sideways information passing, a reordering of 
predicates according to a maximum SIP is desirable. 
(3) Cut the recusive predicate in two parts: (a) a problem 
predicate which is generated by the previously scanned 
condition part; (b) a solution predicate which is used to 
generate a new rule, with the non scanned part of the rule. 
(4) Go on scanning the new rule with the same algorithm 
(i.e., go to 2). 
As the algorithm generates independant rules which may 
share variables, context predicates are used to transmit 
variables between rules. 

For example, using the definition of odd Ancestor given 
above with rules (rl) and (r2), we obtain: 
(rl-m) : 
Pb-Ancestorbf(x), Parent(x,y) --> Sol-Ancestorbf(x,y) 
(sip-l) : 

Pb_Ancestorbf(x), Patent(x, ) -+ 
Pb_Ancestorb (y),Contl(x,y) f 

(sip-2) : 
Contl(x,y), Sol_Ancestorbf 

9 
,v)--> 

Pb-Ancestorb (v),ContlL(x,v) 
(r2-m) : 
Cor&(x,v), Sol_Ancestorbf(v~) -->SolJncestorbf(x~) 
(were) : 
PbJncestorbf(c),SolJuicestorbf(c,y) --> Answer(y) 

This set of rules must be applied using semi-naive 
forward chaining to get the query answer (i.e., Answer(y)). 
The rewritten rules are not in a very simple form : two 
intermediate predicates Contl and Cont2 are introduced, the 
rules are mutually recursive. However, the Alexander 
method appears here to be more successful than the classical 
magic set method. Indeed, it leads to results similar to those 
of the generalized supplementary magic set algorithm 
[Beeri87]. The Alexander method has been operational on 
PC since 1985. The rule transformer is written in Prolog 
lRohmer861. 

2.3 On the power of Magic sets and Alexander 

Alexander and Magic sets are indeed very similar 
methods. However, generalized magic sets seems to select 
the maximum sideways information passing. The selected 
sideways information passing in Alexander depends on the 
order of the predicates in the rule body. 

Magic sets do not generate rules which produce exactly 
the query answer. Generally, the generated rules produce 
mote. For example, the above rewritten ~1e.s generate all 
ancestors of “c” as magic set (or problems). Therefore, all 
parents of an ancestor of “c” are produced in the ancestor 
relation. This is not correct because the answers are only 
the odd ancestor of “c”. Fortunately, a simple final selection 
on the generated tuples in the ancestor relation eliminates 
the indesirable answers. It is indeed difficult to avoid this 
final selection even with simple linear rules. For example, 
therules: 

Ancestor(x,y) <-- Parent(x,y) 
Ancestor(x& c-- Parent(x,y),Ance-stor(y,v)&trent(v~) 

still generate the odd ancestors. The magic set for the query 
?Ancestor(cJ) is still all ancestors of “c”. Thus, the 
rewritten rules generate all ancestors of “c” in Ancestor, 
fortunately with their one level descendant as first attribute. 

The Alexander method does not do better in the solution 
predicate; however, the final required selection is included in 
the rewritten rules: it derives from the query rule which 
generates the query answer. 

Finally, it can be said that magic sets partly Eail to 
generate only useful tuples. This point is often not very 
clear (see for example theorem 1 of [Bancilhon86]). One 
main feature of the magic function method is that it does 
not generate useless tuples in the resulr thus, a final 
selection on the generated relation is not required. 
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2.4 The Magic function method 

In [GardarinDeMaindreville86], we introduce a new 
method based on a functional approach : rules are rewritten 
as functional equations to compute a query answer. In the 
current paper which extends this functional approach, the 
method is called magic functions. The intuitive idea of 
our approach is that a relation instance defines functions; 
each function maps one set of values in one column to the 
corresponding set of values in another column. Rules are 
then rewritten as magic functions. In [Gardarin- 
DeMaindreviIle86]. the rewriting algorithm is limited to 
binary predicates with acyclic conditions (i.e., chain rules). 
In the sequel, a generalization to any predicate with function 
symbols is going to be presented. 

Let us give an intuitive view of the method using the 
previous example. For the odd ancestors as defined by rules 
(rl) and (r2) with the query ?Ancestor(c,z), the method leads 
to the fixpoint equation between the magic functions 
Ancestor(c) and Parent(c) which respectively maps a set of 
persons c to their ancestors and parents: 

Ancestoro=pafent(c)+Ancestor(~~~~ent(c))) 

The fixpoint equation is used in a symbolic way to 
compute the solutions and then to derive the relational 
algebra program from the symbolic form. In our case, by 
successive approximations [Tarski’s theorem] we derive : 

Ancestor(c) = Parent(c) + Parent3(c) + Parents(c) + . . . . + 
Parent*“+ l (c) 

for some n which gives the fixpoint. 
This formula leads to the following program : 

Procedure Compute(Ancestor,c); 
Begin 

lpl&;r7$.gp c@-ENJJ); . 

while “Ancestor change” do 
*Delta := 7P.2( op.1 E Del@=); 
Deha := ncp.*( op.IE D&a(pARENT)); 

Ancestor := Ancestor u Delta; 
d; 

End. 

On this example, the functional approach appears much 
more simple and efficient than the Magic set or Alexander 
methods. Also, it is founded on mathematical principles. 
Unfortunately, the algorithm (based on a graph analysis) 
given in [Gardarin-DeMaindreville86] which translates rules 
into functional equations only applies to rules composed 
with binary predicates; moreover, variables in a rule body 

should not cycle; thus, the method seems only to apply to 
binary acyclic rules, also called chain rules. Another 
drawback of the method is that general symbolic forms are 
not always easy to compute at compile time. In the sequel, 
we propose a generalization of the method to handle any 
kind of rule with function symbols. We also propose a way 
to use the fixpoint equation which does not require 
computing a general polynomial form, although keeping 
the possibility of redundancy elimination. In short, we 
solve all the problems of the functional method. The 
resulting extended method, called magic function, is a 
powerful approach to recursive rule processing. 

3. QUERIES AS FUNCTION COMPUTATION 

In this section, we recall the precise definition of magic 
functions and we introduce a few more operations with 
magic functions. 

3.1. Functions defined by a relation 

Let R (Al, A2) be a relation in binary form where Al 
and A2 are sets of one or more attribute(s). We denote dom 
(Al) (resp dom(A2)) the domain of Al (resp. A2), that is in 
general the cartesian product of the domains of the 
composing attributes. A given instance of R determines 
derived functions called magic functions, defd as follows: 

Definition 1 : Magic function 
A magic function &rived from a relation R(Al,A2) is a 

function which maps a subset of dom(Ai) into the related 
subset of dom(Aj) (i#j) according to R. 

Indeed, for each possible binary form of a relation 
R(Al,A2), there exists two magic functions denoted r and r’ 
which may be defmed as follows : 
(i) Let X = (xl, x2, . . . xq) be a subset of dom(A1); 
r (X) is the subset of dom(A2) defmed by 

(yk/3 x E XsuchthatR(xp,yk)). 
(ii) Let Y = P yl, y2, . . . yq) be a subset of dom(A2); 
r’(X) is the subset of dom(Al) defined by 

(xp / 3 yk E Y such that R(xp,yk) ). 

Clearly, r(X) is obtained by restricting R to those 
tuples having for Al’s value xl or x2 or . . . xn, 
keeping only the values of A2 as a set : 

r(x) = (no @A/ = xll or . . . or Ai = xn (R))]* 
To allow exnres on o boo ean auenes, we may add when 
necessary a-virtual attribute A0 b each relation R. A0 is 
true for each tuple belonging to R and otherwise false. 
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A nice property of magic functions is their 
monotonicity. More precisely, we can demonstrate the 
following lemma. 

Lemma 1 : 
Relational functions are monotonic increasing. 

Proof : 
Let r be a magic function and Xl c X2 subsets of 

dom(Ai). We have : 
r(X1) = (yk/3 xp E Xl such that R(xp,yk) ). 

But, as any element of Xl is a member of X2, we have : 
( yk / 3 xp E Xl such that R(xp,yk) ) I (yk / 3 xp E X2 
such that R(xp,yk) ) ; 

which may be written as : r(X1) s r (X2) + 

3.2. Sum, composition and intersection of 
magic functions 

For convenience and simplicity, the union of two sets 
is denoted + while the difference is denoted -. We shall use 
the following classical operations over functions and 
function results: 
(i) The sum of two functions having the same domain is 
defined by: 

(f+g>O = f(x) + km. 
(ii) ‘Ihe composition of f and g is possible if the image 
domain of g is included in the defmition domain of f ; it is 
defmed by: 

c.g 0 f)(x) = f3m9~ 
which is also denoted g.f(x). 
(iii) The intersection of two functions having the same 
source and image domain is defmed by : 

(f n g) (X) = (y I 3 x E X : f(x) = g(x) = y) 

It is important to see that all introduced operations on 
magic functions preserve monotonicity. 

Lemma 2: 
Sum, composition and intersection of magic 

functions preserve monotonicity. 
ProOt: 
The following equations are obvious to demonstrate: 

(f+g)o(+Y)=(f+gxx)+(f+g)O 
~of)(x+Y)=G3of)m+@of)~Y) 
(fng)(X+Y)=(fng)~O+(fng)O l 

We could also use the difference operation between two 
functions defined as : 

(f-l3)O=f(x)-lm 
Unfortunately, the difference does not preserve 
monotonicity. 

4. A SYSTEMATIC METHOD TO GENERATE 
FUNCTIONAL FIXPOINT EQUATIONS 

The basis of the magic function method is the rewriting 
of the rule system as a fixpoint functional equation. In this 
section, we propose a general approach to get such a 
fixpoint equation. The method is divided in four steps : 
(1) The unification of each rule with the query and 
rectification of the variables to avoid common variables 
between rules. 
(2) The rewriting of each rule in binary form using a 
sideways inforation passing strategy; 
(3) The translation into a system of equations; 
(4) The resolution of the system of equations to get the 
query fixpoint equation. 

We shall illustrate the method with typical examples 
given below. The database is supposed to be composed of 
the following relations : 
- PARENTS (YOUNG,OLD) abbreviated with predicate 
letter P; 
- B (x1,x2,x3), C (yl,y2,y3) and D (21,22~3). 
To illustrate the generality of the method with range 
queries, we use a query of the form R(c,x), where c may be 
a constant or a set of constants (for example, 010 is 
possible). 
Definition of grandfathers : 

GW,y) <-- P(xAz)Q(~.y) 
?--Gp(c,Y) 

Quadratic definition of ancestors with functions 
[Kifer-Lozinskili] : 

Nx,Y) <-- WLY) 
A(fO&)) <-- AW, &,Y) 
?--A(c,y) 

Definition of a cyclic non-binary recursive 
relation R : 

R(x,y,x) <-- B(x,y,x) 
R(x,y.d <-- C~a&MwNXw~ 
?--R(c,YJ) 

4.1. Unification with the query and rectification 

This step is simple. Each rule head is unified with the 
query to evaluate. A straightforward propagation of the 
query constant(s) is performed in the rule body. From now 
on, the constant(s) will be considered as a formal parameter. 
To avoid confusion of variables between different rules, all 
of them are indexed with the rule number : this process of 
renaming variables with different names is called 
rectification. 
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We illustrate this step with the results of the previous 
examples : 

Definition of grandfathers : 
GP(c,yl) <-- PW)Q(zl,yl) 

Quadratic defmition of ancestors with functions 
A(c,yl) <-- p(c,y 1) 
NW9 <-- W-YcWh &WWN 

Note that unification implies here the use of the inverse 
fonction off and g, denoted f and g’, which are supposed to 
exist. 

Definition of a cyclic non-binary recursive 
relation R : 

R(c,yl~l) c-- B(c,yl~l) 
Nc,yWl <-- C(c,t2~)~R(t2,~2,~2)P(u2~2) 

4.2. Rewriting rules in binary form 

Each rule is fast rewritten in binary form defined as 
follows. 

Definition 2: Binary rule form 
Rule form in which: 

(i) Variables in the head predicate are divided into two 
groups, the first one designating the known constants, the 
other representing the remaining variables. 
(ii) Variables in each condition predicate are also divided in 
two groups, the grouping being done according to a chosen 
sideway information passing strategy. 
(iii) Conditions are added to the rule body using projection 
functions if constraints need to be kept between variables. 

Variables are grouped using a SIP graph, as defined in 
[Beeri87]. Different choices are possible and will lead to 
different tixpoint equations. To perform as many selections 
as possible before recursion, it is desirable to use a 
complete SIP, that is a SIP which achieves all possible 
migrations of values between predicates. Finally, after 
rewriting, the most general form of a rule is : 

where : 
- c is a constant or a tuple of constants; 
- y,z,fu ,..., v,w are tuple variables or constants; in practice, 
we denote them with the text string of the domain variable 
names concatenate& 
- Q(c,x,y~,t,u...,v,w) is a conjonction of atomic conditions 
between constants, variables or functions applied to 
variables, including the projection function. 

We illustrate the binary canonical form with the last 
example which is the only one not in binary form.: 
The first rule is simply rewritten as : 

R(c,ylzl) c-- B(c,ylzl) 
The rewriting of the second rule : 
WC&W) <-- C(c,t2~)P(t2~2,y2)~(~~) 
is done using the following SIP : 

R(c,YW~ --+ C(&~~ 
C(c,tZ,z2) --+J R(t2,u2,y2) 
W42,y2) -->a D(ti,Q) 

Thus, we obtain : 
W,Y’W <-- W%WWYWWJ% q@WZ 

~2(Qz2)-lc2(Y2z2), qwa=a qWy2)=~, 
q(Yw=q(~Y2) 

It is important to be sure that the transformation is valid, 
that is that the reverse transformation remains possible (no 
condition must be lost). 

4.3 Translation of binary form rules into a 
system of functional equations 

Let us assume a binary predicate R defined by a unique 
rule: 

where Pl, P2 . ..Pn are binary predicates. Each predicate R, 
Pl, P2,... Pn defines two magic functions as introduced in 
section 3. The binary form rule may be interpreted as a set 
of functional equation definitions, as follows (capital 
variables am set variables) : 

if 
pi(Y) = Z (or pl’Q =Y) 
p2(T) = U (or p2’(U) =T) 

then 

pn(V) = W (or pn’(W) = V) 
fJ(C,X,Y,ZT,U . . . . V,W) 

r(C) = X 

Thus, at saturation point of the relation computation, the 
following functional system of equations must be satisfied 
(capital letters are used to denote set variables): 

pi(Y) = Z (or pi’(Z) =Y) 
p2(T) = U (or p2’(U) =T) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*....... 
pn(V) = W (or pi?(W) = V) 
WXYZ,T,U...,V,W 
r(C) = X 
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Let us point out that for each line with an “or” in 
parenthesis, both equations can be used. Although, in 
general p’@(x)) f X; however, for computing a query 
answer, we may use p(X) = Y or Y = p’(X) depending on 
which variable is bound. Thus, when resolving equations, 
we may use one or the other form : this is due to the fact 
that we want all answers to queries. Thus, we shall no 
longer write the two possible forms, but only the one 
which is required to solve the query and assume that the 
inverse function of p is p’. 

In the case of several rules defining a predicate R, each of 
them contributes to part of the answer, as follows : 

R(c,xl) t . . . 
R(c,x2) t . . . 

unique solution of the form r(C) = F(C) is obtained, where 
F is an expression of the union, intersection and 
composition of database functions (i.e., database relations 
seen as functions). Thus, the answer to the query may be 
simply computed using the expression F. 

Let us give an example using the grandfather deftition : 
GP(c,yl) <-- P(c~l).P(zl,yl) 

We obtain, in functional form : 
gp(C) = Yl 
p(c) =Zl 
p(z1) =Yl 

This system of three equations with three variables (C is 
considered as a formal variable) may be solved in C by 
simple elimination of Y 1 and 21, which entails : 

R(c,xk) t . . . 

As the union of all rule fixpoints must be performed to get 
the R relation, we must collect all the functional 
expressions. We have then to compute: 

r(C) = Xl +X2 +...+Xk 
with the equations deriving from the rule bodies. For this 
purpose, the whole system must be solved in r(C) by 
successive elimination of the Xi variables, using an 
algorithm to solve a system of equations. 

4.4 Solving the system of equations 

Let us now assume a query R(c,y). As seen above, we 
must evaluate the function r(C). To do this evaluation , we 
may use the set of equations which is derived from the rules 
as explained above : 

r(C)=Xl+X2+Xn 
pl(Y1) = 21 
p2(Tl) = Ul 
. . . . . . . . . . . . . . . 
pn(V1) = Wl 
Q(C,Xl,Yl,Zl,Tl,Ul..., V1,Wl) 

This system of equations must be solved in r(C). The 
theory of simultaneous equation solving is well known, so 
we are not going to develop it here. However, we would 
like to mention that considering the functions as scalars, 
the vectors of variables (X1,X2 ,...) describe a module (i.e., 
a vector space with a non commutative multiplication of 
scalars). A general approach to solve equations in such a 
structure is the elimination of variables by substitution 
(i.e., Gaussian elimination in a vector space). In general, a 

gp(C) = P(PK)). 

This functional equation tells us that to get the grandfather 
of a set of persons C = (c) , we must take the parents of the 
parents of each member of (c) . It is an efficient method to 
compute the grandfather of a set of persons. The method to 
construct the functional equation is general enough to deal 
with recursive rules, function symbols and non-binary 
predicates. 

Certain rules lead to more equations than variables. Let 
us assume that we get n equations and p variables with p < 
n. Relaxing n - p equations, a first solution of type 
r(C)=Fl(C) may be calculated. Using successively the other 
equations (which are indeed constraints for Fl(C)) and 
relaxing a previously used equation, other solutions may be 
evaluated : 

r(C) = F2(C), . . . r(C) = Fn(C). 
As all equations (which may be seen as integrity constraints 
on the relation composed of the cartesian product of the 
variables) must be satisfied, we have : 

r(C) = Fl(C!) n F2(C) n . ..n Fn(C). 

On the contrary, certain rules lead to less equations than 
variables. Such rules do not restrict certain variables 
enough. Two examples of such rules are : 

Gp(x,y) <-- p(x&, p(t.y) 
and: 

The first one leads to a cartesian product. The second one is 
unsafe because t is not defined in the premises. In the 
sequel, we shall reject such rules which are dangerous and 
USelesS. 
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4.5. A recursive example with function Procedure compute(R,F, (c)); 
symbols Begin 

The case of recursive rules is not a special one: a 
recursive rule contributes to a query in functional form as a 
normal one. However, the generated functional equation 
appears to be a fiipoint equation [Gardarin- 
DeMaindreville861. Due to a lack of space, we cannot treat 
all given examples here. The reader may find more 
examples in [Gardarin87]. Let us solve the example of the 
quadratic definition of ancestors with functions; after 
unification and rectilication, we obtain the binary form : 

NC,Y 1) <-- P(c,yl) 
A(c,ylL) <-- Nf@)tih ~WZg’g’(y2)) 

Transforming the above rules in functional equations yields 
(note that f and g, or their reverse are applied to sets of 
values): 

a(C)=Yl+Y2 
p(C)=Yl 
@Yc)) = 22 
a0 = f3’W) 

This is a system of four equations with four variables (C, 
Y 1,22, Y2). Solving it in a(C) by elimination of variables 
Y 1, Y2 and 22 entails : 

NC) = ~((3 + g(a(aVV3)) 

5. TRANSLATION OF FIXPOINT EQUATIONS 
INTO RELATIONAL ALGEBRA 

5.1 Iterative computation 

For a given query Q = R( (cl ,y), the previous method 
derived a fupoint functional equation of the form : 

q=FW 
Applying Tarski’s theorem on the q function lattice 
[Guessarian87], we may solve this equation by successive 
approximation as follows (0 is the function whose result is 
always empty) : 

q = F(a) u WT0N . . . . u We) 
Thus, the query answer is given by (we replace q by its real 
functional form with argument (c)) : 

T(tcl) = WN(c)) u WWX(c)) . . . . u F”(Mc)) 
and we know that the fmpoint is reached for a certain n 
where no new data can be produced. 
Thus, we can write an iterative program to compute the 
query answer as follows,where F is the fixpoint equation 
right member (a text string of symbols), (c) the 
constant(s) in the query (i.e., the restriction criteria), and R 
the query answer : 

(Initialize the symbolic form of the answer) 
RSymb := F(O); 
DehaSymb := 0; 

(Initialize answer with F(g)(c)) 
RData := RSymb((c)); 
DeltaData := 0; 

(Compute symbols and data up to fmpoint ) 
while “Elements inside DeltaData and 

DeltaSymb change” do 
(Compute next symbolic form = olduFn(o)) 

NewRsymb := Rsymb u F(Rsymb); 
(Compute variations of symbolic form) 

DeltaSymb := NewRsymb - Rsymb; 
(Compute new data generated ) 

DeltaData := DeltaSymb((c)); 
(Cumulate answers ) 

RData := RData u DeltaData; 
(Move to next step ) 

Rsymb := NewRsymb; 
a; 

End; 

This program performs an iterative symbolic generation of 
the function F”(o) from F. At each step, it queries the 
database to compute F(a)((c)); to avoid generating several 
time the same queries, we ehminate already evaluated 
symbols in the symbolic functional form of the answer: 
this explains the difference between the new string of 
symbols and the old one. The program stops when no new 
data are generable (or when no new functional expressions, 
i.e. strings of symbols, are generated the inclusion of 
DeltaSymb in the test is a slight optimization which may 
be omitted). It is important to stop only when all elements 
included in DeltaSymb((c)) do not change : the stopping 
test may require to memorize values for each function 
evaluated in DeltaSymb if one wants to support complex 
general rules. 

For example, with the fixpoint equation : 
a(C) = r-C3 + gbb(fYW) 

the quadratic ancestor problem, F is set to p+gaaf. At the 
first iteration, we obtain Rsymbz~gppf 
At the next iteration, we obtain: 

p+gppf+gpgppff+ggppfgppff, . . . . 
The algorithm successively queries the database to evaluate 
P(C), then i&WYC)))h then sMW(f(f(C))))))), then 
g(g@(P(f(s@(p(f(f(C))))c))))))))))....Indeed, the gend f= 
does not need to be computed as the program queries 
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the database to compute Deltadata and stops when no new 
data appears in the argument of each new applicable 
function. This is really a good way of mixing symbolics 
and data computation, although the stopping criteria might 
be a bit complex. That is possible as any symbol in 
Rsymb represents a base relation or a base function. 
Moving back to relational algebra with functions 
[Zaniolo85], which is simply a re-interpretation of the 
symbolic formulas, yields a simple program which 
performs restriction at fusr this is due to the fact that 
constants are the arguments of the magic function strings 
which are symbolically computed. 

5.2 Simplification of general forms by 
symbolic computations 

Indeed, the fixpoint functional equation is a very useful 
tool which may be used not only to generate relational 
algebra programs, but also to simplify rule system 
computation. Let us assume the following system of rules: 

A(x,Y) <-- WY) 
A(x;y) <-- P(x&W),Mu9 
A(x,Y) <-- NxAWMW 

with the query : 
?--A(c,y). 

Magic functions lead to the following fixpoint equation : 
a(c) = PO + ~~&CN) + aMa(c) 

A symbolic fixpoint computation yields : 
a(C) = p(C) + p3(C) + p5(C)+ . . . . + p2”‘l(C) 

which is indeed the form obtained with the two first rules. 
Thus, magic functions may be used to simplify duplicate 
computations due to redundant rule systems. Indeed the 
previous algorithm performs this simplification as, at each 
iteration step, it eliminates duplicate strings of symbols in 
the symbolic form of the answer (RSymb). We do not 
know of any method which is able to perform such rule 
simplification. This is indeed part of the power of magic 
functions. 

6. CONCLUSION 

In this paper, we presented a systematic method for 
compiling a large class of recursive queries into fixpoint 
equations. The method is based on a translation of each rule 
into a system of functional equations using the so-called 
magic functions. This system is solved in the module space 
of vector variables. The method is general enough to reject 
problematic rules. The method also applies to non-recursive 
queries : in that case, it determines the query 
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answer as a functional equation in which all functions are 
derived from base relations. In the case of recursion, the 
fixpoint equations are directly translated into an iterative 
relational algebra program which is computed in a symbolic 
way, using Tat-ski’s fixpoint theorem. Although a general 
polynomial form is not always possible, by mixing 
symbolic computation and data computation, it appears that 
the method always performs selection at first and also 
simplifies query computation programs generated by 
redundant rules. In other words, a large class of equivalent 
rules are detected and computed only once. 

Finally, it is important to point out that all Datalog 
programs with unary function symbols can be optimized 
and translated into functional form using the proposed 
method. The concerned class of rules includes all the linear 
or non linear rules, stable or non-stable rules, chain or non 
chain rules, binary or non-binary rules as defined by other 
authors. It may also handle mutual recursion as shown in 
[Gardarin-DeMaindreville86]. A slight problem arises with 
functions of multiple variables. We think that thii problem 
might be handled with a good choice of variables which 
would transform n-ary functions into unary ones. A lot of 
work remains to be done, for example to compare different 
possible fixpoint equations, to determine the power and 
limits of a symbolic computation of the query answer, . . . 
Neverthless, fixpoint computation of magic functions is a 
very powerful method for recursive query compilation and 
optimization, allowing the compiler to determine certain 
redundant rules. 

REFERENCES AND BIBLIOGRAPHY 
[AhoUllman79] AH0 A.V., ULLMAN J.D. : 
“Universality of data retrieval languages”, Conf. of PQPL , 
San-Antonio, Texas, 1979. 
[Bancilhon85] BANCILHON F. : “Nave evaluation of 
recursively defined predicates”, MCC internal report, 1985. 
[Bancilhon86] BANCILHON F., MAIER D., SAGIV Y., 
ULLMAN J.D. : ” Magic sets and other strange ways to 
implement logic programs”, 5th ACM Symposium on 
Principles of Database Systems, Cambridge, 1986. 
[BancilhonRama86] BANCILHON F., 
RAMAKRISHNAN R. : “An Amateur’s Introduction to 
Recursive Query Processing Strategies”, ACM 
SIGMOD’86, Washington D.C., May 1986. 
[Beeri871 BEER1 C., RAMAKRISHNAN R. : “On the 
Power of Magic”, MCC Technical Report, Jan. 1987. 
[Ceri86] CERI S.. GOTI’LOB G., LAVAZZA L. : 
“Translation and Optimization of Logic Queries: ‘Ihe 
Algebraic Approach” 12th Very Large Data Bases, Kyoto, 
1986, Pp; 395402. 

29 



[Char&a821 CHANDRA K.A., HAREL D. : “Horn clauses 
and the fixpoint query hierarchy”, Proc. 1st ACM 
Symposium on Principles of Database Systems, 1982. 
[Chang81] CHANG C. : “On evaluation of queries 
containing derived relation in a relational database”, 
in [Gallairegl]. 
~lobel861 DELOBEL C. : “Bases de DOMQS et Bases de 
Connaissances : Une Appmche Systemique a l’aide dune 
Algebre Matricielle des Relations”, Joumees Francophones, 
Grenoble, 1986. 
[Gallaim GALLAIRE H., MINKER J., NICOLAS J.M.: 
“Advances in da&base theory”, Book, Vol. 1, Plenum Press, 
1981. 
[GaIhireMl GALLAIRE H., MINKER J., NICOLAS J.M.: 
“Logic and databases : a deductive approach”, ACM 
Computing Surveys, Vol. 16, No 2, June 1984. 
[Gardarin-DeMaindrevillda GARDARIN G.. DE 
MAINDREVILLE C., SIMON E. : “Extending a 
Relational DBMS towards a Rule Based System: An 
Approach Using Predicate Transition Nets” 
Crete Workshop on DB and AI, June 1985, To appear in a 
book, Springer-Verlag, lbanos and Schmidt Ed. 
[Gardarin-DeMaindreville86] GARDARIN G., DE 
MAINDREVILLE C. : “Evaluation of Database Recursive 
Logic Progmms as Recurrent Function Series”, ACM 
SIGMOD’86, Washington D.C., May 1986. 
[GardarinPucheral86] GARDARIN G., PUCHERAL P. : 
“Optimization of Generalized Recursive Queries Using 
Graph Traversal”, Internal Report, INRIA 86, Submitted for 
publication. 
[Gardarin87] GARDARIN G : “Les fonctions Magiques : 
Une Technique pour Optimiser les Regles r&zursives”, 
Jour&s Bases de Do~tks PRC BD3, Port-Camargue, 
France,l987, INRIA Ed. 
[Gardarin-Guessarian-De Maindreville] GARDARIN G, 
GUESSARIAN I., DE MAINDREVILLE C. : “Translation 
of rules in fixpoint equations”, in preparation. 

[Guessarhm87] GUESSARIAN I. : “Some fixpoint 
Techniques in Algebraic Structures and Application to 
Computer Science”, to ap.pear in INRIA-MCC Workshop 
1987. 
[Henschen-Naqvi841 HENSCI-IEN L.J., NAQVI S.A. : “On 
compiling queries in recursive first-order databases”, JACM, 
Vol. 31, N” 1, Jan. 1984. 
[Lozinskii85] LOZINSKII EL. : “Evaluation queries in 
deductive databases by generating subqueries”, IJCAIPmc., 

pp. 173-177, Los Angeles, August 1985. 
[KiferLozinskii86] LOZINSKII E., KIFER M. : 
“Implementing Logic Programs as a Database System”, to 
be published, Data Engineering Conference, 1987. 
[MarquePucheu83] MARQUE-PUCHEU G. : “Algebtic 
structure of answers in a recursive logic database”, Rapport 
Ecole Normale Sup&ieure, 1983. 
[Merrett84] MERRETI’ T.H. : “Relational Information 
Systems”, Book, Prentice Hall, 1984, Chapter 5. 
lRohmer851 ROHMER J., LESCOEUR R. : “La m&ode 
d’Alexandre : une solution pour traiter les axiomes reCursifs 
dans les bases de dontrees d&luctives”, Rapport derechemhe, 
Bull. DRAL&A/45.01.1985. 
[SaccaZaniolo86] SACCA M.. ZANIOLO C. : “On the 
Implementation of a Simple Class of Logic Queries for 
Databases”, 5th ACM Symposium on Principles of 
Database Systems, Cambridge, 1986. 
[Tarski553 TARSKI A. : “A lattice theoretical fixpoint 
theorem and its applications”, Pacific Journal of 
mathematics, No 5, pp. 285-309,1955. 
lUllman ULLMAN J.D. : “Implementation of logical 
query languages for Databases”, ACM TODS, Vol. 10, N. 
3, pp. 289-321.1986. 
[Vieille86] VIEILLE L. : “Recursive axioms in deductive 
databases : the query sub-query approach”, Proc. First Intl. 
Conference on Expert Database Systems, Charleston, 1986. 
[Zaniolo86] ZANIOLO C., SACCA M. : “Implementing 
Recursive Logic Queries with Functions Symbols”, 
Unpublished Manuscript, MCC Report, April 1986. 

30 Proceedings of the 13th VLDB Conference, Brighton 1987 


