
MAGIC FUNCTIONS : A TECHNIQUE TO OPTIMIZE

EXTENDED DATALOG RECURSIVE PROGRAMS

Georges GARDARIN

INRL4 & University Paris VI
BP. 105,78153 Le Chesnay-C&lex (Prance)

UUCP :...!inria!litp!gg
work sponsored by ISIDE ESPRIT Project and PRC BD3

ABSTRACT

Several methods have been proposed to compile recursive
Datalog programs. The most well-known perform a
rewriting of rules using MAGIC or PROBLEM predicates
in order to push selections before recursion. Rewritten rule
systems are generally complex and difficult to translate into
optimized relational algebra programs. Moreover, they often
generate too many results; thus, the query must be applied
to the generated results to eliminate non relevant answers.
In this paper, after a survey of the existing compilation
techniques which points out their limitations, we develop
the magic function method iutroduced in [Gardariu-
DeMaindreville86]. It is based on an understanding of the
query as a function which maps columns of a relation to
other columns. A query against recursive rules is then
translated into a fixpoint functional equation. The
resolution of this fixpoint equation using Tarski’s theorem
leads to efficient computation of the query answer. In
particular, the derived algorithms push selections through
recursion, because selections appear as function arguments.
They generate only relevant answers to a given query,
without redundant data computation. The purpose
of this paper is the introduction of a generalized method to
obtain and resolve the fixpoint functional equation. The
method is general enough to handle non-binary rules, cyclic
rules and function symbols. The main advantages of the
method are : (1) It directly generates an optimized relational
algebra program. (2) It performs a symbolic pre-
computation which permits rule redundancy elimination. (3)
It fully supports function symbols and range queries.

%nksion to copy without fee all or part of this
material is granted provided hat tk copies arc oat made
or dkbibuti for direct commercial advantage, Utc
MDB copyright notice and the tide of the publication
and its date appear, and notice is given lhat copying is
by permission of the Very Large Data Base Endowmem.

TO COPY olhe~ir, or to republish, requires a fee and/or
Special permission from Ihe Endowment.

Proceedings of the 13th VLDB Conference, Brighton, 1987

1. INTRODUCTION

Assuming the reader to be familiar with recursion in
deductive databases [Gallaire84, Bancilhon86, Ullman86],
we address the problem of evaluating queries referencing
rule defined relations. We assume that the rules may include
recursive predicates referencing unary, finite and inversible
function symbols.

Two types of strategies have been proposed to handle
recusive queries. The simplest one is based on query
interpretation. This approach is mainly derived from
backward chaining “a la Prolog” and works in a top-
down manner. The derived methods generally push
restriction before recursion [Vieille86, Lozinskii85],
although certain methods do not work in all cases with
function symbols [Gardarin-DeMaindteville85, Kifer-
Lozinskii86]. As these methods do not pre-compile the
queries, they generate call loops to the DBMS which are
rather inefficient. However, a clever optimization of
interpreted techniques known as query/sub-query has been
developped at ECRC [Vieille86]. In this method, sub-
queries and answers are kept in main memory to reduce
costs.

Although the limits of the query/subquery interpreted
method are not well known, several researchers claims that
the fanciest methods are based on a compilation of the
query and rules before going to the database. This pre-
compilation often rewrites the rule system using “magic”
or “problem” predicates. These intermediate predicates
simulate the moving up of constants before recursion, in
such a way that a semi-naive bottom-up evaluation of the
compiled rules presents two interesting features
[Bancilhon85] :
(a) No redundant work is performed, that is, tuples are not
produced twice using the same rules;
@No useless tuples are generated, that is, tuples are
eliminated through restrictions as soon as possible.

21

Two compilation techniques claim to reach objectives (a)
and (b) and are the most popular : the magic set approach
and the Alexander method. We examine them in the first
section of this paper. Using a simple example, we show
that the Alexander method is among the most general ones.
Also, the magic set approach has recently been extended
(Extended supplementary magic sets [Beeri87]) toward a
method which is similar to Alexander with a reordering of
predicates. This reordering allows the algorithm to perform
maximum sideways information passings to evaluate the
query. A serious drawback of Alexander or Extended
supplementary magic set is the complexity of the
transformed rule system which generally, needs further
optimizations and simplifications.

The motivations of this paper are three folds : (1) There
is a need for a general method to compile a query against
rules directly into an optimized relational algebra program
performing selections before recursions; (2) Such a method
must support rules with function symbols; (3) The method
must provide a basic tool for simplifying certain classes of
redundant rules. Steps toward such a method have already
been taken [Chang81, Henschen84, Gardarin-
DeMaindrevikg6, Cerig6]. The magic function
approach developed here is a new step toward such an
efficient compilation technique. More specifically, we
propose a general and formally based method to translate a
query and the associated rules into a functional equation.
The method applies to any kind of rules which may include
unary reversible function symbols.

The paper is organized as follows. The second section is
mainly a survey. We summarize the Magic set and
Alexander methods. We discuss their power. Then, we recall
and precise the formalism presented in [Gardatin-
DeMaindreville86] which consists in interpreting relations
and queries as magic functions. Magic functions are set
valued. In basic form, they map one column of a relation to
another column. The fourth section is devoted to the
description of the algorithm to translate a query over a set
of rules into a fixpoint functional equation of the form
Q(X) = F(m), where Q is the query seen as a magic
function. This algorithm computes symbolically the query
answer in term of functions by performing a resolution of a
system of simultaneous equations in the module of
variables. The fifth section gives a differential algorithm to
translate a magic function fixpoint equation directly into a
relational algebra program. Finally, we show that the
symbolic computation process allows the system to
eliminate certain equivalent rules which are redundant An
example is given. In conclusion, we discuss the limits of
the method.

2. A SURVEY OF SOME COMPILATION
METHODS

2.1 The magic set method

The magic set approach [Bancilhon86] performs
sideways information passing and then rewrite the rules
using magic predicates. These predicates correspond to
demons which reject useless tuples when applied in forward
chaining. The basic magic set method is supported by a
rather complex rewriting algorithm. The method does not
apply to rules such as the odd ancestors derived from a base
relation Pamnt(young.old) lBancilhon861 :

(rl) Ancestor(x,y) c-- Parent(x,y)
(12) Ancestor(x,z) c-- Parent(x,y),Ancestor(y,v),

~cestor(vJz)

with query such as:
?Ancestor(c&

An extended version of the magic set algorithm called
the Generalized magic set has just been proposed
[Beeri87]. The algorithm first requires to build an adorned
rule set using maximum sideways information passing
(sideways information passing may be portrayed by a SIP
graph lBeeri871). In our case, we obtain :
(rl-a) Ancesdf(x,y) <-- Patent(x,y)
W-a) Ancestorbf(x~) <-- Parent(x,

P
+4rlcestorbf(y,v),

Ancesto w
For each recursive predicate R, a magic predicate
MAGIC-R is created whose variables are bound variables in
R. Each rule is then modified by the addition of the required
magic predicate in its body. The generation of tuples in the
magic predicate is given by : (a) the query; (b) rules which
model the sideways information passing to the recursive
predicate. In our examples, we obtain the rewritten rule
system:
(rl-m) :
MagicJhesto~f(x), Parent(x,y) --> Ancestorbf(xy)

.
!g$imestopf x Pamnt(x,y), Ancestorbf(y,v),

tou Antes &->Ancesto~f(x~)
(sip-l) :
IvIagic~Ancesto~f(x), Parent(x,y) -->Magic&cestorbf(y)
(sip-2) :
Magic~Ancestorbf(x), Parent(x,y), Ancestorbf(y,v) -->

Magic Ancestorbf(v)
twery): -

Magic~Ancesto~f(c).

22 Proceedings of the 13th VLDB Conference, Brighton 1987

The resulting modified rule system is rather complex
(mutually recursive) and redundant (condition parts are
repeated). The generalized supplementary magic set
algorithm [Beeri87] has been proposed to save redundant
condition parts : the result is approximately the Alexander
method described below.

2.2 The Alexander method

The Alexander method [Rohmer85] consists in rewriting
rules in terms of problems and solutions for each recursive
predicate. Thus, as the Gordian node was cut in two by
Alexander, the Alexander method cuts recursive predicates
in two parts: the problem and the solution. The method
also starts with an adorned rule set (adorned predicates are
written with a boolean adornment of type Rxxx, where xxx
is a binary vector; we keep here the notation of
[ullman86]). Then, the rewriting of a recursive rule
Bl,B2,...R,Ql,Q2 ,... -a R in several optimized rules is
performed as follows:
(1) Add the problem predicate PB-Rxx to the rule
condition.
(2) Propagate linearly the bound variables using sideways
information passing up to an occurrence of the recursive
predicate; this process is done by scanning the rule
predicates, from the condition to the head; to guarantee a
good sideways information passing, a reordering of
predicates according to a maximum SIP is desirable.
(3) Cut the recusive predicate in two parts: (a) a problem
predicate which is generated by the previously scanned
condition part; (b) a solution predicate which is used to
generate a new rule, with the non scanned part of the rule.
(4) Go on scanning the new rule with the same algorithm
(i.e., go to 2).
As the algorithm generates independant rules which may
share variables, context predicates are used to transmit
variables between rules.

For example, using the definition of odd Ancestor given
above with rules (rl) and (r2), we obtain:
(rl-m) :
Pb-Ancestorbf(x), Parent(x,y) --> Sol-Ancestorbf(x,y)
(sip-l) :

Pb_Ancestorbf(x), Patent(x,) -+
Pb_Ancestorb (y),Contl(x,y) f

(sip-2) :
Contl(x,y), Sol_Ancestorbf

9
,v)-->

Pb-Ancestorb (v),ContlL(x,v)
(r2-m) :
Cor&(x,v), Sol_Ancestorbf(v~) -->SolJncestorbf(x~)
(were) :
PbJncestorbf(c),SolJuicestorbf(c,y) --> Answer(y)

This set of rules must be applied using semi-naive
forward chaining to get the query answer (i.e., Answer(y)).
The rewritten rules are not in a very simple form : two
intermediate predicates Contl and Cont2 are introduced, the
rules are mutually recursive. However, the Alexander
method appears here to be more successful than the classical
magic set method. Indeed, it leads to results similar to those
of the generalized supplementary magic set algorithm
[Beeri87]. The Alexander method has been operational on
PC since 1985. The rule transformer is written in Prolog
lRohmer861.

2.3 On the power of Magic sets and Alexander

Alexander and Magic sets are indeed very similar
methods. However, generalized magic sets seems to select
the maximum sideways information passing. The selected
sideways information passing in Alexander depends on the
order of the predicates in the rule body.

Magic sets do not generate rules which produce exactly
the query answer. Generally, the generated rules produce
mote. For example, the above rewritten ~1e.s generate all
ancestors of “c” as magic set (or problems). Therefore, all
parents of an ancestor of “c” are produced in the ancestor
relation. This is not correct because the answers are only
the odd ancestor of “c”. Fortunately, a simple final selection
on the generated tuples in the ancestor relation eliminates
the indesirable answers. It is indeed difficult to avoid this
final selection even with simple linear rules. For example,
therules:

Ancestor(x,y) <-- Parent(x,y)
Ancestor(x& c-- Parent(x,y),Ance-stor(y,v)&trent(v~)

still generate the odd ancestors. The magic set for the query
?Ancestor(cJ) is still all ancestors of “c”. Thus, the
rewritten rules generate all ancestors of “c” in Ancestor,
fortunately with their one level descendant as first attribute.

The Alexander method does not do better in the solution
predicate; however, the final required selection is included in
the rewritten rules: it derives from the query rule which
generates the query answer.

Finally, it can be said that magic sets partly Eail to
generate only useful tuples. This point is often not very
clear (see for example theorem 1 of [Bancilhon86]). One
main feature of the magic function method is that it does
not generate useless tuples in the resulr thus, a final
selection on the generated relation is not required.

Proceedings of the 13th VLDB Conference, Brighton 1987 23

2.4 The Magic function method

In [GardarinDeMaindreville86], we introduce a new
method based on a functional approach : rules are rewritten
as functional equations to compute a query answer. In the
current paper which extends this functional approach, the
method is called magic functions. The intuitive idea of
our approach is that a relation instance defines functions;
each function maps one set of values in one column to the
corresponding set of values in another column. Rules are
then rewritten as magic functions. In [Gardarin-
DeMaindreviIle86]. the rewriting algorithm is limited to
binary predicates with acyclic conditions (i.e., chain rules).
In the sequel, a generalization to any predicate with function
symbols is going to be presented.

Let us give an intuitive view of the method using the
previous example. For the odd ancestors as defined by rules
(rl) and (r2) with the query ?Ancestor(c,z), the method leads
to the fixpoint equation between the magic functions
Ancestor(c) and Parent(c) which respectively maps a set of
persons c to their ancestors and parents:

Ancestoro=pafent(c)+Ancestor(~~~~ent(c)))

The fixpoint equation is used in a symbolic way to
compute the solutions and then to derive the relational
algebra program from the symbolic form. In our case, by
successive approximations [Tarski’s theorem] we derive :

Ancestor(c) = Parent(c) + Parent3(c) + Parents(c) + +
Parent*“+ l (c)

for some n which gives the fixpoint.
This formula leads to the following program :

Procedure Compute(Ancestor,c);
Begin

lpl&;r7$.gp c@-ENJJ); .

while “Ancestor change” do
*Delta := 7P.2(op.1 E Del@=);
Deha := ncp.*(op.IE D&a(pARENT));

Ancestor := Ancestor u Delta;
d;

End.

On this example, the functional approach appears much
more simple and efficient than the Magic set or Alexander
methods. Also, it is founded on mathematical principles.
Unfortunately, the algorithm (based on a graph analysis)
given in [Gardarin-DeMaindreville86] which translates rules
into functional equations only applies to rules composed
with binary predicates; moreover, variables in a rule body

should not cycle; thus, the method seems only to apply to
binary acyclic rules, also called chain rules. Another
drawback of the method is that general symbolic forms are
not always easy to compute at compile time. In the sequel,
we propose a generalization of the method to handle any
kind of rule with function symbols. We also propose a way
to use the fixpoint equation which does not require
computing a general polynomial form, although keeping
the possibility of redundancy elimination. In short, we
solve all the problems of the functional method. The
resulting extended method, called magic function, is a
powerful approach to recursive rule processing.

3. QUERIES AS FUNCTION COMPUTATION

In this section, we recall the precise definition of magic
functions and we introduce a few more operations with
magic functions.

3.1. Functions defined by a relation

Let R (Al, A2) be a relation in binary form where Al
and A2 are sets of one or more attribute(s). We denote dom
(Al) (resp dom(A2)) the domain of Al (resp. A2), that is in
general the cartesian product of the domains of the
composing attributes. A given instance of R determines
derived functions called magic functions, defd as follows:

Definition 1 : Magic function
A magic function &rived from a relation R(Al,A2) is a

function which maps a subset of dom(Ai) into the related
subset of dom(Aj) (i#j) according to R.

Indeed, for each possible binary form of a relation
R(Al,A2), there exists two magic functions denoted r and r’
which may be defmed as follows :
(i) Let X = (xl, x2, . . . xq) be a subset of dom(A1);
r (X) is the subset of dom(A2) defmed by

(yk/3 x E XsuchthatR(xp,yk)).
(ii) Let Y = P yl, y2, . . . yq) be a subset of dom(A2);
r’(X) is the subset of dom(Al) defined by

(xp / 3 yk E Y such that R(xp,yk)).

Clearly, r(X) is obtained by restricting R to those
tuples having for Al’s value xl or x2 or . . . xn,
keeping only the values of A2 as a set :

r(x) = (no @A/ = xll or . . . or Ai = xn (R))]*
To allow exnres on o boo ean auenes, we may add when
necessary a-virtual attribute A0 b each relation R. A0 is
true for each tuple belonging to R and otherwise false.

24 Proceedings of the 13th VLDB Conference, Brighton 1987

A nice property of magic functions is their
monotonicity. More precisely, we can demonstrate the
following lemma.

Lemma 1 :
Relational functions are monotonic increasing.

Proof :
Let r be a magic function and Xl c X2 subsets of

dom(Ai). We have :
r(X1) = (yk/3 xp E Xl such that R(xp,yk)).

But, as any element of Xl is a member of X2, we have :
(yk / 3 xp E Xl such that R(xp,yk)) I (yk / 3 xp E X2
such that R(xp,yk)) ;

which may be written as : r(X1) s r (X2) +

3.2. Sum, composition and intersection of
magic functions

For convenience and simplicity, the union of two sets
is denoted + while the difference is denoted -. We shall use
the following classical operations over functions and
function results:
(i) The sum of two functions having the same domain is
defined by:

(f+g>O = f(x) + km.
(ii) ‘Ihe composition of f and g is possible if the image
domain of g is included in the defmition domain of f ; it is
defmed by:

c.g 0 f)(x) = f3m9~
which is also denoted g.f(x).
(iii) The intersection of two functions having the same
source and image domain is defmed by :

(f n g) (X) = (y I 3 x E X : f(x) = g(x) = y)

It is important to see that all introduced operations on
magic functions preserve monotonicity.

Lemma 2:
Sum, composition and intersection of magic

functions preserve monotonicity.
ProOt:
The following equations are obvious to demonstrate:

(f+g)o(+Y)=(f+gxx)+(f+g)O
~of)(x+Y)=G3of)m+@of)~Y)
(fng)(X+Y)=(fng)~O+(fng)O l

We could also use the difference operation between two
functions defined as :

(f-l3)O=f(x)-lm
Unfortunately, the difference does not preserve
monotonicity.

4. A SYSTEMATIC METHOD TO GENERATE
FUNCTIONAL FIXPOINT EQUATIONS

The basis of the magic function method is the rewriting
of the rule system as a fixpoint functional equation. In this
section, we propose a general approach to get such a
fixpoint equation. The method is divided in four steps :
(1) The unification of each rule with the query and
rectification of the variables to avoid common variables
between rules.
(2) The rewriting of each rule in binary form using a
sideways inforation passing strategy;
(3) The translation into a system of equations;
(4) The resolution of the system of equations to get the
query fixpoint equation.

We shall illustrate the method with typical examples
given below. The database is supposed to be composed of
the following relations :
- PARENTS (YOUNG,OLD) abbreviated with predicate
letter P;
- B (x1,x2,x3), C (yl,y2,y3) and D (21,22~3).
To illustrate the generality of the method with range
queries, we use a query of the form R(c,x), where c may be
a constant or a set of constants (for example, 010 is
possible).
Definition of grandfathers :

GW,y) <-- P(xAz)Q(~.y)
?--Gp(c,Y)

Quadratic definition of ancestors with functions
[Kifer-Lozinskili] :

Nx,Y) <-- WLY)
A(fO&)) <-- AW, &,Y)
?--A(c,y)

Definition of a cyclic non-binary recursive
relation R :

R(x,y,x) <-- B(x,y,x)
R(x,y.d <-- C~a&MwNXw~
?--R(c,YJ)

4.1. Unification with the query and rectification

This step is simple. Each rule head is unified with the
query to evaluate. A straightforward propagation of the
query constant(s) is performed in the rule body. From now
on, the constant(s) will be considered as a formal parameter.
To avoid confusion of variables between different rules, all
of them are indexed with the rule number : this process of
renaming variables with different names is called
rectification.

Proceedings of the 13th VLDB Conference, Brighton 1987 25

We illustrate this step with the results of the previous
examples :

Definition of grandfathers :
GP(c,yl) <-- PW)Q(zl,yl)

Quadratic defmition of ancestors with functions
A(c,yl) <-- p(c,y 1)
NW9 <-- W-YcWh &WWN

Note that unification implies here the use of the inverse
fonction off and g, denoted f and g’, which are supposed to
exist.

Definition of a cyclic non-binary recursive
relation R :

R(c,yl~l) c-- B(c,yl~l)
Nc,yWl <-- C(c,t2~)~R(t2,~2,~2)P(u2~2)

4.2. Rewriting rules in binary form

Each rule is fast rewritten in binary form defined as
follows.

Definition 2: Binary rule form
Rule form in which:

(i) Variables in the head predicate are divided into two
groups, the first one designating the known constants, the
other representing the remaining variables.
(ii) Variables in each condition predicate are also divided in
two groups, the grouping being done according to a chosen
sideway information passing strategy.
(iii) Conditions are added to the rule body using projection
functions if constraints need to be kept between variables.

Variables are grouped using a SIP graph, as defined in
[Beeri87]. Different choices are possible and will lead to
different tixpoint equations. To perform as many selections
as possible before recursion, it is desirable to use a
complete SIP, that is a SIP which achieves all possible
migrations of values between predicates. Finally, after
rewriting, the most general form of a rule is :

where :
- c is a constant or a tuple of constants;
- y,z,fu ,..., v,w are tuple variables or constants; in practice,
we denote them with the text string of the domain variable
names concatenate&
- Q(c,x,y~,t,u...,v,w) is a conjonction of atomic conditions
between constants, variables or functions applied to
variables, including the projection function.

We illustrate the binary canonical form with the last
example which is the only one not in binary form.:
The first rule is simply rewritten as :

R(c,ylzl) c-- B(c,ylzl)
The rewriting of the second rule :
WC&W) <-- C(c,t2~)P(t2~2,y2)~(~~)
is done using the following SIP :

R(c,YW~ --+ C(&~~
C(c,tZ,z2) --+J R(t2,u2,y2)
W42,y2) -->a D(ti,Q)

Thus, we obtain :
W,Y’W <-- W%WWYWWJ% q@WZ

~2(Qz2)-lc2(Y2z2), qwa=a qWy2)=~,
q(Yw=q(~Y2)

It is important to be sure that the transformation is valid,
that is that the reverse transformation remains possible (no
condition must be lost).

4.3 Translation of binary form rules into a
system of functional equations

Let us assume a binary predicate R defined by a unique
rule:

where Pl, P2 . ..Pn are binary predicates. Each predicate R,
Pl, P2,... Pn defines two magic functions as introduced in
section 3. The binary form rule may be interpreted as a set
of functional equation definitions, as follows (capital
variables am set variables) :

if
pi(Y) = Z (or pl’Q =Y)
p2(T) = U (or p2’(U) =T)

then

pn(V) = W (or pn’(W) = V)
fJ(C,X,Y,ZT,U V,W)

r(C) = X

Thus, at saturation point of the relation computation, the
following functional system of equations must be satisfied
(capital letters are used to denote set variables):

pi(Y) = Z (or pi’(Z) =Y)
p2(T) = U (or p2’(U) =T)
. ..*.......
pn(V) = W (or pi?(W) = V)
WXYZ,T,U...,V,W
r(C) = X

26 Proceedings of the 13th VLDB Conference, Brighton 1987

Let us point out that for each line with an “or” in
parenthesis, both equations can be used. Although, in
general p’@(x)) f X; however, for computing a query
answer, we may use p(X) = Y or Y = p’(X) depending on
which variable is bound. Thus, when resolving equations,
we may use one or the other form : this is due to the fact
that we want all answers to queries. Thus, we shall no
longer write the two possible forms, but only the one
which is required to solve the query and assume that the
inverse function of p is p’.

In the case of several rules defining a predicate R, each of
them contributes to part of the answer, as follows :

R(c,xl) t . . .
R(c,x2) t . . .

unique solution of the form r(C) = F(C) is obtained, where
F is an expression of the union, intersection and
composition of database functions (i.e., database relations
seen as functions). Thus, the answer to the query may be
simply computed using the expression F.

Let us give an example using the grandfather deftition :
GP(c,yl) <-- P(c~l).P(zl,yl)

We obtain, in functional form :
gp(C) = Yl
p(c) =Zl
p(z1) =Yl

This system of three equations with three variables (C is
considered as a formal variable) may be solved in C by
simple elimination of Y 1 and 21, which entails :

R(c,xk) t . . .

As the union of all rule fixpoints must be performed to get
the R relation, we must collect all the functional
expressions. We have then to compute:

r(C) = Xl +X2 +...+Xk
with the equations deriving from the rule bodies. For this
purpose, the whole system must be solved in r(C) by
successive elimination of the Xi variables, using an
algorithm to solve a system of equations.

4.4 Solving the system of equations

Let us now assume a query R(c,y). As seen above, we
must evaluate the function r(C). To do this evaluation , we
may use the set of equations which is derived from the rules
as explained above :

r(C)=Xl+X2+Xn
pl(Y1) = 21
p2(Tl) = Ul
.
pn(V1) = Wl
Q(C,Xl,Yl,Zl,Tl,Ul..., V1,Wl)

This system of equations must be solved in r(C). The
theory of simultaneous equation solving is well known, so
we are not going to develop it here. However, we would
like to mention that considering the functions as scalars,
the vectors of variables (X1,X2 ,...) describe a module (i.e.,
a vector space with a non commutative multiplication of
scalars). A general approach to solve equations in such a
structure is the elimination of variables by substitution
(i.e., Gaussian elimination in a vector space). In general, a

gp(C) = P(PK)).

This functional equation tells us that to get the grandfather
of a set of persons C = (c) , we must take the parents of the
parents of each member of (c) . It is an efficient method to
compute the grandfather of a set of persons. The method to
construct the functional equation is general enough to deal
with recursive rules, function symbols and non-binary
predicates.

Certain rules lead to more equations than variables. Let
us assume that we get n equations and p variables with p <
n. Relaxing n - p equations, a first solution of type
r(C)=Fl(C) may be calculated. Using successively the other
equations (which are indeed constraints for Fl(C)) and
relaxing a previously used equation, other solutions may be
evaluated :

r(C) = F2(C), . . . r(C) = Fn(C).
As all equations (which may be seen as integrity constraints
on the relation composed of the cartesian product of the
variables) must be satisfied, we have :

r(C) = Fl(C!) n F2(C) n . ..n Fn(C).

On the contrary, certain rules lead to less equations than
variables. Such rules do not restrict certain variables
enough. Two examples of such rules are :

Gp(x,y) <-- p(x&, p(t.y)
and:

The first one leads to a cartesian product. The second one is
unsafe because t is not defined in the premises. In the
sequel, we shall reject such rules which are dangerous and
USelesS.

Proceedings of the 13th VLDB Conference, Brighton 1987 27

4.5. A recursive example with function Procedure compute(R,F, (c));
symbols Begin

The case of recursive rules is not a special one: a
recursive rule contributes to a query in functional form as a
normal one. However, the generated functional equation
appears to be a fiipoint equation [Gardarin-
DeMaindreville861. Due to a lack of space, we cannot treat
all given examples here. The reader may find more
examples in [Gardarin87]. Let us solve the example of the
quadratic definition of ancestors with functions; after
unification and rectilication, we obtain the binary form :

NC,Y 1) <-- P(c,yl)
A(c,ylL) <-- Nf@)tih ~WZg’g’(y2))

Transforming the above rules in functional equations yields
(note that f and g, or their reverse are applied to sets of
values):

a(C)=Yl+Y2
p(C)=Yl
@Yc)) = 22
a0 = f3’W)

This is a system of four equations with four variables (C,
Y 1,22, Y2). Solving it in a(C) by elimination of variables
Y 1, Y2 and 22 entails :

NC) = ~((3 + g(a(aVV3))

5. TRANSLATION OF FIXPOINT EQUATIONS
INTO RELATIONAL ALGEBRA

5.1 Iterative computation

For a given query Q = R((cl ,y), the previous method
derived a fupoint functional equation of the form :

q=FW
Applying Tarski’s theorem on the q function lattice
[Guessarian87], we may solve this equation by successive
approximation as follows (0 is the function whose result is
always empty) :

q = F(a) u WT0N u We)
Thus, the query answer is given by (we replace q by its real
functional form with argument (c)) :

T(tcl) = WN(c)) u WWX(c)) u F”(Mc))
and we know that the fmpoint is reached for a certain n
where no new data can be produced.
Thus, we can write an iterative program to compute the
query answer as follows,where F is the fixpoint equation
right member (a text string of symbols), (c) the
constant(s) in the query (i.e., the restriction criteria), and R
the query answer :

(Initialize the symbolic form of the answer)
RSymb := F(O);
DehaSymb := 0;

(Initialize answer with F(g)(c))
RData := RSymb((c));
DeltaData := 0;

(Compute symbols and data up to fmpoint)
while “Elements inside DeltaData and

DeltaSymb change” do
(Compute next symbolic form = olduFn(o))

NewRsymb := Rsymb u F(Rsymb);
(Compute variations of symbolic form)

DeltaSymb := NewRsymb - Rsymb;
(Compute new data generated)

DeltaData := DeltaSymb((c));
(Cumulate answers)

RData := RData u DeltaData;
(Move to next step)

Rsymb := NewRsymb;
a;

End;

This program performs an iterative symbolic generation of
the function F”(o) from F. At each step, it queries the
database to compute F(a)((c)); to avoid generating several
time the same queries, we ehminate already evaluated
symbols in the symbolic functional form of the answer:
this explains the difference between the new string of
symbols and the old one. The program stops when no new
data are generable (or when no new functional expressions,
i.e. strings of symbols, are generated the inclusion of
DeltaSymb in the test is a slight optimization which may
be omitted). It is important to stop only when all elements
included in DeltaSymb((c)) do not change : the stopping
test may require to memorize values for each function
evaluated in DeltaSymb if one wants to support complex
general rules.

For example, with the fixpoint equation :
a(C) = r-C3 + gbb(fYW)

the quadratic ancestor problem, F is set to p+gaaf. At the
first iteration, we obtain Rsymbz~gppf
At the next iteration, we obtain:

p+gppf+gpgppff+ggppfgppff,
The algorithm successively queries the database to evaluate
P(C), then i&WYC)))h then sMW(f(f(C))))))), then
g(g@(P(f(s@(p(f(f(C))))c))))))))))....Indeed, the gend f=
does not need to be computed as the program queries

28 Proceedings of the 13th VLDB Conference, Brighton 1987

the database to compute Deltadata and stops when no new
data appears in the argument of each new applicable
function. This is really a good way of mixing symbolics
and data computation, although the stopping criteria might
be a bit complex. That is possible as any symbol in
Rsymb represents a base relation or a base function.
Moving back to relational algebra with functions
[Zaniolo85], which is simply a re-interpretation of the
symbolic formulas, yields a simple program which
performs restriction at fusr this is due to the fact that
constants are the arguments of the magic function strings
which are symbolically computed.

5.2 Simplification of general forms by
symbolic computations

Indeed, the fixpoint functional equation is a very useful
tool which may be used not only to generate relational
algebra programs, but also to simplify rule system
computation. Let us assume the following system of rules:

A(x,Y) <-- WY)
A(x;y) <-- P(x&W),Mu9
A(x,Y) <-- NxAWMW

with the query :
?--A(c,y).

Magic functions lead to the following fixpoint equation :
a(c) = PO + ~~&CN) + aMa(c)

A symbolic fixpoint computation yields :
a(C) = p(C) + p3(C) + p5(C)+ + p2”‘l(C)

which is indeed the form obtained with the two first rules.
Thus, magic functions may be used to simplify duplicate
computations due to redundant rule systems. Indeed the
previous algorithm performs this simplification as, at each
iteration step, it eliminates duplicate strings of symbols in
the symbolic form of the answer (RSymb). We do not
know of any method which is able to perform such rule
simplification. This is indeed part of the power of magic
functions.

6. CONCLUSION

In this paper, we presented a systematic method for
compiling a large class of recursive queries into fixpoint
equations. The method is based on a translation of each rule
into a system of functional equations using the so-called
magic functions. This system is solved in the module space
of vector variables. The method is general enough to reject
problematic rules. The method also applies to non-recursive
queries : in that case, it determines the query

Proceedings of the 13th VLDB Conference, Brighton 1987

answer as a functional equation in which all functions are
derived from base relations. In the case of recursion, the
fixpoint equations are directly translated into an iterative
relational algebra program which is computed in a symbolic
way, using Tat-ski’s fixpoint theorem. Although a general
polynomial form is not always possible, by mixing
symbolic computation and data computation, it appears that
the method always performs selection at first and also
simplifies query computation programs generated by
redundant rules. In other words, a large class of equivalent
rules are detected and computed only once.

Finally, it is important to point out that all Datalog
programs with unary function symbols can be optimized
and translated into functional form using the proposed
method. The concerned class of rules includes all the linear
or non linear rules, stable or non-stable rules, chain or non
chain rules, binary or non-binary rules as defined by other
authors. It may also handle mutual recursion as shown in
[Gardarin-DeMaindreville86]. A slight problem arises with
functions of multiple variables. We think that thii problem
might be handled with a good choice of variables which
would transform n-ary functions into unary ones. A lot of
work remains to be done, for example to compare different
possible fixpoint equations, to determine the power and
limits of a symbolic computation of the query answer, . . .
Neverthless, fixpoint computation of magic functions is a
very powerful method for recursive query compilation and
optimization, allowing the compiler to determine certain
redundant rules.

REFERENCES AND BIBLIOGRAPHY
[AhoUllman79] AH0 A.V., ULLMAN J.D. :
“Universality of data retrieval languages”, Conf. of PQPL ,
San-Antonio, Texas, 1979.
[Bancilhon85] BANCILHON F. : “Nave evaluation of
recursively defined predicates”, MCC internal report, 1985.
[Bancilhon86] BANCILHON F., MAIER D., SAGIV Y.,
ULLMAN J.D. : ” Magic sets and other strange ways to
implement logic programs”, 5th ACM Symposium on
Principles of Database Systems, Cambridge, 1986.
[BancilhonRama86] BANCILHON F.,
RAMAKRISHNAN R. : “An Amateur’s Introduction to
Recursive Query Processing Strategies”, ACM
SIGMOD’86, Washington D.C., May 1986.
[Beeri871 BEER1 C., RAMAKRISHNAN R. : “On the
Power of Magic”, MCC Technical Report, Jan. 1987.
[Ceri86] CERI S.. GOTI’LOB G., LAVAZZA L. :
“Translation and Optimization of Logic Queries: ‘Ihe
Algebraic Approach” 12th Very Large Data Bases, Kyoto,
1986, Pp; 395402.

29

[Char&a821 CHANDRA K.A., HAREL D. : “Horn clauses
and the fixpoint query hierarchy”, Proc. 1st ACM
Symposium on Principles of Database Systems, 1982.
[Chang81] CHANG C. : “On evaluation of queries
containing derived relation in a relational database”,
in [Gallairegl].
~lobel861 DELOBEL C. : “Bases de DOMQS et Bases de
Connaissances : Une Appmche Systemique a l’aide dune
Algebre Matricielle des Relations”, Joumees Francophones,
Grenoble, 1986.
[Gallaim GALLAIRE H., MINKER J., NICOLAS J.M.:
“Advances in da&base theory”, Book, Vol. 1, Plenum Press,
1981.
[GaIhireMl GALLAIRE H., MINKER J., NICOLAS J.M.:
“Logic and databases : a deductive approach”, ACM
Computing Surveys, Vol. 16, No 2, June 1984.
[Gardarin-DeMaindrevillda GARDARIN G.. DE
MAINDREVILLE C., SIMON E. : “Extending a
Relational DBMS towards a Rule Based System: An
Approach Using Predicate Transition Nets”
Crete Workshop on DB and AI, June 1985, To appear in a
book, Springer-Verlag, lbanos and Schmidt Ed.
[Gardarin-DeMaindreville86] GARDARIN G., DE
MAINDREVILLE C. : “Evaluation of Database Recursive
Logic Progmms as Recurrent Function Series”, ACM
SIGMOD’86, Washington D.C., May 1986.
[GardarinPucheral86] GARDARIN G., PUCHERAL P. :
“Optimization of Generalized Recursive Queries Using
Graph Traversal”, Internal Report, INRIA 86, Submitted for
publication.
[Gardarin87] GARDARIN G : “Les fonctions Magiques :
Une Technique pour Optimiser les Regles r&zursives”,
Jour&s Bases de Do~tks PRC BD3, Port-Camargue,
France,l987, INRIA Ed.
[Gardarin-Guessarian-De Maindreville] GARDARIN G,
GUESSARIAN I., DE MAINDREVILLE C. : “Translation
of rules in fixpoint equations”, in preparation.

[Guessarhm87] GUESSARIAN I. : “Some fixpoint
Techniques in Algebraic Structures and Application to
Computer Science”, to ap.pear in INRIA-MCC Workshop
1987.
[Henschen-Naqvi841 HENSCI-IEN L.J., NAQVI S.A. : “On
compiling queries in recursive first-order databases”, JACM,
Vol. 31, N” 1, Jan. 1984.
[Lozinskii85] LOZINSKII EL. : “Evaluation queries in
deductive databases by generating subqueries”, IJCAIPmc.,

pp. 173-177, Los Angeles, August 1985.
[KiferLozinskii86] LOZINSKII E., KIFER M. :
“Implementing Logic Programs as a Database System”, to
be published, Data Engineering Conference, 1987.
[MarquePucheu83] MARQUE-PUCHEU G. : “Algebtic
structure of answers in a recursive logic database”, Rapport
Ecole Normale Sup&ieure, 1983.
[Merrett84] MERRETI’ T.H. : “Relational Information
Systems”, Book, Prentice Hall, 1984, Chapter 5.
lRohmer851 ROHMER J., LESCOEUR R. : “La m&ode
d’Alexandre : une solution pour traiter les axiomes reCursifs
dans les bases de dontrees d&luctives”, Rapport derechemhe,
Bull. DRAL&A/45.01.1985.
[SaccaZaniolo86] SACCA M.. ZANIOLO C. : “On the
Implementation of a Simple Class of Logic Queries for
Databases”, 5th ACM Symposium on Principles of
Database Systems, Cambridge, 1986.
[Tarski553 TARSKI A. : “A lattice theoretical fixpoint
theorem and its applications”, Pacific Journal of
mathematics, No 5, pp. 285-309,1955.
lUllman ULLMAN J.D. : “Implementation of logical
query languages for Databases”, ACM TODS, Vol. 10, N.
3, pp. 289-321.1986.
[Vieille86] VIEILLE L. : “Recursive axioms in deductive
databases : the query sub-query approach”, Proc. First Intl.
Conference on Expert Database Systems, Charleston, 1986.
[Zaniolo86] ZANIOLO C., SACCA M. : “Implementing
Recursive Logic Queries with Functions Symbols”,
Unpublished Manuscript, MCC Report, April 1986.

30 Proceedings of the 13th VLDB Conference, Brighton 1987

